]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/ti/cpts.c
Merge tag 'xtensa-20170303' of git://github.com/jcmvbkbc/linux-xtensa
[karo-tx-linux.git] / drivers / net / ethernet / ti / cpts.c
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31
32 #include "cpts.h"
33
34 #define cpts_read32(c, r)       readl_relaxed(&c->reg->r)
35 #define cpts_write32(c, v, r)   writel_relaxed(v, &c->reg->r)
36
37 static int event_expired(struct cpts_event *event)
38 {
39         return time_after(jiffies, event->tmo);
40 }
41
42 static int event_type(struct cpts_event *event)
43 {
44         return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
45 }
46
47 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
48 {
49         u32 r = cpts_read32(cpts, intstat_raw);
50
51         if (r & TS_PEND_RAW) {
52                 *high = cpts_read32(cpts, event_high);
53                 *low  = cpts_read32(cpts, event_low);
54                 cpts_write32(cpts, EVENT_POP, event_pop);
55                 return 0;
56         }
57         return -1;
58 }
59
60 static int cpts_purge_events(struct cpts *cpts)
61 {
62         struct list_head *this, *next;
63         struct cpts_event *event;
64         int removed = 0;
65
66         list_for_each_safe(this, next, &cpts->events) {
67                 event = list_entry(this, struct cpts_event, list);
68                 if (event_expired(event)) {
69                         list_del_init(&event->list);
70                         list_add(&event->list, &cpts->pool);
71                         ++removed;
72                 }
73         }
74
75         if (removed)
76                 pr_debug("cpts: event pool cleaned up %d\n", removed);
77         return removed ? 0 : -1;
78 }
79
80 /*
81  * Returns zero if matching event type was found.
82  */
83 static int cpts_fifo_read(struct cpts *cpts, int match)
84 {
85         int i, type = -1;
86         u32 hi, lo;
87         struct cpts_event *event;
88
89         for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
90                 if (cpts_fifo_pop(cpts, &hi, &lo))
91                         break;
92
93                 if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
94                         pr_err("cpts: event pool empty\n");
95                         return -1;
96                 }
97
98                 event = list_first_entry(&cpts->pool, struct cpts_event, list);
99                 event->tmo = jiffies + 2;
100                 event->high = hi;
101                 event->low = lo;
102                 type = event_type(event);
103                 switch (type) {
104                 case CPTS_EV_PUSH:
105                 case CPTS_EV_RX:
106                 case CPTS_EV_TX:
107                         list_del_init(&event->list);
108                         list_add_tail(&event->list, &cpts->events);
109                         break;
110                 case CPTS_EV_ROLL:
111                 case CPTS_EV_HALF:
112                 case CPTS_EV_HW:
113                         break;
114                 default:
115                         pr_err("cpts: unknown event type\n");
116                         break;
117                 }
118                 if (type == match)
119                         break;
120         }
121         return type == match ? 0 : -1;
122 }
123
124 static u64 cpts_systim_read(const struct cyclecounter *cc)
125 {
126         u64 val = 0;
127         struct cpts_event *event;
128         struct list_head *this, *next;
129         struct cpts *cpts = container_of(cc, struct cpts, cc);
130
131         cpts_write32(cpts, TS_PUSH, ts_push);
132         if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
133                 pr_err("cpts: unable to obtain a time stamp\n");
134
135         list_for_each_safe(this, next, &cpts->events) {
136                 event = list_entry(this, struct cpts_event, list);
137                 if (event_type(event) == CPTS_EV_PUSH) {
138                         list_del_init(&event->list);
139                         list_add(&event->list, &cpts->pool);
140                         val = event->low;
141                         break;
142                 }
143         }
144
145         return val;
146 }
147
148 /* PTP clock operations */
149
150 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
151 {
152         u64 adj;
153         u32 diff, mult;
154         int neg_adj = 0;
155         unsigned long flags;
156         struct cpts *cpts = container_of(ptp, struct cpts, info);
157
158         if (ppb < 0) {
159                 neg_adj = 1;
160                 ppb = -ppb;
161         }
162         mult = cpts->cc_mult;
163         adj = mult;
164         adj *= ppb;
165         diff = div_u64(adj, 1000000000ULL);
166
167         spin_lock_irqsave(&cpts->lock, flags);
168
169         timecounter_read(&cpts->tc);
170
171         cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
172
173         spin_unlock_irqrestore(&cpts->lock, flags);
174
175         return 0;
176 }
177
178 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
179 {
180         unsigned long flags;
181         struct cpts *cpts = container_of(ptp, struct cpts, info);
182
183         spin_lock_irqsave(&cpts->lock, flags);
184         timecounter_adjtime(&cpts->tc, delta);
185         spin_unlock_irqrestore(&cpts->lock, flags);
186
187         return 0;
188 }
189
190 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
191 {
192         u64 ns;
193         unsigned long flags;
194         struct cpts *cpts = container_of(ptp, struct cpts, info);
195
196         spin_lock_irqsave(&cpts->lock, flags);
197         ns = timecounter_read(&cpts->tc);
198         spin_unlock_irqrestore(&cpts->lock, flags);
199
200         *ts = ns_to_timespec64(ns);
201
202         return 0;
203 }
204
205 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
206                             const struct timespec64 *ts)
207 {
208         u64 ns;
209         unsigned long flags;
210         struct cpts *cpts = container_of(ptp, struct cpts, info);
211
212         ns = timespec64_to_ns(ts);
213
214         spin_lock_irqsave(&cpts->lock, flags);
215         timecounter_init(&cpts->tc, &cpts->cc, ns);
216         spin_unlock_irqrestore(&cpts->lock, flags);
217
218         return 0;
219 }
220
221 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
222                            struct ptp_clock_request *rq, int on)
223 {
224         return -EOPNOTSUPP;
225 }
226
227 static struct ptp_clock_info cpts_info = {
228         .owner          = THIS_MODULE,
229         .name           = "CTPS timer",
230         .max_adj        = 1000000,
231         .n_ext_ts       = 0,
232         .n_pins         = 0,
233         .pps            = 0,
234         .adjfreq        = cpts_ptp_adjfreq,
235         .adjtime        = cpts_ptp_adjtime,
236         .gettime64      = cpts_ptp_gettime,
237         .settime64      = cpts_ptp_settime,
238         .enable         = cpts_ptp_enable,
239 };
240
241 static void cpts_overflow_check(struct work_struct *work)
242 {
243         struct timespec64 ts;
244         struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
245
246         cpts_ptp_gettime(&cpts->info, &ts);
247         pr_debug("cpts overflow check at %lld.%09lu\n", ts.tv_sec, ts.tv_nsec);
248         schedule_delayed_work(&cpts->overflow_work, cpts->ov_check_period);
249 }
250
251 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
252                       u16 ts_seqid, u8 ts_msgtype)
253 {
254         u16 *seqid;
255         unsigned int offset = 0;
256         u8 *msgtype, *data = skb->data;
257
258         if (ptp_class & PTP_CLASS_VLAN)
259                 offset += VLAN_HLEN;
260
261         switch (ptp_class & PTP_CLASS_PMASK) {
262         case PTP_CLASS_IPV4:
263                 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
264                 break;
265         case PTP_CLASS_IPV6:
266                 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
267                 break;
268         case PTP_CLASS_L2:
269                 offset += ETH_HLEN;
270                 break;
271         default:
272                 return 0;
273         }
274
275         if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
276                 return 0;
277
278         if (unlikely(ptp_class & PTP_CLASS_V1))
279                 msgtype = data + offset + OFF_PTP_CONTROL;
280         else
281                 msgtype = data + offset;
282
283         seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
284
285         return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
286 }
287
288 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
289 {
290         u64 ns = 0;
291         struct cpts_event *event;
292         struct list_head *this, *next;
293         unsigned int class = ptp_classify_raw(skb);
294         unsigned long flags;
295         u16 seqid;
296         u8 mtype;
297
298         if (class == PTP_CLASS_NONE)
299                 return 0;
300
301         spin_lock_irqsave(&cpts->lock, flags);
302         cpts_fifo_read(cpts, CPTS_EV_PUSH);
303         list_for_each_safe(this, next, &cpts->events) {
304                 event = list_entry(this, struct cpts_event, list);
305                 if (event_expired(event)) {
306                         list_del_init(&event->list);
307                         list_add(&event->list, &cpts->pool);
308                         continue;
309                 }
310                 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
311                 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
312                 if (ev_type == event_type(event) &&
313                     cpts_match(skb, class, seqid, mtype)) {
314                         ns = timecounter_cyc2time(&cpts->tc, event->low);
315                         list_del_init(&event->list);
316                         list_add(&event->list, &cpts->pool);
317                         break;
318                 }
319         }
320         spin_unlock_irqrestore(&cpts->lock, flags);
321
322         return ns;
323 }
324
325 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
326 {
327         u64 ns;
328         struct skb_shared_hwtstamps *ssh;
329
330         if (!cpts->rx_enable)
331                 return;
332         ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
333         if (!ns)
334                 return;
335         ssh = skb_hwtstamps(skb);
336         memset(ssh, 0, sizeof(*ssh));
337         ssh->hwtstamp = ns_to_ktime(ns);
338 }
339 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
340
341 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
342 {
343         u64 ns;
344         struct skb_shared_hwtstamps ssh;
345
346         if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
347                 return;
348         ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
349         if (!ns)
350                 return;
351         memset(&ssh, 0, sizeof(ssh));
352         ssh.hwtstamp = ns_to_ktime(ns);
353         skb_tstamp_tx(skb, &ssh);
354 }
355 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
356
357 int cpts_register(struct cpts *cpts)
358 {
359         int err, i;
360
361         INIT_LIST_HEAD(&cpts->events);
362         INIT_LIST_HEAD(&cpts->pool);
363         for (i = 0; i < CPTS_MAX_EVENTS; i++)
364                 list_add(&cpts->pool_data[i].list, &cpts->pool);
365
366         clk_enable(cpts->refclk);
367
368         cpts_write32(cpts, CPTS_EN, control);
369         cpts_write32(cpts, TS_PEND_EN, int_enable);
370
371         timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
372
373         cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
374         if (IS_ERR(cpts->clock)) {
375                 err = PTR_ERR(cpts->clock);
376                 cpts->clock = NULL;
377                 goto err_ptp;
378         }
379         cpts->phc_index = ptp_clock_index(cpts->clock);
380
381         schedule_delayed_work(&cpts->overflow_work, cpts->ov_check_period);
382         return 0;
383
384 err_ptp:
385         clk_disable(cpts->refclk);
386         return err;
387 }
388 EXPORT_SYMBOL_GPL(cpts_register);
389
390 void cpts_unregister(struct cpts *cpts)
391 {
392         if (WARN_ON(!cpts->clock))
393                 return;
394
395         cancel_delayed_work_sync(&cpts->overflow_work);
396
397         ptp_clock_unregister(cpts->clock);
398         cpts->clock = NULL;
399
400         cpts_write32(cpts, 0, int_enable);
401         cpts_write32(cpts, 0, control);
402
403         clk_disable(cpts->refclk);
404 }
405 EXPORT_SYMBOL_GPL(cpts_unregister);
406
407 static void cpts_calc_mult_shift(struct cpts *cpts)
408 {
409         u64 frac, maxsec, ns;
410         u32 freq;
411
412         freq = clk_get_rate(cpts->refclk);
413
414         /* Calc the maximum number of seconds which we can run before
415          * wrapping around.
416          */
417         maxsec = cpts->cc.mask;
418         do_div(maxsec, freq);
419         /* limit conversation rate to 10 sec as higher values will produce
420          * too small mult factors and so reduce the conversion accuracy
421          */
422         if (maxsec > 10)
423                 maxsec = 10;
424
425         /* Calc overflow check period (maxsec / 2) */
426         cpts->ov_check_period = (HZ * maxsec) / 2;
427         dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
428                  cpts->ov_check_period);
429
430         if (cpts->cc.mult || cpts->cc.shift)
431                 return;
432
433         clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
434                                freq, NSEC_PER_SEC, maxsec);
435
436         frac = 0;
437         ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
438
439         dev_info(cpts->dev,
440                  "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
441                  freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
442 }
443
444 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
445 {
446         int ret = -EINVAL;
447         u32 prop;
448
449         if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
450                 cpts->cc.mult = prop;
451
452         if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
453                 cpts->cc.shift = prop;
454
455         if ((cpts->cc.mult && !cpts->cc.shift) ||
456             (!cpts->cc.mult && cpts->cc.shift))
457                 goto of_error;
458
459         return 0;
460
461 of_error:
462         dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
463         return ret;
464 }
465
466 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
467                          struct device_node *node)
468 {
469         struct cpts *cpts;
470         int ret;
471
472         cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
473         if (!cpts)
474                 return ERR_PTR(-ENOMEM);
475
476         cpts->dev = dev;
477         cpts->reg = (struct cpsw_cpts __iomem *)regs;
478         spin_lock_init(&cpts->lock);
479         INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
480
481         ret = cpts_of_parse(cpts, node);
482         if (ret)
483                 return ERR_PTR(ret);
484
485         cpts->refclk = devm_clk_get(dev, "cpts");
486         if (IS_ERR(cpts->refclk)) {
487                 dev_err(dev, "Failed to get cpts refclk\n");
488                 return ERR_PTR(PTR_ERR(cpts->refclk));
489         }
490
491         clk_prepare(cpts->refclk);
492
493         cpts->cc.read = cpts_systim_read;
494         cpts->cc.mask = CLOCKSOURCE_MASK(32);
495         cpts->info = cpts_info;
496
497         cpts_calc_mult_shift(cpts);
498         /* save cc.mult original value as it can be modified
499          * by cpts_ptp_adjfreq().
500          */
501         cpts->cc_mult = cpts->cc.mult;
502
503         return cpts;
504 }
505 EXPORT_SYMBOL_GPL(cpts_create);
506
507 void cpts_release(struct cpts *cpts)
508 {
509         if (!cpts)
510                 return;
511
512         if (WARN_ON(!cpts->refclk))
513                 return;
514
515         clk_unprepare(cpts->refclk);
516 }
517 EXPORT_SYMBOL_GPL(cpts_release);
518
519 MODULE_LICENSE("GPL v2");
520 MODULE_DESCRIPTION("TI CPTS driver");
521 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");