]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/farch.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
72         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
73                            efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
75         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
76                            efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
78         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
79                            (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88
89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90                                      unsigned int index)
91 {
92         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93                         value, index);
94 }
95
96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97                                      const efx_oword_t *mask)
98 {
99         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
103 int efx_farch_test_registers(struct efx_nic *efx,
104                              const struct efx_farch_register_test *regs,
105                              size_t n_regs)
106 {
107         unsigned address = 0;
108         int i, j;
109         efx_oword_t mask, imask, original, reg, buf;
110
111         for (i = 0; i < n_regs; ++i) {
112                 address = regs[i].address;
113                 mask = imask = regs[i].mask;
114                 EFX_INVERT_OWORD(imask);
115
116                 efx_reado(efx, &original, address);
117
118                 /* bit sweep on and off */
119                 for (j = 0; j < 128; j++) {
120                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
121                                 continue;
122
123                         /* Test this testable bit can be set in isolation */
124                         EFX_AND_OWORD(reg, original, mask);
125                         EFX_SET_OWORD32(reg, j, j, 1);
126
127                         efx_writeo(efx, &reg, address);
128                         efx_reado(efx, &buf, address);
129
130                         if (efx_masked_compare_oword(&reg, &buf, &mask))
131                                 goto fail;
132
133                         /* Test this testable bit can be cleared in isolation */
134                         EFX_OR_OWORD(reg, original, mask);
135                         EFX_SET_OWORD32(reg, j, j, 0);
136
137                         efx_writeo(efx, &reg, address);
138                         efx_reado(efx, &buf, address);
139
140                         if (efx_masked_compare_oword(&reg, &buf, &mask))
141                                 goto fail;
142                 }
143
144                 efx_writeo(efx, &original, address);
145         }
146
147         return 0;
148
149 fail:
150         netif_err(efx, hw, efx->net_dev,
151                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154         return -EIO;
155 }
156
157 /**************************************************************************
158  *
159  * Special buffer handling
160  * Special buffers are used for event queues and the TX and RX
161  * descriptor rings.
162  *
163  *************************************************************************/
164
165 /*
166  * Initialise a special buffer
167  *
168  * This will define a buffer (previously allocated via
169  * efx_alloc_special_buffer()) in the buffer table, allowing
170  * it to be used for event queues, descriptor rings etc.
171  */
172 static void
173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175         efx_qword_t buf_desc;
176         unsigned int index;
177         dma_addr_t dma_addr;
178         int i;
179
180         EFX_BUG_ON_PARANOID(!buffer->buf.addr);
181
182         /* Write buffer descriptors to NIC */
183         for (i = 0; i < buffer->entries; i++) {
184                 index = buffer->index + i;
185                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186                 netif_dbg(efx, probe, efx->net_dev,
187                           "mapping special buffer %d at %llx\n",
188                           index, (unsigned long long)dma_addr);
189                 EFX_POPULATE_QWORD_3(buf_desc,
190                                      FRF_AZ_BUF_ADR_REGION, 0,
191                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193                 efx_write_buf_tbl(efx, &buf_desc, index);
194         }
195 }
196
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201         efx_oword_t buf_tbl_upd;
202         unsigned int start = buffer->index;
203         unsigned int end = (buffer->index + buffer->entries - 1);
204
205         if (!buffer->entries)
206                 return;
207
208         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209                   buffer->index, buffer->index + buffer->entries - 1);
210
211         EFX_POPULATE_OWORD_4(buf_tbl_upd,
212                              FRF_AZ_BUF_UPD_CMD, 0,
213                              FRF_AZ_BUF_CLR_CMD, 1,
214                              FRF_AZ_BUF_CLR_END_ID, end,
215                              FRF_AZ_BUF_CLR_START_ID, start);
216         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218
219 /*
220  * Allocate a new special buffer
221  *
222  * This allocates memory for a new buffer, clears it and allocates a
223  * new buffer ID range.  It does not write into the buffer table.
224  *
225  * This call will allocate 4KB buffers, since 8KB buffers can't be
226  * used for event queues and descriptor rings.
227  */
228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229                                     struct efx_special_buffer *buffer,
230                                     unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233         struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235         len = ALIGN(len, EFX_BUF_SIZE);
236
237         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238                 return -ENOMEM;
239         buffer->entries = len / EFX_BUF_SIZE;
240         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241
242         /* Select new buffer ID */
243         buffer->index = efx->next_buffer_table;
244         efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246         BUG_ON(efx_siena_sriov_enabled(efx) &&
247                nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249
250         netif_dbg(efx, probe, efx->net_dev,
251                   "allocating special buffers %d-%d at %llx+%x "
252                   "(virt %p phys %llx)\n", buffer->index,
253                   buffer->index + buffer->entries - 1,
254                   (u64)buffer->buf.dma_addr, len,
255                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256
257         return 0;
258 }
259
260 static void
261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263         if (!buffer->buf.addr)
264                 return;
265
266         netif_dbg(efx, hw, efx->net_dev,
267                   "deallocating special buffers %d-%d at %llx+%x "
268                   "(virt %p phys %llx)\n", buffer->index,
269                   buffer->index + buffer->entries - 1,
270                   (u64)buffer->buf.dma_addr, buffer->buf.len,
271                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272
273         efx_nic_free_buffer(efx, &buffer->buf);
274         buffer->entries = 0;
275 }
276
277 /**************************************************************************
278  *
279  * TX path
280  *
281  **************************************************************************/
282
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286         unsigned write_ptr;
287         efx_dword_t reg;
288
289         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291         efx_writed_page(tx_queue->efx, &reg,
292                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294
295 /* Write pointer and first descriptor for TX descriptor ring */
296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297                                           const efx_qword_t *txd)
298 {
299         unsigned write_ptr;
300         efx_oword_t reg;
301
302         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304
305         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307                              FRF_AZ_TX_DESC_WPTR, write_ptr);
308         reg.qword[0] = *txd;
309         efx_writeo_page(tx_queue->efx, &reg,
310                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312
313
314 /* For each entry inserted into the software descriptor ring, create a
315  * descriptor in the hardware TX descriptor ring (in host memory), and
316  * write a doorbell.
317  */
318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320         struct efx_tx_buffer *buffer;
321         efx_qword_t *txd;
322         unsigned write_ptr;
323         unsigned old_write_count = tx_queue->write_count;
324
325         tx_queue->xmit_more_available = false;
326         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327                 return;
328
329         do {
330                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331                 buffer = &tx_queue->buffer[write_ptr];
332                 txd = efx_tx_desc(tx_queue, write_ptr);
333                 ++tx_queue->write_count;
334
335                 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336
337                 /* Create TX descriptor ring entry */
338                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339                 EFX_POPULATE_QWORD_4(*txd,
340                                      FSF_AZ_TX_KER_CONT,
341                                      buffer->flags & EFX_TX_BUF_CONT,
342                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343                                      FSF_AZ_TX_KER_BUF_REGION, 0,
344                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345         } while (tx_queue->write_count != tx_queue->insert_count);
346
347         wmb(); /* Ensure descriptors are written before they are fetched */
348
349         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350                 txd = efx_tx_desc(tx_queue,
351                                   old_write_count & tx_queue->ptr_mask);
352                 efx_farch_push_tx_desc(tx_queue, txd);
353                 ++tx_queue->pushes;
354         } else {
355                 efx_farch_notify_tx_desc(tx_queue);
356         }
357 }
358
359 /* Allocate hardware resources for a TX queue */
360 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
361 {
362         struct efx_nic *efx = tx_queue->efx;
363         unsigned entries;
364
365         entries = tx_queue->ptr_mask + 1;
366         return efx_alloc_special_buffer(efx, &tx_queue->txd,
367                                         entries * sizeof(efx_qword_t));
368 }
369
370 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
371 {
372         struct efx_nic *efx = tx_queue->efx;
373         efx_oword_t reg;
374
375         /* Pin TX descriptor ring */
376         efx_init_special_buffer(efx, &tx_queue->txd);
377
378         /* Push TX descriptor ring to card */
379         EFX_POPULATE_OWORD_10(reg,
380                               FRF_AZ_TX_DESCQ_EN, 1,
381                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
382                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
383                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
384                               FRF_AZ_TX_DESCQ_EVQ_ID,
385                               tx_queue->channel->channel,
386                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
387                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
388                               FRF_AZ_TX_DESCQ_SIZE,
389                               __ffs(tx_queue->txd.entries),
390                               FRF_AZ_TX_DESCQ_TYPE, 0,
391                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
392
393         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
394                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
395                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
396                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
397                                     !csum);
398         }
399
400         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
401                          tx_queue->queue);
402
403         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
404                 /* Only 128 bits in this register */
405                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
406
407                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
408                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
409                         __clear_bit_le(tx_queue->queue, &reg);
410                 else
411                         __set_bit_le(tx_queue->queue, &reg);
412                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
413         }
414
415         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
416                 EFX_POPULATE_OWORD_1(reg,
417                                      FRF_BZ_TX_PACE,
418                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
419                                      FFE_BZ_TX_PACE_OFF :
420                                      FFE_BZ_TX_PACE_RESERVED);
421                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
422                                  tx_queue->queue);
423         }
424 }
425
426 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
427 {
428         struct efx_nic *efx = tx_queue->efx;
429         efx_oword_t tx_flush_descq;
430
431         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
432         atomic_set(&tx_queue->flush_outstanding, 1);
433
434         EFX_POPULATE_OWORD_2(tx_flush_descq,
435                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
436                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
437         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
438 }
439
440 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
441 {
442         struct efx_nic *efx = tx_queue->efx;
443         efx_oword_t tx_desc_ptr;
444
445         /* Remove TX descriptor ring from card */
446         EFX_ZERO_OWORD(tx_desc_ptr);
447         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
448                          tx_queue->queue);
449
450         /* Unpin TX descriptor ring */
451         efx_fini_special_buffer(efx, &tx_queue->txd);
452 }
453
454 /* Free buffers backing TX queue */
455 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
456 {
457         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
458 }
459
460 /**************************************************************************
461  *
462  * RX path
463  *
464  **************************************************************************/
465
466 /* This creates an entry in the RX descriptor queue */
467 static inline void
468 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
469 {
470         struct efx_rx_buffer *rx_buf;
471         efx_qword_t *rxd;
472
473         rxd = efx_rx_desc(rx_queue, index);
474         rx_buf = efx_rx_buffer(rx_queue, index);
475         EFX_POPULATE_QWORD_3(*rxd,
476                              FSF_AZ_RX_KER_BUF_SIZE,
477                              rx_buf->len -
478                              rx_queue->efx->type->rx_buffer_padding,
479                              FSF_AZ_RX_KER_BUF_REGION, 0,
480                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
481 }
482
483 /* This writes to the RX_DESC_WPTR register for the specified receive
484  * descriptor ring.
485  */
486 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
487 {
488         struct efx_nic *efx = rx_queue->efx;
489         efx_dword_t reg;
490         unsigned write_ptr;
491
492         while (rx_queue->notified_count != rx_queue->added_count) {
493                 efx_farch_build_rx_desc(
494                         rx_queue,
495                         rx_queue->notified_count & rx_queue->ptr_mask);
496                 ++rx_queue->notified_count;
497         }
498
499         wmb();
500         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
501         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
502         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
503                         efx_rx_queue_index(rx_queue));
504 }
505
506 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
507 {
508         struct efx_nic *efx = rx_queue->efx;
509         unsigned entries;
510
511         entries = rx_queue->ptr_mask + 1;
512         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
513                                         entries * sizeof(efx_qword_t));
514 }
515
516 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
517 {
518         efx_oword_t rx_desc_ptr;
519         struct efx_nic *efx = rx_queue->efx;
520         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
521         bool iscsi_digest_en = is_b0;
522         bool jumbo_en;
523
524         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
525          * DMA to continue after a PCIe page boundary (and scattering
526          * is not possible).  In Falcon B0 and Siena, it enables
527          * scatter.
528          */
529         jumbo_en = !is_b0 || efx->rx_scatter;
530
531         netif_dbg(efx, hw, efx->net_dev,
532                   "RX queue %d ring in special buffers %d-%d\n",
533                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
534                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
535
536         rx_queue->scatter_n = 0;
537
538         /* Pin RX descriptor ring */
539         efx_init_special_buffer(efx, &rx_queue->rxd);
540
541         /* Push RX descriptor ring to card */
542         EFX_POPULATE_OWORD_10(rx_desc_ptr,
543                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
544                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
545                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
546                               FRF_AZ_RX_DESCQ_EVQ_ID,
547                               efx_rx_queue_channel(rx_queue)->channel,
548                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
549                               FRF_AZ_RX_DESCQ_LABEL,
550                               efx_rx_queue_index(rx_queue),
551                               FRF_AZ_RX_DESCQ_SIZE,
552                               __ffs(rx_queue->rxd.entries),
553                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
554                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
555                               FRF_AZ_RX_DESCQ_EN, 1);
556         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
557                          efx_rx_queue_index(rx_queue));
558 }
559
560 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
561 {
562         struct efx_nic *efx = rx_queue->efx;
563         efx_oword_t rx_flush_descq;
564
565         EFX_POPULATE_OWORD_2(rx_flush_descq,
566                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
567                              FRF_AZ_RX_FLUSH_DESCQ,
568                              efx_rx_queue_index(rx_queue));
569         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
570 }
571
572 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
573 {
574         efx_oword_t rx_desc_ptr;
575         struct efx_nic *efx = rx_queue->efx;
576
577         /* Remove RX descriptor ring from card */
578         EFX_ZERO_OWORD(rx_desc_ptr);
579         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
580                          efx_rx_queue_index(rx_queue));
581
582         /* Unpin RX descriptor ring */
583         efx_fini_special_buffer(efx, &rx_queue->rxd);
584 }
585
586 /* Free buffers backing RX queue */
587 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
588 {
589         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
590 }
591
592 /**************************************************************************
593  *
594  * Flush handling
595  *
596  **************************************************************************/
597
598 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
599  * or more RX flushes can be kicked off.
600  */
601 static bool efx_farch_flush_wake(struct efx_nic *efx)
602 {
603         /* Ensure that all updates are visible to efx_farch_flush_queues() */
604         smp_mb();
605
606         return (atomic_read(&efx->active_queues) == 0 ||
607                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
608                  && atomic_read(&efx->rxq_flush_pending) > 0));
609 }
610
611 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
612 {
613         bool i = true;
614         efx_oword_t txd_ptr_tbl;
615         struct efx_channel *channel;
616         struct efx_tx_queue *tx_queue;
617
618         efx_for_each_channel(channel, efx) {
619                 efx_for_each_channel_tx_queue(tx_queue, channel) {
620                         efx_reado_table(efx, &txd_ptr_tbl,
621                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
622                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
623                                             FRF_AZ_TX_DESCQ_FLUSH) ||
624                             EFX_OWORD_FIELD(txd_ptr_tbl,
625                                             FRF_AZ_TX_DESCQ_EN)) {
626                                 netif_dbg(efx, hw, efx->net_dev,
627                                           "flush did not complete on TXQ %d\n",
628                                           tx_queue->queue);
629                                 i = false;
630                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
631                                                   1, 0)) {
632                                 /* The flush is complete, but we didn't
633                                  * receive a flush completion event
634                                  */
635                                 netif_dbg(efx, hw, efx->net_dev,
636                                           "flush complete on TXQ %d, so drain "
637                                           "the queue\n", tx_queue->queue);
638                                 /* Don't need to increment active_queues as it
639                                  * has already been incremented for the queues
640                                  * which did not drain
641                                  */
642                                 efx_farch_magic_event(channel,
643                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
644                                                               tx_queue));
645                         }
646                 }
647         }
648
649         return i;
650 }
651
652 /* Flush all the transmit queues, and continue flushing receive queues until
653  * they're all flushed. Wait for the DRAIN events to be received so that there
654  * are no more RX and TX events left on any channel. */
655 static int efx_farch_do_flush(struct efx_nic *efx)
656 {
657         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
658         struct efx_channel *channel;
659         struct efx_rx_queue *rx_queue;
660         struct efx_tx_queue *tx_queue;
661         int rc = 0;
662
663         efx_for_each_channel(channel, efx) {
664                 efx_for_each_channel_tx_queue(tx_queue, channel) {
665                         efx_farch_flush_tx_queue(tx_queue);
666                 }
667                 efx_for_each_channel_rx_queue(rx_queue, channel) {
668                         rx_queue->flush_pending = true;
669                         atomic_inc(&efx->rxq_flush_pending);
670                 }
671         }
672
673         while (timeout && atomic_read(&efx->active_queues) > 0) {
674                 /* If SRIOV is enabled, then offload receive queue flushing to
675                  * the firmware (though we will still have to poll for
676                  * completion). If that fails, fall back to the old scheme.
677                  */
678                 if (efx_siena_sriov_enabled(efx)) {
679                         rc = efx_mcdi_flush_rxqs(efx);
680                         if (!rc)
681                                 goto wait;
682                 }
683
684                 /* The hardware supports four concurrent rx flushes, each of
685                  * which may need to be retried if there is an outstanding
686                  * descriptor fetch
687                  */
688                 efx_for_each_channel(channel, efx) {
689                         efx_for_each_channel_rx_queue(rx_queue, channel) {
690                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
691                                     EFX_RX_FLUSH_COUNT)
692                                         break;
693
694                                 if (rx_queue->flush_pending) {
695                                         rx_queue->flush_pending = false;
696                                         atomic_dec(&efx->rxq_flush_pending);
697                                         atomic_inc(&efx->rxq_flush_outstanding);
698                                         efx_farch_flush_rx_queue(rx_queue);
699                                 }
700                         }
701                 }
702
703         wait:
704                 timeout = wait_event_timeout(efx->flush_wq,
705                                              efx_farch_flush_wake(efx),
706                                              timeout);
707         }
708
709         if (atomic_read(&efx->active_queues) &&
710             !efx_check_tx_flush_complete(efx)) {
711                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
712                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
713                           atomic_read(&efx->rxq_flush_outstanding),
714                           atomic_read(&efx->rxq_flush_pending));
715                 rc = -ETIMEDOUT;
716
717                 atomic_set(&efx->active_queues, 0);
718                 atomic_set(&efx->rxq_flush_pending, 0);
719                 atomic_set(&efx->rxq_flush_outstanding, 0);
720         }
721
722         return rc;
723 }
724
725 int efx_farch_fini_dmaq(struct efx_nic *efx)
726 {
727         struct efx_channel *channel;
728         struct efx_tx_queue *tx_queue;
729         struct efx_rx_queue *rx_queue;
730         int rc = 0;
731
732         /* Do not attempt to write to the NIC during EEH recovery */
733         if (efx->state != STATE_RECOVERY) {
734                 /* Only perform flush if DMA is enabled */
735                 if (efx->pci_dev->is_busmaster) {
736                         efx->type->prepare_flush(efx);
737                         rc = efx_farch_do_flush(efx);
738                         efx->type->finish_flush(efx);
739                 }
740
741                 efx_for_each_channel(channel, efx) {
742                         efx_for_each_channel_rx_queue(rx_queue, channel)
743                                 efx_farch_rx_fini(rx_queue);
744                         efx_for_each_channel_tx_queue(tx_queue, channel)
745                                 efx_farch_tx_fini(tx_queue);
746                 }
747         }
748
749         return rc;
750 }
751
752 /* Reset queue and flush accounting after FLR
753  *
754  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
755  * mastering was disabled), in which case we don't receive (RXQ) flush
756  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
757  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
758  * events were received, and we didn't go through efx_check_tx_flush_complete())
759  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
760  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
761  * for batched flush requests; and the efx->active_queues gets messed up because
762  * we keep incrementing for the newly initialised queues, but it never went to
763  * zero previously.  Then we get a timeout every time we try to restart the
764  * queues, as it doesn't go back to zero when we should be flushing the queues.
765  */
766 void efx_farch_finish_flr(struct efx_nic *efx)
767 {
768         atomic_set(&efx->rxq_flush_pending, 0);
769         atomic_set(&efx->rxq_flush_outstanding, 0);
770         atomic_set(&efx->active_queues, 0);
771 }
772
773
774 /**************************************************************************
775  *
776  * Event queue processing
777  * Event queues are processed by per-channel tasklets.
778  *
779  **************************************************************************/
780
781 /* Update a channel's event queue's read pointer (RPTR) register
782  *
783  * This writes the EVQ_RPTR_REG register for the specified channel's
784  * event queue.
785  */
786 void efx_farch_ev_read_ack(struct efx_channel *channel)
787 {
788         efx_dword_t reg;
789         struct efx_nic *efx = channel->efx;
790
791         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
792                              channel->eventq_read_ptr & channel->eventq_mask);
793
794         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
795          * of 4 bytes, but it is really 16 bytes just like later revisions.
796          */
797         efx_writed(efx, &reg,
798                    efx->type->evq_rptr_tbl_base +
799                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
800 }
801
802 /* Use HW to insert a SW defined event */
803 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
804                               efx_qword_t *event)
805 {
806         efx_oword_t drv_ev_reg;
807
808         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
809                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
810         drv_ev_reg.u32[0] = event->u32[0];
811         drv_ev_reg.u32[1] = event->u32[1];
812         drv_ev_reg.u32[2] = 0;
813         drv_ev_reg.u32[3] = 0;
814         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
815         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
816 }
817
818 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
819 {
820         efx_qword_t event;
821
822         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
823                              FSE_AZ_EV_CODE_DRV_GEN_EV,
824                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
825         efx_farch_generate_event(channel->efx, channel->channel, &event);
826 }
827
828 /* Handle a transmit completion event
829  *
830  * The NIC batches TX completion events; the message we receive is of
831  * the form "complete all TX events up to this index".
832  */
833 static int
834 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
835 {
836         unsigned int tx_ev_desc_ptr;
837         unsigned int tx_ev_q_label;
838         struct efx_tx_queue *tx_queue;
839         struct efx_nic *efx = channel->efx;
840         int tx_packets = 0;
841
842         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
843                 return 0;
844
845         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
846                 /* Transmit completion */
847                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
848                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849                 tx_queue = efx_channel_get_tx_queue(
850                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
851                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
852                               tx_queue->ptr_mask);
853                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
854         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
855                 /* Rewrite the FIFO write pointer */
856                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
857                 tx_queue = efx_channel_get_tx_queue(
858                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
859
860                 netif_tx_lock(efx->net_dev);
861                 efx_farch_notify_tx_desc(tx_queue);
862                 netif_tx_unlock(efx->net_dev);
863         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
864                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
865         } else {
866                 netif_err(efx, tx_err, efx->net_dev,
867                           "channel %d unexpected TX event "
868                           EFX_QWORD_FMT"\n", channel->channel,
869                           EFX_QWORD_VAL(*event));
870         }
871
872         return tx_packets;
873 }
874
875 /* Detect errors included in the rx_evt_pkt_ok bit. */
876 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
877                                       const efx_qword_t *event)
878 {
879         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
880         struct efx_nic *efx = rx_queue->efx;
881         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
882         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
883         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
884         bool rx_ev_other_err, rx_ev_pause_frm;
885         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
886         unsigned rx_ev_pkt_type;
887
888         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
889         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
890         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
891         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
892         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
893                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
894         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
895                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
896         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
897                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
898         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
899         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
900         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
901                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
902         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
903
904         /* Every error apart from tobe_disc and pause_frm */
905         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
906                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
907                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
908
909         /* Count errors that are not in MAC stats.  Ignore expected
910          * checksum errors during self-test. */
911         if (rx_ev_frm_trunc)
912                 ++channel->n_rx_frm_trunc;
913         else if (rx_ev_tobe_disc)
914                 ++channel->n_rx_tobe_disc;
915         else if (!efx->loopback_selftest) {
916                 if (rx_ev_ip_hdr_chksum_err)
917                         ++channel->n_rx_ip_hdr_chksum_err;
918                 else if (rx_ev_tcp_udp_chksum_err)
919                         ++channel->n_rx_tcp_udp_chksum_err;
920         }
921
922         /* TOBE_DISC is expected on unicast mismatches; don't print out an
923          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
924          * to a FIFO overflow.
925          */
926 #ifdef DEBUG
927         if (rx_ev_other_err && net_ratelimit()) {
928                 netif_dbg(efx, rx_err, efx->net_dev,
929                           " RX queue %d unexpected RX event "
930                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
931                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
932                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
933                           rx_ev_ip_hdr_chksum_err ?
934                           " [IP_HDR_CHKSUM_ERR]" : "",
935                           rx_ev_tcp_udp_chksum_err ?
936                           " [TCP_UDP_CHKSUM_ERR]" : "",
937                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
938                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
939                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
940                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
941                           rx_ev_pause_frm ? " [PAUSE]" : "");
942         }
943 #endif
944
945         /* The frame must be discarded if any of these are true. */
946         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
947                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
948                 EFX_RX_PKT_DISCARD : 0;
949 }
950
951 /* Handle receive events that are not in-order. Return true if this
952  * can be handled as a partial packet discard, false if it's more
953  * serious.
954  */
955 static bool
956 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
957 {
958         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
959         struct efx_nic *efx = rx_queue->efx;
960         unsigned expected, dropped;
961
962         if (rx_queue->scatter_n &&
963             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
964                       rx_queue->ptr_mask)) {
965                 ++channel->n_rx_nodesc_trunc;
966                 return true;
967         }
968
969         expected = rx_queue->removed_count & rx_queue->ptr_mask;
970         dropped = (index - expected) & rx_queue->ptr_mask;
971         netif_info(efx, rx_err, efx->net_dev,
972                    "dropped %d events (index=%d expected=%d)\n",
973                    dropped, index, expected);
974
975         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
976                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
977         return false;
978 }
979
980 /* Handle a packet received event
981  *
982  * The NIC gives a "discard" flag if it's a unicast packet with the
983  * wrong destination address
984  * Also "is multicast" and "matches multicast filter" flags can be used to
985  * discard non-matching multicast packets.
986  */
987 static void
988 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
989 {
990         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
991         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
992         unsigned expected_ptr;
993         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
994         u16 flags;
995         struct efx_rx_queue *rx_queue;
996         struct efx_nic *efx = channel->efx;
997
998         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
999                 return;
1000
1001         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1002         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1003         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1004                 channel->channel);
1005
1006         rx_queue = efx_channel_get_rx_queue(channel);
1007
1008         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1009         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1010                         rx_queue->ptr_mask);
1011
1012         /* Check for partial drops and other errors */
1013         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1014             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1015                 if (rx_ev_desc_ptr != expected_ptr &&
1016                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1017                         return;
1018
1019                 /* Discard all pending fragments */
1020                 if (rx_queue->scatter_n) {
1021                         efx_rx_packet(
1022                                 rx_queue,
1023                                 rx_queue->removed_count & rx_queue->ptr_mask,
1024                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1025                         rx_queue->removed_count += rx_queue->scatter_n;
1026                         rx_queue->scatter_n = 0;
1027                 }
1028
1029                 /* Return if there is no new fragment */
1030                 if (rx_ev_desc_ptr != expected_ptr)
1031                         return;
1032
1033                 /* Discard new fragment if not SOP */
1034                 if (!rx_ev_sop) {
1035                         efx_rx_packet(
1036                                 rx_queue,
1037                                 rx_queue->removed_count & rx_queue->ptr_mask,
1038                                 1, 0, EFX_RX_PKT_DISCARD);
1039                         ++rx_queue->removed_count;
1040                         return;
1041                 }
1042         }
1043
1044         ++rx_queue->scatter_n;
1045         if (rx_ev_cont)
1046                 return;
1047
1048         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1049         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1050         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1051
1052         if (likely(rx_ev_pkt_ok)) {
1053                 /* If packet is marked as OK then we can rely on the
1054                  * hardware checksum and classification.
1055                  */
1056                 flags = 0;
1057                 switch (rx_ev_hdr_type) {
1058                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1059                         flags |= EFX_RX_PKT_TCP;
1060                         /* fall through */
1061                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1062                         flags |= EFX_RX_PKT_CSUMMED;
1063                         /* fall through */
1064                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1065                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1066                         break;
1067                 }
1068         } else {
1069                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1070         }
1071
1072         /* Detect multicast packets that didn't match the filter */
1073         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1074         if (rx_ev_mcast_pkt) {
1075                 unsigned int rx_ev_mcast_hash_match =
1076                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1077
1078                 if (unlikely(!rx_ev_mcast_hash_match)) {
1079                         ++channel->n_rx_mcast_mismatch;
1080                         flags |= EFX_RX_PKT_DISCARD;
1081                 }
1082         }
1083
1084         channel->irq_mod_score += 2;
1085
1086         /* Handle received packet */
1087         efx_rx_packet(rx_queue,
1088                       rx_queue->removed_count & rx_queue->ptr_mask,
1089                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1090         rx_queue->removed_count += rx_queue->scatter_n;
1091         rx_queue->scatter_n = 0;
1092 }
1093
1094 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1095  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1096  * of all transmit completions.
1097  */
1098 static void
1099 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1100 {
1101         struct efx_tx_queue *tx_queue;
1102         int qid;
1103
1104         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1105         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1106                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1107                                             qid % EFX_TXQ_TYPES);
1108                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1109                         efx_farch_magic_event(tx_queue->channel,
1110                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1111                 }
1112         }
1113 }
1114
1115 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1116  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1117  * the RX queue back to the mask of RX queues in need of flushing.
1118  */
1119 static void
1120 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121 {
1122         struct efx_channel *channel;
1123         struct efx_rx_queue *rx_queue;
1124         int qid;
1125         bool failed;
1126
1127         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1128         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1129         if (qid >= efx->n_channels)
1130                 return;
1131         channel = efx_get_channel(efx, qid);
1132         if (!efx_channel_has_rx_queue(channel))
1133                 return;
1134         rx_queue = efx_channel_get_rx_queue(channel);
1135
1136         if (failed) {
1137                 netif_info(efx, hw, efx->net_dev,
1138                            "RXQ %d flush retry\n", qid);
1139                 rx_queue->flush_pending = true;
1140                 atomic_inc(&efx->rxq_flush_pending);
1141         } else {
1142                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1143                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1144         }
1145         atomic_dec(&efx->rxq_flush_outstanding);
1146         if (efx_farch_flush_wake(efx))
1147                 wake_up(&efx->flush_wq);
1148 }
1149
1150 static void
1151 efx_farch_handle_drain_event(struct efx_channel *channel)
1152 {
1153         struct efx_nic *efx = channel->efx;
1154
1155         WARN_ON(atomic_read(&efx->active_queues) == 0);
1156         atomic_dec(&efx->active_queues);
1157         if (efx_farch_flush_wake(efx))
1158                 wake_up(&efx->flush_wq);
1159 }
1160
1161 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1162                                              efx_qword_t *event)
1163 {
1164         struct efx_nic *efx = channel->efx;
1165         struct efx_rx_queue *rx_queue =
1166                 efx_channel_has_rx_queue(channel) ?
1167                 efx_channel_get_rx_queue(channel) : NULL;
1168         unsigned magic, code;
1169
1170         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1171         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1172
1173         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1174                 channel->event_test_cpu = raw_smp_processor_id();
1175         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1176                 /* The queue must be empty, so we won't receive any rx
1177                  * events, so efx_process_channel() won't refill the
1178                  * queue. Refill it here */
1179                 efx_fast_push_rx_descriptors(rx_queue, true);
1180         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1181                 efx_farch_handle_drain_event(channel);
1182         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1183                 efx_farch_handle_drain_event(channel);
1184         } else {
1185                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1186                           "generated event "EFX_QWORD_FMT"\n",
1187                           channel->channel, EFX_QWORD_VAL(*event));
1188         }
1189 }
1190
1191 static void
1192 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1193 {
1194         struct efx_nic *efx = channel->efx;
1195         unsigned int ev_sub_code;
1196         unsigned int ev_sub_data;
1197
1198         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1199         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1200
1201         switch (ev_sub_code) {
1202         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1203                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1204                            channel->channel, ev_sub_data);
1205                 efx_farch_handle_tx_flush_done(efx, event);
1206 #ifdef CONFIG_SFC_SRIOV
1207                 efx_siena_sriov_tx_flush_done(efx, event);
1208 #endif
1209                 break;
1210         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1211                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1212                            channel->channel, ev_sub_data);
1213                 efx_farch_handle_rx_flush_done(efx, event);
1214 #ifdef CONFIG_SFC_SRIOV
1215                 efx_siena_sriov_rx_flush_done(efx, event);
1216 #endif
1217                 break;
1218         case FSE_AZ_EVQ_INIT_DONE_EV:
1219                 netif_dbg(efx, hw, efx->net_dev,
1220                           "channel %d EVQ %d initialised\n",
1221                           channel->channel, ev_sub_data);
1222                 break;
1223         case FSE_AZ_SRM_UPD_DONE_EV:
1224                 netif_vdbg(efx, hw, efx->net_dev,
1225                            "channel %d SRAM update done\n", channel->channel);
1226                 break;
1227         case FSE_AZ_WAKE_UP_EV:
1228                 netif_vdbg(efx, hw, efx->net_dev,
1229                            "channel %d RXQ %d wakeup event\n",
1230                            channel->channel, ev_sub_data);
1231                 break;
1232         case FSE_AZ_TIMER_EV:
1233                 netif_vdbg(efx, hw, efx->net_dev,
1234                            "channel %d RX queue %d timer expired\n",
1235                            channel->channel, ev_sub_data);
1236                 break;
1237         case FSE_AA_RX_RECOVER_EV:
1238                 netif_err(efx, rx_err, efx->net_dev,
1239                           "channel %d seen DRIVER RX_RESET event. "
1240                         "Resetting.\n", channel->channel);
1241                 atomic_inc(&efx->rx_reset);
1242                 efx_schedule_reset(efx,
1243                                    EFX_WORKAROUND_6555(efx) ?
1244                                    RESET_TYPE_RX_RECOVERY :
1245                                    RESET_TYPE_DISABLE);
1246                 break;
1247         case FSE_BZ_RX_DSC_ERROR_EV:
1248                 if (ev_sub_data < EFX_VI_BASE) {
1249                         netif_err(efx, rx_err, efx->net_dev,
1250                                   "RX DMA Q %d reports descriptor fetch error."
1251                                   " RX Q %d is disabled.\n", ev_sub_data,
1252                                   ev_sub_data);
1253                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1254                 }
1255 #ifdef CONFIG_SFC_SRIOV
1256                 else
1257                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1258 #endif
1259                 break;
1260         case FSE_BZ_TX_DSC_ERROR_EV:
1261                 if (ev_sub_data < EFX_VI_BASE) {
1262                         netif_err(efx, tx_err, efx->net_dev,
1263                                   "TX DMA Q %d reports descriptor fetch error."
1264                                   " TX Q %d is disabled.\n", ev_sub_data,
1265                                   ev_sub_data);
1266                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1267                 }
1268 #ifdef CONFIG_SFC_SRIOV
1269                 else
1270                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1271 #endif
1272                 break;
1273         default:
1274                 netif_vdbg(efx, hw, efx->net_dev,
1275                            "channel %d unknown driver event code %d "
1276                            "data %04x\n", channel->channel, ev_sub_code,
1277                            ev_sub_data);
1278                 break;
1279         }
1280 }
1281
1282 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1283 {
1284         struct efx_nic *efx = channel->efx;
1285         unsigned int read_ptr;
1286         efx_qword_t event, *p_event;
1287         int ev_code;
1288         int tx_packets = 0;
1289         int spent = 0;
1290
1291         if (budget <= 0)
1292                 return spent;
1293
1294         read_ptr = channel->eventq_read_ptr;
1295
1296         for (;;) {
1297                 p_event = efx_event(channel, read_ptr);
1298                 event = *p_event;
1299
1300                 if (!efx_event_present(&event))
1301                         /* End of events */
1302                         break;
1303
1304                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1305                            "channel %d event is "EFX_QWORD_FMT"\n",
1306                            channel->channel, EFX_QWORD_VAL(event));
1307
1308                 /* Clear this event by marking it all ones */
1309                 EFX_SET_QWORD(*p_event);
1310
1311                 ++read_ptr;
1312
1313                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1314
1315                 switch (ev_code) {
1316                 case FSE_AZ_EV_CODE_RX_EV:
1317                         efx_farch_handle_rx_event(channel, &event);
1318                         if (++spent == budget)
1319                                 goto out;
1320                         break;
1321                 case FSE_AZ_EV_CODE_TX_EV:
1322                         tx_packets += efx_farch_handle_tx_event(channel,
1323                                                                 &event);
1324                         if (tx_packets > efx->txq_entries) {
1325                                 spent = budget;
1326                                 goto out;
1327                         }
1328                         break;
1329                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1330                         efx_farch_handle_generated_event(channel, &event);
1331                         break;
1332                 case FSE_AZ_EV_CODE_DRIVER_EV:
1333                         efx_farch_handle_driver_event(channel, &event);
1334                         break;
1335 #ifdef CONFIG_SFC_SRIOV
1336                 case FSE_CZ_EV_CODE_USER_EV:
1337                         efx_siena_sriov_event(channel, &event);
1338                         break;
1339 #endif
1340                 case FSE_CZ_EV_CODE_MCDI_EV:
1341                         efx_mcdi_process_event(channel, &event);
1342                         break;
1343                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1344                         if (efx->type->handle_global_event &&
1345                             efx->type->handle_global_event(channel, &event))
1346                                 break;
1347                         /* else fall through */
1348                 default:
1349                         netif_err(channel->efx, hw, channel->efx->net_dev,
1350                                   "channel %d unknown event type %d (data "
1351                                   EFX_QWORD_FMT ")\n", channel->channel,
1352                                   ev_code, EFX_QWORD_VAL(event));
1353                 }
1354         }
1355
1356 out:
1357         channel->eventq_read_ptr = read_ptr;
1358         return spent;
1359 }
1360
1361 /* Allocate buffer table entries for event queue */
1362 int efx_farch_ev_probe(struct efx_channel *channel)
1363 {
1364         struct efx_nic *efx = channel->efx;
1365         unsigned entries;
1366
1367         entries = channel->eventq_mask + 1;
1368         return efx_alloc_special_buffer(efx, &channel->eventq,
1369                                         entries * sizeof(efx_qword_t));
1370 }
1371
1372 int efx_farch_ev_init(struct efx_channel *channel)
1373 {
1374         efx_oword_t reg;
1375         struct efx_nic *efx = channel->efx;
1376
1377         netif_dbg(efx, hw, efx->net_dev,
1378                   "channel %d event queue in special buffers %d-%d\n",
1379                   channel->channel, channel->eventq.index,
1380                   channel->eventq.index + channel->eventq.entries - 1);
1381
1382         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1383                 EFX_POPULATE_OWORD_3(reg,
1384                                      FRF_CZ_TIMER_Q_EN, 1,
1385                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1386                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1387                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388         }
1389
1390         /* Pin event queue buffer */
1391         efx_init_special_buffer(efx, &channel->eventq);
1392
1393         /* Fill event queue with all ones (i.e. empty events) */
1394         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1395
1396         /* Push event queue to card */
1397         EFX_POPULATE_OWORD_3(reg,
1398                              FRF_AZ_EVQ_EN, 1,
1399                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1400                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1401         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1402                          channel->channel);
1403
1404         return 0;
1405 }
1406
1407 void efx_farch_ev_fini(struct efx_channel *channel)
1408 {
1409         efx_oword_t reg;
1410         struct efx_nic *efx = channel->efx;
1411
1412         /* Remove event queue from card */
1413         EFX_ZERO_OWORD(reg);
1414         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1415                          channel->channel);
1416         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1417                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1418
1419         /* Unpin event queue */
1420         efx_fini_special_buffer(efx, &channel->eventq);
1421 }
1422
1423 /* Free buffers backing event queue */
1424 void efx_farch_ev_remove(struct efx_channel *channel)
1425 {
1426         efx_free_special_buffer(channel->efx, &channel->eventq);
1427 }
1428
1429
1430 void efx_farch_ev_test_generate(struct efx_channel *channel)
1431 {
1432         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1433 }
1434
1435 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1436 {
1437         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1438                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1439 }
1440
1441 /**************************************************************************
1442  *
1443  * Hardware interrupts
1444  * The hardware interrupt handler does very little work; all the event
1445  * queue processing is carried out by per-channel tasklets.
1446  *
1447  **************************************************************************/
1448
1449 /* Enable/disable/generate interrupts */
1450 static inline void efx_farch_interrupts(struct efx_nic *efx,
1451                                       bool enabled, bool force)
1452 {
1453         efx_oword_t int_en_reg_ker;
1454
1455         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1456                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1457                              FRF_AZ_KER_INT_KER, force,
1458                              FRF_AZ_DRV_INT_EN_KER, enabled);
1459         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1460 }
1461
1462 void efx_farch_irq_enable_master(struct efx_nic *efx)
1463 {
1464         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1465         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1466
1467         efx_farch_interrupts(efx, true, false);
1468 }
1469
1470 void efx_farch_irq_disable_master(struct efx_nic *efx)
1471 {
1472         /* Disable interrupts */
1473         efx_farch_interrupts(efx, false, false);
1474 }
1475
1476 /* Generate a test interrupt
1477  * Interrupt must already have been enabled, otherwise nasty things
1478  * may happen.
1479  */
1480 void efx_farch_irq_test_generate(struct efx_nic *efx)
1481 {
1482         efx_farch_interrupts(efx, true, true);
1483 }
1484
1485 /* Process a fatal interrupt
1486  * Disable bus mastering ASAP and schedule a reset
1487  */
1488 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1489 {
1490         struct falcon_nic_data *nic_data = efx->nic_data;
1491         efx_oword_t *int_ker = efx->irq_status.addr;
1492         efx_oword_t fatal_intr;
1493         int error, mem_perr;
1494
1495         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1496         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1497
1498         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1499                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1500                   EFX_OWORD_VAL(fatal_intr),
1501                   error ? "disabling bus mastering" : "no recognised error");
1502
1503         /* If this is a memory parity error dump which blocks are offending */
1504         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1505                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1506         if (mem_perr) {
1507                 efx_oword_t reg;
1508                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1509                 netif_err(efx, hw, efx->net_dev,
1510                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1511                           EFX_OWORD_VAL(reg));
1512         }
1513
1514         /* Disable both devices */
1515         pci_clear_master(efx->pci_dev);
1516         if (efx_nic_is_dual_func(efx))
1517                 pci_clear_master(nic_data->pci_dev2);
1518         efx_farch_irq_disable_master(efx);
1519
1520         /* Count errors and reset or disable the NIC accordingly */
1521         if (efx->int_error_count == 0 ||
1522             time_after(jiffies, efx->int_error_expire)) {
1523                 efx->int_error_count = 0;
1524                 efx->int_error_expire =
1525                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1526         }
1527         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1528                 netif_err(efx, hw, efx->net_dev,
1529                           "SYSTEM ERROR - reset scheduled\n");
1530                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1531         } else {
1532                 netif_err(efx, hw, efx->net_dev,
1533                           "SYSTEM ERROR - max number of errors seen."
1534                           "NIC will be disabled\n");
1535                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1536         }
1537
1538         return IRQ_HANDLED;
1539 }
1540
1541 /* Handle a legacy interrupt
1542  * Acknowledges the interrupt and schedule event queue processing.
1543  */
1544 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1545 {
1546         struct efx_nic *efx = dev_id;
1547         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1548         efx_oword_t *int_ker = efx->irq_status.addr;
1549         irqreturn_t result = IRQ_NONE;
1550         struct efx_channel *channel;
1551         efx_dword_t reg;
1552         u32 queues;
1553         int syserr;
1554
1555         /* Read the ISR which also ACKs the interrupts */
1556         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1557         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1558
1559         /* Legacy interrupts are disabled too late by the EEH kernel
1560          * code. Disable them earlier.
1561          * If an EEH error occurred, the read will have returned all ones.
1562          */
1563         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1564             !efx->eeh_disabled_legacy_irq) {
1565                 disable_irq_nosync(efx->legacy_irq);
1566                 efx->eeh_disabled_legacy_irq = true;
1567         }
1568
1569         /* Handle non-event-queue sources */
1570         if (queues & (1U << efx->irq_level) && soft_enabled) {
1571                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1572                 if (unlikely(syserr))
1573                         return efx_farch_fatal_interrupt(efx);
1574                 efx->last_irq_cpu = raw_smp_processor_id();
1575         }
1576
1577         if (queues != 0) {
1578                 efx->irq_zero_count = 0;
1579
1580                 /* Schedule processing of any interrupting queues */
1581                 if (likely(soft_enabled)) {
1582                         efx_for_each_channel(channel, efx) {
1583                                 if (queues & 1)
1584                                         efx_schedule_channel_irq(channel);
1585                                 queues >>= 1;
1586                         }
1587                 }
1588                 result = IRQ_HANDLED;
1589
1590         } else {
1591                 efx_qword_t *event;
1592
1593                 /* Legacy ISR read can return zero once (SF bug 15783) */
1594
1595                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1596                  * because this might be a shared interrupt. */
1597                 if (efx->irq_zero_count++ == 0)
1598                         result = IRQ_HANDLED;
1599
1600                 /* Ensure we schedule or rearm all event queues */
1601                 if (likely(soft_enabled)) {
1602                         efx_for_each_channel(channel, efx) {
1603                                 event = efx_event(channel,
1604                                                   channel->eventq_read_ptr);
1605                                 if (efx_event_present(event))
1606                                         efx_schedule_channel_irq(channel);
1607                                 else
1608                                         efx_farch_ev_read_ack(channel);
1609                         }
1610                 }
1611         }
1612
1613         if (result == IRQ_HANDLED)
1614                 netif_vdbg(efx, intr, efx->net_dev,
1615                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1616                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1617
1618         return result;
1619 }
1620
1621 /* Handle an MSI interrupt
1622  *
1623  * Handle an MSI hardware interrupt.  This routine schedules event
1624  * queue processing.  No interrupt acknowledgement cycle is necessary.
1625  * Also, we never need to check that the interrupt is for us, since
1626  * MSI interrupts cannot be shared.
1627  */
1628 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1629 {
1630         struct efx_msi_context *context = dev_id;
1631         struct efx_nic *efx = context->efx;
1632         efx_oword_t *int_ker = efx->irq_status.addr;
1633         int syserr;
1634
1635         netif_vdbg(efx, intr, efx->net_dev,
1636                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1637                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1638
1639         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1640                 return IRQ_HANDLED;
1641
1642         /* Handle non-event-queue sources */
1643         if (context->index == efx->irq_level) {
1644                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1645                 if (unlikely(syserr))
1646                         return efx_farch_fatal_interrupt(efx);
1647                 efx->last_irq_cpu = raw_smp_processor_id();
1648         }
1649
1650         /* Schedule processing of the channel */
1651         efx_schedule_channel_irq(efx->channel[context->index]);
1652
1653         return IRQ_HANDLED;
1654 }
1655
1656 /* Setup RSS indirection table.
1657  * This maps from the hash value of the packet to RXQ
1658  */
1659 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1660 {
1661         size_t i = 0;
1662         efx_dword_t dword;
1663
1664         BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1665
1666         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1667                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1668
1669         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1670                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1671                                      efx->rx_indir_table[i]);
1672                 efx_writed(efx, &dword,
1673                            FR_BZ_RX_INDIRECTION_TBL +
1674                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1675         }
1676 }
1677
1678 /* Looks at available SRAM resources and works out how many queues we
1679  * can support, and where things like descriptor caches should live.
1680  *
1681  * SRAM is split up as follows:
1682  * 0                          buftbl entries for channels
1683  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1684  * efx->rx_dc_base            RX descriptor caches
1685  * efx->tx_dc_base            TX descriptor caches
1686  */
1687 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1688 {
1689         unsigned vi_count, buftbl_min;
1690
1691 #ifdef CONFIG_SFC_SRIOV
1692         struct siena_nic_data *nic_data = efx->nic_data;
1693 #endif
1694
1695         /* Account for the buffer table entries backing the datapath channels
1696          * and the descriptor caches for those channels.
1697          */
1698         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1699                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1700                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1701                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1702         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1703
1704 #ifdef CONFIG_SFC_SRIOV
1705         if (efx->type->sriov_wanted) {
1706                 if (efx->type->sriov_wanted(efx)) {
1707                         unsigned vi_dc_entries, buftbl_free;
1708                         unsigned entries_per_vf, vf_limit;
1709
1710                         nic_data->vf_buftbl_base = buftbl_min;
1711
1712                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1713                         vi_count = max(vi_count, EFX_VI_BASE);
1714                         buftbl_free = (sram_lim_qw - buftbl_min -
1715                                        vi_count * vi_dc_entries);
1716
1717                         entries_per_vf = ((vi_dc_entries +
1718                                            EFX_VF_BUFTBL_PER_VI) *
1719                                           efx_vf_size(efx));
1720                         vf_limit = min(buftbl_free / entries_per_vf,
1721                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1722
1723                         if (efx->vf_count > vf_limit) {
1724                                 netif_err(efx, probe, efx->net_dev,
1725                                           "Reducing VF count from from %d to %d\n",
1726                                           efx->vf_count, vf_limit);
1727                                 efx->vf_count = vf_limit;
1728                         }
1729                         vi_count += efx->vf_count * efx_vf_size(efx);
1730                 }
1731         }
1732 #endif
1733
1734         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1735         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1736 }
1737
1738 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1739 {
1740         efx_oword_t altera_build;
1741         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1742         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1743 }
1744
1745 void efx_farch_init_common(struct efx_nic *efx)
1746 {
1747         efx_oword_t temp;
1748
1749         /* Set positions of descriptor caches in SRAM. */
1750         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1751         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1752         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1753         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1754
1755         /* Set TX descriptor cache size. */
1756         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1757         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1758         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1759
1760         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1761          * this allows most efficient prefetching.
1762          */
1763         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1764         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1765         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1766         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1767         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1768
1769         /* Program INT_KER address */
1770         EFX_POPULATE_OWORD_2(temp,
1771                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1772                              EFX_INT_MODE_USE_MSI(efx),
1773                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1774         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1775
1776         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1777                 /* Use an interrupt level unused by event queues */
1778                 efx->irq_level = 0x1f;
1779         else
1780                 /* Use a valid MSI-X vector */
1781                 efx->irq_level = 0;
1782
1783         /* Enable all the genuinely fatal interrupts.  (They are still
1784          * masked by the overall interrupt mask, controlled by
1785          * falcon_interrupts()).
1786          *
1787          * Note: All other fatal interrupts are enabled
1788          */
1789         EFX_POPULATE_OWORD_3(temp,
1790                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1791                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1792                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1793         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1794                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1795         EFX_INVERT_OWORD(temp);
1796         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1797
1798         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1799          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1800          */
1801         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1802         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1803         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1804         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1805         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1806         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1807         /* Enable SW_EV to inherit in char driver - assume harmless here */
1808         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1809         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1810         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1811         /* Disable hardware watchdog which can misfire */
1812         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1813         /* Squash TX of packets of 16 bytes or less */
1814         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1815                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1816         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1817
1818         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1819                 EFX_POPULATE_OWORD_4(temp,
1820                                      /* Default values */
1821                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1822                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1823                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1824                                      /* Allow large pace values in the
1825                                       * fast bin. */
1826                                      FRF_BZ_TX_PACE_BIN_TH,
1827                                      FFE_BZ_TX_PACE_RESERVED);
1828                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1829         }
1830 }
1831
1832 /**************************************************************************
1833  *
1834  * Filter tables
1835  *
1836  **************************************************************************
1837  */
1838
1839 /* "Fudge factors" - difference between programmed value and actual depth.
1840  * Due to pipelined implementation we need to program H/W with a value that
1841  * is larger than the hop limit we want.
1842  */
1843 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1844 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1845
1846 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1847  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1848  * table is full.
1849  */
1850 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1851
1852 /* Don't try very hard to find space for performance hints, as this is
1853  * counter-productive. */
1854 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1855
1856 enum efx_farch_filter_type {
1857         EFX_FARCH_FILTER_TCP_FULL = 0,
1858         EFX_FARCH_FILTER_TCP_WILD,
1859         EFX_FARCH_FILTER_UDP_FULL,
1860         EFX_FARCH_FILTER_UDP_WILD,
1861         EFX_FARCH_FILTER_MAC_FULL = 4,
1862         EFX_FARCH_FILTER_MAC_WILD,
1863         EFX_FARCH_FILTER_UC_DEF = 8,
1864         EFX_FARCH_FILTER_MC_DEF,
1865         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1866 };
1867
1868 enum efx_farch_filter_table_id {
1869         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1870         EFX_FARCH_FILTER_TABLE_RX_MAC,
1871         EFX_FARCH_FILTER_TABLE_RX_DEF,
1872         EFX_FARCH_FILTER_TABLE_TX_MAC,
1873         EFX_FARCH_FILTER_TABLE_COUNT,
1874 };
1875
1876 enum efx_farch_filter_index {
1877         EFX_FARCH_FILTER_INDEX_UC_DEF,
1878         EFX_FARCH_FILTER_INDEX_MC_DEF,
1879         EFX_FARCH_FILTER_SIZE_RX_DEF,
1880 };
1881
1882 struct efx_farch_filter_spec {
1883         u8      type:4;
1884         u8      priority:4;
1885         u8      flags;
1886         u16     dmaq_id;
1887         u32     data[3];
1888 };
1889
1890 struct efx_farch_filter_table {
1891         enum efx_farch_filter_table_id id;
1892         u32             offset;         /* address of table relative to BAR */
1893         unsigned        size;           /* number of entries */
1894         unsigned        step;           /* step between entries */
1895         unsigned        used;           /* number currently used */
1896         unsigned long   *used_bitmap;
1897         struct efx_farch_filter_spec *spec;
1898         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1899 };
1900
1901 struct efx_farch_filter_state {
1902         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1903 };
1904
1905 static void
1906 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1907                                    struct efx_farch_filter_table *table,
1908                                    unsigned int filter_idx);
1909
1910 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1911  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1912 static u16 efx_farch_filter_hash(u32 key)
1913 {
1914         u16 tmp;
1915
1916         /* First 16 rounds */
1917         tmp = 0x1fff ^ key >> 16;
1918         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1919         tmp = tmp ^ tmp >> 9;
1920         /* Last 16 rounds */
1921         tmp = tmp ^ tmp << 13 ^ key;
1922         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1923         return tmp ^ tmp >> 9;
1924 }
1925
1926 /* To allow for hash collisions, filter search continues at these
1927  * increments from the first possible entry selected by the hash. */
1928 static u16 efx_farch_filter_increment(u32 key)
1929 {
1930         return key * 2 - 1;
1931 }
1932
1933 static enum efx_farch_filter_table_id
1934 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1935 {
1936         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1937                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1938         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1939                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1940         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1941                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1942         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1943                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1944         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1945                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1946         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1947                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1948         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1949                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1950         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1951 }
1952
1953 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1954 {
1955         struct efx_farch_filter_state *state = efx->filter_state;
1956         struct efx_farch_filter_table *table;
1957         efx_oword_t filter_ctl;
1958
1959         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1960
1961         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1962         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1963                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1964                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1965         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1966                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1967                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1968         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1969                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1970                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1971         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1972                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1973                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1974
1975         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1976         if (table->size) {
1977                 EFX_SET_OWORD_FIELD(
1978                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1979                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1980                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1981                 EFX_SET_OWORD_FIELD(
1982                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1983                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1984                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1985         }
1986
1987         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1988         if (table->size) {
1989                 EFX_SET_OWORD_FIELD(
1990                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1991                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1992                 EFX_SET_OWORD_FIELD(
1993                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1994                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1995                            EFX_FILTER_FLAG_RX_RSS));
1996                 EFX_SET_OWORD_FIELD(
1997                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1998                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1999                 EFX_SET_OWORD_FIELD(
2000                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2001                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2002                            EFX_FILTER_FLAG_RX_RSS));
2003
2004                 /* There is a single bit to enable RX scatter for all
2005                  * unmatched packets.  Only set it if scatter is
2006                  * enabled in both filter specs.
2007                  */
2008                 EFX_SET_OWORD_FIELD(
2009                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2010                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2011                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2012                            EFX_FILTER_FLAG_RX_SCATTER));
2013         } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2014                 /* We don't expose 'default' filters because unmatched
2015                  * packets always go to the queue number found in the
2016                  * RSS table.  But we still need to set the RX scatter
2017                  * bit here.
2018                  */
2019                 EFX_SET_OWORD_FIELD(
2020                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2021                         efx->rx_scatter);
2022         }
2023
2024         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2025 }
2026
2027 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2028 {
2029         struct efx_farch_filter_state *state = efx->filter_state;
2030         struct efx_farch_filter_table *table;
2031         efx_oword_t tx_cfg;
2032
2033         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2034
2035         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2036         if (table->size) {
2037                 EFX_SET_OWORD_FIELD(
2038                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2039                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2040                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2041                 EFX_SET_OWORD_FIELD(
2042                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2043                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2044                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2045         }
2046
2047         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2048 }
2049
2050 static int
2051 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2052                                const struct efx_filter_spec *gen_spec)
2053 {
2054         bool is_full = false;
2055
2056         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2057             gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2058                 return -EINVAL;
2059
2060         spec->priority = gen_spec->priority;
2061         spec->flags = gen_spec->flags;
2062         spec->dmaq_id = gen_spec->dmaq_id;
2063
2064         switch (gen_spec->match_flags) {
2065         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2066               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2067               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2068                 is_full = true;
2069                 /* fall through */
2070         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2071               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2072                 __be32 rhost, host1, host2;
2073                 __be16 rport, port1, port2;
2074
2075                 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2076
2077                 if (gen_spec->ether_type != htons(ETH_P_IP))
2078                         return -EPROTONOSUPPORT;
2079                 if (gen_spec->loc_port == 0 ||
2080                     (is_full && gen_spec->rem_port == 0))
2081                         return -EADDRNOTAVAIL;
2082                 switch (gen_spec->ip_proto) {
2083                 case IPPROTO_TCP:
2084                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2085                                       EFX_FARCH_FILTER_TCP_WILD);
2086                         break;
2087                 case IPPROTO_UDP:
2088                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2089                                       EFX_FARCH_FILTER_UDP_WILD);
2090                         break;
2091                 default:
2092                         return -EPROTONOSUPPORT;
2093                 }
2094
2095                 /* Filter is constructed in terms of source and destination,
2096                  * with the odd wrinkle that the ports are swapped in a UDP
2097                  * wildcard filter.  We need to convert from local and remote
2098                  * (= zero for wildcard) addresses.
2099                  */
2100                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2101                 rport = is_full ? gen_spec->rem_port : 0;
2102                 host1 = rhost;
2103                 host2 = gen_spec->loc_host[0];
2104                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2105                         port1 = gen_spec->loc_port;
2106                         port2 = rport;
2107                 } else {
2108                         port1 = rport;
2109                         port2 = gen_spec->loc_port;
2110                 }
2111                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2112                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2113                 spec->data[2] = ntohl(host2);
2114
2115                 break;
2116         }
2117
2118         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2119                 is_full = true;
2120                 /* fall through */
2121         case EFX_FILTER_MATCH_LOC_MAC:
2122                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2123                               EFX_FARCH_FILTER_MAC_WILD);
2124                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2125                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2126                                  gen_spec->loc_mac[3] << 16 |
2127                                  gen_spec->loc_mac[4] << 8 |
2128                                  gen_spec->loc_mac[5]);
2129                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2130                                  gen_spec->loc_mac[1]);
2131                 break;
2132
2133         case EFX_FILTER_MATCH_LOC_MAC_IG:
2134                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2135                               EFX_FARCH_FILTER_MC_DEF :
2136                               EFX_FARCH_FILTER_UC_DEF);
2137                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2138                 break;
2139
2140         default:
2141                 return -EPROTONOSUPPORT;
2142         }
2143
2144         return 0;
2145 }
2146
2147 static void
2148 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2149                              const struct efx_farch_filter_spec *spec)
2150 {
2151         bool is_full = false;
2152
2153         /* *gen_spec should be completely initialised, to be consistent
2154          * with efx_filter_init_{rx,tx}() and in case we want to copy
2155          * it back to userland.
2156          */
2157         memset(gen_spec, 0, sizeof(*gen_spec));
2158
2159         gen_spec->priority = spec->priority;
2160         gen_spec->flags = spec->flags;
2161         gen_spec->dmaq_id = spec->dmaq_id;
2162
2163         switch (spec->type) {
2164         case EFX_FARCH_FILTER_TCP_FULL:
2165         case EFX_FARCH_FILTER_UDP_FULL:
2166                 is_full = true;
2167                 /* fall through */
2168         case EFX_FARCH_FILTER_TCP_WILD:
2169         case EFX_FARCH_FILTER_UDP_WILD: {
2170                 __be32 host1, host2;
2171                 __be16 port1, port2;
2172
2173                 gen_spec->match_flags =
2174                         EFX_FILTER_MATCH_ETHER_TYPE |
2175                         EFX_FILTER_MATCH_IP_PROTO |
2176                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2177                 if (is_full)
2178                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2179                                                   EFX_FILTER_MATCH_REM_PORT);
2180                 gen_spec->ether_type = htons(ETH_P_IP);
2181                 gen_spec->ip_proto =
2182                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2183                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2184                         IPPROTO_TCP : IPPROTO_UDP;
2185
2186                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2187                 port1 = htons(spec->data[0]);
2188                 host2 = htonl(spec->data[2]);
2189                 port2 = htons(spec->data[1] >> 16);
2190                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2191                         gen_spec->loc_host[0] = host1;
2192                         gen_spec->rem_host[0] = host2;
2193                 } else {
2194                         gen_spec->loc_host[0] = host2;
2195                         gen_spec->rem_host[0] = host1;
2196                 }
2197                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2198                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2199                         gen_spec->loc_port = port1;
2200                         gen_spec->rem_port = port2;
2201                 } else {
2202                         gen_spec->loc_port = port2;
2203                         gen_spec->rem_port = port1;
2204                 }
2205
2206                 break;
2207         }
2208
2209         case EFX_FARCH_FILTER_MAC_FULL:
2210                 is_full = true;
2211                 /* fall through */
2212         case EFX_FARCH_FILTER_MAC_WILD:
2213                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2214                 if (is_full)
2215                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2216                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2217                 gen_spec->loc_mac[1] = spec->data[2];
2218                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2219                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2220                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2221                 gen_spec->loc_mac[5] = spec->data[1];
2222                 gen_spec->outer_vid = htons(spec->data[0]);
2223                 break;
2224
2225         case EFX_FARCH_FILTER_UC_DEF:
2226         case EFX_FARCH_FILTER_MC_DEF:
2227                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2228                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2229                 break;
2230
2231         default:
2232                 WARN_ON(1);
2233                 break;
2234         }
2235 }
2236
2237 static void
2238 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2239                               struct efx_farch_filter_spec *spec)
2240 {
2241         /* If there's only one channel then disable RSS for non VF
2242          * traffic, thereby allowing VFs to use RSS when the PF can't.
2243          */
2244         spec->priority = EFX_FILTER_PRI_AUTO;
2245         spec->flags = (EFX_FILTER_FLAG_RX |
2246                        (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2247                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2248         spec->dmaq_id = 0;
2249 }
2250
2251 /* Build a filter entry and return its n-tuple key. */
2252 static u32 efx_farch_filter_build(efx_oword_t *filter,
2253                                   struct efx_farch_filter_spec *spec)
2254 {
2255         u32 data3;
2256
2257         switch (efx_farch_filter_spec_table_id(spec)) {
2258         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2259                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2260                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2261                 EFX_POPULATE_OWORD_7(
2262                         *filter,
2263                         FRF_BZ_RSS_EN,
2264                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2265                         FRF_BZ_SCATTER_EN,
2266                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2267                         FRF_BZ_TCP_UDP, is_udp,
2268                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2269                         EFX_DWORD_2, spec->data[2],
2270                         EFX_DWORD_1, spec->data[1],
2271                         EFX_DWORD_0, spec->data[0]);
2272                 data3 = is_udp;
2273                 break;
2274         }
2275
2276         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2277                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2278                 EFX_POPULATE_OWORD_7(
2279                         *filter,
2280                         FRF_CZ_RMFT_RSS_EN,
2281                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2282                         FRF_CZ_RMFT_SCATTER_EN,
2283                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2284                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2285                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2286                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2287                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2288                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2289                 data3 = is_wild;
2290                 break;
2291         }
2292
2293         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2294                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2295                 EFX_POPULATE_OWORD_5(*filter,
2296                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2297                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2298                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2299                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2300                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2301                 data3 = is_wild | spec->dmaq_id << 1;
2302                 break;
2303         }
2304
2305         default:
2306                 BUG();
2307         }
2308
2309         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2310 }
2311
2312 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2313                                    const struct efx_farch_filter_spec *right)
2314 {
2315         if (left->type != right->type ||
2316             memcmp(left->data, right->data, sizeof(left->data)))
2317                 return false;
2318
2319         if (left->flags & EFX_FILTER_FLAG_TX &&
2320             left->dmaq_id != right->dmaq_id)
2321                 return false;
2322
2323         return true;
2324 }
2325
2326 /*
2327  * Construct/deconstruct external filter IDs.  At least the RX filter
2328  * IDs must be ordered by matching priority, for RX NFC semantics.
2329  *
2330  * Deconstruction needs to be robust against invalid IDs so that
2331  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2332  * accept user-provided IDs.
2333  */
2334
2335 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2336
2337 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2338         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2339         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2340         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2341         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2342         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2343         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2344         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2345         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2346 };
2347
2348 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2349         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2350         EFX_FARCH_FILTER_TABLE_RX_IP,
2351         EFX_FARCH_FILTER_TABLE_RX_MAC,
2352         EFX_FARCH_FILTER_TABLE_RX_MAC,
2353         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2354         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2355         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2356 };
2357
2358 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2359 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2360
2361 static inline u32
2362 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2363                          unsigned int index)
2364 {
2365         unsigned int range;
2366
2367         range = efx_farch_filter_type_match_pri[spec->type];
2368         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2369                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2370
2371         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2372 }
2373
2374 static inline enum efx_farch_filter_table_id
2375 efx_farch_filter_id_table_id(u32 id)
2376 {
2377         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2378
2379         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2380                 return efx_farch_filter_range_table[range];
2381         else
2382                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2383 }
2384
2385 static inline unsigned int efx_farch_filter_id_index(u32 id)
2386 {
2387         return id & EFX_FARCH_FILTER_INDEX_MASK;
2388 }
2389
2390 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2391 {
2392         struct efx_farch_filter_state *state = efx->filter_state;
2393         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2394         enum efx_farch_filter_table_id table_id;
2395
2396         do {
2397                 table_id = efx_farch_filter_range_table[range];
2398                 if (state->table[table_id].size != 0)
2399                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2400                                 state->table[table_id].size;
2401         } while (range--);
2402
2403         return 0;
2404 }
2405
2406 s32 efx_farch_filter_insert(struct efx_nic *efx,
2407                             struct efx_filter_spec *gen_spec,
2408                             bool replace_equal)
2409 {
2410         struct efx_farch_filter_state *state = efx->filter_state;
2411         struct efx_farch_filter_table *table;
2412         struct efx_farch_filter_spec spec;
2413         efx_oword_t filter;
2414         int rep_index, ins_index;
2415         unsigned int depth = 0;
2416         int rc;
2417
2418         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2419         if (rc)
2420                 return rc;
2421
2422         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2423         if (table->size == 0)
2424                 return -EINVAL;
2425
2426         netif_vdbg(efx, hw, efx->net_dev,
2427                    "%s: type %d search_limit=%d", __func__, spec.type,
2428                    table->search_limit[spec.type]);
2429
2430         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2431                 /* One filter spec per type */
2432                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2433                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2434                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2435                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2436                 ins_index = rep_index;
2437
2438                 spin_lock_bh(&efx->filter_lock);
2439         } else {
2440                 /* Search concurrently for
2441                  * (1) a filter to be replaced (rep_index): any filter
2442                  *     with the same match values, up to the current
2443                  *     search depth for this type, and
2444                  * (2) the insertion point (ins_index): (1) or any
2445                  *     free slot before it or up to the maximum search
2446                  *     depth for this priority
2447                  * We fail if we cannot find (2).
2448                  *
2449                  * We can stop once either
2450                  * (a) we find (1), in which case we have definitely
2451                  *     found (2) as well; or
2452                  * (b) we have searched exhaustively for (1), and have
2453                  *     either found (2) or searched exhaustively for it
2454                  */
2455                 u32 key = efx_farch_filter_build(&filter, &spec);
2456                 unsigned int hash = efx_farch_filter_hash(key);
2457                 unsigned int incr = efx_farch_filter_increment(key);
2458                 unsigned int max_rep_depth = table->search_limit[spec.type];
2459                 unsigned int max_ins_depth =
2460                         spec.priority <= EFX_FILTER_PRI_HINT ?
2461                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2462                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2463                 unsigned int i = hash & (table->size - 1);
2464
2465                 ins_index = -1;
2466                 depth = 1;
2467
2468                 spin_lock_bh(&efx->filter_lock);
2469
2470                 for (;;) {
2471                         if (!test_bit(i, table->used_bitmap)) {
2472                                 if (ins_index < 0)
2473                                         ins_index = i;
2474                         } else if (efx_farch_filter_equal(&spec,
2475                                                           &table->spec[i])) {
2476                                 /* Case (a) */
2477                                 if (ins_index < 0)
2478                                         ins_index = i;
2479                                 rep_index = i;
2480                                 break;
2481                         }
2482
2483                         if (depth >= max_rep_depth &&
2484                             (ins_index >= 0 || depth >= max_ins_depth)) {
2485                                 /* Case (b) */
2486                                 if (ins_index < 0) {
2487                                         rc = -EBUSY;
2488                                         goto out;
2489                                 }
2490                                 rep_index = -1;
2491                                 break;
2492                         }
2493
2494                         i = (i + incr) & (table->size - 1);
2495                         ++depth;
2496                 }
2497         }
2498
2499         /* If we found a filter to be replaced, check whether we
2500          * should do so
2501          */
2502         if (rep_index >= 0) {
2503                 struct efx_farch_filter_spec *saved_spec =
2504                         &table->spec[rep_index];
2505
2506                 if (spec.priority == saved_spec->priority && !replace_equal) {
2507                         rc = -EEXIST;
2508                         goto out;
2509                 }
2510                 if (spec.priority < saved_spec->priority) {
2511                         rc = -EPERM;
2512                         goto out;
2513                 }
2514                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2515                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2516                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2517         }
2518
2519         /* Insert the filter */
2520         if (ins_index != rep_index) {
2521                 __set_bit(ins_index, table->used_bitmap);
2522                 ++table->used;
2523         }
2524         table->spec[ins_index] = spec;
2525
2526         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2527                 efx_farch_filter_push_rx_config(efx);
2528         } else {
2529                 if (table->search_limit[spec.type] < depth) {
2530                         table->search_limit[spec.type] = depth;
2531                         if (spec.flags & EFX_FILTER_FLAG_TX)
2532                                 efx_farch_filter_push_tx_limits(efx);
2533                         else
2534                                 efx_farch_filter_push_rx_config(efx);
2535                 }
2536
2537                 efx_writeo(efx, &filter,
2538                            table->offset + table->step * ins_index);
2539
2540                 /* If we were able to replace a filter by inserting
2541                  * at a lower depth, clear the replaced filter
2542                  */
2543                 if (ins_index != rep_index && rep_index >= 0)
2544                         efx_farch_filter_table_clear_entry(efx, table,
2545                                                            rep_index);
2546         }
2547
2548         netif_vdbg(efx, hw, efx->net_dev,
2549                    "%s: filter type %d index %d rxq %u set",
2550                    __func__, spec.type, ins_index, spec.dmaq_id);
2551         rc = efx_farch_filter_make_id(&spec, ins_index);
2552
2553 out:
2554         spin_unlock_bh(&efx->filter_lock);
2555         return rc;
2556 }
2557
2558 static void
2559 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2560                                    struct efx_farch_filter_table *table,
2561                                    unsigned int filter_idx)
2562 {
2563         static efx_oword_t filter;
2564
2565         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2566         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2567
2568         __clear_bit(filter_idx, table->used_bitmap);
2569         --table->used;
2570         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2571
2572         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2573
2574         /* If this filter required a greater search depth than
2575          * any other, the search limit for its type can now be
2576          * decreased.  However, it is hard to determine that
2577          * unless the table has become completely empty - in
2578          * which case, all its search limits can be set to 0.
2579          */
2580         if (unlikely(table->used == 0)) {
2581                 memset(table->search_limit, 0, sizeof(table->search_limit));
2582                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2583                         efx_farch_filter_push_tx_limits(efx);
2584                 else
2585                         efx_farch_filter_push_rx_config(efx);
2586         }
2587 }
2588
2589 static int efx_farch_filter_remove(struct efx_nic *efx,
2590                                    struct efx_farch_filter_table *table,
2591                                    unsigned int filter_idx,
2592                                    enum efx_filter_priority priority)
2593 {
2594         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2595
2596         if (!test_bit(filter_idx, table->used_bitmap) ||
2597             spec->priority != priority)
2598                 return -ENOENT;
2599
2600         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2601                 efx_farch_filter_init_rx_auto(efx, spec);
2602                 efx_farch_filter_push_rx_config(efx);
2603         } else {
2604                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2605         }
2606
2607         return 0;
2608 }
2609
2610 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2611                                  enum efx_filter_priority priority,
2612                                  u32 filter_id)
2613 {
2614         struct efx_farch_filter_state *state = efx->filter_state;
2615         enum efx_farch_filter_table_id table_id;
2616         struct efx_farch_filter_table *table;
2617         unsigned int filter_idx;
2618         struct efx_farch_filter_spec *spec;
2619         int rc;
2620
2621         table_id = efx_farch_filter_id_table_id(filter_id);
2622         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2623                 return -ENOENT;
2624         table = &state->table[table_id];
2625
2626         filter_idx = efx_farch_filter_id_index(filter_id);
2627         if (filter_idx >= table->size)
2628                 return -ENOENT;
2629         spec = &table->spec[filter_idx];
2630
2631         spin_lock_bh(&efx->filter_lock);
2632         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2633         spin_unlock_bh(&efx->filter_lock);
2634
2635         return rc;
2636 }
2637
2638 int efx_farch_filter_get_safe(struct efx_nic *efx,
2639                               enum efx_filter_priority priority,
2640                               u32 filter_id, struct efx_filter_spec *spec_buf)
2641 {
2642         struct efx_farch_filter_state *state = efx->filter_state;
2643         enum efx_farch_filter_table_id table_id;
2644         struct efx_farch_filter_table *table;
2645         struct efx_farch_filter_spec *spec;
2646         unsigned int filter_idx;
2647         int rc;
2648
2649         table_id = efx_farch_filter_id_table_id(filter_id);
2650         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2651                 return -ENOENT;
2652         table = &state->table[table_id];
2653
2654         filter_idx = efx_farch_filter_id_index(filter_id);
2655         if (filter_idx >= table->size)
2656                 return -ENOENT;
2657         spec = &table->spec[filter_idx];
2658
2659         spin_lock_bh(&efx->filter_lock);
2660
2661         if (test_bit(filter_idx, table->used_bitmap) &&
2662             spec->priority == priority) {
2663                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2664                 rc = 0;
2665         } else {
2666                 rc = -ENOENT;
2667         }
2668
2669         spin_unlock_bh(&efx->filter_lock);
2670
2671         return rc;
2672 }
2673
2674 static void
2675 efx_farch_filter_table_clear(struct efx_nic *efx,
2676                              enum efx_farch_filter_table_id table_id,
2677                              enum efx_filter_priority priority)
2678 {
2679         struct efx_farch_filter_state *state = efx->filter_state;
2680         struct efx_farch_filter_table *table = &state->table[table_id];
2681         unsigned int filter_idx;
2682
2683         spin_lock_bh(&efx->filter_lock);
2684         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2685                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2686                         efx_farch_filter_remove(efx, table,
2687                                                 filter_idx, priority);
2688         }
2689         spin_unlock_bh(&efx->filter_lock);
2690 }
2691
2692 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2693                                enum efx_filter_priority priority)
2694 {
2695         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2696                                      priority);
2697         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2698                                      priority);
2699         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2700                                      priority);
2701         return 0;
2702 }
2703
2704 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2705                                    enum efx_filter_priority priority)
2706 {
2707         struct efx_farch_filter_state *state = efx->filter_state;
2708         enum efx_farch_filter_table_id table_id;
2709         struct efx_farch_filter_table *table;
2710         unsigned int filter_idx;
2711         u32 count = 0;
2712
2713         spin_lock_bh(&efx->filter_lock);
2714
2715         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2716              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2717              table_id++) {
2718                 table = &state->table[table_id];
2719                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2720                         if (test_bit(filter_idx, table->used_bitmap) &&
2721                             table->spec[filter_idx].priority == priority)
2722                                 ++count;
2723                 }
2724         }
2725
2726         spin_unlock_bh(&efx->filter_lock);
2727
2728         return count;
2729 }
2730
2731 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2732                                 enum efx_filter_priority priority,
2733                                 u32 *buf, u32 size)
2734 {
2735         struct efx_farch_filter_state *state = efx->filter_state;
2736         enum efx_farch_filter_table_id table_id;
2737         struct efx_farch_filter_table *table;
2738         unsigned int filter_idx;
2739         s32 count = 0;
2740
2741         spin_lock_bh(&efx->filter_lock);
2742
2743         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2744              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2745              table_id++) {
2746                 table = &state->table[table_id];
2747                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2748                         if (test_bit(filter_idx, table->used_bitmap) &&
2749                             table->spec[filter_idx].priority == priority) {
2750                                 if (count == size) {
2751                                         count = -EMSGSIZE;
2752                                         goto out;
2753                                 }
2754                                 buf[count++] = efx_farch_filter_make_id(
2755                                         &table->spec[filter_idx], filter_idx);
2756                         }
2757                 }
2758         }
2759 out:
2760         spin_unlock_bh(&efx->filter_lock);
2761
2762         return count;
2763 }
2764
2765 /* Restore filter stater after reset */
2766 void efx_farch_filter_table_restore(struct efx_nic *efx)
2767 {
2768         struct efx_farch_filter_state *state = efx->filter_state;
2769         enum efx_farch_filter_table_id table_id;
2770         struct efx_farch_filter_table *table;
2771         efx_oword_t filter;
2772         unsigned int filter_idx;
2773
2774         spin_lock_bh(&efx->filter_lock);
2775
2776         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2777                 table = &state->table[table_id];
2778
2779                 /* Check whether this is a regular register table */
2780                 if (table->step == 0)
2781                         continue;
2782
2783                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2784                         if (!test_bit(filter_idx, table->used_bitmap))
2785                                 continue;
2786                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2787                         efx_writeo(efx, &filter,
2788                                    table->offset + table->step * filter_idx);
2789                 }
2790         }
2791
2792         efx_farch_filter_push_rx_config(efx);
2793         efx_farch_filter_push_tx_limits(efx);
2794
2795         spin_unlock_bh(&efx->filter_lock);
2796 }
2797
2798 void efx_farch_filter_table_remove(struct efx_nic *efx)
2799 {
2800         struct efx_farch_filter_state *state = efx->filter_state;
2801         enum efx_farch_filter_table_id table_id;
2802
2803         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2804                 kfree(state->table[table_id].used_bitmap);
2805                 vfree(state->table[table_id].spec);
2806         }
2807         kfree(state);
2808 }
2809
2810 int efx_farch_filter_table_probe(struct efx_nic *efx)
2811 {
2812         struct efx_farch_filter_state *state;
2813         struct efx_farch_filter_table *table;
2814         unsigned table_id;
2815
2816         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2817         if (!state)
2818                 return -ENOMEM;
2819         efx->filter_state = state;
2820
2821         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2822                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2823                 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2824                 table->offset = FR_BZ_RX_FILTER_TBL0;
2825                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2826                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2827         }
2828
2829         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2830                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2831                 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2832                 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2833                 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2834                 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2835
2836                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2837                 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2838                 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2839
2840                 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2841                 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2842                 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2843                 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2844                 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2845         }
2846
2847         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2848                 table = &state->table[table_id];
2849                 if (table->size == 0)
2850                         continue;
2851                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2852                                              sizeof(unsigned long),
2853                                              GFP_KERNEL);
2854                 if (!table->used_bitmap)
2855                         goto fail;
2856                 table->spec = vzalloc(table->size * sizeof(*table->spec));
2857                 if (!table->spec)
2858                         goto fail;
2859         }
2860
2861         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2862         if (table->size) {
2863                 /* RX default filters must always exist */
2864                 struct efx_farch_filter_spec *spec;
2865                 unsigned i;
2866
2867                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2868                         spec = &table->spec[i];
2869                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2870                         efx_farch_filter_init_rx_auto(efx, spec);
2871                         __set_bit(i, table->used_bitmap);
2872                 }
2873         }
2874
2875         efx_farch_filter_push_rx_config(efx);
2876
2877         return 0;
2878
2879 fail:
2880         efx_farch_filter_table_remove(efx);
2881         return -ENOMEM;
2882 }
2883
2884 /* Update scatter enable flags for filters pointing to our own RX queues */
2885 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2886 {
2887         struct efx_farch_filter_state *state = efx->filter_state;
2888         enum efx_farch_filter_table_id table_id;
2889         struct efx_farch_filter_table *table;
2890         efx_oword_t filter;
2891         unsigned int filter_idx;
2892
2893         spin_lock_bh(&efx->filter_lock);
2894
2895         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2896              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2897              table_id++) {
2898                 table = &state->table[table_id];
2899
2900                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2901                         if (!test_bit(filter_idx, table->used_bitmap) ||
2902                             table->spec[filter_idx].dmaq_id >=
2903                             efx->n_rx_channels)
2904                                 continue;
2905
2906                         if (efx->rx_scatter)
2907                                 table->spec[filter_idx].flags |=
2908                                         EFX_FILTER_FLAG_RX_SCATTER;
2909                         else
2910                                 table->spec[filter_idx].flags &=
2911                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2912
2913                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2914                                 /* Pushed by efx_farch_filter_push_rx_config() */
2915                                 continue;
2916
2917                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2918                         efx_writeo(efx, &filter,
2919                                    table->offset + table->step * filter_idx);
2920                 }
2921         }
2922
2923         efx_farch_filter_push_rx_config(efx);
2924
2925         spin_unlock_bh(&efx->filter_lock);
2926 }
2927
2928 #ifdef CONFIG_RFS_ACCEL
2929
2930 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2931                                 struct efx_filter_spec *gen_spec)
2932 {
2933         return efx_farch_filter_insert(efx, gen_spec, true);
2934 }
2935
2936 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2937                                      unsigned int index)
2938 {
2939         struct efx_farch_filter_state *state = efx->filter_state;
2940         struct efx_farch_filter_table *table =
2941                 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2942
2943         if (test_bit(index, table->used_bitmap) &&
2944             table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2945             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2946                                 flow_id, index)) {
2947                 efx_farch_filter_table_clear_entry(efx, table, index);
2948                 return true;
2949         }
2950
2951         return false;
2952 }
2953
2954 #endif /* CONFIG_RFS_ACCEL */
2955
2956 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2957 {
2958         struct net_device *net_dev = efx->net_dev;
2959         struct netdev_hw_addr *ha;
2960         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2961         u32 crc;
2962         int bit;
2963
2964         if (!efx_dev_registered(efx))
2965                 return;
2966
2967         netif_addr_lock_bh(net_dev);
2968
2969         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2970
2971         /* Build multicast hash table */
2972         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2973                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2974         } else {
2975                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2976                 netdev_for_each_mc_addr(ha, net_dev) {
2977                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2978                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2979                         __set_bit_le(bit, mc_hash);
2980                 }
2981
2982                 /* Broadcast packets go through the multicast hash filter.
2983                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2984                  * so we always add bit 0xff to the mask.
2985                  */
2986                 __set_bit_le(0xff, mc_hash);
2987         }
2988
2989         netif_addr_unlock_bh(net_dev);
2990 }