]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/core.c
Merge tag 'sound-fix-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[karo-tx-linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36 #define NVME_MINORS             (1U << MINORBITS)
37
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47
48 unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
52 static u8 nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, byte, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static unsigned long default_ps_max_latency_us = 25000;
60 module_param(default_ps_max_latency_us, ulong, 0644);
61 MODULE_PARM_DESC(default_ps_max_latency_us,
62                  "max power saving latency for new devices; use PM QOS to change per device");
63
64 static bool force_apst;
65 module_param(force_apst, bool, 0644);
66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67
68 static LIST_HEAD(nvme_ctrl_list);
69 static DEFINE_SPINLOCK(dev_list_lock);
70
71 static struct class *nvme_class;
72
73 static int nvme_error_status(struct request *req)
74 {
75         switch (nvme_req(req)->status & 0x7ff) {
76         case NVME_SC_SUCCESS:
77                 return 0;
78         case NVME_SC_CAP_EXCEEDED:
79                 return -ENOSPC;
80         default:
81                 return -EIO;
82
83         /*
84          * XXX: these errors are a nasty side-band protocol to
85          * drivers/md/dm-mpath.c:noretry_error() that aren't documented
86          * anywhere..
87          */
88         case NVME_SC_CMD_SEQ_ERROR:
89                 return -EILSEQ;
90         case NVME_SC_ONCS_NOT_SUPPORTED:
91                 return -EOPNOTSUPP;
92         case NVME_SC_WRITE_FAULT:
93         case NVME_SC_READ_ERROR:
94         case NVME_SC_UNWRITTEN_BLOCK:
95                 return -ENODATA;
96         }
97 }
98
99 static inline bool nvme_req_needs_retry(struct request *req)
100 {
101         if (blk_noretry_request(req))
102                 return false;
103         if (nvme_req(req)->status & NVME_SC_DNR)
104                 return false;
105         if (jiffies - req->start_time >= req->timeout)
106                 return false;
107         if (nvme_req(req)->retries >= nvme_max_retries)
108                 return false;
109         return true;
110 }
111
112 void nvme_complete_rq(struct request *req)
113 {
114         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
115                 nvme_req(req)->retries++;
116                 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
117                 return;
118         }
119
120         blk_mq_end_request(req, nvme_error_status(req));
121 }
122 EXPORT_SYMBOL_GPL(nvme_complete_rq);
123
124 void nvme_cancel_request(struct request *req, void *data, bool reserved)
125 {
126         int status;
127
128         if (!blk_mq_request_started(req))
129                 return;
130
131         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
132                                 "Cancelling I/O %d", req->tag);
133
134         status = NVME_SC_ABORT_REQ;
135         if (blk_queue_dying(req->q))
136                 status |= NVME_SC_DNR;
137         nvme_req(req)->status = status;
138         blk_mq_complete_request(req);
139
140 }
141 EXPORT_SYMBOL_GPL(nvme_cancel_request);
142
143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
144                 enum nvme_ctrl_state new_state)
145 {
146         enum nvme_ctrl_state old_state;
147         bool changed = false;
148
149         spin_lock_irq(&ctrl->lock);
150
151         old_state = ctrl->state;
152         switch (new_state) {
153         case NVME_CTRL_LIVE:
154                 switch (old_state) {
155                 case NVME_CTRL_NEW:
156                 case NVME_CTRL_RESETTING:
157                 case NVME_CTRL_RECONNECTING:
158                         changed = true;
159                         /* FALLTHRU */
160                 default:
161                         break;
162                 }
163                 break;
164         case NVME_CTRL_RESETTING:
165                 switch (old_state) {
166                 case NVME_CTRL_NEW:
167                 case NVME_CTRL_LIVE:
168                 case NVME_CTRL_RECONNECTING:
169                         changed = true;
170                         /* FALLTHRU */
171                 default:
172                         break;
173                 }
174                 break;
175         case NVME_CTRL_RECONNECTING:
176                 switch (old_state) {
177                 case NVME_CTRL_LIVE:
178                         changed = true;
179                         /* FALLTHRU */
180                 default:
181                         break;
182                 }
183                 break;
184         case NVME_CTRL_DELETING:
185                 switch (old_state) {
186                 case NVME_CTRL_LIVE:
187                 case NVME_CTRL_RESETTING:
188                 case NVME_CTRL_RECONNECTING:
189                         changed = true;
190                         /* FALLTHRU */
191                 default:
192                         break;
193                 }
194                 break;
195         case NVME_CTRL_DEAD:
196                 switch (old_state) {
197                 case NVME_CTRL_DELETING:
198                         changed = true;
199                         /* FALLTHRU */
200                 default:
201                         break;
202                 }
203                 break;
204         default:
205                 break;
206         }
207
208         if (changed)
209                 ctrl->state = new_state;
210
211         spin_unlock_irq(&ctrl->lock);
212
213         return changed;
214 }
215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
216
217 static void nvme_free_ns(struct kref *kref)
218 {
219         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
220
221         if (ns->ndev)
222                 nvme_nvm_unregister(ns);
223
224         if (ns->disk) {
225                 spin_lock(&dev_list_lock);
226                 ns->disk->private_data = NULL;
227                 spin_unlock(&dev_list_lock);
228         }
229
230         put_disk(ns->disk);
231         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
232         nvme_put_ctrl(ns->ctrl);
233         kfree(ns);
234 }
235
236 static void nvme_put_ns(struct nvme_ns *ns)
237 {
238         kref_put(&ns->kref, nvme_free_ns);
239 }
240
241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
242 {
243         struct nvme_ns *ns;
244
245         spin_lock(&dev_list_lock);
246         ns = disk->private_data;
247         if (ns) {
248                 if (!kref_get_unless_zero(&ns->kref))
249                         goto fail;
250                 if (!try_module_get(ns->ctrl->ops->module))
251                         goto fail_put_ns;
252         }
253         spin_unlock(&dev_list_lock);
254
255         return ns;
256
257 fail_put_ns:
258         kref_put(&ns->kref, nvme_free_ns);
259 fail:
260         spin_unlock(&dev_list_lock);
261         return NULL;
262 }
263
264 struct request *nvme_alloc_request(struct request_queue *q,
265                 struct nvme_command *cmd, unsigned int flags, int qid)
266 {
267         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
268         struct request *req;
269
270         if (qid == NVME_QID_ANY) {
271                 req = blk_mq_alloc_request(q, op, flags);
272         } else {
273                 req = blk_mq_alloc_request_hctx(q, op, flags,
274                                 qid ? qid - 1 : 0);
275         }
276         if (IS_ERR(req))
277                 return req;
278
279         req->cmd_flags |= REQ_FAILFAST_DRIVER;
280         nvme_req(req)->cmd = cmd;
281
282         return req;
283 }
284 EXPORT_SYMBOL_GPL(nvme_alloc_request);
285
286 static inline void nvme_setup_flush(struct nvme_ns *ns,
287                 struct nvme_command *cmnd)
288 {
289         memset(cmnd, 0, sizeof(*cmnd));
290         cmnd->common.opcode = nvme_cmd_flush;
291         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
292 }
293
294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
295                 struct nvme_command *cmnd)
296 {
297         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
298         struct nvme_dsm_range *range;
299         struct bio *bio;
300
301         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
302         if (!range)
303                 return BLK_MQ_RQ_QUEUE_BUSY;
304
305         __rq_for_each_bio(bio, req) {
306                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
307                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
308
309                 range[n].cattr = cpu_to_le32(0);
310                 range[n].nlb = cpu_to_le32(nlb);
311                 range[n].slba = cpu_to_le64(slba);
312                 n++;
313         }
314
315         if (WARN_ON_ONCE(n != segments)) {
316                 kfree(range);
317                 return BLK_MQ_RQ_QUEUE_ERROR;
318         }
319
320         memset(cmnd, 0, sizeof(*cmnd));
321         cmnd->dsm.opcode = nvme_cmd_dsm;
322         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
323         cmnd->dsm.nr = cpu_to_le32(segments - 1);
324         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
325
326         req->special_vec.bv_page = virt_to_page(range);
327         req->special_vec.bv_offset = offset_in_page(range);
328         req->special_vec.bv_len = sizeof(*range) * segments;
329         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
330
331         return BLK_MQ_RQ_QUEUE_OK;
332 }
333
334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
335                 struct nvme_command *cmnd)
336 {
337         u16 control = 0;
338         u32 dsmgmt = 0;
339
340         if (req->cmd_flags & REQ_FUA)
341                 control |= NVME_RW_FUA;
342         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
343                 control |= NVME_RW_LR;
344
345         if (req->cmd_flags & REQ_RAHEAD)
346                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
347
348         memset(cmnd, 0, sizeof(*cmnd));
349         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
350         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
351         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
352         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
353
354         if (ns->ms) {
355                 switch (ns->pi_type) {
356                 case NVME_NS_DPS_PI_TYPE3:
357                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
358                         break;
359                 case NVME_NS_DPS_PI_TYPE1:
360                 case NVME_NS_DPS_PI_TYPE2:
361                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
362                                         NVME_RW_PRINFO_PRCHK_REF;
363                         cmnd->rw.reftag = cpu_to_le32(
364                                         nvme_block_nr(ns, blk_rq_pos(req)));
365                         break;
366                 }
367                 if (!blk_integrity_rq(req))
368                         control |= NVME_RW_PRINFO_PRACT;
369         }
370
371         cmnd->rw.control = cpu_to_le16(control);
372         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
373 }
374
375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
376                 struct nvme_command *cmd)
377 {
378         int ret = BLK_MQ_RQ_QUEUE_OK;
379
380         if (!(req->rq_flags & RQF_DONTPREP)) {
381                 nvme_req(req)->retries = 0;
382                 nvme_req(req)->flags = 0;
383                 req->rq_flags |= RQF_DONTPREP;
384         }
385
386         switch (req_op(req)) {
387         case REQ_OP_DRV_IN:
388         case REQ_OP_DRV_OUT:
389                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
390                 break;
391         case REQ_OP_FLUSH:
392                 nvme_setup_flush(ns, cmd);
393                 break;
394         case REQ_OP_WRITE_ZEROES:
395                 /* currently only aliased to deallocate for a few ctrls: */
396         case REQ_OP_DISCARD:
397                 ret = nvme_setup_discard(ns, req, cmd);
398                 break;
399         case REQ_OP_READ:
400         case REQ_OP_WRITE:
401                 nvme_setup_rw(ns, req, cmd);
402                 break;
403         default:
404                 WARN_ON_ONCE(1);
405                 return BLK_MQ_RQ_QUEUE_ERROR;
406         }
407
408         cmd->common.command_id = req->tag;
409         return ret;
410 }
411 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
412
413 /*
414  * Returns 0 on success.  If the result is negative, it's a Linux error code;
415  * if the result is positive, it's an NVM Express status code
416  */
417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
418                 union nvme_result *result, void *buffer, unsigned bufflen,
419                 unsigned timeout, int qid, int at_head, int flags)
420 {
421         struct request *req;
422         int ret;
423
424         req = nvme_alloc_request(q, cmd, flags, qid);
425         if (IS_ERR(req))
426                 return PTR_ERR(req);
427
428         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
429
430         if (buffer && bufflen) {
431                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
432                 if (ret)
433                         goto out;
434         }
435
436         blk_execute_rq(req->q, NULL, req, at_head);
437         if (result)
438                 *result = nvme_req(req)->result;
439         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
440                 ret = -EINTR;
441         else
442                 ret = nvme_req(req)->status;
443  out:
444         blk_mq_free_request(req);
445         return ret;
446 }
447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
448
449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
450                 void *buffer, unsigned bufflen)
451 {
452         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
453                         NVME_QID_ANY, 0, 0);
454 }
455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
456
457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
458                 void __user *ubuffer, unsigned bufflen,
459                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
460                 u32 *result, unsigned timeout)
461 {
462         bool write = nvme_is_write(cmd);
463         struct nvme_ns *ns = q->queuedata;
464         struct gendisk *disk = ns ? ns->disk : NULL;
465         struct request *req;
466         struct bio *bio = NULL;
467         void *meta = NULL;
468         int ret;
469
470         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
471         if (IS_ERR(req))
472                 return PTR_ERR(req);
473
474         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
475
476         if (ubuffer && bufflen) {
477                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
478                                 GFP_KERNEL);
479                 if (ret)
480                         goto out;
481                 bio = req->bio;
482
483                 if (!disk)
484                         goto submit;
485                 bio->bi_bdev = bdget_disk(disk, 0);
486                 if (!bio->bi_bdev) {
487                         ret = -ENODEV;
488                         goto out_unmap;
489                 }
490
491                 if (meta_buffer && meta_len) {
492                         struct bio_integrity_payload *bip;
493
494                         meta = kmalloc(meta_len, GFP_KERNEL);
495                         if (!meta) {
496                                 ret = -ENOMEM;
497                                 goto out_unmap;
498                         }
499
500                         if (write) {
501                                 if (copy_from_user(meta, meta_buffer,
502                                                 meta_len)) {
503                                         ret = -EFAULT;
504                                         goto out_free_meta;
505                                 }
506                         }
507
508                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
509                         if (IS_ERR(bip)) {
510                                 ret = PTR_ERR(bip);
511                                 goto out_free_meta;
512                         }
513
514                         bip->bip_iter.bi_size = meta_len;
515                         bip->bip_iter.bi_sector = meta_seed;
516
517                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
518                                         meta_len, offset_in_page(meta));
519                         if (ret != meta_len) {
520                                 ret = -ENOMEM;
521                                 goto out_free_meta;
522                         }
523                 }
524         }
525  submit:
526         blk_execute_rq(req->q, disk, req, 0);
527         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
528                 ret = -EINTR;
529         else
530                 ret = nvme_req(req)->status;
531         if (result)
532                 *result = le32_to_cpu(nvme_req(req)->result.u32);
533         if (meta && !ret && !write) {
534                 if (copy_to_user(meta_buffer, meta, meta_len))
535                         ret = -EFAULT;
536         }
537  out_free_meta:
538         kfree(meta);
539  out_unmap:
540         if (bio) {
541                 if (disk && bio->bi_bdev)
542                         bdput(bio->bi_bdev);
543                 blk_rq_unmap_user(bio);
544         }
545  out:
546         blk_mq_free_request(req);
547         return ret;
548 }
549
550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
551                 void __user *ubuffer, unsigned bufflen, u32 *result,
552                 unsigned timeout)
553 {
554         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
555                         result, timeout);
556 }
557
558 static void nvme_keep_alive_end_io(struct request *rq, int error)
559 {
560         struct nvme_ctrl *ctrl = rq->end_io_data;
561
562         blk_mq_free_request(rq);
563
564         if (error) {
565                 dev_err(ctrl->device,
566                         "failed nvme_keep_alive_end_io error=%d\n", error);
567                 return;
568         }
569
570         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
571 }
572
573 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
574 {
575         struct nvme_command c;
576         struct request *rq;
577
578         memset(&c, 0, sizeof(c));
579         c.common.opcode = nvme_admin_keep_alive;
580
581         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
582                         NVME_QID_ANY);
583         if (IS_ERR(rq))
584                 return PTR_ERR(rq);
585
586         rq->timeout = ctrl->kato * HZ;
587         rq->end_io_data = ctrl;
588
589         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
590
591         return 0;
592 }
593
594 static void nvme_keep_alive_work(struct work_struct *work)
595 {
596         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
597                         struct nvme_ctrl, ka_work);
598
599         if (nvme_keep_alive(ctrl)) {
600                 /* allocation failure, reset the controller */
601                 dev_err(ctrl->device, "keep-alive failed\n");
602                 ctrl->ops->reset_ctrl(ctrl);
603                 return;
604         }
605 }
606
607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
608 {
609         if (unlikely(ctrl->kato == 0))
610                 return;
611
612         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
613         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
614 }
615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
616
617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
618 {
619         if (unlikely(ctrl->kato == 0))
620                 return;
621
622         cancel_delayed_work_sync(&ctrl->ka_work);
623 }
624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
625
626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
627 {
628         struct nvme_command c = { };
629         int error;
630
631         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
632         c.identify.opcode = nvme_admin_identify;
633         c.identify.cns = NVME_ID_CNS_CTRL;
634
635         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
636         if (!*id)
637                 return -ENOMEM;
638
639         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
640                         sizeof(struct nvme_id_ctrl));
641         if (error)
642                 kfree(*id);
643         return error;
644 }
645
646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
647 {
648         struct nvme_command c = { };
649
650         c.identify.opcode = nvme_admin_identify;
651         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
652         c.identify.nsid = cpu_to_le32(nsid);
653         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
654 }
655
656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
657                 struct nvme_id_ns **id)
658 {
659         struct nvme_command c = { };
660         int error;
661
662         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
663         c.identify.opcode = nvme_admin_identify;
664         c.identify.nsid = cpu_to_le32(nsid);
665         c.identify.cns = NVME_ID_CNS_NS;
666
667         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
668         if (!*id)
669                 return -ENOMEM;
670
671         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
672                         sizeof(struct nvme_id_ns));
673         if (error)
674                 kfree(*id);
675         return error;
676 }
677
678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
679                       void *buffer, size_t buflen, u32 *result)
680 {
681         struct nvme_command c;
682         union nvme_result res;
683         int ret;
684
685         memset(&c, 0, sizeof(c));
686         c.features.opcode = nvme_admin_get_features;
687         c.features.nsid = cpu_to_le32(nsid);
688         c.features.fid = cpu_to_le32(fid);
689
690         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
691                         NVME_QID_ANY, 0, 0);
692         if (ret >= 0 && result)
693                 *result = le32_to_cpu(res.u32);
694         return ret;
695 }
696
697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
698                       void *buffer, size_t buflen, u32 *result)
699 {
700         struct nvme_command c;
701         union nvme_result res;
702         int ret;
703
704         memset(&c, 0, sizeof(c));
705         c.features.opcode = nvme_admin_set_features;
706         c.features.fid = cpu_to_le32(fid);
707         c.features.dword11 = cpu_to_le32(dword11);
708
709         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
710                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
711         if (ret >= 0 && result)
712                 *result = le32_to_cpu(res.u32);
713         return ret;
714 }
715
716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
717 {
718         struct nvme_command c = { };
719         int error;
720
721         c.common.opcode = nvme_admin_get_log_page,
722         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
723         c.common.cdw10[0] = cpu_to_le32(
724                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
725                          NVME_LOG_SMART),
726
727         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
728         if (!*log)
729                 return -ENOMEM;
730
731         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
732                         sizeof(struct nvme_smart_log));
733         if (error)
734                 kfree(*log);
735         return error;
736 }
737
738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
739 {
740         u32 q_count = (*count - 1) | ((*count - 1) << 16);
741         u32 result;
742         int status, nr_io_queues;
743
744         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
745                         &result);
746         if (status < 0)
747                 return status;
748
749         /*
750          * Degraded controllers might return an error when setting the queue
751          * count.  We still want to be able to bring them online and offer
752          * access to the admin queue, as that might be only way to fix them up.
753          */
754         if (status > 0) {
755                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
756                 *count = 0;
757         } else {
758                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
759                 *count = min(*count, nr_io_queues);
760         }
761
762         return 0;
763 }
764 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
765
766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
767 {
768         struct nvme_user_io io;
769         struct nvme_command c;
770         unsigned length, meta_len;
771         void __user *metadata;
772
773         if (copy_from_user(&io, uio, sizeof(io)))
774                 return -EFAULT;
775         if (io.flags)
776                 return -EINVAL;
777
778         switch (io.opcode) {
779         case nvme_cmd_write:
780         case nvme_cmd_read:
781         case nvme_cmd_compare:
782                 break;
783         default:
784                 return -EINVAL;
785         }
786
787         length = (io.nblocks + 1) << ns->lba_shift;
788         meta_len = (io.nblocks + 1) * ns->ms;
789         metadata = (void __user *)(uintptr_t)io.metadata;
790
791         if (ns->ext) {
792                 length += meta_len;
793                 meta_len = 0;
794         } else if (meta_len) {
795                 if ((io.metadata & 3) || !io.metadata)
796                         return -EINVAL;
797         }
798
799         memset(&c, 0, sizeof(c));
800         c.rw.opcode = io.opcode;
801         c.rw.flags = io.flags;
802         c.rw.nsid = cpu_to_le32(ns->ns_id);
803         c.rw.slba = cpu_to_le64(io.slba);
804         c.rw.length = cpu_to_le16(io.nblocks);
805         c.rw.control = cpu_to_le16(io.control);
806         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
807         c.rw.reftag = cpu_to_le32(io.reftag);
808         c.rw.apptag = cpu_to_le16(io.apptag);
809         c.rw.appmask = cpu_to_le16(io.appmask);
810
811         return __nvme_submit_user_cmd(ns->queue, &c,
812                         (void __user *)(uintptr_t)io.addr, length,
813                         metadata, meta_len, io.slba, NULL, 0);
814 }
815
816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
817                         struct nvme_passthru_cmd __user *ucmd)
818 {
819         struct nvme_passthru_cmd cmd;
820         struct nvme_command c;
821         unsigned timeout = 0;
822         int status;
823
824         if (!capable(CAP_SYS_ADMIN))
825                 return -EACCES;
826         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
827                 return -EFAULT;
828         if (cmd.flags)
829                 return -EINVAL;
830
831         memset(&c, 0, sizeof(c));
832         c.common.opcode = cmd.opcode;
833         c.common.flags = cmd.flags;
834         c.common.nsid = cpu_to_le32(cmd.nsid);
835         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
836         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
837         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
838         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
839         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
840         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
841         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
842         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
843
844         if (cmd.timeout_ms)
845                 timeout = msecs_to_jiffies(cmd.timeout_ms);
846
847         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
848                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
849                         &cmd.result, timeout);
850         if (status >= 0) {
851                 if (put_user(cmd.result, &ucmd->result))
852                         return -EFAULT;
853         }
854
855         return status;
856 }
857
858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
859                 unsigned int cmd, unsigned long arg)
860 {
861         struct nvme_ns *ns = bdev->bd_disk->private_data;
862
863         switch (cmd) {
864         case NVME_IOCTL_ID:
865                 force_successful_syscall_return();
866                 return ns->ns_id;
867         case NVME_IOCTL_ADMIN_CMD:
868                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
869         case NVME_IOCTL_IO_CMD:
870                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
871         case NVME_IOCTL_SUBMIT_IO:
872                 return nvme_submit_io(ns, (void __user *)arg);
873 #ifdef CONFIG_BLK_DEV_NVME_SCSI
874         case SG_GET_VERSION_NUM:
875                 return nvme_sg_get_version_num((void __user *)arg);
876         case SG_IO:
877                 return nvme_sg_io(ns, (void __user *)arg);
878 #endif
879         default:
880 #ifdef CONFIG_NVM
881                 if (ns->ndev)
882                         return nvme_nvm_ioctl(ns, cmd, arg);
883 #endif
884                 if (is_sed_ioctl(cmd))
885                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
886                                          (void __user *) arg);
887                 return -ENOTTY;
888         }
889 }
890
891 #ifdef CONFIG_COMPAT
892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
893                         unsigned int cmd, unsigned long arg)
894 {
895         switch (cmd) {
896         case SG_IO:
897                 return -ENOIOCTLCMD;
898         }
899         return nvme_ioctl(bdev, mode, cmd, arg);
900 }
901 #else
902 #define nvme_compat_ioctl       NULL
903 #endif
904
905 static int nvme_open(struct block_device *bdev, fmode_t mode)
906 {
907         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
908 }
909
910 static void nvme_release(struct gendisk *disk, fmode_t mode)
911 {
912         struct nvme_ns *ns = disk->private_data;
913
914         module_put(ns->ctrl->ops->module);
915         nvme_put_ns(ns);
916 }
917
918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
919 {
920         /* some standard values */
921         geo->heads = 1 << 6;
922         geo->sectors = 1 << 5;
923         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
924         return 0;
925 }
926
927 #ifdef CONFIG_BLK_DEV_INTEGRITY
928 static void nvme_init_integrity(struct nvme_ns *ns)
929 {
930         struct blk_integrity integrity;
931
932         memset(&integrity, 0, sizeof(integrity));
933         switch (ns->pi_type) {
934         case NVME_NS_DPS_PI_TYPE3:
935                 integrity.profile = &t10_pi_type3_crc;
936                 integrity.tag_size = sizeof(u16) + sizeof(u32);
937                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
938                 break;
939         case NVME_NS_DPS_PI_TYPE1:
940         case NVME_NS_DPS_PI_TYPE2:
941                 integrity.profile = &t10_pi_type1_crc;
942                 integrity.tag_size = sizeof(u16);
943                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
944                 break;
945         default:
946                 integrity.profile = NULL;
947                 break;
948         }
949         integrity.tuple_size = ns->ms;
950         blk_integrity_register(ns->disk, &integrity);
951         blk_queue_max_integrity_segments(ns->queue, 1);
952 }
953 #else
954 static void nvme_init_integrity(struct nvme_ns *ns)
955 {
956 }
957 #endif /* CONFIG_BLK_DEV_INTEGRITY */
958
959 static void nvme_config_discard(struct nvme_ns *ns)
960 {
961         struct nvme_ctrl *ctrl = ns->ctrl;
962         u32 logical_block_size = queue_logical_block_size(ns->queue);
963
964         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
965                         NVME_DSM_MAX_RANGES);
966
967         ns->queue->limits.discard_alignment = logical_block_size;
968         ns->queue->limits.discard_granularity = logical_block_size;
969         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
970         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
971         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
972
973         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
974                 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
975 }
976
977 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
978 {
979         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
980                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
981                 return -ENODEV;
982         }
983
984         if ((*id)->ncap == 0) {
985                 kfree(*id);
986                 return -ENODEV;
987         }
988
989         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
990                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
991         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
992                 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
993
994         return 0;
995 }
996
997 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
998 {
999         struct nvme_ns *ns = disk->private_data;
1000         u8 lbaf, pi_type;
1001         u16 old_ms;
1002         unsigned short bs;
1003
1004         old_ms = ns->ms;
1005         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1006         ns->lba_shift = id->lbaf[lbaf].ds;
1007         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1008         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1009
1010         /*
1011          * If identify namespace failed, use default 512 byte block size so
1012          * block layer can use before failing read/write for 0 capacity.
1013          */
1014         if (ns->lba_shift == 0)
1015                 ns->lba_shift = 9;
1016         bs = 1 << ns->lba_shift;
1017         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1018         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1019                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
1020
1021         blk_mq_freeze_queue(disk->queue);
1022         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1023                                 ns->ms != old_ms ||
1024                                 bs != queue_logical_block_size(disk->queue) ||
1025                                 (ns->ms && ns->ext)))
1026                 blk_integrity_unregister(disk);
1027
1028         ns->pi_type = pi_type;
1029         blk_queue_logical_block_size(ns->queue, bs);
1030
1031         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1032                 nvme_init_integrity(ns);
1033         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1034                 set_capacity(disk, 0);
1035         else
1036                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1037
1038         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1039                 nvme_config_discard(ns);
1040         blk_mq_unfreeze_queue(disk->queue);
1041 }
1042
1043 static int nvme_revalidate_disk(struct gendisk *disk)
1044 {
1045         struct nvme_ns *ns = disk->private_data;
1046         struct nvme_id_ns *id = NULL;
1047         int ret;
1048
1049         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1050                 set_capacity(disk, 0);
1051                 return -ENODEV;
1052         }
1053
1054         ret = nvme_revalidate_ns(ns, &id);
1055         if (ret)
1056                 return ret;
1057
1058         __nvme_revalidate_disk(disk, id);
1059         kfree(id);
1060
1061         return 0;
1062 }
1063
1064 static char nvme_pr_type(enum pr_type type)
1065 {
1066         switch (type) {
1067         case PR_WRITE_EXCLUSIVE:
1068                 return 1;
1069         case PR_EXCLUSIVE_ACCESS:
1070                 return 2;
1071         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1072                 return 3;
1073         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1074                 return 4;
1075         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1076                 return 5;
1077         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1078                 return 6;
1079         default:
1080                 return 0;
1081         }
1082 };
1083
1084 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1085                                 u64 key, u64 sa_key, u8 op)
1086 {
1087         struct nvme_ns *ns = bdev->bd_disk->private_data;
1088         struct nvme_command c;
1089         u8 data[16] = { 0, };
1090
1091         put_unaligned_le64(key, &data[0]);
1092         put_unaligned_le64(sa_key, &data[8]);
1093
1094         memset(&c, 0, sizeof(c));
1095         c.common.opcode = op;
1096         c.common.nsid = cpu_to_le32(ns->ns_id);
1097         c.common.cdw10[0] = cpu_to_le32(cdw10);
1098
1099         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1100 }
1101
1102 static int nvme_pr_register(struct block_device *bdev, u64 old,
1103                 u64 new, unsigned flags)
1104 {
1105         u32 cdw10;
1106
1107         if (flags & ~PR_FL_IGNORE_KEY)
1108                 return -EOPNOTSUPP;
1109
1110         cdw10 = old ? 2 : 0;
1111         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1112         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1113         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1114 }
1115
1116 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1117                 enum pr_type type, unsigned flags)
1118 {
1119         u32 cdw10;
1120
1121         if (flags & ~PR_FL_IGNORE_KEY)
1122                 return -EOPNOTSUPP;
1123
1124         cdw10 = nvme_pr_type(type) << 8;
1125         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1126         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1127 }
1128
1129 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1130                 enum pr_type type, bool abort)
1131 {
1132         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1133         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1134 }
1135
1136 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1137 {
1138         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1139         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1140 }
1141
1142 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1143 {
1144         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1145         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1146 }
1147
1148 static const struct pr_ops nvme_pr_ops = {
1149         .pr_register    = nvme_pr_register,
1150         .pr_reserve     = nvme_pr_reserve,
1151         .pr_release     = nvme_pr_release,
1152         .pr_preempt     = nvme_pr_preempt,
1153         .pr_clear       = nvme_pr_clear,
1154 };
1155
1156 #ifdef CONFIG_BLK_SED_OPAL
1157 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1158                 bool send)
1159 {
1160         struct nvme_ctrl *ctrl = data;
1161         struct nvme_command cmd;
1162
1163         memset(&cmd, 0, sizeof(cmd));
1164         if (send)
1165                 cmd.common.opcode = nvme_admin_security_send;
1166         else
1167                 cmd.common.opcode = nvme_admin_security_recv;
1168         cmd.common.nsid = 0;
1169         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1170         cmd.common.cdw10[1] = cpu_to_le32(len);
1171
1172         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1173                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1174 }
1175 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1176 #endif /* CONFIG_BLK_SED_OPAL */
1177
1178 static const struct block_device_operations nvme_fops = {
1179         .owner          = THIS_MODULE,
1180         .ioctl          = nvme_ioctl,
1181         .compat_ioctl   = nvme_compat_ioctl,
1182         .open           = nvme_open,
1183         .release        = nvme_release,
1184         .getgeo         = nvme_getgeo,
1185         .revalidate_disk= nvme_revalidate_disk,
1186         .pr_ops         = &nvme_pr_ops,
1187 };
1188
1189 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1190 {
1191         unsigned long timeout =
1192                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1193         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1194         int ret;
1195
1196         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1197                 if (csts == ~0)
1198                         return -ENODEV;
1199                 if ((csts & NVME_CSTS_RDY) == bit)
1200                         break;
1201
1202                 msleep(100);
1203                 if (fatal_signal_pending(current))
1204                         return -EINTR;
1205                 if (time_after(jiffies, timeout)) {
1206                         dev_err(ctrl->device,
1207                                 "Device not ready; aborting %s\n", enabled ?
1208                                                 "initialisation" : "reset");
1209                         return -ENODEV;
1210                 }
1211         }
1212
1213         return ret;
1214 }
1215
1216 /*
1217  * If the device has been passed off to us in an enabled state, just clear
1218  * the enabled bit.  The spec says we should set the 'shutdown notification
1219  * bits', but doing so may cause the device to complete commands to the
1220  * admin queue ... and we don't know what memory that might be pointing at!
1221  */
1222 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1223 {
1224         int ret;
1225
1226         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1227         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1228
1229         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1230         if (ret)
1231                 return ret;
1232
1233         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1234                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1235
1236         return nvme_wait_ready(ctrl, cap, false);
1237 }
1238 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1239
1240 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1241 {
1242         /*
1243          * Default to a 4K page size, with the intention to update this
1244          * path in the future to accomodate architectures with differing
1245          * kernel and IO page sizes.
1246          */
1247         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1248         int ret;
1249
1250         if (page_shift < dev_page_min) {
1251                 dev_err(ctrl->device,
1252                         "Minimum device page size %u too large for host (%u)\n",
1253                         1 << dev_page_min, 1 << page_shift);
1254                 return -ENODEV;
1255         }
1256
1257         ctrl->page_size = 1 << page_shift;
1258
1259         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1260         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1261         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1262         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1263         ctrl->ctrl_config |= NVME_CC_ENABLE;
1264
1265         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1266         if (ret)
1267                 return ret;
1268         return nvme_wait_ready(ctrl, cap, true);
1269 }
1270 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1271
1272 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1273 {
1274         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1275         u32 csts;
1276         int ret;
1277
1278         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1279         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1280
1281         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1282         if (ret)
1283                 return ret;
1284
1285         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1286                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1287                         break;
1288
1289                 msleep(100);
1290                 if (fatal_signal_pending(current))
1291                         return -EINTR;
1292                 if (time_after(jiffies, timeout)) {
1293                         dev_err(ctrl->device,
1294                                 "Device shutdown incomplete; abort shutdown\n");
1295                         return -ENODEV;
1296                 }
1297         }
1298
1299         return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1302
1303 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1304                 struct request_queue *q)
1305 {
1306         bool vwc = false;
1307
1308         if (ctrl->max_hw_sectors) {
1309                 u32 max_segments =
1310                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1311
1312                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1313                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1314         }
1315         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1316                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1317         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1318         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1319                 vwc = true;
1320         blk_queue_write_cache(q, vwc, vwc);
1321 }
1322
1323 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1324 {
1325         /*
1326          * APST (Autonomous Power State Transition) lets us program a
1327          * table of power state transitions that the controller will
1328          * perform automatically.  We configure it with a simple
1329          * heuristic: we are willing to spend at most 2% of the time
1330          * transitioning between power states.  Therefore, when running
1331          * in any given state, we will enter the next lower-power
1332          * non-operational state after waiting 50 * (enlat + exlat)
1333          * microseconds, as long as that state's total latency is under
1334          * the requested maximum latency.
1335          *
1336          * We will not autonomously enter any non-operational state for
1337          * which the total latency exceeds ps_max_latency_us.  Users
1338          * can set ps_max_latency_us to zero to turn off APST.
1339          */
1340
1341         unsigned apste;
1342         struct nvme_feat_auto_pst *table;
1343         u64 max_lat_us = 0;
1344         int max_ps = -1;
1345         int ret;
1346
1347         /*
1348          * If APST isn't supported or if we haven't been initialized yet,
1349          * then don't do anything.
1350          */
1351         if (!ctrl->apsta)
1352                 return;
1353
1354         if (ctrl->npss > 31) {
1355                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1356                 return;
1357         }
1358
1359         table = kzalloc(sizeof(*table), GFP_KERNEL);
1360         if (!table)
1361                 return;
1362
1363         if (ctrl->ps_max_latency_us == 0) {
1364                 /* Turn off APST. */
1365                 apste = 0;
1366                 dev_dbg(ctrl->device, "APST disabled\n");
1367         } else {
1368                 __le64 target = cpu_to_le64(0);
1369                 int state;
1370
1371                 /*
1372                  * Walk through all states from lowest- to highest-power.
1373                  * According to the spec, lower-numbered states use more
1374                  * power.  NPSS, despite the name, is the index of the
1375                  * lowest-power state, not the number of states.
1376                  */
1377                 for (state = (int)ctrl->npss; state >= 0; state--) {
1378                         u64 total_latency_us, transition_ms;
1379
1380                         if (target)
1381                                 table->entries[state] = target;
1382
1383                         /*
1384                          * Don't allow transitions to the deepest state
1385                          * if it's quirked off.
1386                          */
1387                         if (state == ctrl->npss &&
1388                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1389                                 continue;
1390
1391                         /*
1392                          * Is this state a useful non-operational state for
1393                          * higher-power states to autonomously transition to?
1394                          */
1395                         if (!(ctrl->psd[state].flags &
1396                               NVME_PS_FLAGS_NON_OP_STATE))
1397                                 continue;
1398
1399                         total_latency_us =
1400                                 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
1401                                 + le32_to_cpu(ctrl->psd[state].exit_lat);
1402                         if (total_latency_us > ctrl->ps_max_latency_us)
1403                                 continue;
1404
1405                         /*
1406                          * This state is good.  Use it as the APST idle
1407                          * target for higher power states.
1408                          */
1409                         transition_ms = total_latency_us + 19;
1410                         do_div(transition_ms, 20);
1411                         if (transition_ms > (1 << 24) - 1)
1412                                 transition_ms = (1 << 24) - 1;
1413
1414                         target = cpu_to_le64((state << 3) |
1415                                              (transition_ms << 8));
1416
1417                         if (max_ps == -1)
1418                                 max_ps = state;
1419
1420                         if (total_latency_us > max_lat_us)
1421                                 max_lat_us = total_latency_us;
1422                 }
1423
1424                 apste = 1;
1425
1426                 if (max_ps == -1) {
1427                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1428                 } else {
1429                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1430                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1431                 }
1432         }
1433
1434         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1435                                 table, sizeof(*table), NULL);
1436         if (ret)
1437                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1438
1439         kfree(table);
1440 }
1441
1442 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1443 {
1444         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1445         u64 latency;
1446
1447         switch (val) {
1448         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1449         case PM_QOS_LATENCY_ANY:
1450                 latency = U64_MAX;
1451                 break;
1452
1453         default:
1454                 latency = val;
1455         }
1456
1457         if (ctrl->ps_max_latency_us != latency) {
1458                 ctrl->ps_max_latency_us = latency;
1459                 nvme_configure_apst(ctrl);
1460         }
1461 }
1462
1463 struct nvme_core_quirk_entry {
1464         /*
1465          * NVMe model and firmware strings are padded with spaces.  For
1466          * simplicity, strings in the quirk table are padded with NULLs
1467          * instead.
1468          */
1469         u16 vid;
1470         const char *mn;
1471         const char *fr;
1472         unsigned long quirks;
1473 };
1474
1475 static const struct nvme_core_quirk_entry core_quirks[] = {
1476         {
1477                 /*
1478                  * This Toshiba device seems to die using any APST states.  See:
1479                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1480                  */
1481                 .vid = 0x1179,
1482                 .mn = "THNSF5256GPUK TOSHIBA",
1483                 .quirks = NVME_QUIRK_NO_APST,
1484         }
1485 };
1486
1487 /* match is null-terminated but idstr is space-padded. */
1488 static bool string_matches(const char *idstr, const char *match, size_t len)
1489 {
1490         size_t matchlen;
1491
1492         if (!match)
1493                 return true;
1494
1495         matchlen = strlen(match);
1496         WARN_ON_ONCE(matchlen > len);
1497
1498         if (memcmp(idstr, match, matchlen))
1499                 return false;
1500
1501         for (; matchlen < len; matchlen++)
1502                 if (idstr[matchlen] != ' ')
1503                         return false;
1504
1505         return true;
1506 }
1507
1508 static bool quirk_matches(const struct nvme_id_ctrl *id,
1509                           const struct nvme_core_quirk_entry *q)
1510 {
1511         return q->vid == le16_to_cpu(id->vid) &&
1512                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1513                 string_matches(id->fr, q->fr, sizeof(id->fr));
1514 }
1515
1516 /*
1517  * Initialize the cached copies of the Identify data and various controller
1518  * register in our nvme_ctrl structure.  This should be called as soon as
1519  * the admin queue is fully up and running.
1520  */
1521 int nvme_init_identify(struct nvme_ctrl *ctrl)
1522 {
1523         struct nvme_id_ctrl *id;
1524         u64 cap;
1525         int ret, page_shift;
1526         u32 max_hw_sectors;
1527         u8 prev_apsta;
1528
1529         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1530         if (ret) {
1531                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1532                 return ret;
1533         }
1534
1535         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1536         if (ret) {
1537                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1538                 return ret;
1539         }
1540         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1541
1542         if (ctrl->vs >= NVME_VS(1, 1, 0))
1543                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1544
1545         ret = nvme_identify_ctrl(ctrl, &id);
1546         if (ret) {
1547                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1548                 return -EIO;
1549         }
1550
1551         if (!ctrl->identified) {
1552                 /*
1553                  * Check for quirks.  Quirk can depend on firmware version,
1554                  * so, in principle, the set of quirks present can change
1555                  * across a reset.  As a possible future enhancement, we
1556                  * could re-scan for quirks every time we reinitialize
1557                  * the device, but we'd have to make sure that the driver
1558                  * behaves intelligently if the quirks change.
1559                  */
1560
1561                 int i;
1562
1563                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1564                         if (quirk_matches(id, &core_quirks[i]))
1565                                 ctrl->quirks |= core_quirks[i].quirks;
1566                 }
1567         }
1568
1569         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1570                 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1571                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1572         }
1573
1574         ctrl->oacs = le16_to_cpu(id->oacs);
1575         ctrl->vid = le16_to_cpu(id->vid);
1576         ctrl->oncs = le16_to_cpup(&id->oncs);
1577         atomic_set(&ctrl->abort_limit, id->acl + 1);
1578         ctrl->vwc = id->vwc;
1579         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1580         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1581         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1582         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1583         if (id->mdts)
1584                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1585         else
1586                 max_hw_sectors = UINT_MAX;
1587         ctrl->max_hw_sectors =
1588                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1589
1590         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1591         ctrl->sgls = le32_to_cpu(id->sgls);
1592         ctrl->kas = le16_to_cpu(id->kas);
1593
1594         ctrl->npss = id->npss;
1595         prev_apsta = ctrl->apsta;
1596         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1597                 if (force_apst && id->apsta) {
1598                         dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1599                         ctrl->apsta = 1;
1600                 } else {
1601                         ctrl->apsta = 0;
1602                 }
1603         } else {
1604                 ctrl->apsta = id->apsta;
1605         }
1606         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1607
1608         if (ctrl->ops->is_fabrics) {
1609                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1610                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1611                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1612                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1613
1614                 /*
1615                  * In fabrics we need to verify the cntlid matches the
1616                  * admin connect
1617                  */
1618                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1619                         ret = -EINVAL;
1620
1621                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1622                         dev_err(ctrl->dev,
1623                                 "keep-alive support is mandatory for fabrics\n");
1624                         ret = -EINVAL;
1625                 }
1626         } else {
1627                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1628         }
1629
1630         kfree(id);
1631
1632         if (ctrl->apsta && !prev_apsta)
1633                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1634         else if (!ctrl->apsta && prev_apsta)
1635                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1636
1637         nvme_configure_apst(ctrl);
1638
1639         ctrl->identified = true;
1640
1641         return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(nvme_init_identify);
1644
1645 static int nvme_dev_open(struct inode *inode, struct file *file)
1646 {
1647         struct nvme_ctrl *ctrl;
1648         int instance = iminor(inode);
1649         int ret = -ENODEV;
1650
1651         spin_lock(&dev_list_lock);
1652         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1653                 if (ctrl->instance != instance)
1654                         continue;
1655
1656                 if (!ctrl->admin_q) {
1657                         ret = -EWOULDBLOCK;
1658                         break;
1659                 }
1660                 if (!kref_get_unless_zero(&ctrl->kref))
1661                         break;
1662                 file->private_data = ctrl;
1663                 ret = 0;
1664                 break;
1665         }
1666         spin_unlock(&dev_list_lock);
1667
1668         return ret;
1669 }
1670
1671 static int nvme_dev_release(struct inode *inode, struct file *file)
1672 {
1673         nvme_put_ctrl(file->private_data);
1674         return 0;
1675 }
1676
1677 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1678 {
1679         struct nvme_ns *ns;
1680         int ret;
1681
1682         mutex_lock(&ctrl->namespaces_mutex);
1683         if (list_empty(&ctrl->namespaces)) {
1684                 ret = -ENOTTY;
1685                 goto out_unlock;
1686         }
1687
1688         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1689         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1690                 dev_warn(ctrl->device,
1691                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1692                 ret = -EINVAL;
1693                 goto out_unlock;
1694         }
1695
1696         dev_warn(ctrl->device,
1697                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1698         kref_get(&ns->kref);
1699         mutex_unlock(&ctrl->namespaces_mutex);
1700
1701         ret = nvme_user_cmd(ctrl, ns, argp);
1702         nvme_put_ns(ns);
1703         return ret;
1704
1705 out_unlock:
1706         mutex_unlock(&ctrl->namespaces_mutex);
1707         return ret;
1708 }
1709
1710 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1711                 unsigned long arg)
1712 {
1713         struct nvme_ctrl *ctrl = file->private_data;
1714         void __user *argp = (void __user *)arg;
1715
1716         switch (cmd) {
1717         case NVME_IOCTL_ADMIN_CMD:
1718                 return nvme_user_cmd(ctrl, NULL, argp);
1719         case NVME_IOCTL_IO_CMD:
1720                 return nvme_dev_user_cmd(ctrl, argp);
1721         case NVME_IOCTL_RESET:
1722                 dev_warn(ctrl->device, "resetting controller\n");
1723                 return ctrl->ops->reset_ctrl(ctrl);
1724         case NVME_IOCTL_SUBSYS_RESET:
1725                 return nvme_reset_subsystem(ctrl);
1726         case NVME_IOCTL_RESCAN:
1727                 nvme_queue_scan(ctrl);
1728                 return 0;
1729         default:
1730                 return -ENOTTY;
1731         }
1732 }
1733
1734 static const struct file_operations nvme_dev_fops = {
1735         .owner          = THIS_MODULE,
1736         .open           = nvme_dev_open,
1737         .release        = nvme_dev_release,
1738         .unlocked_ioctl = nvme_dev_ioctl,
1739         .compat_ioctl   = nvme_dev_ioctl,
1740 };
1741
1742 static ssize_t nvme_sysfs_reset(struct device *dev,
1743                                 struct device_attribute *attr, const char *buf,
1744                                 size_t count)
1745 {
1746         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1747         int ret;
1748
1749         ret = ctrl->ops->reset_ctrl(ctrl);
1750         if (ret < 0)
1751                 return ret;
1752         return count;
1753 }
1754 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1755
1756 static ssize_t nvme_sysfs_rescan(struct device *dev,
1757                                 struct device_attribute *attr, const char *buf,
1758                                 size_t count)
1759 {
1760         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1761
1762         nvme_queue_scan(ctrl);
1763         return count;
1764 }
1765 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1766
1767 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1768                                                                 char *buf)
1769 {
1770         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1771         struct nvme_ctrl *ctrl = ns->ctrl;
1772         int serial_len = sizeof(ctrl->serial);
1773         int model_len = sizeof(ctrl->model);
1774
1775         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1776                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1777
1778         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1779                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1780
1781         while (ctrl->serial[serial_len - 1] == ' ')
1782                 serial_len--;
1783         while (ctrl->model[model_len - 1] == ' ')
1784                 model_len--;
1785
1786         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1787                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1788 }
1789 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1790
1791 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1792                                                                 char *buf)
1793 {
1794         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1795         return sprintf(buf, "%pU\n", ns->uuid);
1796 }
1797 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1798
1799 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1800                                                                 char *buf)
1801 {
1802         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1803         return sprintf(buf, "%8phd\n", ns->eui);
1804 }
1805 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1806
1807 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1808                                                                 char *buf)
1809 {
1810         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1811         return sprintf(buf, "%d\n", ns->ns_id);
1812 }
1813 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1814
1815 static struct attribute *nvme_ns_attrs[] = {
1816         &dev_attr_wwid.attr,
1817         &dev_attr_uuid.attr,
1818         &dev_attr_eui.attr,
1819         &dev_attr_nsid.attr,
1820         NULL,
1821 };
1822
1823 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1824                 struct attribute *a, int n)
1825 {
1826         struct device *dev = container_of(kobj, struct device, kobj);
1827         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1828
1829         if (a == &dev_attr_uuid.attr) {
1830                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1831                         return 0;
1832         }
1833         if (a == &dev_attr_eui.attr) {
1834                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1835                         return 0;
1836         }
1837         return a->mode;
1838 }
1839
1840 static const struct attribute_group nvme_ns_attr_group = {
1841         .attrs          = nvme_ns_attrs,
1842         .is_visible     = nvme_ns_attrs_are_visible,
1843 };
1844
1845 #define nvme_show_str_function(field)                                           \
1846 static ssize_t  field##_show(struct device *dev,                                \
1847                             struct device_attribute *attr, char *buf)           \
1848 {                                                                               \
1849         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1850         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1851 }                                                                               \
1852 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1853
1854 #define nvme_show_int_function(field)                                           \
1855 static ssize_t  field##_show(struct device *dev,                                \
1856                             struct device_attribute *attr, char *buf)           \
1857 {                                                                               \
1858         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1859         return sprintf(buf, "%d\n", ctrl->field);       \
1860 }                                                                               \
1861 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1862
1863 nvme_show_str_function(model);
1864 nvme_show_str_function(serial);
1865 nvme_show_str_function(firmware_rev);
1866 nvme_show_int_function(cntlid);
1867
1868 static ssize_t nvme_sysfs_delete(struct device *dev,
1869                                 struct device_attribute *attr, const char *buf,
1870                                 size_t count)
1871 {
1872         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1873
1874         if (device_remove_file_self(dev, attr))
1875                 ctrl->ops->delete_ctrl(ctrl);
1876         return count;
1877 }
1878 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1879
1880 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1881                                          struct device_attribute *attr,
1882                                          char *buf)
1883 {
1884         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1885
1886         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1887 }
1888 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1889
1890 static ssize_t nvme_sysfs_show_state(struct device *dev,
1891                                      struct device_attribute *attr,
1892                                      char *buf)
1893 {
1894         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1895         static const char *const state_name[] = {
1896                 [NVME_CTRL_NEW]         = "new",
1897                 [NVME_CTRL_LIVE]        = "live",
1898                 [NVME_CTRL_RESETTING]   = "resetting",
1899                 [NVME_CTRL_RECONNECTING]= "reconnecting",
1900                 [NVME_CTRL_DELETING]    = "deleting",
1901                 [NVME_CTRL_DEAD]        = "dead",
1902         };
1903
1904         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1905             state_name[ctrl->state])
1906                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1907
1908         return sprintf(buf, "unknown state\n");
1909 }
1910
1911 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1912
1913 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1914                                          struct device_attribute *attr,
1915                                          char *buf)
1916 {
1917         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1918
1919         return snprintf(buf, PAGE_SIZE, "%s\n",
1920                         ctrl->ops->get_subsysnqn(ctrl));
1921 }
1922 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1923
1924 static ssize_t nvme_sysfs_show_address(struct device *dev,
1925                                          struct device_attribute *attr,
1926                                          char *buf)
1927 {
1928         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1929
1930         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1931 }
1932 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1933
1934 static struct attribute *nvme_dev_attrs[] = {
1935         &dev_attr_reset_controller.attr,
1936         &dev_attr_rescan_controller.attr,
1937         &dev_attr_model.attr,
1938         &dev_attr_serial.attr,
1939         &dev_attr_firmware_rev.attr,
1940         &dev_attr_cntlid.attr,
1941         &dev_attr_delete_controller.attr,
1942         &dev_attr_transport.attr,
1943         &dev_attr_subsysnqn.attr,
1944         &dev_attr_address.attr,
1945         &dev_attr_state.attr,
1946         NULL
1947 };
1948
1949 #define CHECK_ATTR(ctrl, a, name)               \
1950         if ((a) == &dev_attr_##name.attr &&     \
1951             !(ctrl)->ops->get_##name)           \
1952                 return 0
1953
1954 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1955                 struct attribute *a, int n)
1956 {
1957         struct device *dev = container_of(kobj, struct device, kobj);
1958         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1959
1960         if (a == &dev_attr_delete_controller.attr) {
1961                 if (!ctrl->ops->delete_ctrl)
1962                         return 0;
1963         }
1964
1965         CHECK_ATTR(ctrl, a, subsysnqn);
1966         CHECK_ATTR(ctrl, a, address);
1967
1968         return a->mode;
1969 }
1970
1971 static struct attribute_group nvme_dev_attrs_group = {
1972         .attrs          = nvme_dev_attrs,
1973         .is_visible     = nvme_dev_attrs_are_visible,
1974 };
1975
1976 static const struct attribute_group *nvme_dev_attr_groups[] = {
1977         &nvme_dev_attrs_group,
1978         NULL,
1979 };
1980
1981 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1982 {
1983         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1984         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1985
1986         return nsa->ns_id - nsb->ns_id;
1987 }
1988
1989 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1990 {
1991         struct nvme_ns *ns, *ret = NULL;
1992
1993         mutex_lock(&ctrl->namespaces_mutex);
1994         list_for_each_entry(ns, &ctrl->namespaces, list) {
1995                 if (ns->ns_id == nsid) {
1996                         kref_get(&ns->kref);
1997                         ret = ns;
1998                         break;
1999                 }
2000                 if (ns->ns_id > nsid)
2001                         break;
2002         }
2003         mutex_unlock(&ctrl->namespaces_mutex);
2004         return ret;
2005 }
2006
2007 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2008 {
2009         struct nvme_ns *ns;
2010         struct gendisk *disk;
2011         struct nvme_id_ns *id;
2012         char disk_name[DISK_NAME_LEN];
2013         int node = dev_to_node(ctrl->dev);
2014
2015         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2016         if (!ns)
2017                 return;
2018
2019         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2020         if (ns->instance < 0)
2021                 goto out_free_ns;
2022
2023         ns->queue = blk_mq_init_queue(ctrl->tagset);
2024         if (IS_ERR(ns->queue))
2025                 goto out_release_instance;
2026         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2027         ns->queue->queuedata = ns;
2028         ns->ctrl = ctrl;
2029
2030         kref_init(&ns->kref);
2031         ns->ns_id = nsid;
2032         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2033
2034         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2035         nvme_set_queue_limits(ctrl, ns->queue);
2036
2037         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2038
2039         if (nvme_revalidate_ns(ns, &id))
2040                 goto out_free_queue;
2041
2042         if (nvme_nvm_ns_supported(ns, id) &&
2043                                 nvme_nvm_register(ns, disk_name, node)) {
2044                 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
2045                 goto out_free_id;
2046         }
2047
2048         disk = alloc_disk_node(0, node);
2049         if (!disk)
2050                 goto out_free_id;
2051
2052         disk->fops = &nvme_fops;
2053         disk->private_data = ns;
2054         disk->queue = ns->queue;
2055         disk->flags = GENHD_FL_EXT_DEVT;
2056         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2057         ns->disk = disk;
2058
2059         __nvme_revalidate_disk(disk, id);
2060
2061         mutex_lock(&ctrl->namespaces_mutex);
2062         list_add_tail(&ns->list, &ctrl->namespaces);
2063         mutex_unlock(&ctrl->namespaces_mutex);
2064
2065         kref_get(&ctrl->kref);
2066
2067         kfree(id);
2068
2069         device_add_disk(ctrl->device, ns->disk);
2070         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2071                                         &nvme_ns_attr_group))
2072                 pr_warn("%s: failed to create sysfs group for identification\n",
2073                         ns->disk->disk_name);
2074         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2075                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2076                         ns->disk->disk_name);
2077         return;
2078  out_free_id:
2079         kfree(id);
2080  out_free_queue:
2081         blk_cleanup_queue(ns->queue);
2082  out_release_instance:
2083         ida_simple_remove(&ctrl->ns_ida, ns->instance);
2084  out_free_ns:
2085         kfree(ns);
2086 }
2087
2088 static void nvme_ns_remove(struct nvme_ns *ns)
2089 {
2090         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2091                 return;
2092
2093         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2094                 if (blk_get_integrity(ns->disk))
2095                         blk_integrity_unregister(ns->disk);
2096                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2097                                         &nvme_ns_attr_group);
2098                 if (ns->ndev)
2099                         nvme_nvm_unregister_sysfs(ns);
2100                 del_gendisk(ns->disk);
2101                 blk_mq_abort_requeue_list(ns->queue);
2102                 blk_cleanup_queue(ns->queue);
2103         }
2104
2105         mutex_lock(&ns->ctrl->namespaces_mutex);
2106         list_del_init(&ns->list);
2107         mutex_unlock(&ns->ctrl->namespaces_mutex);
2108
2109         nvme_put_ns(ns);
2110 }
2111
2112 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2113 {
2114         struct nvme_ns *ns;
2115
2116         ns = nvme_find_get_ns(ctrl, nsid);
2117         if (ns) {
2118                 if (ns->disk && revalidate_disk(ns->disk))
2119                         nvme_ns_remove(ns);
2120                 nvme_put_ns(ns);
2121         } else
2122                 nvme_alloc_ns(ctrl, nsid);
2123 }
2124
2125 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2126                                         unsigned nsid)
2127 {
2128         struct nvme_ns *ns, *next;
2129
2130         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2131                 if (ns->ns_id > nsid)
2132                         nvme_ns_remove(ns);
2133         }
2134 }
2135
2136 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2137 {
2138         struct nvme_ns *ns;
2139         __le32 *ns_list;
2140         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2141         int ret = 0;
2142
2143         ns_list = kzalloc(0x1000, GFP_KERNEL);
2144         if (!ns_list)
2145                 return -ENOMEM;
2146
2147         for (i = 0; i < num_lists; i++) {
2148                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2149                 if (ret)
2150                         goto free;
2151
2152                 for (j = 0; j < min(nn, 1024U); j++) {
2153                         nsid = le32_to_cpu(ns_list[j]);
2154                         if (!nsid)
2155                                 goto out;
2156
2157                         nvme_validate_ns(ctrl, nsid);
2158
2159                         while (++prev < nsid) {
2160                                 ns = nvme_find_get_ns(ctrl, prev);
2161                                 if (ns) {
2162                                         nvme_ns_remove(ns);
2163                                         nvme_put_ns(ns);
2164                                 }
2165                         }
2166                 }
2167                 nn -= j;
2168         }
2169  out:
2170         nvme_remove_invalid_namespaces(ctrl, prev);
2171  free:
2172         kfree(ns_list);
2173         return ret;
2174 }
2175
2176 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2177 {
2178         unsigned i;
2179
2180         for (i = 1; i <= nn; i++)
2181                 nvme_validate_ns(ctrl, i);
2182
2183         nvme_remove_invalid_namespaces(ctrl, nn);
2184 }
2185
2186 static void nvme_scan_work(struct work_struct *work)
2187 {
2188         struct nvme_ctrl *ctrl =
2189                 container_of(work, struct nvme_ctrl, scan_work);
2190         struct nvme_id_ctrl *id;
2191         unsigned nn;
2192
2193         if (ctrl->state != NVME_CTRL_LIVE)
2194                 return;
2195
2196         if (nvme_identify_ctrl(ctrl, &id))
2197                 return;
2198
2199         nn = le32_to_cpu(id->nn);
2200         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2201             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2202                 if (!nvme_scan_ns_list(ctrl, nn))
2203                         goto done;
2204         }
2205         nvme_scan_ns_sequential(ctrl, nn);
2206  done:
2207         mutex_lock(&ctrl->namespaces_mutex);
2208         list_sort(NULL, &ctrl->namespaces, ns_cmp);
2209         mutex_unlock(&ctrl->namespaces_mutex);
2210         kfree(id);
2211 }
2212
2213 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2214 {
2215         /*
2216          * Do not queue new scan work when a controller is reset during
2217          * removal.
2218          */
2219         if (ctrl->state == NVME_CTRL_LIVE)
2220                 schedule_work(&ctrl->scan_work);
2221 }
2222 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2223
2224 /*
2225  * This function iterates the namespace list unlocked to allow recovery from
2226  * controller failure. It is up to the caller to ensure the namespace list is
2227  * not modified by scan work while this function is executing.
2228  */
2229 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2230 {
2231         struct nvme_ns *ns, *next;
2232
2233         /*
2234          * The dead states indicates the controller was not gracefully
2235          * disconnected. In that case, we won't be able to flush any data while
2236          * removing the namespaces' disks; fail all the queues now to avoid
2237          * potentially having to clean up the failed sync later.
2238          */
2239         if (ctrl->state == NVME_CTRL_DEAD)
2240                 nvme_kill_queues(ctrl);
2241
2242         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2243                 nvme_ns_remove(ns);
2244 }
2245 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2246
2247 static void nvme_async_event_work(struct work_struct *work)
2248 {
2249         struct nvme_ctrl *ctrl =
2250                 container_of(work, struct nvme_ctrl, async_event_work);
2251
2252         spin_lock_irq(&ctrl->lock);
2253         while (ctrl->event_limit > 0) {
2254                 int aer_idx = --ctrl->event_limit;
2255
2256                 spin_unlock_irq(&ctrl->lock);
2257                 ctrl->ops->submit_async_event(ctrl, aer_idx);
2258                 spin_lock_irq(&ctrl->lock);
2259         }
2260         spin_unlock_irq(&ctrl->lock);
2261 }
2262
2263 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2264                 union nvme_result *res)
2265 {
2266         u32 result = le32_to_cpu(res->u32);
2267         bool done = true;
2268
2269         switch (le16_to_cpu(status) >> 1) {
2270         case NVME_SC_SUCCESS:
2271                 done = false;
2272                 /*FALLTHRU*/
2273         case NVME_SC_ABORT_REQ:
2274                 ++ctrl->event_limit;
2275                 schedule_work(&ctrl->async_event_work);
2276                 break;
2277         default:
2278                 break;
2279         }
2280
2281         if (done)
2282                 return;
2283
2284         switch (result & 0xff07) {
2285         case NVME_AER_NOTICE_NS_CHANGED:
2286                 dev_info(ctrl->device, "rescanning\n");
2287                 nvme_queue_scan(ctrl);
2288                 break;
2289         default:
2290                 dev_warn(ctrl->device, "async event result %08x\n", result);
2291         }
2292 }
2293 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2294
2295 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2296 {
2297         ctrl->event_limit = NVME_NR_AERS;
2298         schedule_work(&ctrl->async_event_work);
2299 }
2300 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2301
2302 static DEFINE_IDA(nvme_instance_ida);
2303
2304 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2305 {
2306         int instance, error;
2307
2308         do {
2309                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2310                         return -ENODEV;
2311
2312                 spin_lock(&dev_list_lock);
2313                 error = ida_get_new(&nvme_instance_ida, &instance);
2314                 spin_unlock(&dev_list_lock);
2315         } while (error == -EAGAIN);
2316
2317         if (error)
2318                 return -ENODEV;
2319
2320         ctrl->instance = instance;
2321         return 0;
2322 }
2323
2324 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2325 {
2326         spin_lock(&dev_list_lock);
2327         ida_remove(&nvme_instance_ida, ctrl->instance);
2328         spin_unlock(&dev_list_lock);
2329 }
2330
2331 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2332 {
2333         flush_work(&ctrl->async_event_work);
2334         flush_work(&ctrl->scan_work);
2335         nvme_remove_namespaces(ctrl);
2336
2337         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2338
2339         spin_lock(&dev_list_lock);
2340         list_del(&ctrl->node);
2341         spin_unlock(&dev_list_lock);
2342 }
2343 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2344
2345 static void nvme_free_ctrl(struct kref *kref)
2346 {
2347         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2348
2349         put_device(ctrl->device);
2350         nvme_release_instance(ctrl);
2351         ida_destroy(&ctrl->ns_ida);
2352
2353         ctrl->ops->free_ctrl(ctrl);
2354 }
2355
2356 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2357 {
2358         kref_put(&ctrl->kref, nvme_free_ctrl);
2359 }
2360 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2361
2362 /*
2363  * Initialize a NVMe controller structures.  This needs to be called during
2364  * earliest initialization so that we have the initialized structured around
2365  * during probing.
2366  */
2367 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2368                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2369 {
2370         int ret;
2371
2372         ctrl->state = NVME_CTRL_NEW;
2373         spin_lock_init(&ctrl->lock);
2374         INIT_LIST_HEAD(&ctrl->namespaces);
2375         mutex_init(&ctrl->namespaces_mutex);
2376         kref_init(&ctrl->kref);
2377         ctrl->dev = dev;
2378         ctrl->ops = ops;
2379         ctrl->quirks = quirks;
2380         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2381         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2382
2383         ret = nvme_set_instance(ctrl);
2384         if (ret)
2385                 goto out;
2386
2387         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2388                                 MKDEV(nvme_char_major, ctrl->instance),
2389                                 ctrl, nvme_dev_attr_groups,
2390                                 "nvme%d", ctrl->instance);
2391         if (IS_ERR(ctrl->device)) {
2392                 ret = PTR_ERR(ctrl->device);
2393                 goto out_release_instance;
2394         }
2395         get_device(ctrl->device);
2396         ida_init(&ctrl->ns_ida);
2397
2398         spin_lock(&dev_list_lock);
2399         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2400         spin_unlock(&dev_list_lock);
2401
2402         /*
2403          * Initialize latency tolerance controls.  The sysfs files won't
2404          * be visible to userspace unless the device actually supports APST.
2405          */
2406         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2407         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2408                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2409
2410         return 0;
2411 out_release_instance:
2412         nvme_release_instance(ctrl);
2413 out:
2414         return ret;
2415 }
2416 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2417
2418 /**
2419  * nvme_kill_queues(): Ends all namespace queues
2420  * @ctrl: the dead controller that needs to end
2421  *
2422  * Call this function when the driver determines it is unable to get the
2423  * controller in a state capable of servicing IO.
2424  */
2425 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2426 {
2427         struct nvme_ns *ns;
2428
2429         mutex_lock(&ctrl->namespaces_mutex);
2430         list_for_each_entry(ns, &ctrl->namespaces, list) {
2431                 /*
2432                  * Revalidating a dead namespace sets capacity to 0. This will
2433                  * end buffered writers dirtying pages that can't be synced.
2434                  */
2435                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2436                         continue;
2437                 revalidate_disk(ns->disk);
2438                 blk_set_queue_dying(ns->queue);
2439                 blk_mq_abort_requeue_list(ns->queue);
2440                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2441         }
2442         mutex_unlock(&ctrl->namespaces_mutex);
2443 }
2444 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2445
2446 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2447 {
2448         struct nvme_ns *ns;
2449
2450         mutex_lock(&ctrl->namespaces_mutex);
2451         list_for_each_entry(ns, &ctrl->namespaces, list)
2452                 blk_mq_unfreeze_queue(ns->queue);
2453         mutex_unlock(&ctrl->namespaces_mutex);
2454 }
2455 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2456
2457 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2458 {
2459         struct nvme_ns *ns;
2460
2461         mutex_lock(&ctrl->namespaces_mutex);
2462         list_for_each_entry(ns, &ctrl->namespaces, list) {
2463                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2464                 if (timeout <= 0)
2465                         break;
2466         }
2467         mutex_unlock(&ctrl->namespaces_mutex);
2468 }
2469 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2470
2471 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2472 {
2473         struct nvme_ns *ns;
2474
2475         mutex_lock(&ctrl->namespaces_mutex);
2476         list_for_each_entry(ns, &ctrl->namespaces, list)
2477                 blk_mq_freeze_queue_wait(ns->queue);
2478         mutex_unlock(&ctrl->namespaces_mutex);
2479 }
2480 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2481
2482 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2483 {
2484         struct nvme_ns *ns;
2485
2486         mutex_lock(&ctrl->namespaces_mutex);
2487         list_for_each_entry(ns, &ctrl->namespaces, list)
2488                 blk_freeze_queue_start(ns->queue);
2489         mutex_unlock(&ctrl->namespaces_mutex);
2490 }
2491 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2492
2493 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2494 {
2495         struct nvme_ns *ns;
2496
2497         mutex_lock(&ctrl->namespaces_mutex);
2498         list_for_each_entry(ns, &ctrl->namespaces, list)
2499                 blk_mq_quiesce_queue(ns->queue);
2500         mutex_unlock(&ctrl->namespaces_mutex);
2501 }
2502 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2503
2504 void nvme_start_queues(struct nvme_ctrl *ctrl)
2505 {
2506         struct nvme_ns *ns;
2507
2508         mutex_lock(&ctrl->namespaces_mutex);
2509         list_for_each_entry(ns, &ctrl->namespaces, list) {
2510                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2511                 blk_mq_kick_requeue_list(ns->queue);
2512         }
2513         mutex_unlock(&ctrl->namespaces_mutex);
2514 }
2515 EXPORT_SYMBOL_GPL(nvme_start_queues);
2516
2517 int __init nvme_core_init(void)
2518 {
2519         int result;
2520
2521         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2522                                                         &nvme_dev_fops);
2523         if (result < 0)
2524                 return result;
2525         else if (result > 0)
2526                 nvme_char_major = result;
2527
2528         nvme_class = class_create(THIS_MODULE, "nvme");
2529         if (IS_ERR(nvme_class)) {
2530                 result = PTR_ERR(nvme_class);
2531                 goto unregister_chrdev;
2532         }
2533
2534         return 0;
2535
2536  unregister_chrdev:
2537         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2538         return result;
2539 }
2540
2541 void nvme_core_exit(void)
2542 {
2543         class_destroy(nvme_class);
2544         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2545 }
2546
2547 MODULE_LICENSE("GPL");
2548 MODULE_VERSION("1.0");
2549 module_init(nvme_core_init);
2550 module_exit(nvme_core_exit);