]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/hippi/rrunner.c
Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[karo-tx-linux.git] / drivers / net / hippi / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <net/sock.h>
44
45 #include <asm/cache.h>
46 #include <asm/byteorder.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <linux/uaccess.h>
50
51 #define rr_if_busy(dev)     netif_queue_stopped(dev)
52 #define rr_if_running(dev)  netif_running(dev)
53
54 #include "rrunner.h"
55
56 #define RUN_AT(x) (jiffies + (x))
57
58
59 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61 MODULE_LICENSE("GPL");
62
63 static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
64
65
66 static const struct net_device_ops rr_netdev_ops = {
67         .ndo_open               = rr_open,
68         .ndo_stop               = rr_close,
69         .ndo_do_ioctl           = rr_ioctl,
70         .ndo_start_xmit         = rr_start_xmit,
71         .ndo_set_mac_address    = hippi_mac_addr,
72 };
73
74 /*
75  * Implementation notes:
76  *
77  * The DMA engine only allows for DMA within physical 64KB chunks of
78  * memory. The current approach of the driver (and stack) is to use
79  * linear blocks of memory for the skbuffs. However, as the data block
80  * is always the first part of the skb and skbs are 2^n aligned so we
81  * are guarantted to get the whole block within one 64KB align 64KB
82  * chunk.
83  *
84  * On the long term, relying on being able to allocate 64KB linear
85  * chunks of memory is not feasible and the skb handling code and the
86  * stack will need to know about I/O vectors or something similar.
87  */
88
89 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
90 {
91         struct net_device *dev;
92         static int version_disp;
93         u8 pci_latency;
94         struct rr_private *rrpriv;
95         void *tmpptr;
96         dma_addr_t ring_dma;
97         int ret = -ENOMEM;
98
99         dev = alloc_hippi_dev(sizeof(struct rr_private));
100         if (!dev)
101                 goto out3;
102
103         ret = pci_enable_device(pdev);
104         if (ret) {
105                 ret = -ENODEV;
106                 goto out2;
107         }
108
109         rrpriv = netdev_priv(dev);
110
111         SET_NETDEV_DEV(dev, &pdev->dev);
112
113         ret = pci_request_regions(pdev, "rrunner");
114         if (ret < 0)
115                 goto out;
116
117         pci_set_drvdata(pdev, dev);
118
119         rrpriv->pci_dev = pdev;
120
121         spin_lock_init(&rrpriv->lock);
122
123         dev->netdev_ops = &rr_netdev_ops;
124
125         /* display version info if adapter is found */
126         if (!version_disp) {
127                 /* set display flag to TRUE so that */
128                 /* we only display this string ONCE */
129                 version_disp = 1;
130                 printk(version);
131         }
132
133         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134         if (pci_latency <= 0x58){
135                 pci_latency = 0x58;
136                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137         }
138
139         pci_set_master(pdev);
140
141         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
143                (unsigned long long)pci_resource_start(pdev, 0),
144                pdev->irq, pci_latency);
145
146         /*
147          * Remap the MMIO regs into kernel space.
148          */
149         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
150         if (!rrpriv->regs) {
151                 printk(KERN_ERR "%s:  Unable to map I/O register, "
152                         "RoadRunner will be disabled.\n", dev->name);
153                 ret = -EIO;
154                 goto out;
155         }
156
157         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
158         rrpriv->tx_ring = tmpptr;
159         rrpriv->tx_ring_dma = ring_dma;
160
161         if (!tmpptr) {
162                 ret = -ENOMEM;
163                 goto out;
164         }
165
166         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
167         rrpriv->rx_ring = tmpptr;
168         rrpriv->rx_ring_dma = ring_dma;
169
170         if (!tmpptr) {
171                 ret = -ENOMEM;
172                 goto out;
173         }
174
175         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
176         rrpriv->evt_ring = tmpptr;
177         rrpriv->evt_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         /*
185          * Don't access any register before this point!
186          */
187 #ifdef __BIG_ENDIAN
188         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189                 &rrpriv->regs->HostCtrl);
190 #endif
191         /*
192          * Need to add a case for little-endian 64-bit hosts here.
193          */
194
195         rr_init(dev);
196
197         ret = register_netdev(dev);
198         if (ret)
199                 goto out;
200         return 0;
201
202  out:
203         if (rrpriv->evt_ring)
204                 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
205                                     rrpriv->evt_ring_dma);
206         if (rrpriv->rx_ring)
207                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                     rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                     rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 pci_iounmap(pdev, rrpriv->regs);
214         if (pdev)
215                 pci_release_regions(pdev);
216  out2:
217         free_netdev(dev);
218  out3:
219         return ret;
220 }
221
222 static void rr_remove_one(struct pci_dev *pdev)
223 {
224         struct net_device *dev = pci_get_drvdata(pdev);
225         struct rr_private *rr = netdev_priv(dev);
226
227         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228                 printk(KERN_ERR "%s: trying to unload running NIC\n",
229                        dev->name);
230                 writel(HALT_NIC, &rr->regs->HostCtrl);
231         }
232
233         unregister_netdev(dev);
234         pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
235                             rr->evt_ring_dma);
236         pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
237                             rr->rx_ring_dma);
238         pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
239                             rr->tx_ring_dma);
240         pci_iounmap(pdev, rr->regs);
241         pci_release_regions(pdev);
242         pci_disable_device(pdev);
243         free_netdev(dev);
244 }
245
246
247 /*
248  * Commands are considered to be slow, thus there is no reason to
249  * inline this.
250  */
251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252 {
253         struct rr_regs __iomem *regs;
254         u32 idx;
255
256         regs = rrpriv->regs;
257         /*
258          * This is temporary - it will go away in the final version.
259          * We probably also want to make this function inline.
260          */
261         if (readl(&regs->HostCtrl) & NIC_HALTED){
262                 printk("issuing command for halted NIC, code 0x%x, "
263                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264                 if (readl(&regs->Mode) & FATAL_ERR)
265                         printk("error codes Fail1 %02x, Fail2 %02x\n",
266                                readl(&regs->Fail1), readl(&regs->Fail2));
267         }
268
269         idx = rrpriv->info->cmd_ctrl.pi;
270
271         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272         wmb();
273
274         idx = (idx - 1) % CMD_RING_ENTRIES;
275         rrpriv->info->cmd_ctrl.pi = idx;
276         wmb();
277
278         if (readl(&regs->Mode) & FATAL_ERR)
279                 printk("error code %02x\n", readl(&regs->Fail1));
280 }
281
282
283 /*
284  * Reset the board in a sensible manner. The NIC is already halted
285  * when we get here and a spin-lock is held.
286  */
287 static int rr_reset(struct net_device *dev)
288 {
289         struct rr_private *rrpriv;
290         struct rr_regs __iomem *regs;
291         u32 start_pc;
292         int i;
293
294         rrpriv = netdev_priv(dev);
295         regs = rrpriv->regs;
296
297         rr_load_firmware(dev);
298
299         writel(0x01000000, &regs->TX_state);
300         writel(0xff800000, &regs->RX_state);
301         writel(0, &regs->AssistState);
302         writel(CLEAR_INTA, &regs->LocalCtrl);
303         writel(0x01, &regs->BrkPt);
304         writel(0, &regs->Timer);
305         writel(0, &regs->TimerRef);
306         writel(RESET_DMA, &regs->DmaReadState);
307         writel(RESET_DMA, &regs->DmaWriteState);
308         writel(0, &regs->DmaWriteHostHi);
309         writel(0, &regs->DmaWriteHostLo);
310         writel(0, &regs->DmaReadHostHi);
311         writel(0, &regs->DmaReadHostLo);
312         writel(0, &regs->DmaReadLen);
313         writel(0, &regs->DmaWriteLen);
314         writel(0, &regs->DmaWriteLcl);
315         writel(0, &regs->DmaWriteIPchecksum);
316         writel(0, &regs->DmaReadLcl);
317         writel(0, &regs->DmaReadIPchecksum);
318         writel(0, &regs->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321 #elif (BITS_PER_LONG == 64)
322         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323 #else
324         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #endif
326
327 #if 0
328         /*
329          * Don't worry, this is just black magic.
330          */
331         writel(0xdf000, &regs->RxBase);
332         writel(0xdf000, &regs->RxPrd);
333         writel(0xdf000, &regs->RxCon);
334         writel(0xce000, &regs->TxBase);
335         writel(0xce000, &regs->TxPrd);
336         writel(0xce000, &regs->TxCon);
337         writel(0, &regs->RxIndPro);
338         writel(0, &regs->RxIndCon);
339         writel(0, &regs->RxIndRef);
340         writel(0, &regs->TxIndPro);
341         writel(0, &regs->TxIndCon);
342         writel(0, &regs->TxIndRef);
343         writel(0xcc000, &regs->pad10[0]);
344         writel(0, &regs->DrCmndPro);
345         writel(0, &regs->DrCmndCon);
346         writel(0, &regs->DwCmndPro);
347         writel(0, &regs->DwCmndCon);
348         writel(0, &regs->DwCmndRef);
349         writel(0, &regs->DrDataPro);
350         writel(0, &regs->DrDataCon);
351         writel(0, &regs->DrDataRef);
352         writel(0, &regs->DwDataPro);
353         writel(0, &regs->DwDataCon);
354         writel(0, &regs->DwDataRef);
355 #endif
356
357         writel(0xffffffff, &regs->MbEvent);
358         writel(0, &regs->Event);
359
360         writel(0, &regs->TxPi);
361         writel(0, &regs->IpRxPi);
362
363         writel(0, &regs->EvtCon);
364         writel(0, &regs->EvtPrd);
365
366         rrpriv->info->evt_ctrl.pi = 0;
367
368         for (i = 0; i < CMD_RING_ENTRIES; i++)
369                 writel(0, &regs->CmdRing[i]);
370
371 /*
372  * Why 32 ? is this not cache line size dependent?
373  */
374         writel(RBURST_64|WBURST_64, &regs->PciState);
375         wmb();
376
377         start_pc = rr_read_eeprom_word(rrpriv,
378                         offsetof(struct eeprom, rncd_info.FwStart));
379
380 #if (DEBUG > 1)
381         printk("%s: Executing firmware at address 0x%06x\n",
382                dev->name, start_pc);
383 #endif
384
385         writel(start_pc + 0x800, &regs->Pc);
386         wmb();
387         udelay(5);
388
389         writel(start_pc, &regs->Pc);
390         wmb();
391
392         return 0;
393 }
394
395
396 /*
397  * Read a string from the EEPROM.
398  */
399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400                                 unsigned long offset,
401                                 unsigned char *buf,
402                                 unsigned long length)
403 {
404         struct rr_regs __iomem *regs = rrpriv->regs;
405         u32 misc, io, host, i;
406
407         io = readl(&regs->ExtIo);
408         writel(0, &regs->ExtIo);
409         misc = readl(&regs->LocalCtrl);
410         writel(0, &regs->LocalCtrl);
411         host = readl(&regs->HostCtrl);
412         writel(host | HALT_NIC, &regs->HostCtrl);
413         mb();
414
415         for (i = 0; i < length; i++){
416                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417                 mb();
418                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419                 mb();
420         }
421
422         writel(host, &regs->HostCtrl);
423         writel(misc, &regs->LocalCtrl);
424         writel(io, &regs->ExtIo);
425         mb();
426         return i;
427 }
428
429
430 /*
431  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432  * it to our CPU byte-order.
433  */
434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435                             size_t offset)
436 {
437         __be32 word;
438
439         if ((rr_read_eeprom(rrpriv, offset,
440                             (unsigned char *)&word, 4) == 4))
441                 return be32_to_cpu(word);
442         return 0;
443 }
444
445
446 /*
447  * Write a string to the EEPROM.
448  *
449  * This is only called when the firmware is not running.
450  */
451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452                                  unsigned long offset,
453                                  unsigned char *buf,
454                                  unsigned long length)
455 {
456         struct rr_regs __iomem *regs = rrpriv->regs;
457         u32 misc, io, data, i, j, ready, error = 0;
458
459         io = readl(&regs->ExtIo);
460         writel(0, &regs->ExtIo);
461         misc = readl(&regs->LocalCtrl);
462         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463         mb();
464
465         for (i = 0; i < length; i++){
466                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467                 mb();
468                 data = buf[i] << 24;
469                 /*
470                  * Only try to write the data if it is not the same
471                  * value already.
472                  */
473                 if ((readl(&regs->WinData) & 0xff000000) != data){
474                         writel(data, &regs->WinData);
475                         ready = 0;
476                         j = 0;
477                         mb();
478                         while(!ready){
479                                 udelay(20);
480                                 if ((readl(&regs->WinData) & 0xff000000) ==
481                                     data)
482                                         ready = 1;
483                                 mb();
484                                 if (j++ > 5000){
485                                         printk("data mismatch: %08x, "
486                                                "WinData %08x\n", data,
487                                                readl(&regs->WinData));
488                                         ready = 1;
489                                         error = 1;
490                                 }
491                         }
492                 }
493         }
494
495         writel(misc, &regs->LocalCtrl);
496         writel(io, &regs->ExtIo);
497         mb();
498
499         return error;
500 }
501
502
503 static int rr_init(struct net_device *dev)
504 {
505         struct rr_private *rrpriv;
506         struct rr_regs __iomem *regs;
507         u32 sram_size, rev;
508
509         rrpriv = netdev_priv(dev);
510         regs = rrpriv->regs;
511
512         rev = readl(&regs->FwRev);
513         rrpriv->fw_rev = rev;
514         if (rev > 0x00020024)
515                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
516                        ((rev >> 8) & 0xff), (rev & 0xff));
517         else if (rev >= 0x00020000) {
518                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
519                        "later is recommended)\n", (rev >> 16),
520                        ((rev >> 8) & 0xff), (rev & 0xff));
521         }else{
522                 printk("  Firmware revision too old: %i.%i.%i, please "
523                        "upgrade to 2.0.37 or later.\n",
524                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525         }
526
527 #if (DEBUG > 2)
528         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529 #endif
530
531         /*
532          * Read the hardware address from the eeprom.  The HW address
533          * is not really necessary for HIPPI but awfully convenient.
534          * The pointer arithmetic to put it in dev_addr is ugly, but
535          * Donald Becker does it this way for the GigE version of this
536          * card and it's shorter and more portable than any
537          * other method I've seen.  -VAL
538          */
539
540         *(__be16 *)(dev->dev_addr) =
541           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542         *(__be32 *)(dev->dev_addr+2) =
543           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
544
545         printk("  MAC: %pM\n", dev->dev_addr);
546
547         sram_size = rr_read_eeprom_word(rrpriv, 8);
548         printk("  SRAM size 0x%06x\n", sram_size);
549
550         return 0;
551 }
552
553
554 static int rr_init1(struct net_device *dev)
555 {
556         struct rr_private *rrpriv;
557         struct rr_regs __iomem *regs;
558         unsigned long myjif, flags;
559         struct cmd cmd;
560         u32 hostctrl;
561         int ecode = 0;
562         short i;
563
564         rrpriv = netdev_priv(dev);
565         regs = rrpriv->regs;
566
567         spin_lock_irqsave(&rrpriv->lock, flags);
568
569         hostctrl = readl(&regs->HostCtrl);
570         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571         wmb();
572
573         if (hostctrl & PARITY_ERR){
574                 printk("%s: Parity error halting NIC - this is serious!\n",
575                        dev->name);
576                 spin_unlock_irqrestore(&rrpriv->lock, flags);
577                 ecode = -EFAULT;
578                 goto error;
579         }
580
581         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582         set_infoaddr(regs, rrpriv->info_dma);
583
584         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586         rrpriv->info->evt_ctrl.mode = 0;
587         rrpriv->info->evt_ctrl.pi = 0;
588         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589
590         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592         rrpriv->info->cmd_ctrl.mode = 0;
593         rrpriv->info->cmd_ctrl.pi = 15;
594
595         for (i = 0; i < CMD_RING_ENTRIES; i++) {
596                 writel(0, &regs->CmdRing[i]);
597         }
598
599         for (i = 0; i < TX_RING_ENTRIES; i++) {
600                 rrpriv->tx_ring[i].size = 0;
601                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602                 rrpriv->tx_skbuff[i] = NULL;
603         }
604         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606         rrpriv->info->tx_ctrl.mode = 0;
607         rrpriv->info->tx_ctrl.pi = 0;
608         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609
610         /*
611          * Set dirty_tx before we start receiving interrupts, otherwise
612          * the interrupt handler might think it is supposed to process
613          * tx ints before we are up and running, which may cause a null
614          * pointer access in the int handler.
615          */
616         rrpriv->tx_full = 0;
617         rrpriv->cur_rx = 0;
618         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619
620         rr_reset(dev);
621
622         /* Tuning values */
623         writel(0x5000, &regs->ConRetry);
624         writel(0x100, &regs->ConRetryTmr);
625         writel(0x500000, &regs->ConTmout);
626         writel(0x60, &regs->IntrTmr);
627         writel(0x500000, &regs->TxDataMvTimeout);
628         writel(0x200000, &regs->RxDataMvTimeout);
629         writel(0x80, &regs->WriteDmaThresh);
630         writel(0x80, &regs->ReadDmaThresh);
631
632         rrpriv->fw_running = 0;
633         wmb();
634
635         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636         writel(hostctrl, &regs->HostCtrl);
637         wmb();
638
639         spin_unlock_irqrestore(&rrpriv->lock, flags);
640
641         for (i = 0; i < RX_RING_ENTRIES; i++) {
642                 struct sk_buff *skb;
643                 dma_addr_t addr;
644
645                 rrpriv->rx_ring[i].mode = 0;
646                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647                 if (!skb) {
648                         printk(KERN_WARNING "%s: Unable to allocate memory "
649                                "for receive ring - halting NIC\n", dev->name);
650                         ecode = -ENOMEM;
651                         goto error;
652                 }
653                 rrpriv->rx_skbuff[i] = skb;
654                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
655                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
656                 /*
657                  * Sanity test to see if we conflict with the DMA
658                  * limitations of the Roadrunner.
659                  */
660                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661                         printk("skb alloc error\n");
662
663                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665         }
666
667         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669         rrpriv->rx_ctrl[4].mode = 8;
670         rrpriv->rx_ctrl[4].pi = 0;
671         wmb();
672         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673
674         udelay(1000);
675
676         /*
677          * Now start the FirmWare.
678          */
679         cmd.code = C_START_FW;
680         cmd.ring = 0;
681         cmd.index = 0;
682
683         rr_issue_cmd(rrpriv, &cmd);
684
685         /*
686          * Give the FirmWare time to chew on the `get running' command.
687          */
688         myjif = jiffies + 5 * HZ;
689         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690                 cpu_relax();
691
692         netif_start_queue(dev);
693
694         return ecode;
695
696  error:
697         /*
698          * We might have gotten here because we are out of memory,
699          * make sure we release everything we allocated before failing
700          */
701         for (i = 0; i < RX_RING_ENTRIES; i++) {
702                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
703
704                 if (skb) {
705                         pci_unmap_single(rrpriv->pci_dev,
706                                          rrpriv->rx_ring[i].addr.addrlo,
707                                          dev->mtu + HIPPI_HLEN,
708                                          PCI_DMA_FROMDEVICE);
709                         rrpriv->rx_ring[i].size = 0;
710                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711                         dev_kfree_skb(skb);
712                         rrpriv->rx_skbuff[i] = NULL;
713                 }
714         }
715         return ecode;
716 }
717
718
719 /*
720  * All events are considered to be slow (RX/TX ints do not generate
721  * events) and are handled here, outside the main interrupt handler,
722  * to reduce the size of the handler.
723  */
724 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725 {
726         struct rr_private *rrpriv;
727         struct rr_regs __iomem *regs;
728         u32 tmp;
729
730         rrpriv = netdev_priv(dev);
731         regs = rrpriv->regs;
732
733         while (prodidx != eidx){
734                 switch (rrpriv->evt_ring[eidx].code){
735                 case E_NIC_UP:
736                         tmp = readl(&regs->FwRev);
737                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738                                "up and running\n", dev->name,
739                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740                         rrpriv->fw_running = 1;
741                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742                         wmb();
743                         break;
744                 case E_LINK_ON:
745                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746                         break;
747                 case E_LINK_OFF:
748                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749                         break;
750                 case E_RX_IDLE:
751                         printk(KERN_WARNING "%s: RX data not moving\n",
752                                dev->name);
753                         goto drop;
754                 case E_WATCHDOG:
755                         printk(KERN_INFO "%s: The watchdog is here to see "
756                                "us\n", dev->name);
757                         break;
758                 case E_INTERN_ERR:
759                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760                                dev->name);
761                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762                                &regs->HostCtrl);
763                         wmb();
764                         break;
765                 case E_HOST_ERR:
766                         printk(KERN_ERR "%s: Host software error\n",
767                                dev->name);
768                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769                                &regs->HostCtrl);
770                         wmb();
771                         break;
772                 /*
773                  * TX events.
774                  */
775                 case E_CON_REJ:
776                         printk(KERN_WARNING "%s: Connection rejected\n",
777                                dev->name);
778                         dev->stats.tx_aborted_errors++;
779                         break;
780                 case E_CON_TMOUT:
781                         printk(KERN_WARNING "%s: Connection timeout\n",
782                                dev->name);
783                         break;
784                 case E_DISC_ERR:
785                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786                                dev->name);
787                         dev->stats.tx_aborted_errors++;
788                         break;
789                 case E_INT_PRTY:
790                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791                                dev->name);
792                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793                                &regs->HostCtrl);
794                         wmb();
795                         break;
796                 case E_TX_IDLE:
797                         printk(KERN_WARNING "%s: Transmitter idle\n",
798                                dev->name);
799                         break;
800                 case E_TX_LINK_DROP:
801                         printk(KERN_WARNING "%s: Link lost during transmit\n",
802                                dev->name);
803                         dev->stats.tx_aborted_errors++;
804                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805                                &regs->HostCtrl);
806                         wmb();
807                         break;
808                 case E_TX_INV_RNG:
809                         printk(KERN_ERR "%s: Invalid send ring block\n",
810                                dev->name);
811                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812                                &regs->HostCtrl);
813                         wmb();
814                         break;
815                 case E_TX_INV_BUF:
816                         printk(KERN_ERR "%s: Invalid send buffer address\n",
817                                dev->name);
818                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819                                &regs->HostCtrl);
820                         wmb();
821                         break;
822                 case E_TX_INV_DSC:
823                         printk(KERN_ERR "%s: Invalid descriptor address\n",
824                                dev->name);
825                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826                                &regs->HostCtrl);
827                         wmb();
828                         break;
829                 /*
830                  * RX events.
831                  */
832                 case E_RX_RNG_OUT:
833                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834                         break;
835
836                 case E_RX_PAR_ERR:
837                         printk(KERN_WARNING "%s: Receive parity error\n",
838                                dev->name);
839                         goto drop;
840                 case E_RX_LLRC_ERR:
841                         printk(KERN_WARNING "%s: Receive LLRC error\n",
842                                dev->name);
843                         goto drop;
844                 case E_PKT_LN_ERR:
845                         printk(KERN_WARNING "%s: Receive packet length "
846                                "error\n", dev->name);
847                         goto drop;
848                 case E_DTA_CKSM_ERR:
849                         printk(KERN_WARNING "%s: Data checksum error\n",
850                                dev->name);
851                         goto drop;
852                 case E_SHT_BST:
853                         printk(KERN_WARNING "%s: Unexpected short burst "
854                                "error\n", dev->name);
855                         goto drop;
856                 case E_STATE_ERR:
857                         printk(KERN_WARNING "%s: Recv. state transition"
858                                " error\n", dev->name);
859                         goto drop;
860                 case E_UNEXP_DATA:
861                         printk(KERN_WARNING "%s: Unexpected data error\n",
862                                dev->name);
863                         goto drop;
864                 case E_LST_LNK_ERR:
865                         printk(KERN_WARNING "%s: Link lost error\n",
866                                dev->name);
867                         goto drop;
868                 case E_FRM_ERR:
869                         printk(KERN_WARNING "%s: Framming Error\n",
870                                dev->name);
871                         goto drop;
872                 case E_FLG_SYN_ERR:
873                         printk(KERN_WARNING "%s: Flag sync. lost during "
874                                "packet\n", dev->name);
875                         goto drop;
876                 case E_RX_INV_BUF:
877                         printk(KERN_ERR "%s: Invalid receive buffer "
878                                "address\n", dev->name);
879                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880                                &regs->HostCtrl);
881                         wmb();
882                         break;
883                 case E_RX_INV_DSC:
884                         printk(KERN_ERR "%s: Invalid receive descriptor "
885                                "address\n", dev->name);
886                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887                                &regs->HostCtrl);
888                         wmb();
889                         break;
890                 case E_RNG_BLK:
891                         printk(KERN_ERR "%s: Invalid ring block\n",
892                                dev->name);
893                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894                                &regs->HostCtrl);
895                         wmb();
896                         break;
897                 drop:
898                         /* Label packet to be dropped.
899                          * Actual dropping occurs in rx
900                          * handling.
901                          *
902                          * The index of packet we get to drop is
903                          * the index of the packet following
904                          * the bad packet. -kbf
905                          */
906                         {
907                                 u16 index = rrpriv->evt_ring[eidx].index;
908                                 index = (index + (RX_RING_ENTRIES - 1)) %
909                                         RX_RING_ENTRIES;
910                                 rrpriv->rx_ring[index].mode |=
911                                         (PACKET_BAD | PACKET_END);
912                         }
913                         break;
914                 default:
915                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916                                dev->name, rrpriv->evt_ring[eidx].code);
917                 }
918                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
919         }
920
921         rrpriv->info->evt_ctrl.pi = eidx;
922         wmb();
923         return eidx;
924 }
925
926
927 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928 {
929         struct rr_private *rrpriv = netdev_priv(dev);
930         struct rr_regs __iomem *regs = rrpriv->regs;
931
932         do {
933                 struct rx_desc *desc;
934                 u32 pkt_len;
935
936                 desc = &(rrpriv->rx_ring[index]);
937                 pkt_len = desc->size;
938 #if (DEBUG > 2)
939                 printk("index %i, rxlimit %i\n", index, rxlimit);
940                 printk("len %x, mode %x\n", pkt_len, desc->mode);
941 #endif
942                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943                         dev->stats.rx_dropped++;
944                         goto defer;
945                 }
946
947                 if (pkt_len > 0){
948                         struct sk_buff *skb, *rx_skb;
949
950                         rx_skb = rrpriv->rx_skbuff[index];
951
952                         if (pkt_len < PKT_COPY_THRESHOLD) {
953                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
954                                 if (skb == NULL){
955                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956                                         dev->stats.rx_dropped++;
957                                         goto defer;
958                                 } else {
959                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
960                                                                     desc->addr.addrlo,
961                                                                     pkt_len,
962                                                                     PCI_DMA_FROMDEVICE);
963
964                                         memcpy(skb_put(skb, pkt_len),
965                                                rx_skb->data, pkt_len);
966
967                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
968                                                                        desc->addr.addrlo,
969                                                                        pkt_len,
970                                                                        PCI_DMA_FROMDEVICE);
971                                 }
972                         }else{
973                                 struct sk_buff *newskb;
974
975                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976                                         GFP_ATOMIC);
977                                 if (newskb){
978                                         dma_addr_t addr;
979
980                                         pci_unmap_single(rrpriv->pci_dev,
981                                                 desc->addr.addrlo, dev->mtu +
982                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
983                                         skb = rx_skb;
984                                         skb_put(skb, pkt_len);
985                                         rrpriv->rx_skbuff[index] = newskb;
986                                         addr = pci_map_single(rrpriv->pci_dev,
987                                                 newskb->data,
988                                                 dev->mtu + HIPPI_HLEN,
989                                                 PCI_DMA_FROMDEVICE);
990                                         set_rraddr(&desc->addr, addr);
991                                 } else {
992                                         printk("%s: Out of memory, deferring "
993                                                "packet\n", dev->name);
994                                         dev->stats.rx_dropped++;
995                                         goto defer;
996                                 }
997                         }
998                         skb->protocol = hippi_type_trans(skb, dev);
999
1000                         netif_rx(skb);          /* send it up */
1001
1002                         dev->stats.rx_packets++;
1003                         dev->stats.rx_bytes += pkt_len;
1004                 }
1005         defer:
1006                 desc->mode = 0;
1007                 desc->size = dev->mtu + HIPPI_HLEN;
1008
1009                 if ((index & 7) == 7)
1010                         writel(index, &regs->IpRxPi);
1011
1012                 index = (index + 1) % RX_RING_ENTRIES;
1013         } while(index != rxlimit);
1014
1015         rrpriv->cur_rx = index;
1016         wmb();
1017 }
1018
1019
1020 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1021 {
1022         struct rr_private *rrpriv;
1023         struct rr_regs __iomem *regs;
1024         struct net_device *dev = (struct net_device *)dev_id;
1025         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1026
1027         rrpriv = netdev_priv(dev);
1028         regs = rrpriv->regs;
1029
1030         if (!(readl(&regs->HostCtrl) & RR_INT))
1031                 return IRQ_NONE;
1032
1033         spin_lock(&rrpriv->lock);
1034
1035         prodidx = readl(&regs->EvtPrd);
1036         txcsmr = (prodidx >> 8) & 0xff;
1037         rxlimit = (prodidx >> 16) & 0xff;
1038         prodidx &= 0xff;
1039
1040 #if (DEBUG > 2)
1041         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1042                prodidx, rrpriv->info->evt_ctrl.pi);
1043 #endif
1044         /*
1045          * Order here is important.  We must handle events
1046          * before doing anything else in order to catch
1047          * such things as LLRC errors, etc -kbf
1048          */
1049
1050         eidx = rrpriv->info->evt_ctrl.pi;
1051         if (prodidx != eidx)
1052                 eidx = rr_handle_event(dev, prodidx, eidx);
1053
1054         rxindex = rrpriv->cur_rx;
1055         if (rxindex != rxlimit)
1056                 rx_int(dev, rxlimit, rxindex);
1057
1058         txcon = rrpriv->dirty_tx;
1059         if (txcsmr != txcon) {
1060                 do {
1061                         /* Due to occational firmware TX producer/consumer out
1062                          * of sync. error need to check entry in ring -kbf
1063                          */
1064                         if(rrpriv->tx_skbuff[txcon]){
1065                                 struct tx_desc *desc;
1066                                 struct sk_buff *skb;
1067
1068                                 desc = &(rrpriv->tx_ring[txcon]);
1069                                 skb = rrpriv->tx_skbuff[txcon];
1070
1071                                 dev->stats.tx_packets++;
1072                                 dev->stats.tx_bytes += skb->len;
1073
1074                                 pci_unmap_single(rrpriv->pci_dev,
1075                                                  desc->addr.addrlo, skb->len,
1076                                                  PCI_DMA_TODEVICE);
1077                                 dev_kfree_skb_irq(skb);
1078
1079                                 rrpriv->tx_skbuff[txcon] = NULL;
1080                                 desc->size = 0;
1081                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1082                                 desc->mode = 0;
1083                         }
1084                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1085                 } while (txcsmr != txcon);
1086                 wmb();
1087
1088                 rrpriv->dirty_tx = txcon;
1089                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1090                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1091                      != rrpriv->dirty_tx)){
1092                         rrpriv->tx_full = 0;
1093                         netif_wake_queue(dev);
1094                 }
1095         }
1096
1097         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1098         writel(eidx, &regs->EvtCon);
1099         wmb();
1100
1101         spin_unlock(&rrpriv->lock);
1102         return IRQ_HANDLED;
1103 }
1104
1105 static inline void rr_raz_tx(struct rr_private *rrpriv,
1106                              struct net_device *dev)
1107 {
1108         int i;
1109
1110         for (i = 0; i < TX_RING_ENTRIES; i++) {
1111                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1112
1113                 if (skb) {
1114                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1115
1116                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1117                                 skb->len, PCI_DMA_TODEVICE);
1118                         desc->size = 0;
1119                         set_rraddr(&desc->addr, 0);
1120                         dev_kfree_skb(skb);
1121                         rrpriv->tx_skbuff[i] = NULL;
1122                 }
1123         }
1124 }
1125
1126
1127 static inline void rr_raz_rx(struct rr_private *rrpriv,
1128                              struct net_device *dev)
1129 {
1130         int i;
1131
1132         for (i = 0; i < RX_RING_ENTRIES; i++) {
1133                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1134
1135                 if (skb) {
1136                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1137
1138                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1139                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1140                         desc->size = 0;
1141                         set_rraddr(&desc->addr, 0);
1142                         dev_kfree_skb(skb);
1143                         rrpriv->rx_skbuff[i] = NULL;
1144                 }
1145         }
1146 }
1147
1148 static void rr_timer(unsigned long data)
1149 {
1150         struct net_device *dev = (struct net_device *)data;
1151         struct rr_private *rrpriv = netdev_priv(dev);
1152         struct rr_regs __iomem *regs = rrpriv->regs;
1153         unsigned long flags;
1154
1155         if (readl(&regs->HostCtrl) & NIC_HALTED){
1156                 printk("%s: Restarting nic\n", dev->name);
1157                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1158                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1159                 wmb();
1160
1161                 rr_raz_tx(rrpriv, dev);
1162                 rr_raz_rx(rrpriv, dev);
1163
1164                 if (rr_init1(dev)) {
1165                         spin_lock_irqsave(&rrpriv->lock, flags);
1166                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1167                                &regs->HostCtrl);
1168                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1169                 }
1170         }
1171         rrpriv->timer.expires = RUN_AT(5*HZ);
1172         add_timer(&rrpriv->timer);
1173 }
1174
1175
1176 static int rr_open(struct net_device *dev)
1177 {
1178         struct rr_private *rrpriv = netdev_priv(dev);
1179         struct pci_dev *pdev = rrpriv->pci_dev;
1180         struct rr_regs __iomem *regs;
1181         int ecode = 0;
1182         unsigned long flags;
1183         dma_addr_t dma_addr;
1184
1185         regs = rrpriv->regs;
1186
1187         if (rrpriv->fw_rev < 0x00020000) {
1188                 printk(KERN_WARNING "%s: trying to configure device with "
1189                        "obsolete firmware\n", dev->name);
1190                 ecode = -EBUSY;
1191                 goto error;
1192         }
1193
1194         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1195                                                256 * sizeof(struct ring_ctrl),
1196                                                &dma_addr);
1197         if (!rrpriv->rx_ctrl) {
1198                 ecode = -ENOMEM;
1199                 goto error;
1200         }
1201         rrpriv->rx_ctrl_dma = dma_addr;
1202         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1203
1204         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1205                                             &dma_addr);
1206         if (!rrpriv->info) {
1207                 ecode = -ENOMEM;
1208                 goto error;
1209         }
1210         rrpriv->info_dma = dma_addr;
1211         memset(rrpriv->info, 0, sizeof(struct rr_info));
1212         wmb();
1213
1214         spin_lock_irqsave(&rrpriv->lock, flags);
1215         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1216         readl(&regs->HostCtrl);
1217         spin_unlock_irqrestore(&rrpriv->lock, flags);
1218
1219         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1220                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1221                        dev->name, pdev->irq);
1222                 ecode = -EAGAIN;
1223                 goto error;
1224         }
1225
1226         if ((ecode = rr_init1(dev)))
1227                 goto error;
1228
1229         /* Set the timer to switch to check for link beat and perhaps switch
1230            to an alternate media type. */
1231         init_timer(&rrpriv->timer);
1232         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1233         rrpriv->timer.data = (unsigned long)dev;
1234         rrpriv->timer.function = rr_timer;               /* timer handler */
1235         add_timer(&rrpriv->timer);
1236
1237         netif_start_queue(dev);
1238
1239         return ecode;
1240
1241  error:
1242         spin_lock_irqsave(&rrpriv->lock, flags);
1243         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244         spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246         if (rrpriv->info) {
1247                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1248                                     rrpriv->info_dma);
1249                 rrpriv->info = NULL;
1250         }
1251         if (rrpriv->rx_ctrl) {
1252                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1253                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254                 rrpriv->rx_ctrl = NULL;
1255         }
1256
1257         netif_stop_queue(dev);
1258
1259         return ecode;
1260 }
1261
1262
1263 static void rr_dump(struct net_device *dev)
1264 {
1265         struct rr_private *rrpriv;
1266         struct rr_regs __iomem *regs;
1267         u32 index, cons;
1268         short i;
1269         int len;
1270
1271         rrpriv = netdev_priv(dev);
1272         regs = rrpriv->regs;
1273
1274         printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277                readl(&regs->RxPrd), readl(&regs->TxPrd),
1278                readl(&regs->EvtPrd), readl(&regs->TxPi),
1279                rrpriv->info->tx_ctrl.pi);
1280
1281         printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
1283         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284         cons = rrpriv->dirty_tx;
1285         printk("TX ring index %i, TX consumer %i\n",
1286                index, cons);
1287
1288         if (rrpriv->tx_skbuff[index]){
1289                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291                 for (i = 0; i < len; i++){
1292                         if (!(i & 7))
1293                                 printk("\n");
1294                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295                 }
1296                 printk("\n");
1297         }
1298
1299         if (rrpriv->tx_skbuff[cons]){
1300                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1303                        rrpriv->tx_ring[cons].mode,
1304                        rrpriv->tx_ring[cons].size,
1305                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1307                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308                 for (i = 0; i < len; i++){
1309                         if (!(i & 7))
1310                                 printk("\n");
1311                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312                 }
1313                 printk("\n");
1314         }
1315
1316         printk("dumping TX ring info:\n");
1317         for (i = 0; i < TX_RING_ENTRIES; i++)
1318                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319                        rrpriv->tx_ring[i].mode,
1320                        rrpriv->tx_ring[i].size,
1321                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323 }
1324
1325
1326 static int rr_close(struct net_device *dev)
1327 {
1328         struct rr_private *rrpriv = netdev_priv(dev);
1329         struct rr_regs __iomem *regs = rrpriv->regs;
1330         struct pci_dev *pdev = rrpriv->pci_dev;
1331         unsigned long flags;
1332         u32 tmp;
1333         short i;
1334
1335         netif_stop_queue(dev);
1336
1337
1338         /*
1339          * Lock to make sure we are not cleaning up while another CPU
1340          * is handling interrupts.
1341          */
1342         spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344         tmp = readl(&regs->HostCtrl);
1345         if (tmp & NIC_HALTED){
1346                 printk("%s: NIC already halted\n", dev->name);
1347                 rr_dump(dev);
1348         }else{
1349                 tmp |= HALT_NIC | RR_CLEAR_INT;
1350                 writel(tmp, &regs->HostCtrl);
1351                 readl(&regs->HostCtrl);
1352         }
1353
1354         rrpriv->fw_running = 0;
1355
1356         del_timer_sync(&rrpriv->timer);
1357
1358         writel(0, &regs->TxPi);
1359         writel(0, &regs->IpRxPi);
1360
1361         writel(0, &regs->EvtCon);
1362         writel(0, &regs->EvtPrd);
1363
1364         for (i = 0; i < CMD_RING_ENTRIES; i++)
1365                 writel(0, &regs->CmdRing[i]);
1366
1367         rrpriv->info->tx_ctrl.entries = 0;
1368         rrpriv->info->cmd_ctrl.pi = 0;
1369         rrpriv->info->evt_ctrl.pi = 0;
1370         rrpriv->rx_ctrl[4].entries = 0;
1371
1372         rr_raz_tx(rrpriv, dev);
1373         rr_raz_rx(rrpriv, dev);
1374
1375         pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1376                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377         rrpriv->rx_ctrl = NULL;
1378
1379         pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1380                             rrpriv->info_dma);
1381         rrpriv->info = NULL;
1382
1383         free_irq(pdev->irq, dev);
1384         spin_unlock_irqrestore(&rrpriv->lock, flags);
1385
1386         return 0;
1387 }
1388
1389
1390 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391                                  struct net_device *dev)
1392 {
1393         struct rr_private *rrpriv = netdev_priv(dev);
1394         struct rr_regs __iomem *regs = rrpriv->regs;
1395         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1396         struct ring_ctrl *txctrl;
1397         unsigned long flags;
1398         u32 index, len = skb->len;
1399         u32 *ifield;
1400         struct sk_buff *new_skb;
1401
1402         if (readl(&regs->Mode) & FATAL_ERR)
1403                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1404                        readl(&regs->Fail1), readl(&regs->Fail2));
1405
1406         /*
1407          * We probably need to deal with tbusy here to prevent overruns.
1408          */
1409
1410         if (skb_headroom(skb) < 8){
1411                 printk("incoming skb too small - reallocating\n");
1412                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1413                         dev_kfree_skb(skb);
1414                         netif_wake_queue(dev);
1415                         return NETDEV_TX_OK;
1416                 }
1417                 skb_reserve(new_skb, 8);
1418                 skb_put(new_skb, len);
1419                 skb_copy_from_linear_data(skb, new_skb->data, len);
1420                 dev_kfree_skb(skb);
1421                 skb = new_skb;
1422         }
1423
1424         ifield = (u32 *)skb_push(skb, 8);
1425
1426         ifield[0] = 0;
1427         ifield[1] = hcb->ifield;
1428
1429         /*
1430          * We don't need the lock before we are actually going to start
1431          * fiddling with the control blocks.
1432          */
1433         spin_lock_irqsave(&rrpriv->lock, flags);
1434
1435         txctrl = &rrpriv->info->tx_ctrl;
1436
1437         index = txctrl->pi;
1438
1439         rrpriv->tx_skbuff[index] = skb;
1440         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1441                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1442         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445         wmb();
1446         writel(txctrl->pi, &regs->TxPi);
1447
1448         if (txctrl->pi == rrpriv->dirty_tx){
1449                 rrpriv->tx_full = 1;
1450                 netif_stop_queue(dev);
1451         }
1452
1453         spin_unlock_irqrestore(&rrpriv->lock, flags);
1454
1455         return NETDEV_TX_OK;
1456 }
1457
1458
1459 /*
1460  * Read the firmware out of the EEPROM and put it into the SRAM
1461  * (or from user space - later)
1462  *
1463  * This operation requires the NIC to be halted and is performed with
1464  * interrupts disabled and with the spinlock hold.
1465  */
1466 static int rr_load_firmware(struct net_device *dev)
1467 {
1468         struct rr_private *rrpriv;
1469         struct rr_regs __iomem *regs;
1470         size_t eptr, segptr;
1471         int i, j;
1472         u32 localctrl, sptr, len, tmp;
1473         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1474
1475         rrpriv = netdev_priv(dev);
1476         regs = rrpriv->regs;
1477
1478         if (dev->flags & IFF_UP)
1479                 return -EBUSY;
1480
1481         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1482                 printk("%s: Trying to load firmware to a running NIC.\n",
1483                        dev->name);
1484                 return -EBUSY;
1485         }
1486
1487         localctrl = readl(&regs->LocalCtrl);
1488         writel(0, &regs->LocalCtrl);
1489
1490         writel(0, &regs->EvtPrd);
1491         writel(0, &regs->RxPrd);
1492         writel(0, &regs->TxPrd);
1493
1494         /*
1495          * First wipe the entire SRAM, otherwise we might run into all
1496          * kinds of trouble ... sigh, this took almost all afternoon
1497          * to track down ;-(
1498          */
1499         io = readl(&regs->ExtIo);
1500         writel(0, &regs->ExtIo);
1501         sram_size = rr_read_eeprom_word(rrpriv, 8);
1502
1503         for (i = 200; i < sram_size / 4; i++){
1504                 writel(i * 4, &regs->WinBase);
1505                 mb();
1506                 writel(0, &regs->WinData);
1507                 mb();
1508         }
1509         writel(io, &regs->ExtIo);
1510         mb();
1511
1512         eptr = rr_read_eeprom_word(rrpriv,
1513                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1514         eptr = ((eptr & 0x1fffff) >> 3);
1515
1516         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1517         p2len = (p2len << 2);
1518         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1519         p2size = ((p2size & 0x1fffff) >> 3);
1520
1521         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522                 printk("%s: eptr is invalid\n", dev->name);
1523                 goto out;
1524         }
1525
1526         revision = rr_read_eeprom_word(rrpriv,
1527                         offsetof(struct eeprom, manf.HeaderFmt));
1528
1529         if (revision != 1){
1530                 printk("%s: invalid firmware format (%i)\n",
1531                        dev->name, revision);
1532                 goto out;
1533         }
1534
1535         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1536         eptr +=4;
1537 #if (DEBUG > 1)
1538         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539 #endif
1540
1541         for (i = 0; i < nr_seg; i++){
1542                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1543                 eptr += 4;
1544                 len = rr_read_eeprom_word(rrpriv, eptr);
1545                 eptr += 4;
1546                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1547                 segptr = ((segptr & 0x1fffff) >> 3);
1548                 eptr += 4;
1549 #if (DEBUG > 1)
1550                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551                        dev->name, i, sptr, len, segptr);
1552 #endif
1553                 for (j = 0; j < len; j++){
1554                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1555                         writel(sptr, &regs->WinBase);
1556                         mb();
1557                         writel(tmp, &regs->WinData);
1558                         mb();
1559                         segptr += 4;
1560                         sptr += 4;
1561                 }
1562         }
1563
1564 out:
1565         writel(localctrl, &regs->LocalCtrl);
1566         mb();
1567         return 0;
1568 }
1569
1570
1571 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572 {
1573         struct rr_private *rrpriv;
1574         unsigned char *image, *oldimage;
1575         unsigned long flags;
1576         unsigned int i;
1577         int error = -EOPNOTSUPP;
1578
1579         rrpriv = netdev_priv(dev);
1580
1581         switch(cmd){
1582         case SIOCRRGFW:
1583                 if (!capable(CAP_SYS_RAWIO)){
1584                         return -EPERM;
1585                 }
1586
1587                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1588                 if (!image)
1589                         return -ENOMEM;
1590
1591                 if (rrpriv->fw_running){
1592                         printk("%s: Firmware already running\n", dev->name);
1593                         error = -EPERM;
1594                         goto gf_out;
1595                 }
1596
1597                 spin_lock_irqsave(&rrpriv->lock, flags);
1598                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1600                 if (i != EEPROM_BYTES){
1601                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1602                                dev->name);
1603                         error = -EFAULT;
1604                         goto gf_out;
1605                 }
1606                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607                 if (error)
1608                         error = -EFAULT;
1609         gf_out:
1610                 kfree(image);
1611                 return error;
1612
1613         case SIOCRRPFW:
1614                 if (!capable(CAP_SYS_RAWIO)){
1615                         return -EPERM;
1616                 }
1617
1618                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1619                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620                 if (!image || !oldimage) {
1621                         error = -ENOMEM;
1622                         goto wf_out;
1623                 }
1624
1625                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1626                 if (error) {
1627                         error = -EFAULT;
1628                         goto wf_out;
1629                 }
1630
1631                 if (rrpriv->fw_running){
1632                         printk("%s: Firmware already running\n", dev->name);
1633                         error = -EPERM;
1634                         goto wf_out;
1635                 }
1636
1637                 printk("%s: Updating EEPROM firmware\n", dev->name);
1638
1639                 spin_lock_irqsave(&rrpriv->lock, flags);
1640                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1641                 if (error)
1642                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1643                                dev->name);
1644
1645                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1646                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1647
1648                 if (i != EEPROM_BYTES)
1649                         printk(KERN_ERR "%s: Error reading back EEPROM "
1650                                "image\n", dev->name);
1651
1652                 error = memcmp(image, oldimage, EEPROM_BYTES);
1653                 if (error){
1654                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1655                                dev->name);
1656                         error = -EFAULT;
1657                 }
1658         wf_out:
1659                 kfree(oldimage);
1660                 kfree(image);
1661                 return error;
1662
1663         case SIOCRRID:
1664                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1665         default:
1666                 return error;
1667         }
1668 }
1669
1670 static const struct pci_device_id rr_pci_tbl[] = {
1671         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1672                 PCI_ANY_ID, PCI_ANY_ID, },
1673         { 0,}
1674 };
1675 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1676
1677 static struct pci_driver rr_driver = {
1678         .name           = "rrunner",
1679         .id_table       = rr_pci_tbl,
1680         .probe          = rr_init_one,
1681         .remove         = rr_remove_one,
1682 };
1683
1684 module_pci_driver(rr_driver);