]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH            1024
52 #define NVME_AQ_DEPTH           256
53 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
55
56 /*
57  * We handle AEN commands ourselves and don't even let the
58  * block layer know about them.
59  */
60 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static struct workqueue_struct *nvme_workq;
70
71 struct nvme_dev;
72 struct nvme_queue;
73
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78 /*
79  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
80  */
81 struct nvme_dev {
82         struct nvme_queue **queues;
83         struct blk_mq_tag_set tagset;
84         struct blk_mq_tag_set admin_tagset;
85         u32 __iomem *dbs;
86         struct device *dev;
87         struct dma_pool *prp_page_pool;
88         struct dma_pool *prp_small_pool;
89         unsigned queue_count;
90         unsigned online_queues;
91         unsigned max_qid;
92         int q_depth;
93         u32 db_stride;
94         void __iomem *bar;
95         struct work_struct reset_work;
96         struct work_struct remove_work;
97         struct timer_list watchdog_timer;
98         struct mutex shutdown_lock;
99         bool subsystem;
100         void __iomem *cmb;
101         dma_addr_t cmb_dma_addr;
102         u64 cmb_size;
103         u32 cmbsz;
104         u32 cmbloc;
105         struct nvme_ctrl ctrl;
106         struct completion ioq_wait;
107         u32 *dbbuf_dbs;
108         dma_addr_t dbbuf_dbs_dma_addr;
109         u32 *dbbuf_eis;
110         dma_addr_t dbbuf_eis_dma_addr;
111 };
112
113 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114 {
115         return qid * 2 * stride;
116 }
117
118 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119 {
120         return (qid * 2 + 1) * stride;
121 }
122
123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124 {
125         return container_of(ctrl, struct nvme_dev, ctrl);
126 }
127
128 /*
129  * An NVM Express queue.  Each device has at least two (one for admin
130  * commands and one for I/O commands).
131  */
132 struct nvme_queue {
133         struct device *q_dmadev;
134         struct nvme_dev *dev;
135         spinlock_t q_lock;
136         struct nvme_command *sq_cmds;
137         struct nvme_command __iomem *sq_cmds_io;
138         volatile struct nvme_completion *cqes;
139         struct blk_mq_tags **tags;
140         dma_addr_t sq_dma_addr;
141         dma_addr_t cq_dma_addr;
142         u32 __iomem *q_db;
143         u16 q_depth;
144         s16 cq_vector;
145         u16 sq_tail;
146         u16 cq_head;
147         u16 qid;
148         u8 cq_phase;
149         u8 cqe_seen;
150         u32 *dbbuf_sq_db;
151         u32 *dbbuf_cq_db;
152         u32 *dbbuf_sq_ei;
153         u32 *dbbuf_cq_ei;
154 };
155
156 /*
157  * The nvme_iod describes the data in an I/O, including the list of PRP
158  * entries.  You can't see it in this data structure because C doesn't let
159  * me express that.  Use nvme_init_iod to ensure there's enough space
160  * allocated to store the PRP list.
161  */
162 struct nvme_iod {
163         struct nvme_request req;
164         struct nvme_queue *nvmeq;
165         int aborted;
166         int npages;             /* In the PRP list. 0 means small pool in use */
167         int nents;              /* Used in scatterlist */
168         int length;             /* Of data, in bytes */
169         dma_addr_t first_dma;
170         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
171         struct scatterlist *sg;
172         struct scatterlist inline_sg[0];
173 };
174
175 /*
176  * Check we didin't inadvertently grow the command struct
177  */
178 static inline void _nvme_check_size(void)
179 {
180         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
181         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
189         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
190         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
191         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
192         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
193 }
194
195 static inline unsigned int nvme_dbbuf_size(u32 stride)
196 {
197         return ((num_possible_cpus() + 1) * 8 * stride);
198 }
199
200 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
201 {
202         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
203
204         if (dev->dbbuf_dbs)
205                 return 0;
206
207         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
208                                             &dev->dbbuf_dbs_dma_addr,
209                                             GFP_KERNEL);
210         if (!dev->dbbuf_dbs)
211                 return -ENOMEM;
212         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
213                                             &dev->dbbuf_eis_dma_addr,
214                                             GFP_KERNEL);
215         if (!dev->dbbuf_eis) {
216                 dma_free_coherent(dev->dev, mem_size,
217                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
218                 dev->dbbuf_dbs = NULL;
219                 return -ENOMEM;
220         }
221
222         return 0;
223 }
224
225 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
226 {
227         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
228
229         if (dev->dbbuf_dbs) {
230                 dma_free_coherent(dev->dev, mem_size,
231                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232                 dev->dbbuf_dbs = NULL;
233         }
234         if (dev->dbbuf_eis) {
235                 dma_free_coherent(dev->dev, mem_size,
236                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
237                 dev->dbbuf_eis = NULL;
238         }
239 }
240
241 static void nvme_dbbuf_init(struct nvme_dev *dev,
242                             struct nvme_queue *nvmeq, int qid)
243 {
244         if (!dev->dbbuf_dbs || !qid)
245                 return;
246
247         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
248         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
249         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
250         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
251 }
252
253 static void nvme_dbbuf_set(struct nvme_dev *dev)
254 {
255         struct nvme_command c;
256
257         if (!dev->dbbuf_dbs)
258                 return;
259
260         memset(&c, 0, sizeof(c));
261         c.dbbuf.opcode = nvme_admin_dbbuf;
262         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
263         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
264
265         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
266                 dev_warn(dev->dev, "unable to set dbbuf\n");
267                 /* Free memory and continue on */
268                 nvme_dbbuf_dma_free(dev);
269         }
270 }
271
272 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
273 {
274         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
275 }
276
277 /* Update dbbuf and return true if an MMIO is required */
278 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
279                                               volatile u32 *dbbuf_ei)
280 {
281         if (dbbuf_db) {
282                 u16 old_value;
283
284                 /*
285                  * Ensure that the queue is written before updating
286                  * the doorbell in memory
287                  */
288                 wmb();
289
290                 old_value = *dbbuf_db;
291                 *dbbuf_db = value;
292
293                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
294                         return false;
295         }
296
297         return true;
298 }
299
300 /*
301  * Max size of iod being embedded in the request payload
302  */
303 #define NVME_INT_PAGES          2
304 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
305
306 /*
307  * Will slightly overestimate the number of pages needed.  This is OK
308  * as it only leads to a small amount of wasted memory for the lifetime of
309  * the I/O.
310  */
311 static int nvme_npages(unsigned size, struct nvme_dev *dev)
312 {
313         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
314                                       dev->ctrl.page_size);
315         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
316 }
317
318 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
319                 unsigned int size, unsigned int nseg)
320 {
321         return sizeof(__le64 *) * nvme_npages(size, dev) +
322                         sizeof(struct scatterlist) * nseg;
323 }
324
325 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
326 {
327         return sizeof(struct nvme_iod) +
328                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
329 }
330
331 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332                                 unsigned int hctx_idx)
333 {
334         struct nvme_dev *dev = data;
335         struct nvme_queue *nvmeq = dev->queues[0];
336
337         WARN_ON(hctx_idx != 0);
338         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
339         WARN_ON(nvmeq->tags);
340
341         hctx->driver_data = nvmeq;
342         nvmeq->tags = &dev->admin_tagset.tags[0];
343         return 0;
344 }
345
346 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
347 {
348         struct nvme_queue *nvmeq = hctx->driver_data;
349
350         nvmeq->tags = NULL;
351 }
352
353 static int nvme_admin_init_request(struct blk_mq_tag_set *set,
354                 struct request *req, unsigned int hctx_idx,
355                 unsigned int numa_node)
356 {
357         struct nvme_dev *dev = set->driver_data;
358         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
359         struct nvme_queue *nvmeq = dev->queues[0];
360
361         BUG_ON(!nvmeq);
362         iod->nvmeq = nvmeq;
363         return 0;
364 }
365
366 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367                           unsigned int hctx_idx)
368 {
369         struct nvme_dev *dev = data;
370         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
371
372         if (!nvmeq->tags)
373                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
374
375         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
376         hctx->driver_data = nvmeq;
377         return 0;
378 }
379
380 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
381                 unsigned int hctx_idx, unsigned int numa_node)
382 {
383         struct nvme_dev *dev = set->driver_data;
384         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
385         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
386
387         BUG_ON(!nvmeq);
388         iod->nvmeq = nvmeq;
389         return 0;
390 }
391
392 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
393 {
394         struct nvme_dev *dev = set->driver_data;
395
396         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
397 }
398
399 /**
400  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
401  * @nvmeq: The queue to use
402  * @cmd: The command to send
403  *
404  * Safe to use from interrupt context
405  */
406 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
407                                                 struct nvme_command *cmd)
408 {
409         u16 tail = nvmeq->sq_tail;
410
411         if (nvmeq->sq_cmds_io)
412                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
413         else
414                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
415
416         if (++tail == nvmeq->q_depth)
417                 tail = 0;
418         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
419                                               nvmeq->dbbuf_sq_ei))
420                 writel(tail, nvmeq->q_db);
421         nvmeq->sq_tail = tail;
422 }
423
424 static __le64 **iod_list(struct request *req)
425 {
426         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
428 }
429
430 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
431 {
432         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
433         int nseg = blk_rq_nr_phys_segments(rq);
434         unsigned int size = blk_rq_payload_bytes(rq);
435
436         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
437                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
438                 if (!iod->sg)
439                         return BLK_MQ_RQ_QUEUE_BUSY;
440         } else {
441                 iod->sg = iod->inline_sg;
442         }
443
444         iod->aborted = 0;
445         iod->npages = -1;
446         iod->nents = 0;
447         iod->length = size;
448
449         return BLK_MQ_RQ_QUEUE_OK;
450 }
451
452 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
453 {
454         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455         const int last_prp = dev->ctrl.page_size / 8 - 1;
456         int i;
457         __le64 **list = iod_list(req);
458         dma_addr_t prp_dma = iod->first_dma;
459
460         if (iod->npages == 0)
461                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462         for (i = 0; i < iod->npages; i++) {
463                 __le64 *prp_list = list[i];
464                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466                 prp_dma = next_prp_dma;
467         }
468
469         if (iod->sg != iod->inline_sg)
470                 kfree(iod->sg);
471 }
472
473 #ifdef CONFIG_BLK_DEV_INTEGRITY
474 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
475 {
476         if (be32_to_cpu(pi->ref_tag) == v)
477                 pi->ref_tag = cpu_to_be32(p);
478 }
479
480 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
481 {
482         if (be32_to_cpu(pi->ref_tag) == p)
483                 pi->ref_tag = cpu_to_be32(v);
484 }
485
486 /**
487  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
488  *
489  * The virtual start sector is the one that was originally submitted by the
490  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
491  * start sector may be different. Remap protection information to match the
492  * physical LBA on writes, and back to the original seed on reads.
493  *
494  * Type 0 and 3 do not have a ref tag, so no remapping required.
495  */
496 static void nvme_dif_remap(struct request *req,
497                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
498 {
499         struct nvme_ns *ns = req->rq_disk->private_data;
500         struct bio_integrity_payload *bip;
501         struct t10_pi_tuple *pi;
502         void *p, *pmap;
503         u32 i, nlb, ts, phys, virt;
504
505         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
506                 return;
507
508         bip = bio_integrity(req->bio);
509         if (!bip)
510                 return;
511
512         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
513
514         p = pmap;
515         virt = bip_get_seed(bip);
516         phys = nvme_block_nr(ns, blk_rq_pos(req));
517         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
518         ts = ns->disk->queue->integrity.tuple_size;
519
520         for (i = 0; i < nlb; i++, virt++, phys++) {
521                 pi = (struct t10_pi_tuple *)p;
522                 dif_swap(phys, virt, pi);
523                 p += ts;
524         }
525         kunmap_atomic(pmap);
526 }
527 #else /* CONFIG_BLK_DEV_INTEGRITY */
528 static void nvme_dif_remap(struct request *req,
529                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
530 {
531 }
532 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533 {
534 }
535 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 #endif
539
540 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
541 {
542         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543         struct dma_pool *pool;
544         int length = blk_rq_payload_bytes(req);
545         struct scatterlist *sg = iod->sg;
546         int dma_len = sg_dma_len(sg);
547         u64 dma_addr = sg_dma_address(sg);
548         u32 page_size = dev->ctrl.page_size;
549         int offset = dma_addr & (page_size - 1);
550         __le64 *prp_list;
551         __le64 **list = iod_list(req);
552         dma_addr_t prp_dma;
553         int nprps, i;
554
555         length -= (page_size - offset);
556         if (length <= 0)
557                 return true;
558
559         dma_len -= (page_size - offset);
560         if (dma_len) {
561                 dma_addr += (page_size - offset);
562         } else {
563                 sg = sg_next(sg);
564                 dma_addr = sg_dma_address(sg);
565                 dma_len = sg_dma_len(sg);
566         }
567
568         if (length <= page_size) {
569                 iod->first_dma = dma_addr;
570                 return true;
571         }
572
573         nprps = DIV_ROUND_UP(length, page_size);
574         if (nprps <= (256 / 8)) {
575                 pool = dev->prp_small_pool;
576                 iod->npages = 0;
577         } else {
578                 pool = dev->prp_page_pool;
579                 iod->npages = 1;
580         }
581
582         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
583         if (!prp_list) {
584                 iod->first_dma = dma_addr;
585                 iod->npages = -1;
586                 return false;
587         }
588         list[0] = prp_list;
589         iod->first_dma = prp_dma;
590         i = 0;
591         for (;;) {
592                 if (i == page_size >> 3) {
593                         __le64 *old_prp_list = prp_list;
594                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
595                         if (!prp_list)
596                                 return false;
597                         list[iod->npages++] = prp_list;
598                         prp_list[0] = old_prp_list[i - 1];
599                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
600                         i = 1;
601                 }
602                 prp_list[i++] = cpu_to_le64(dma_addr);
603                 dma_len -= page_size;
604                 dma_addr += page_size;
605                 length -= page_size;
606                 if (length <= 0)
607                         break;
608                 if (dma_len > 0)
609                         continue;
610                 BUG_ON(dma_len < 0);
611                 sg = sg_next(sg);
612                 dma_addr = sg_dma_address(sg);
613                 dma_len = sg_dma_len(sg);
614         }
615
616         return true;
617 }
618
619 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
620                 struct nvme_command *cmnd)
621 {
622         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
623         struct request_queue *q = req->q;
624         enum dma_data_direction dma_dir = rq_data_dir(req) ?
625                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
626         int ret = BLK_MQ_RQ_QUEUE_ERROR;
627
628         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
629         iod->nents = blk_rq_map_sg(q, req, iod->sg);
630         if (!iod->nents)
631                 goto out;
632
633         ret = BLK_MQ_RQ_QUEUE_BUSY;
634         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
635                                 DMA_ATTR_NO_WARN))
636                 goto out;
637
638         if (!nvme_setup_prps(dev, req))
639                 goto out_unmap;
640
641         ret = BLK_MQ_RQ_QUEUE_ERROR;
642         if (blk_integrity_rq(req)) {
643                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
644                         goto out_unmap;
645
646                 sg_init_table(&iod->meta_sg, 1);
647                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
648                         goto out_unmap;
649
650                 if (rq_data_dir(req))
651                         nvme_dif_remap(req, nvme_dif_prep);
652
653                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
654                         goto out_unmap;
655         }
656
657         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
659         if (blk_integrity_rq(req))
660                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
661         return BLK_MQ_RQ_QUEUE_OK;
662
663 out_unmap:
664         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
665 out:
666         return ret;
667 }
668
669 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
670 {
671         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
672         enum dma_data_direction dma_dir = rq_data_dir(req) ?
673                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
674
675         if (iod->nents) {
676                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
677                 if (blk_integrity_rq(req)) {
678                         if (!rq_data_dir(req))
679                                 nvme_dif_remap(req, nvme_dif_complete);
680                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
681                 }
682         }
683
684         nvme_cleanup_cmd(req);
685         nvme_free_iod(dev, req);
686 }
687
688 /*
689  * NOTE: ns is NULL when called on the admin queue.
690  */
691 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
692                          const struct blk_mq_queue_data *bd)
693 {
694         struct nvme_ns *ns = hctx->queue->queuedata;
695         struct nvme_queue *nvmeq = hctx->driver_data;
696         struct nvme_dev *dev = nvmeq->dev;
697         struct request *req = bd->rq;
698         struct nvme_command cmnd;
699         int ret = BLK_MQ_RQ_QUEUE_OK;
700
701         /*
702          * If formated with metadata, require the block layer provide a buffer
703          * unless this namespace is formated such that the metadata can be
704          * stripped/generated by the controller with PRACT=1.
705          */
706         if (ns && ns->ms && !blk_integrity_rq(req)) {
707                 if (!(ns->pi_type && ns->ms == 8) &&
708                     !blk_rq_is_passthrough(req)) {
709                         blk_mq_end_request(req, -EFAULT);
710                         return BLK_MQ_RQ_QUEUE_OK;
711                 }
712         }
713
714         ret = nvme_setup_cmd(ns, req, &cmnd);
715         if (ret != BLK_MQ_RQ_QUEUE_OK)
716                 return ret;
717
718         ret = nvme_init_iod(req, dev);
719         if (ret != BLK_MQ_RQ_QUEUE_OK)
720                 goto out_free_cmd;
721
722         if (blk_rq_nr_phys_segments(req))
723                 ret = nvme_map_data(dev, req, &cmnd);
724
725         if (ret != BLK_MQ_RQ_QUEUE_OK)
726                 goto out_cleanup_iod;
727
728         blk_mq_start_request(req);
729
730         spin_lock_irq(&nvmeq->q_lock);
731         if (unlikely(nvmeq->cq_vector < 0)) {
732                 ret = BLK_MQ_RQ_QUEUE_ERROR;
733                 spin_unlock_irq(&nvmeq->q_lock);
734                 goto out_cleanup_iod;
735         }
736         __nvme_submit_cmd(nvmeq, &cmnd);
737         nvme_process_cq(nvmeq);
738         spin_unlock_irq(&nvmeq->q_lock);
739         return BLK_MQ_RQ_QUEUE_OK;
740 out_cleanup_iod:
741         nvme_free_iod(dev, req);
742 out_free_cmd:
743         nvme_cleanup_cmd(req);
744         return ret;
745 }
746
747 static void nvme_pci_complete_rq(struct request *req)
748 {
749         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
750
751         nvme_unmap_data(iod->nvmeq->dev, req);
752         nvme_complete_rq(req);
753 }
754
755 /* We read the CQE phase first to check if the rest of the entry is valid */
756 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
757                 u16 phase)
758 {
759         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
760 }
761
762 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
763 {
764         u16 head, phase;
765
766         head = nvmeq->cq_head;
767         phase = nvmeq->cq_phase;
768
769         while (nvme_cqe_valid(nvmeq, head, phase)) {
770                 struct nvme_completion cqe = nvmeq->cqes[head];
771                 struct request *req;
772
773                 if (++head == nvmeq->q_depth) {
774                         head = 0;
775                         phase = !phase;
776                 }
777
778                 if (tag && *tag == cqe.command_id)
779                         *tag = -1;
780
781                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
782                         dev_warn(nvmeq->dev->ctrl.device,
783                                 "invalid id %d completed on queue %d\n",
784                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
785                         continue;
786                 }
787
788                 /*
789                  * AEN requests are special as they don't time out and can
790                  * survive any kind of queue freeze and often don't respond to
791                  * aborts.  We don't even bother to allocate a struct request
792                  * for them but rather special case them here.
793                  */
794                 if (unlikely(nvmeq->qid == 0 &&
795                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
796                         nvme_complete_async_event(&nvmeq->dev->ctrl,
797                                         cqe.status, &cqe.result);
798                         continue;
799                 }
800
801                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
802                 nvme_end_request(req, cqe.status, cqe.result);
803         }
804
805         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
806                 return;
807
808         if (likely(nvmeq->cq_vector >= 0))
809                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
810                                                       nvmeq->dbbuf_cq_ei))
811                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
812         nvmeq->cq_head = head;
813         nvmeq->cq_phase = phase;
814
815         nvmeq->cqe_seen = 1;
816 }
817
818 static void nvme_process_cq(struct nvme_queue *nvmeq)
819 {
820         __nvme_process_cq(nvmeq, NULL);
821 }
822
823 static irqreturn_t nvme_irq(int irq, void *data)
824 {
825         irqreturn_t result;
826         struct nvme_queue *nvmeq = data;
827         spin_lock(&nvmeq->q_lock);
828         nvme_process_cq(nvmeq);
829         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
830         nvmeq->cqe_seen = 0;
831         spin_unlock(&nvmeq->q_lock);
832         return result;
833 }
834
835 static irqreturn_t nvme_irq_check(int irq, void *data)
836 {
837         struct nvme_queue *nvmeq = data;
838         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
839                 return IRQ_WAKE_THREAD;
840         return IRQ_NONE;
841 }
842
843 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
844 {
845         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
846                 spin_lock_irq(&nvmeq->q_lock);
847                 __nvme_process_cq(nvmeq, &tag);
848                 spin_unlock_irq(&nvmeq->q_lock);
849
850                 if (tag == -1)
851                         return 1;
852         }
853
854         return 0;
855 }
856
857 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
858 {
859         struct nvme_queue *nvmeq = hctx->driver_data;
860
861         return __nvme_poll(nvmeq, tag);
862 }
863
864 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
865 {
866         struct nvme_dev *dev = to_nvme_dev(ctrl);
867         struct nvme_queue *nvmeq = dev->queues[0];
868         struct nvme_command c;
869
870         memset(&c, 0, sizeof(c));
871         c.common.opcode = nvme_admin_async_event;
872         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
873
874         spin_lock_irq(&nvmeq->q_lock);
875         __nvme_submit_cmd(nvmeq, &c);
876         spin_unlock_irq(&nvmeq->q_lock);
877 }
878
879 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880 {
881         struct nvme_command c;
882
883         memset(&c, 0, sizeof(c));
884         c.delete_queue.opcode = opcode;
885         c.delete_queue.qid = cpu_to_le16(id);
886
887         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
888 }
889
890 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
891                                                 struct nvme_queue *nvmeq)
892 {
893         struct nvme_command c;
894         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
895
896         /*
897          * Note: we (ab)use the fact the the prp fields survive if no data
898          * is attached to the request.
899          */
900         memset(&c, 0, sizeof(c));
901         c.create_cq.opcode = nvme_admin_create_cq;
902         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
903         c.create_cq.cqid = cpu_to_le16(qid);
904         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
905         c.create_cq.cq_flags = cpu_to_le16(flags);
906         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
907
908         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
909 }
910
911 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
912                                                 struct nvme_queue *nvmeq)
913 {
914         struct nvme_command c;
915         int flags = NVME_QUEUE_PHYS_CONTIG;
916
917         /*
918          * Note: we (ab)use the fact the the prp fields survive if no data
919          * is attached to the request.
920          */
921         memset(&c, 0, sizeof(c));
922         c.create_sq.opcode = nvme_admin_create_sq;
923         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
924         c.create_sq.sqid = cpu_to_le16(qid);
925         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
926         c.create_sq.sq_flags = cpu_to_le16(flags);
927         c.create_sq.cqid = cpu_to_le16(qid);
928
929         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
930 }
931
932 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
933 {
934         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
935 }
936
937 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
938 {
939         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
940 }
941
942 static void abort_endio(struct request *req, int error)
943 {
944         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
945         struct nvme_queue *nvmeq = iod->nvmeq;
946
947         dev_warn(nvmeq->dev->ctrl.device,
948                  "Abort status: 0x%x", nvme_req(req)->status);
949         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
950         blk_mq_free_request(req);
951 }
952
953 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
954 {
955         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956         struct nvme_queue *nvmeq = iod->nvmeq;
957         struct nvme_dev *dev = nvmeq->dev;
958         struct request *abort_req;
959         struct nvme_command cmd;
960
961         /*
962          * Did we miss an interrupt?
963          */
964         if (__nvme_poll(nvmeq, req->tag)) {
965                 dev_warn(dev->ctrl.device,
966                          "I/O %d QID %d timeout, completion polled\n",
967                          req->tag, nvmeq->qid);
968                 return BLK_EH_HANDLED;
969         }
970
971         /*
972          * Shutdown immediately if controller times out while starting. The
973          * reset work will see the pci device disabled when it gets the forced
974          * cancellation error. All outstanding requests are completed on
975          * shutdown, so we return BLK_EH_HANDLED.
976          */
977         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
978                 dev_warn(dev->ctrl.device,
979                          "I/O %d QID %d timeout, disable controller\n",
980                          req->tag, nvmeq->qid);
981                 nvme_dev_disable(dev, false);
982                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
983                 return BLK_EH_HANDLED;
984         }
985
986         /*
987          * Shutdown the controller immediately and schedule a reset if the
988          * command was already aborted once before and still hasn't been
989          * returned to the driver, or if this is the admin queue.
990          */
991         if (!nvmeq->qid || iod->aborted) {
992                 dev_warn(dev->ctrl.device,
993                          "I/O %d QID %d timeout, reset controller\n",
994                          req->tag, nvmeq->qid);
995                 nvme_dev_disable(dev, false);
996                 nvme_reset(dev);
997
998                 /*
999                  * Mark the request as handled, since the inline shutdown
1000                  * forces all outstanding requests to complete.
1001                  */
1002                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1003                 return BLK_EH_HANDLED;
1004         }
1005
1006         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1007                 atomic_inc(&dev->ctrl.abort_limit);
1008                 return BLK_EH_RESET_TIMER;
1009         }
1010         iod->aborted = 1;
1011
1012         memset(&cmd, 0, sizeof(cmd));
1013         cmd.abort.opcode = nvme_admin_abort_cmd;
1014         cmd.abort.cid = req->tag;
1015         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1016
1017         dev_warn(nvmeq->dev->ctrl.device,
1018                 "I/O %d QID %d timeout, aborting\n",
1019                  req->tag, nvmeq->qid);
1020
1021         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1022                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1023         if (IS_ERR(abort_req)) {
1024                 atomic_inc(&dev->ctrl.abort_limit);
1025                 return BLK_EH_RESET_TIMER;
1026         }
1027
1028         abort_req->timeout = ADMIN_TIMEOUT;
1029         abort_req->end_io_data = NULL;
1030         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1031
1032         /*
1033          * The aborted req will be completed on receiving the abort req.
1034          * We enable the timer again. If hit twice, it'll cause a device reset,
1035          * as the device then is in a faulty state.
1036          */
1037         return BLK_EH_RESET_TIMER;
1038 }
1039
1040 static void nvme_free_queue(struct nvme_queue *nvmeq)
1041 {
1042         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1043                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1044         if (nvmeq->sq_cmds)
1045                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1046                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1047         kfree(nvmeq);
1048 }
1049
1050 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1051 {
1052         int i;
1053
1054         for (i = dev->queue_count - 1; i >= lowest; i--) {
1055                 struct nvme_queue *nvmeq = dev->queues[i];
1056                 dev->queue_count--;
1057                 dev->queues[i] = NULL;
1058                 nvme_free_queue(nvmeq);
1059         }
1060 }
1061
1062 /**
1063  * nvme_suspend_queue - put queue into suspended state
1064  * @nvmeq - queue to suspend
1065  */
1066 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1067 {
1068         int vector;
1069
1070         spin_lock_irq(&nvmeq->q_lock);
1071         if (nvmeq->cq_vector == -1) {
1072                 spin_unlock_irq(&nvmeq->q_lock);
1073                 return 1;
1074         }
1075         vector = nvmeq->cq_vector;
1076         nvmeq->dev->online_queues--;
1077         nvmeq->cq_vector = -1;
1078         spin_unlock_irq(&nvmeq->q_lock);
1079
1080         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1081                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1082
1083         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1084
1085         return 0;
1086 }
1087
1088 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1089 {
1090         struct nvme_queue *nvmeq = dev->queues[0];
1091
1092         if (!nvmeq)
1093                 return;
1094         if (nvme_suspend_queue(nvmeq))
1095                 return;
1096
1097         if (shutdown)
1098                 nvme_shutdown_ctrl(&dev->ctrl);
1099         else
1100                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1101                                                 dev->bar + NVME_REG_CAP));
1102
1103         spin_lock_irq(&nvmeq->q_lock);
1104         nvme_process_cq(nvmeq);
1105         spin_unlock_irq(&nvmeq->q_lock);
1106 }
1107
1108 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1109                                 int entry_size)
1110 {
1111         int q_depth = dev->q_depth;
1112         unsigned q_size_aligned = roundup(q_depth * entry_size,
1113                                           dev->ctrl.page_size);
1114
1115         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1116                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1117                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1118                 q_depth = div_u64(mem_per_q, entry_size);
1119
1120                 /*
1121                  * Ensure the reduced q_depth is above some threshold where it
1122                  * would be better to map queues in system memory with the
1123                  * original depth
1124                  */
1125                 if (q_depth < 64)
1126                         return -ENOMEM;
1127         }
1128
1129         return q_depth;
1130 }
1131
1132 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1133                                 int qid, int depth)
1134 {
1135         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1136                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1137                                                       dev->ctrl.page_size);
1138                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1139                 nvmeq->sq_cmds_io = dev->cmb + offset;
1140         } else {
1141                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1142                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1143                 if (!nvmeq->sq_cmds)
1144                         return -ENOMEM;
1145         }
1146
1147         return 0;
1148 }
1149
1150 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1151                                                         int depth, int node)
1152 {
1153         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1154                                                         node);
1155         if (!nvmeq)
1156                 return NULL;
1157
1158         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1159                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1160         if (!nvmeq->cqes)
1161                 goto free_nvmeq;
1162
1163         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1164                 goto free_cqdma;
1165
1166         nvmeq->q_dmadev = dev->dev;
1167         nvmeq->dev = dev;
1168         spin_lock_init(&nvmeq->q_lock);
1169         nvmeq->cq_head = 0;
1170         nvmeq->cq_phase = 1;
1171         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1172         nvmeq->q_depth = depth;
1173         nvmeq->qid = qid;
1174         nvmeq->cq_vector = -1;
1175         dev->queues[qid] = nvmeq;
1176         dev->queue_count++;
1177
1178         return nvmeq;
1179
1180  free_cqdma:
1181         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1182                                                         nvmeq->cq_dma_addr);
1183  free_nvmeq:
1184         kfree(nvmeq);
1185         return NULL;
1186 }
1187
1188 static int queue_request_irq(struct nvme_queue *nvmeq)
1189 {
1190         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1191         int nr = nvmeq->dev->ctrl.instance;
1192
1193         if (use_threaded_interrupts) {
1194                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1195                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1196         } else {
1197                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1198                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1199         }
1200 }
1201
1202 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1203 {
1204         struct nvme_dev *dev = nvmeq->dev;
1205
1206         spin_lock_irq(&nvmeq->q_lock);
1207         nvmeq->sq_tail = 0;
1208         nvmeq->cq_head = 0;
1209         nvmeq->cq_phase = 1;
1210         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1211         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1212         nvme_dbbuf_init(dev, nvmeq, qid);
1213         dev->online_queues++;
1214         spin_unlock_irq(&nvmeq->q_lock);
1215 }
1216
1217 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1218 {
1219         struct nvme_dev *dev = nvmeq->dev;
1220         int result;
1221
1222         nvmeq->cq_vector = qid - 1;
1223         result = adapter_alloc_cq(dev, qid, nvmeq);
1224         if (result < 0)
1225                 return result;
1226
1227         result = adapter_alloc_sq(dev, qid, nvmeq);
1228         if (result < 0)
1229                 goto release_cq;
1230
1231         result = queue_request_irq(nvmeq);
1232         if (result < 0)
1233                 goto release_sq;
1234
1235         nvme_init_queue(nvmeq, qid);
1236         return result;
1237
1238  release_sq:
1239         adapter_delete_sq(dev, qid);
1240  release_cq:
1241         adapter_delete_cq(dev, qid);
1242         return result;
1243 }
1244
1245 static const struct blk_mq_ops nvme_mq_admin_ops = {
1246         .queue_rq       = nvme_queue_rq,
1247         .complete       = nvme_pci_complete_rq,
1248         .init_hctx      = nvme_admin_init_hctx,
1249         .exit_hctx      = nvme_admin_exit_hctx,
1250         .init_request   = nvme_admin_init_request,
1251         .timeout        = nvme_timeout,
1252 };
1253
1254 static const struct blk_mq_ops nvme_mq_ops = {
1255         .queue_rq       = nvme_queue_rq,
1256         .complete       = nvme_pci_complete_rq,
1257         .init_hctx      = nvme_init_hctx,
1258         .init_request   = nvme_init_request,
1259         .map_queues     = nvme_pci_map_queues,
1260         .timeout        = nvme_timeout,
1261         .poll           = nvme_poll,
1262 };
1263
1264 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1265 {
1266         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1267                 /*
1268                  * If the controller was reset during removal, it's possible
1269                  * user requests may be waiting on a stopped queue. Start the
1270                  * queue to flush these to completion.
1271                  */
1272                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1273                 blk_cleanup_queue(dev->ctrl.admin_q);
1274                 blk_mq_free_tag_set(&dev->admin_tagset);
1275         }
1276 }
1277
1278 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1279 {
1280         if (!dev->ctrl.admin_q) {
1281                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1282                 dev->admin_tagset.nr_hw_queues = 1;
1283
1284                 /*
1285                  * Subtract one to leave an empty queue entry for 'Full Queue'
1286                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1287                  */
1288                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1289                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1290                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1291                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1292                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1293                 dev->admin_tagset.driver_data = dev;
1294
1295                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1296                         return -ENOMEM;
1297
1298                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1299                 if (IS_ERR(dev->ctrl.admin_q)) {
1300                         blk_mq_free_tag_set(&dev->admin_tagset);
1301                         return -ENOMEM;
1302                 }
1303                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1304                         nvme_dev_remove_admin(dev);
1305                         dev->ctrl.admin_q = NULL;
1306                         return -ENODEV;
1307                 }
1308         } else
1309                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1310
1311         return 0;
1312 }
1313
1314 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1315 {
1316         int result;
1317         u32 aqa;
1318         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1319         struct nvme_queue *nvmeq;
1320
1321         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1322                                                 NVME_CAP_NSSRC(cap) : 0;
1323
1324         if (dev->subsystem &&
1325             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1326                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1327
1328         result = nvme_disable_ctrl(&dev->ctrl, cap);
1329         if (result < 0)
1330                 return result;
1331
1332         nvmeq = dev->queues[0];
1333         if (!nvmeq) {
1334                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1335                                         dev_to_node(dev->dev));
1336                 if (!nvmeq)
1337                         return -ENOMEM;
1338         }
1339
1340         aqa = nvmeq->q_depth - 1;
1341         aqa |= aqa << 16;
1342
1343         writel(aqa, dev->bar + NVME_REG_AQA);
1344         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1345         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1346
1347         result = nvme_enable_ctrl(&dev->ctrl, cap);
1348         if (result)
1349                 return result;
1350
1351         nvmeq->cq_vector = 0;
1352         result = queue_request_irq(nvmeq);
1353         if (result) {
1354                 nvmeq->cq_vector = -1;
1355                 return result;
1356         }
1357
1358         return result;
1359 }
1360
1361 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1362 {
1363
1364         /* If true, indicates loss of adapter communication, possibly by a
1365          * NVMe Subsystem reset.
1366          */
1367         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1368
1369         /* If there is a reset ongoing, we shouldn't reset again. */
1370         if (work_busy(&dev->reset_work))
1371                 return false;
1372
1373         /* We shouldn't reset unless the controller is on fatal error state
1374          * _or_ if we lost the communication with it.
1375          */
1376         if (!(csts & NVME_CSTS_CFS) && !nssro)
1377                 return false;
1378
1379         /* If PCI error recovery process is happening, we cannot reset or
1380          * the recovery mechanism will surely fail.
1381          */
1382         if (pci_channel_offline(to_pci_dev(dev->dev)))
1383                 return false;
1384
1385         return true;
1386 }
1387
1388 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1389 {
1390         /* Read a config register to help see what died. */
1391         u16 pci_status;
1392         int result;
1393
1394         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1395                                       &pci_status);
1396         if (result == PCIBIOS_SUCCESSFUL)
1397                 dev_warn(dev->dev,
1398                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1399                          csts, pci_status);
1400         else
1401                 dev_warn(dev->dev,
1402                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1403                          csts, result);
1404 }
1405
1406 static void nvme_watchdog_timer(unsigned long data)
1407 {
1408         struct nvme_dev *dev = (struct nvme_dev *)data;
1409         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1410
1411         /* Skip controllers under certain specific conditions. */
1412         if (nvme_should_reset(dev, csts)) {
1413                 if (!nvme_reset(dev))
1414                         nvme_warn_reset(dev, csts);
1415                 return;
1416         }
1417
1418         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1419 }
1420
1421 static int nvme_create_io_queues(struct nvme_dev *dev)
1422 {
1423         unsigned i, max;
1424         int ret = 0;
1425
1426         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1427                 /* vector == qid - 1, match nvme_create_queue */
1428                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1429                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1430                         ret = -ENOMEM;
1431                         break;
1432                 }
1433         }
1434
1435         max = min(dev->max_qid, dev->queue_count - 1);
1436         for (i = dev->online_queues; i <= max; i++) {
1437                 ret = nvme_create_queue(dev->queues[i], i);
1438                 if (ret)
1439                         break;
1440         }
1441
1442         /*
1443          * Ignore failing Create SQ/CQ commands, we can continue with less
1444          * than the desired aount of queues, and even a controller without
1445          * I/O queues an still be used to issue admin commands.  This might
1446          * be useful to upgrade a buggy firmware for example.
1447          */
1448         return ret >= 0 ? 0 : ret;
1449 }
1450
1451 static ssize_t nvme_cmb_show(struct device *dev,
1452                              struct device_attribute *attr,
1453                              char *buf)
1454 {
1455         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1456
1457         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1458                        ndev->cmbloc, ndev->cmbsz);
1459 }
1460 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1461
1462 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1463 {
1464         u64 szu, size, offset;
1465         resource_size_t bar_size;
1466         struct pci_dev *pdev = to_pci_dev(dev->dev);
1467         void __iomem *cmb;
1468         dma_addr_t dma_addr;
1469
1470         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1471         if (!(NVME_CMB_SZ(dev->cmbsz)))
1472                 return NULL;
1473         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1474
1475         if (!use_cmb_sqes)
1476                 return NULL;
1477
1478         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1479         size = szu * NVME_CMB_SZ(dev->cmbsz);
1480         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1481         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1482
1483         if (offset > bar_size)
1484                 return NULL;
1485
1486         /*
1487          * Controllers may support a CMB size larger than their BAR,
1488          * for example, due to being behind a bridge. Reduce the CMB to
1489          * the reported size of the BAR
1490          */
1491         if (size > bar_size - offset)
1492                 size = bar_size - offset;
1493
1494         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1495         cmb = ioremap_wc(dma_addr, size);
1496         if (!cmb)
1497                 return NULL;
1498
1499         dev->cmb_dma_addr = dma_addr;
1500         dev->cmb_size = size;
1501         return cmb;
1502 }
1503
1504 static inline void nvme_release_cmb(struct nvme_dev *dev)
1505 {
1506         if (dev->cmb) {
1507                 iounmap(dev->cmb);
1508                 dev->cmb = NULL;
1509         }
1510 }
1511
1512 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1513 {
1514         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1515 }
1516
1517 static int nvme_setup_io_queues(struct nvme_dev *dev)
1518 {
1519         struct nvme_queue *adminq = dev->queues[0];
1520         struct pci_dev *pdev = to_pci_dev(dev->dev);
1521         int result, nr_io_queues, size;
1522
1523         nr_io_queues = num_online_cpus();
1524         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1525         if (result < 0)
1526                 return result;
1527
1528         if (nr_io_queues == 0)
1529                 return 0;
1530
1531         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1532                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1533                                 sizeof(struct nvme_command));
1534                 if (result > 0)
1535                         dev->q_depth = result;
1536                 else
1537                         nvme_release_cmb(dev);
1538         }
1539
1540         size = db_bar_size(dev, nr_io_queues);
1541         if (size > 8192) {
1542                 iounmap(dev->bar);
1543                 do {
1544                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1545                         if (dev->bar)
1546                                 break;
1547                         if (!--nr_io_queues)
1548                                 return -ENOMEM;
1549                         size = db_bar_size(dev, nr_io_queues);
1550                 } while (1);
1551                 dev->dbs = dev->bar + 4096;
1552                 adminq->q_db = dev->dbs;
1553         }
1554
1555         /* Deregister the admin queue's interrupt */
1556         pci_free_irq(pdev, 0, adminq);
1557
1558         /*
1559          * If we enable msix early due to not intx, disable it again before
1560          * setting up the full range we need.
1561          */
1562         pci_free_irq_vectors(pdev);
1563         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1564                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1565         if (nr_io_queues <= 0)
1566                 return -EIO;
1567         dev->max_qid = nr_io_queues;
1568
1569         /*
1570          * Should investigate if there's a performance win from allocating
1571          * more queues than interrupt vectors; it might allow the submission
1572          * path to scale better, even if the receive path is limited by the
1573          * number of interrupts.
1574          */
1575
1576         result = queue_request_irq(adminq);
1577         if (result) {
1578                 adminq->cq_vector = -1;
1579                 return result;
1580         }
1581         return nvme_create_io_queues(dev);
1582 }
1583
1584 static void nvme_del_queue_end(struct request *req, int error)
1585 {
1586         struct nvme_queue *nvmeq = req->end_io_data;
1587
1588         blk_mq_free_request(req);
1589         complete(&nvmeq->dev->ioq_wait);
1590 }
1591
1592 static void nvme_del_cq_end(struct request *req, int error)
1593 {
1594         struct nvme_queue *nvmeq = req->end_io_data;
1595
1596         if (!error) {
1597                 unsigned long flags;
1598
1599                 /*
1600                  * We might be called with the AQ q_lock held
1601                  * and the I/O queue q_lock should always
1602                  * nest inside the AQ one.
1603                  */
1604                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1605                                         SINGLE_DEPTH_NESTING);
1606                 nvme_process_cq(nvmeq);
1607                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1608         }
1609
1610         nvme_del_queue_end(req, error);
1611 }
1612
1613 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1614 {
1615         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1616         struct request *req;
1617         struct nvme_command cmd;
1618
1619         memset(&cmd, 0, sizeof(cmd));
1620         cmd.delete_queue.opcode = opcode;
1621         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1622
1623         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1624         if (IS_ERR(req))
1625                 return PTR_ERR(req);
1626
1627         req->timeout = ADMIN_TIMEOUT;
1628         req->end_io_data = nvmeq;
1629
1630         blk_execute_rq_nowait(q, NULL, req, false,
1631                         opcode == nvme_admin_delete_cq ?
1632                                 nvme_del_cq_end : nvme_del_queue_end);
1633         return 0;
1634 }
1635
1636 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1637 {
1638         int pass;
1639         unsigned long timeout;
1640         u8 opcode = nvme_admin_delete_sq;
1641
1642         for (pass = 0; pass < 2; pass++) {
1643                 int sent = 0, i = queues;
1644
1645                 reinit_completion(&dev->ioq_wait);
1646  retry:
1647                 timeout = ADMIN_TIMEOUT;
1648                 for (; i > 0; i--, sent++)
1649                         if (nvme_delete_queue(dev->queues[i], opcode))
1650                                 break;
1651
1652                 while (sent--) {
1653                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1654                         if (timeout == 0)
1655                                 return;
1656                         if (i)
1657                                 goto retry;
1658                 }
1659                 opcode = nvme_admin_delete_cq;
1660         }
1661 }
1662
1663 /*
1664  * Return: error value if an error occurred setting up the queues or calling
1665  * Identify Device.  0 if these succeeded, even if adding some of the
1666  * namespaces failed.  At the moment, these failures are silent.  TBD which
1667  * failures should be reported.
1668  */
1669 static int nvme_dev_add(struct nvme_dev *dev)
1670 {
1671         if (!dev->ctrl.tagset) {
1672                 dev->tagset.ops = &nvme_mq_ops;
1673                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1674                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1675                 dev->tagset.numa_node = dev_to_node(dev->dev);
1676                 dev->tagset.queue_depth =
1677                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1678                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1679                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1680                 dev->tagset.driver_data = dev;
1681
1682                 if (blk_mq_alloc_tag_set(&dev->tagset))
1683                         return 0;
1684                 dev->ctrl.tagset = &dev->tagset;
1685
1686                 nvme_dbbuf_set(dev);
1687         } else {
1688                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1689
1690                 /* Free previously allocated queues that are no longer usable */
1691                 nvme_free_queues(dev, dev->online_queues);
1692         }
1693
1694         return 0;
1695 }
1696
1697 static int nvme_pci_enable(struct nvme_dev *dev)
1698 {
1699         u64 cap;
1700         int result = -ENOMEM;
1701         struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703         if (pci_enable_device_mem(pdev))
1704                 return result;
1705
1706         pci_set_master(pdev);
1707
1708         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1709             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1710                 goto disable;
1711
1712         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1713                 result = -ENODEV;
1714                 goto disable;
1715         }
1716
1717         /*
1718          * Some devices and/or platforms don't advertise or work with INTx
1719          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1720          * adjust this later.
1721          */
1722         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1723         if (result < 0)
1724                 return result;
1725
1726         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1727
1728         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1729         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1730         dev->dbs = dev->bar + 4096;
1731
1732         /*
1733          * Temporary fix for the Apple controller found in the MacBook8,1 and
1734          * some MacBook7,1 to avoid controller resets and data loss.
1735          */
1736         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1737                 dev->q_depth = 2;
1738                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1739                         "queue depth=%u to work around controller resets\n",
1740                         dev->q_depth);
1741         }
1742
1743         /*
1744          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1745          * populate sysfs if a CMB is implemented. Note that we add the
1746          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1747          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1748          * NULL as final argument to sysfs_add_file_to_group.
1749          */
1750
1751         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1752                 dev->cmb = nvme_map_cmb(dev);
1753
1754                 if (dev->cmbsz) {
1755                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1756                                                     &dev_attr_cmb.attr, NULL))
1757                                 dev_warn(dev->dev,
1758                                          "failed to add sysfs attribute for CMB\n");
1759                 }
1760         }
1761
1762         pci_enable_pcie_error_reporting(pdev);
1763         pci_save_state(pdev);
1764         return 0;
1765
1766  disable:
1767         pci_disable_device(pdev);
1768         return result;
1769 }
1770
1771 static void nvme_dev_unmap(struct nvme_dev *dev)
1772 {
1773         if (dev->bar)
1774                 iounmap(dev->bar);
1775         pci_release_mem_regions(to_pci_dev(dev->dev));
1776 }
1777
1778 static void nvme_pci_disable(struct nvme_dev *dev)
1779 {
1780         struct pci_dev *pdev = to_pci_dev(dev->dev);
1781
1782         pci_free_irq_vectors(pdev);
1783
1784         if (pci_is_enabled(pdev)) {
1785                 pci_disable_pcie_error_reporting(pdev);
1786                 pci_disable_device(pdev);
1787         }
1788 }
1789
1790 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1791 {
1792         int i, queues;
1793         bool dead = true;
1794         struct pci_dev *pdev = to_pci_dev(dev->dev);
1795
1796         del_timer_sync(&dev->watchdog_timer);
1797
1798         mutex_lock(&dev->shutdown_lock);
1799         if (pci_is_enabled(pdev)) {
1800                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1801
1802                 if (dev->ctrl.state == NVME_CTRL_LIVE)
1803                         nvme_start_freeze(&dev->ctrl);
1804                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1805                         pdev->error_state  != pci_channel_io_normal);
1806         }
1807
1808         /*
1809          * Give the controller a chance to complete all entered requests if
1810          * doing a safe shutdown.
1811          */
1812         if (!dead && shutdown)
1813                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1814         nvme_stop_queues(&dev->ctrl);
1815
1816         queues = dev->online_queues - 1;
1817         for (i = dev->queue_count - 1; i > 0; i--)
1818                 nvme_suspend_queue(dev->queues[i]);
1819
1820         if (dead) {
1821                 /* A device might become IO incapable very soon during
1822                  * probe, before the admin queue is configured. Thus,
1823                  * queue_count can be 0 here.
1824                  */
1825                 if (dev->queue_count)
1826                         nvme_suspend_queue(dev->queues[0]);
1827         } else {
1828                 nvme_disable_io_queues(dev, queues);
1829                 nvme_disable_admin_queue(dev, shutdown);
1830         }
1831         nvme_pci_disable(dev);
1832
1833         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1834         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1835
1836         /*
1837          * The driver will not be starting up queues again if shutting down so
1838          * must flush all entered requests to their failed completion to avoid
1839          * deadlocking blk-mq hot-cpu notifier.
1840          */
1841         if (shutdown)
1842                 nvme_start_queues(&dev->ctrl);
1843         mutex_unlock(&dev->shutdown_lock);
1844 }
1845
1846 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1847 {
1848         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1849                                                 PAGE_SIZE, PAGE_SIZE, 0);
1850         if (!dev->prp_page_pool)
1851                 return -ENOMEM;
1852
1853         /* Optimisation for I/Os between 4k and 128k */
1854         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1855                                                 256, 256, 0);
1856         if (!dev->prp_small_pool) {
1857                 dma_pool_destroy(dev->prp_page_pool);
1858                 return -ENOMEM;
1859         }
1860         return 0;
1861 }
1862
1863 static void nvme_release_prp_pools(struct nvme_dev *dev)
1864 {
1865         dma_pool_destroy(dev->prp_page_pool);
1866         dma_pool_destroy(dev->prp_small_pool);
1867 }
1868
1869 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1870 {
1871         struct nvme_dev *dev = to_nvme_dev(ctrl);
1872
1873         nvme_dbbuf_dma_free(dev);
1874         put_device(dev->dev);
1875         if (dev->tagset.tags)
1876                 blk_mq_free_tag_set(&dev->tagset);
1877         if (dev->ctrl.admin_q)
1878                 blk_put_queue(dev->ctrl.admin_q);
1879         kfree(dev->queues);
1880         free_opal_dev(dev->ctrl.opal_dev);
1881         kfree(dev);
1882 }
1883
1884 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1885 {
1886         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1887
1888         kref_get(&dev->ctrl.kref);
1889         nvme_dev_disable(dev, false);
1890         if (!schedule_work(&dev->remove_work))
1891                 nvme_put_ctrl(&dev->ctrl);
1892 }
1893
1894 static void nvme_reset_work(struct work_struct *work)
1895 {
1896         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1897         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1898         int result = -ENODEV;
1899
1900         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1901                 goto out;
1902
1903         /*
1904          * If we're called to reset a live controller first shut it down before
1905          * moving on.
1906          */
1907         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1908                 nvme_dev_disable(dev, false);
1909
1910         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1911                 goto out;
1912
1913         result = nvme_pci_enable(dev);
1914         if (result)
1915                 goto out;
1916
1917         result = nvme_configure_admin_queue(dev);
1918         if (result)
1919                 goto out;
1920
1921         nvme_init_queue(dev->queues[0], 0);
1922         result = nvme_alloc_admin_tags(dev);
1923         if (result)
1924                 goto out;
1925
1926         result = nvme_init_identify(&dev->ctrl);
1927         if (result)
1928                 goto out;
1929
1930         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1931                 if (!dev->ctrl.opal_dev)
1932                         dev->ctrl.opal_dev =
1933                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1934                 else if (was_suspend)
1935                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
1936         } else {
1937                 free_opal_dev(dev->ctrl.opal_dev);
1938                 dev->ctrl.opal_dev = NULL;
1939         }
1940
1941         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1942                 result = nvme_dbbuf_dma_alloc(dev);
1943                 if (result)
1944                         dev_warn(dev->dev,
1945                                  "unable to allocate dma for dbbuf\n");
1946         }
1947
1948         result = nvme_setup_io_queues(dev);
1949         if (result)
1950                 goto out;
1951
1952         /*
1953          * A controller that can not execute IO typically requires user
1954          * intervention to correct. For such degraded controllers, the driver
1955          * should not submit commands the user did not request, so skip
1956          * registering for asynchronous event notification on this condition.
1957          */
1958         if (dev->online_queues > 1)
1959                 nvme_queue_async_events(&dev->ctrl);
1960
1961         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1962
1963         /*
1964          * Keep the controller around but remove all namespaces if we don't have
1965          * any working I/O queue.
1966          */
1967         if (dev->online_queues < 2) {
1968                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1969                 nvme_kill_queues(&dev->ctrl);
1970                 nvme_remove_namespaces(&dev->ctrl);
1971         } else {
1972                 nvme_start_queues(&dev->ctrl);
1973                 nvme_wait_freeze(&dev->ctrl);
1974                 nvme_dev_add(dev);
1975                 nvme_unfreeze(&dev->ctrl);
1976         }
1977
1978         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1979                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1980                 goto out;
1981         }
1982
1983         if (dev->online_queues > 1)
1984                 nvme_queue_scan(&dev->ctrl);
1985         return;
1986
1987  out:
1988         nvme_remove_dead_ctrl(dev, result);
1989 }
1990
1991 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1992 {
1993         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1994         struct pci_dev *pdev = to_pci_dev(dev->dev);
1995
1996         nvme_kill_queues(&dev->ctrl);
1997         if (pci_get_drvdata(pdev))
1998                 device_release_driver(&pdev->dev);
1999         nvme_put_ctrl(&dev->ctrl);
2000 }
2001
2002 static int nvme_reset(struct nvme_dev *dev)
2003 {
2004         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2005                 return -ENODEV;
2006         if (work_busy(&dev->reset_work))
2007                 return -ENODEV;
2008         if (!queue_work(nvme_workq, &dev->reset_work))
2009                 return -EBUSY;
2010         return 0;
2011 }
2012
2013 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2014 {
2015         *val = readl(to_nvme_dev(ctrl)->bar + off);
2016         return 0;
2017 }
2018
2019 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2020 {
2021         writel(val, to_nvme_dev(ctrl)->bar + off);
2022         return 0;
2023 }
2024
2025 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2026 {
2027         *val = readq(to_nvme_dev(ctrl)->bar + off);
2028         return 0;
2029 }
2030
2031 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2032 {
2033         struct nvme_dev *dev = to_nvme_dev(ctrl);
2034         int ret = nvme_reset(dev);
2035
2036         if (!ret)
2037                 flush_work(&dev->reset_work);
2038         return ret;
2039 }
2040
2041 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2042         .name                   = "pcie",
2043         .module                 = THIS_MODULE,
2044         .reg_read32             = nvme_pci_reg_read32,
2045         .reg_write32            = nvme_pci_reg_write32,
2046         .reg_read64             = nvme_pci_reg_read64,
2047         .reset_ctrl             = nvme_pci_reset_ctrl,
2048         .free_ctrl              = nvme_pci_free_ctrl,
2049         .submit_async_event     = nvme_pci_submit_async_event,
2050 };
2051
2052 static int nvme_dev_map(struct nvme_dev *dev)
2053 {
2054         struct pci_dev *pdev = to_pci_dev(dev->dev);
2055
2056         if (pci_request_mem_regions(pdev, "nvme"))
2057                 return -ENODEV;
2058
2059         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2060         if (!dev->bar)
2061                 goto release;
2062
2063         return 0;
2064   release:
2065         pci_release_mem_regions(pdev);
2066         return -ENODEV;
2067 }
2068
2069 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2070 {
2071         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2072                 /*
2073                  * Several Samsung devices seem to drop off the PCIe bus
2074                  * randomly when APST is on and uses the deepest sleep state.
2075                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2076                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2077                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2078                  * laptops.
2079                  */
2080                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2081                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2082                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2083                         return NVME_QUIRK_NO_DEEPEST_PS;
2084         }
2085
2086         return 0;
2087 }
2088
2089 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2090 {
2091         int node, result = -ENOMEM;
2092         struct nvme_dev *dev;
2093         unsigned long quirks = id->driver_data;
2094
2095         node = dev_to_node(&pdev->dev);
2096         if (node == NUMA_NO_NODE)
2097                 set_dev_node(&pdev->dev, first_memory_node);
2098
2099         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2100         if (!dev)
2101                 return -ENOMEM;
2102         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2103                                                         GFP_KERNEL, node);
2104         if (!dev->queues)
2105                 goto free;
2106
2107         dev->dev = get_device(&pdev->dev);
2108         pci_set_drvdata(pdev, dev);
2109
2110         result = nvme_dev_map(dev);
2111         if (result)
2112                 goto free;
2113
2114         INIT_WORK(&dev->reset_work, nvme_reset_work);
2115         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2116         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2117                 (unsigned long)dev);
2118         mutex_init(&dev->shutdown_lock);
2119         init_completion(&dev->ioq_wait);
2120
2121         result = nvme_setup_prp_pools(dev);
2122         if (result)
2123                 goto put_pci;
2124
2125         quirks |= check_dell_samsung_bug(pdev);
2126
2127         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2128                         quirks);
2129         if (result)
2130                 goto release_pools;
2131
2132         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2133
2134         queue_work(nvme_workq, &dev->reset_work);
2135         return 0;
2136
2137  release_pools:
2138         nvme_release_prp_pools(dev);
2139  put_pci:
2140         put_device(dev->dev);
2141         nvme_dev_unmap(dev);
2142  free:
2143         kfree(dev->queues);
2144         kfree(dev);
2145         return result;
2146 }
2147
2148 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2149 {
2150         struct nvme_dev *dev = pci_get_drvdata(pdev);
2151
2152         if (prepare)
2153                 nvme_dev_disable(dev, false);
2154         else
2155                 nvme_reset(dev);
2156 }
2157
2158 static void nvme_shutdown(struct pci_dev *pdev)
2159 {
2160         struct nvme_dev *dev = pci_get_drvdata(pdev);
2161         nvme_dev_disable(dev, true);
2162 }
2163
2164 /*
2165  * The driver's remove may be called on a device in a partially initialized
2166  * state. This function must not have any dependencies on the device state in
2167  * order to proceed.
2168  */
2169 static void nvme_remove(struct pci_dev *pdev)
2170 {
2171         struct nvme_dev *dev = pci_get_drvdata(pdev);
2172
2173         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2174
2175         pci_set_drvdata(pdev, NULL);
2176
2177         if (!pci_device_is_present(pdev)) {
2178                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2179                 nvme_dev_disable(dev, false);
2180         }
2181
2182         flush_work(&dev->reset_work);
2183         nvme_uninit_ctrl(&dev->ctrl);
2184         nvme_dev_disable(dev, true);
2185         nvme_dev_remove_admin(dev);
2186         nvme_free_queues(dev, 0);
2187         nvme_release_cmb(dev);
2188         nvme_release_prp_pools(dev);
2189         nvme_dev_unmap(dev);
2190         nvme_put_ctrl(&dev->ctrl);
2191 }
2192
2193 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2194 {
2195         int ret = 0;
2196
2197         if (numvfs == 0) {
2198                 if (pci_vfs_assigned(pdev)) {
2199                         dev_warn(&pdev->dev,
2200                                 "Cannot disable SR-IOV VFs while assigned\n");
2201                         return -EPERM;
2202                 }
2203                 pci_disable_sriov(pdev);
2204                 return 0;
2205         }
2206
2207         ret = pci_enable_sriov(pdev, numvfs);
2208         return ret ? ret : numvfs;
2209 }
2210
2211 #ifdef CONFIG_PM_SLEEP
2212 static int nvme_suspend(struct device *dev)
2213 {
2214         struct pci_dev *pdev = to_pci_dev(dev);
2215         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2216
2217         nvme_dev_disable(ndev, true);
2218         return 0;
2219 }
2220
2221 static int nvme_resume(struct device *dev)
2222 {
2223         struct pci_dev *pdev = to_pci_dev(dev);
2224         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2225
2226         nvme_reset(ndev);
2227         return 0;
2228 }
2229 #endif
2230
2231 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2232
2233 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2234                                                 pci_channel_state_t state)
2235 {
2236         struct nvme_dev *dev = pci_get_drvdata(pdev);
2237
2238         /*
2239          * A frozen channel requires a reset. When detected, this method will
2240          * shutdown the controller to quiesce. The controller will be restarted
2241          * after the slot reset through driver's slot_reset callback.
2242          */
2243         switch (state) {
2244         case pci_channel_io_normal:
2245                 return PCI_ERS_RESULT_CAN_RECOVER;
2246         case pci_channel_io_frozen:
2247                 dev_warn(dev->ctrl.device,
2248                         "frozen state error detected, reset controller\n");
2249                 nvme_dev_disable(dev, false);
2250                 return PCI_ERS_RESULT_NEED_RESET;
2251         case pci_channel_io_perm_failure:
2252                 dev_warn(dev->ctrl.device,
2253                         "failure state error detected, request disconnect\n");
2254                 return PCI_ERS_RESULT_DISCONNECT;
2255         }
2256         return PCI_ERS_RESULT_NEED_RESET;
2257 }
2258
2259 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2260 {
2261         struct nvme_dev *dev = pci_get_drvdata(pdev);
2262
2263         dev_info(dev->ctrl.device, "restart after slot reset\n");
2264         pci_restore_state(pdev);
2265         nvme_reset(dev);
2266         return PCI_ERS_RESULT_RECOVERED;
2267 }
2268
2269 static void nvme_error_resume(struct pci_dev *pdev)
2270 {
2271         pci_cleanup_aer_uncorrect_error_status(pdev);
2272 }
2273
2274 static const struct pci_error_handlers nvme_err_handler = {
2275         .error_detected = nvme_error_detected,
2276         .slot_reset     = nvme_slot_reset,
2277         .resume         = nvme_error_resume,
2278         .reset_notify   = nvme_reset_notify,
2279 };
2280
2281 static const struct pci_device_id nvme_id_table[] = {
2282         { PCI_VDEVICE(INTEL, 0x0953),
2283                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2284                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2285         { PCI_VDEVICE(INTEL, 0x0a53),
2286                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2287                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2288         { PCI_VDEVICE(INTEL, 0x0a54),
2289                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2290                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2291         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2292                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2293         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2294                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2295         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2296                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2297         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2298         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2299         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2300         { 0, }
2301 };
2302 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2303
2304 static struct pci_driver nvme_driver = {
2305         .name           = "nvme",
2306         .id_table       = nvme_id_table,
2307         .probe          = nvme_probe,
2308         .remove         = nvme_remove,
2309         .shutdown       = nvme_shutdown,
2310         .driver         = {
2311                 .pm     = &nvme_dev_pm_ops,
2312         },
2313         .sriov_configure = nvme_pci_sriov_configure,
2314         .err_handler    = &nvme_err_handler,
2315 };
2316
2317 static int __init nvme_init(void)
2318 {
2319         int result;
2320
2321         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2322         if (!nvme_workq)
2323                 return -ENOMEM;
2324
2325         result = pci_register_driver(&nvme_driver);
2326         if (result)
2327                 destroy_workqueue(nvme_workq);
2328         return result;
2329 }
2330
2331 static void __exit nvme_exit(void)
2332 {
2333         pci_unregister_driver(&nvme_driver);
2334         destroy_workqueue(nvme_workq);
2335         _nvme_check_size();
2336 }
2337
2338 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2339 MODULE_LICENSE("GPL");
2340 MODULE_VERSION("1.0");
2341 module_init(nvme_init);
2342 module_exit(nvme_exit);