]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvdimm/pmem.c
block/mm: make bdev_ops->rw_page() take a bool for read/write
[karo-tx-linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38         /*
39          * nvdimm bus services need a 'dev' parameter, and we record the device
40          * at init in bb.dev.
41          */
42         return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47         return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51                 unsigned int len)
52 {
53         struct device *dev = to_dev(pmem);
54         sector_t sector;
55         long cleared;
56
57         sector = (offset - pmem->data_offset) / 512;
58         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59
60         if (cleared > 0 && cleared / 512) {
61                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62                                 __func__, (unsigned long long) sector,
63                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
64                 badblocks_clear(&pmem->bb, sector, cleared / 512);
65         }
66         invalidate_pmem(pmem->virt_addr + offset, len);
67 }
68
69 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
70                         unsigned int len, unsigned int off, bool is_write,
71                         sector_t sector)
72 {
73         int rc = 0;
74         bool bad_pmem = false;
75         void *mem = kmap_atomic(page);
76         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
77         void *pmem_addr = pmem->virt_addr + pmem_off;
78
79         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
80                 bad_pmem = true;
81
82         if (!is_write) {
83                 if (unlikely(bad_pmem))
84                         rc = -EIO;
85                 else {
86                         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
87                         flush_dcache_page(page);
88                 }
89         } else {
90                 /*
91                  * Note that we write the data both before and after
92                  * clearing poison.  The write before clear poison
93                  * handles situations where the latest written data is
94                  * preserved and the clear poison operation simply marks
95                  * the address range as valid without changing the data.
96                  * In this case application software can assume that an
97                  * interrupted write will either return the new good
98                  * data or an error.
99                  *
100                  * However, if pmem_clear_poison() leaves the data in an
101                  * indeterminate state we need to perform the write
102                  * after clear poison.
103                  */
104                 flush_dcache_page(page);
105                 memcpy_to_pmem(pmem_addr, mem + off, len);
106                 if (unlikely(bad_pmem)) {
107                         pmem_clear_poison(pmem, pmem_off, len);
108                         memcpy_to_pmem(pmem_addr, mem + off, len);
109                 }
110         }
111
112         kunmap_atomic(mem);
113         return rc;
114 }
115
116 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
117 #ifndef REQ_FLUSH
118 #define REQ_FLUSH REQ_PREFLUSH
119 #endif
120
121 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
122 {
123         int rc = 0;
124         bool do_acct;
125         unsigned long start;
126         struct bio_vec bvec;
127         struct bvec_iter iter;
128         struct pmem_device *pmem = q->queuedata;
129         struct nd_region *nd_region = to_region(pmem);
130
131         if (bio->bi_rw & REQ_FLUSH)
132                 nvdimm_flush(nd_region);
133
134         do_acct = nd_iostat_start(bio, &start);
135         bio_for_each_segment(bvec, bio, iter) {
136                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
137                                 bvec.bv_offset, op_is_write(bio_op(bio)),
138                                 iter.bi_sector);
139                 if (rc) {
140                         bio->bi_error = rc;
141                         break;
142                 }
143         }
144         if (do_acct)
145                 nd_iostat_end(bio, start);
146
147         if (bio->bi_rw & REQ_FUA)
148                 nvdimm_flush(nd_region);
149
150         bio_endio(bio);
151         return BLK_QC_T_NONE;
152 }
153
154 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
155                        struct page *page, bool is_write)
156 {
157         struct pmem_device *pmem = bdev->bd_queue->queuedata;
158         int rc;
159
160         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
161
162         /*
163          * The ->rw_page interface is subtle and tricky.  The core
164          * retries on any error, so we can only invoke page_endio() in
165          * the successful completion case.  Otherwise, we'll see crashes
166          * caused by double completion.
167          */
168         if (rc == 0)
169                 page_endio(page, is_write, 0);
170
171         return rc;
172 }
173
174 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
175 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
176                       void **kaddr, pfn_t *pfn, long size)
177 {
178         struct pmem_device *pmem = bdev->bd_queue->queuedata;
179         resource_size_t offset = sector * 512 + pmem->data_offset;
180
181         if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
182                 return -EIO;
183         *kaddr = pmem->virt_addr + offset;
184         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
185
186         /*
187          * If badblocks are present, limit known good range to the
188          * requested range.
189          */
190         if (unlikely(pmem->bb.count))
191                 return size;
192         return pmem->size - pmem->pfn_pad - offset;
193 }
194
195 static const struct block_device_operations pmem_fops = {
196         .owner =                THIS_MODULE,
197         .rw_page =              pmem_rw_page,
198         .direct_access =        pmem_direct_access,
199         .revalidate_disk =      nvdimm_revalidate_disk,
200 };
201
202 static void pmem_release_queue(void *q)
203 {
204         blk_cleanup_queue(q);
205 }
206
207 static void pmem_release_disk(void *disk)
208 {
209         del_gendisk(disk);
210         put_disk(disk);
211 }
212
213 static int pmem_attach_disk(struct device *dev,
214                 struct nd_namespace_common *ndns)
215 {
216         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
217         struct nd_region *nd_region = to_nd_region(dev->parent);
218         struct vmem_altmap __altmap, *altmap = NULL;
219         struct resource *res = &nsio->res;
220         struct nd_pfn *nd_pfn = NULL;
221         int nid = dev_to_node(dev);
222         struct nd_pfn_sb *pfn_sb;
223         struct pmem_device *pmem;
224         struct resource pfn_res;
225         struct request_queue *q;
226         struct gendisk *disk;
227         void *addr;
228
229         /* while nsio_rw_bytes is active, parse a pfn info block if present */
230         if (is_nd_pfn(dev)) {
231                 nd_pfn = to_nd_pfn(dev);
232                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
233                 if (IS_ERR(altmap))
234                         return PTR_ERR(altmap);
235         }
236
237         /* we're attaching a block device, disable raw namespace access */
238         devm_nsio_disable(dev, nsio);
239
240         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
241         if (!pmem)
242                 return -ENOMEM;
243
244         dev_set_drvdata(dev, pmem);
245         pmem->phys_addr = res->start;
246         pmem->size = resource_size(res);
247         if (nvdimm_has_flush(nd_region) < 0)
248                 dev_warn(dev, "unable to guarantee persistence of writes\n");
249
250         if (!devm_request_mem_region(dev, res->start, resource_size(res),
251                                 dev_name(dev))) {
252                 dev_warn(dev, "could not reserve region %pR\n", res);
253                 return -EBUSY;
254         }
255
256         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
257         if (!q)
258                 return -ENOMEM;
259
260         pmem->pfn_flags = PFN_DEV;
261         if (is_nd_pfn(dev)) {
262                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
263                                 altmap);
264                 pfn_sb = nd_pfn->pfn_sb;
265                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
266                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
267                 pmem->pfn_flags |= PFN_MAP;
268                 res = &pfn_res; /* for badblocks populate */
269                 res->start += pmem->data_offset;
270         } else if (pmem_should_map_pages(dev)) {
271                 addr = devm_memremap_pages(dev, &nsio->res,
272                                 &q->q_usage_counter, NULL);
273                 pmem->pfn_flags |= PFN_MAP;
274         } else
275                 addr = devm_memremap(dev, pmem->phys_addr,
276                                 pmem->size, ARCH_MEMREMAP_PMEM);
277
278         /*
279          * At release time the queue must be dead before
280          * devm_memremap_pages is unwound
281          */
282         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
283                 return -ENOMEM;
284
285         if (IS_ERR(addr))
286                 return PTR_ERR(addr);
287         pmem->virt_addr = addr;
288
289         blk_queue_write_cache(q, true, true);
290         blk_queue_make_request(q, pmem_make_request);
291         blk_queue_physical_block_size(q, PAGE_SIZE);
292         blk_queue_max_hw_sectors(q, UINT_MAX);
293         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
294         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
295         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
296         q->queuedata = pmem;
297
298         disk = alloc_disk_node(0, nid);
299         if (!disk)
300                 return -ENOMEM;
301
302         disk->fops              = &pmem_fops;
303         disk->queue             = q;
304         disk->flags             = GENHD_FL_EXT_DEVT;
305         nvdimm_namespace_disk_name(ndns, disk->disk_name);
306         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
307                         / 512);
308         if (devm_init_badblocks(dev, &pmem->bb))
309                 return -ENOMEM;
310         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
311         disk->bb = &pmem->bb;
312         device_add_disk(dev, disk);
313
314         if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
315                 return -ENOMEM;
316
317         revalidate_disk(disk);
318
319         return 0;
320 }
321
322 static int nd_pmem_probe(struct device *dev)
323 {
324         struct nd_namespace_common *ndns;
325
326         ndns = nvdimm_namespace_common_probe(dev);
327         if (IS_ERR(ndns))
328                 return PTR_ERR(ndns);
329
330         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
331                 return -ENXIO;
332
333         if (is_nd_btt(dev))
334                 return nvdimm_namespace_attach_btt(ndns);
335
336         if (is_nd_pfn(dev))
337                 return pmem_attach_disk(dev, ndns);
338
339         /* if we find a valid info-block we'll come back as that personality */
340         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
341                         || nd_dax_probe(dev, ndns) == 0)
342                 return -ENXIO;
343
344         /* ...otherwise we're just a raw pmem device */
345         return pmem_attach_disk(dev, ndns);
346 }
347
348 static int nd_pmem_remove(struct device *dev)
349 {
350         if (is_nd_btt(dev))
351                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
352         nvdimm_flush(to_nd_region(dev->parent));
353
354         return 0;
355 }
356
357 static void nd_pmem_shutdown(struct device *dev)
358 {
359         nvdimm_flush(to_nd_region(dev->parent));
360 }
361
362 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
363 {
364         struct pmem_device *pmem = dev_get_drvdata(dev);
365         struct nd_region *nd_region = to_region(pmem);
366         resource_size_t offset = 0, end_trunc = 0;
367         struct nd_namespace_common *ndns;
368         struct nd_namespace_io *nsio;
369         struct resource res;
370
371         if (event != NVDIMM_REVALIDATE_POISON)
372                 return;
373
374         if (is_nd_btt(dev)) {
375                 struct nd_btt *nd_btt = to_nd_btt(dev);
376
377                 ndns = nd_btt->ndns;
378         } else if (is_nd_pfn(dev)) {
379                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
380                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
381
382                 ndns = nd_pfn->ndns;
383                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
384                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
385         } else
386                 ndns = to_ndns(dev);
387
388         nsio = to_nd_namespace_io(&ndns->dev);
389         res.start = nsio->res.start + offset;
390         res.end = nsio->res.end - end_trunc;
391         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
392 }
393
394 MODULE_ALIAS("pmem");
395 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
396 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
397 static struct nd_device_driver nd_pmem_driver = {
398         .probe = nd_pmem_probe,
399         .remove = nd_pmem_remove,
400         .notify = nd_pmem_notify,
401         .shutdown = nd_pmem_shutdown,
402         .drv = {
403                 .name = "nd_pmem",
404         },
405         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
406 };
407
408 static int __init pmem_init(void)
409 {
410         return nd_driver_register(&nd_pmem_driver);
411 }
412 module_init(pmem_init);
413
414 static void pmem_exit(void)
415 {
416         driver_unregister(&nd_pmem_driver.drv);
417 }
418 module_exit(pmem_exit);
419
420 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
421 MODULE_LICENSE("GPL v2");