]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/perf/arm_pmu.c
Merge branches 'intel_pstate' and 'pm-sleep'
[karo-tx-linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31                                       [PERF_COUNT_HW_CACHE_MAX]
32                                       [PERF_COUNT_HW_CACHE_OP_MAX]
33                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
34                        u64 config)
35 {
36         unsigned int cache_type, cache_op, cache_result, ret;
37
38         cache_type = (config >>  0) & 0xff;
39         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40                 return -EINVAL;
41
42         cache_op = (config >>  8) & 0xff;
43         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44                 return -EINVAL;
45
46         cache_result = (config >> 16) & 0xff;
47         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48                 return -EINVAL;
49
50         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51
52         if (ret == CACHE_OP_UNSUPPORTED)
53                 return -ENOENT;
54
55         return ret;
56 }
57
58 static int
59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60 {
61         int mapping;
62
63         if (config >= PERF_COUNT_HW_MAX)
64                 return -EINVAL;
65
66         mapping = (*event_map)[config];
67         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68 }
69
70 static int
71 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72 {
73         return (int)(config & raw_event_mask);
74 }
75
76 int
77 armpmu_map_event(struct perf_event *event,
78                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79                  const unsigned (*cache_map)
80                                 [PERF_COUNT_HW_CACHE_MAX]
81                                 [PERF_COUNT_HW_CACHE_OP_MAX]
82                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                  u32 raw_event_mask)
84 {
85         u64 config = event->attr.config;
86         int type = event->attr.type;
87
88         if (type == event->pmu->type)
89                 return armpmu_map_raw_event(raw_event_mask, config);
90
91         switch (type) {
92         case PERF_TYPE_HARDWARE:
93                 return armpmu_map_hw_event(event_map, config);
94         case PERF_TYPE_HW_CACHE:
95                 return armpmu_map_cache_event(cache_map, config);
96         case PERF_TYPE_RAW:
97                 return armpmu_map_raw_event(raw_event_mask, config);
98         }
99
100         return -ENOENT;
101 }
102
103 int armpmu_event_set_period(struct perf_event *event)
104 {
105         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106         struct hw_perf_event *hwc = &event->hw;
107         s64 left = local64_read(&hwc->period_left);
108         s64 period = hwc->sample_period;
109         int ret = 0;
110
111         if (unlikely(left <= -period)) {
112                 left = period;
113                 local64_set(&hwc->period_left, left);
114                 hwc->last_period = period;
115                 ret = 1;
116         }
117
118         if (unlikely(left <= 0)) {
119                 left += period;
120                 local64_set(&hwc->period_left, left);
121                 hwc->last_period = period;
122                 ret = 1;
123         }
124
125         /*
126          * Limit the maximum period to prevent the counter value
127          * from overtaking the one we are about to program. In
128          * effect we are reducing max_period to account for
129          * interrupt latency (and we are being very conservative).
130          */
131         if (left > (armpmu->max_period >> 1))
132                 left = armpmu->max_period >> 1;
133
134         local64_set(&hwc->prev_count, (u64)-left);
135
136         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137
138         perf_event_update_userpage(event);
139
140         return ret;
141 }
142
143 u64 armpmu_event_update(struct perf_event *event)
144 {
145         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146         struct hw_perf_event *hwc = &event->hw;
147         u64 delta, prev_raw_count, new_raw_count;
148
149 again:
150         prev_raw_count = local64_read(&hwc->prev_count);
151         new_raw_count = armpmu->read_counter(event);
152
153         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154                              new_raw_count) != prev_raw_count)
155                 goto again;
156
157         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158
159         local64_add(delta, &event->count);
160         local64_sub(delta, &hwc->period_left);
161
162         return new_raw_count;
163 }
164
165 static void
166 armpmu_read(struct perf_event *event)
167 {
168         armpmu_event_update(event);
169 }
170
171 static void
172 armpmu_stop(struct perf_event *event, int flags)
173 {
174         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175         struct hw_perf_event *hwc = &event->hw;
176
177         /*
178          * ARM pmu always has to update the counter, so ignore
179          * PERF_EF_UPDATE, see comments in armpmu_start().
180          */
181         if (!(hwc->state & PERF_HES_STOPPED)) {
182                 armpmu->disable(event);
183                 armpmu_event_update(event);
184                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185         }
186 }
187
188 static void armpmu_start(struct perf_event *event, int flags)
189 {
190         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191         struct hw_perf_event *hwc = &event->hw;
192
193         /*
194          * ARM pmu always has to reprogram the period, so ignore
195          * PERF_EF_RELOAD, see the comment below.
196          */
197         if (flags & PERF_EF_RELOAD)
198                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199
200         hwc->state = 0;
201         /*
202          * Set the period again. Some counters can't be stopped, so when we
203          * were stopped we simply disabled the IRQ source and the counter
204          * may have been left counting. If we don't do this step then we may
205          * get an interrupt too soon or *way* too late if the overflow has
206          * happened since disabling.
207          */
208         armpmu_event_set_period(event);
209         armpmu->enable(event);
210 }
211
212 static void
213 armpmu_del(struct perf_event *event, int flags)
214 {
215         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217         struct hw_perf_event *hwc = &event->hw;
218         int idx = hwc->idx;
219
220         armpmu_stop(event, PERF_EF_UPDATE);
221         hw_events->events[idx] = NULL;
222         clear_bit(idx, hw_events->used_mask);
223         if (armpmu->clear_event_idx)
224                 armpmu->clear_event_idx(hw_events, event);
225
226         perf_event_update_userpage(event);
227 }
228
229 static int
230 armpmu_add(struct perf_event *event, int flags)
231 {
232         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234         struct hw_perf_event *hwc = &event->hw;
235         int idx;
236
237         /* An event following a process won't be stopped earlier */
238         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
239                 return -ENOENT;
240
241         /* If we don't have a space for the counter then finish early. */
242         idx = armpmu->get_event_idx(hw_events, event);
243         if (idx < 0)
244                 return idx;
245
246         /*
247          * If there is an event in the counter we are going to use then make
248          * sure it is disabled.
249          */
250         event->hw.idx = idx;
251         armpmu->disable(event);
252         hw_events->events[idx] = event;
253
254         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
255         if (flags & PERF_EF_START)
256                 armpmu_start(event, PERF_EF_RELOAD);
257
258         /* Propagate our changes to the userspace mapping. */
259         perf_event_update_userpage(event);
260
261         return 0;
262 }
263
264 static int
265 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
266                                struct perf_event *event)
267 {
268         struct arm_pmu *armpmu;
269
270         if (is_software_event(event))
271                 return 1;
272
273         /*
274          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
275          * core perf code won't check that the pmu->ctx == leader->ctx
276          * until after pmu->event_init(event).
277          */
278         if (event->pmu != pmu)
279                 return 0;
280
281         if (event->state < PERF_EVENT_STATE_OFF)
282                 return 1;
283
284         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
285                 return 1;
286
287         armpmu = to_arm_pmu(event->pmu);
288         return armpmu->get_event_idx(hw_events, event) >= 0;
289 }
290
291 static int
292 validate_group(struct perf_event *event)
293 {
294         struct perf_event *sibling, *leader = event->group_leader;
295         struct pmu_hw_events fake_pmu;
296
297         /*
298          * Initialise the fake PMU. We only need to populate the
299          * used_mask for the purposes of validation.
300          */
301         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
302
303         if (!validate_event(event->pmu, &fake_pmu, leader))
304                 return -EINVAL;
305
306         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
307                 if (!validate_event(event->pmu, &fake_pmu, sibling))
308                         return -EINVAL;
309         }
310
311         if (!validate_event(event->pmu, &fake_pmu, event))
312                 return -EINVAL;
313
314         return 0;
315 }
316
317 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
318 {
319         struct platform_device *pdev = armpmu->plat_device;
320
321         return pdev ? dev_get_platdata(&pdev->dev) : NULL;
322 }
323
324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325 {
326         struct arm_pmu *armpmu;
327         struct arm_pmu_platdata *plat;
328         int ret;
329         u64 start_clock, finish_clock;
330
331         /*
332          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334          * do any necessary shifting, we just need to perform the first
335          * dereference.
336          */
337         armpmu = *(void **)dev;
338
339         plat = armpmu_get_platdata(armpmu);
340
341         start_clock = sched_clock();
342         if (plat && plat->handle_irq)
343                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
344         else
345                 ret = armpmu->handle_irq(irq, armpmu);
346         finish_clock = sched_clock();
347
348         perf_sample_event_took(finish_clock - start_clock);
349         return ret;
350 }
351
352 static int
353 event_requires_mode_exclusion(struct perf_event_attr *attr)
354 {
355         return attr->exclude_idle || attr->exclude_user ||
356                attr->exclude_kernel || attr->exclude_hv;
357 }
358
359 static int
360 __hw_perf_event_init(struct perf_event *event)
361 {
362         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
363         struct hw_perf_event *hwc = &event->hw;
364         int mapping;
365
366         mapping = armpmu->map_event(event);
367
368         if (mapping < 0) {
369                 pr_debug("event %x:%llx not supported\n", event->attr.type,
370                          event->attr.config);
371                 return mapping;
372         }
373
374         /*
375          * We don't assign an index until we actually place the event onto
376          * hardware. Use -1 to signify that we haven't decided where to put it
377          * yet. For SMP systems, each core has it's own PMU so we can't do any
378          * clever allocation or constraints checking at this point.
379          */
380         hwc->idx                = -1;
381         hwc->config_base        = 0;
382         hwc->config             = 0;
383         hwc->event_base         = 0;
384
385         /*
386          * Check whether we need to exclude the counter from certain modes.
387          */
388         if ((!armpmu->set_event_filter ||
389              armpmu->set_event_filter(hwc, &event->attr)) &&
390              event_requires_mode_exclusion(&event->attr)) {
391                 pr_debug("ARM performance counters do not support "
392                          "mode exclusion\n");
393                 return -EOPNOTSUPP;
394         }
395
396         /*
397          * Store the event encoding into the config_base field.
398          */
399         hwc->config_base            |= (unsigned long)mapping;
400
401         if (!is_sampling_event(event)) {
402                 /*
403                  * For non-sampling runs, limit the sample_period to half
404                  * of the counter width. That way, the new counter value
405                  * is far less likely to overtake the previous one unless
406                  * you have some serious IRQ latency issues.
407                  */
408                 hwc->sample_period  = armpmu->max_period >> 1;
409                 hwc->last_period    = hwc->sample_period;
410                 local64_set(&hwc->period_left, hwc->sample_period);
411         }
412
413         if (event->group_leader != event) {
414                 if (validate_group(event) != 0)
415                         return -EINVAL;
416         }
417
418         return 0;
419 }
420
421 static int armpmu_event_init(struct perf_event *event)
422 {
423         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
424
425         /*
426          * Reject CPU-affine events for CPUs that are of a different class to
427          * that which this PMU handles. Process-following events (where
428          * event->cpu == -1) can be migrated between CPUs, and thus we have to
429          * reject them later (in armpmu_add) if they're scheduled on a
430          * different class of CPU.
431          */
432         if (event->cpu != -1 &&
433                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
434                 return -ENOENT;
435
436         /* does not support taken branch sampling */
437         if (has_branch_stack(event))
438                 return -EOPNOTSUPP;
439
440         if (armpmu->map_event(event) == -ENOENT)
441                 return -ENOENT;
442
443         return __hw_perf_event_init(event);
444 }
445
446 static void armpmu_enable(struct pmu *pmu)
447 {
448         struct arm_pmu *armpmu = to_arm_pmu(pmu);
449         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
450         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
451
452         /* For task-bound events we may be called on other CPUs */
453         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
454                 return;
455
456         if (enabled)
457                 armpmu->start(armpmu);
458 }
459
460 static void armpmu_disable(struct pmu *pmu)
461 {
462         struct arm_pmu *armpmu = to_arm_pmu(pmu);
463
464         /* For task-bound events we may be called on other CPUs */
465         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
466                 return;
467
468         armpmu->stop(armpmu);
469 }
470
471 /*
472  * In heterogeneous systems, events are specific to a particular
473  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
474  * the same microarchitecture.
475  */
476 static int armpmu_filter_match(struct perf_event *event)
477 {
478         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
479         unsigned int cpu = smp_processor_id();
480         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
481 }
482
483 static ssize_t armpmu_cpumask_show(struct device *dev,
484                                    struct device_attribute *attr, char *buf)
485 {
486         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
487         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
488 }
489
490 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
491
492 static struct attribute *armpmu_common_attrs[] = {
493         &dev_attr_cpus.attr,
494         NULL,
495 };
496
497 static struct attribute_group armpmu_common_attr_group = {
498         .attrs = armpmu_common_attrs,
499 };
500
501 /* Set at runtime when we know what CPU type we are. */
502 static struct arm_pmu *__oprofile_cpu_pmu;
503
504 /*
505  * Despite the names, these two functions are CPU-specific and are used
506  * by the OProfile/perf code.
507  */
508 const char *perf_pmu_name(void)
509 {
510         if (!__oprofile_cpu_pmu)
511                 return NULL;
512
513         return __oprofile_cpu_pmu->name;
514 }
515 EXPORT_SYMBOL_GPL(perf_pmu_name);
516
517 int perf_num_counters(void)
518 {
519         int max_events = 0;
520
521         if (__oprofile_cpu_pmu != NULL)
522                 max_events = __oprofile_cpu_pmu->num_events;
523
524         return max_events;
525 }
526 EXPORT_SYMBOL_GPL(perf_num_counters);
527
528 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
529 {
530         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
531         int irq = per_cpu(hw_events->irq, cpu);
532
533         if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
534                 return;
535
536         if (irq_is_percpu(irq)) {
537                 free_percpu_irq(irq, &hw_events->percpu_pmu);
538                 cpumask_clear(&armpmu->active_irqs);
539                 return;
540         }
541
542         free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
543 }
544
545 void armpmu_free_irqs(struct arm_pmu *armpmu)
546 {
547         int cpu;
548
549         for_each_cpu(cpu, &armpmu->supported_cpus)
550                 armpmu_free_irq(armpmu, cpu);
551 }
552
553 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
554 {
555         int err = 0;
556         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
557         const irq_handler_t handler = armpmu_dispatch_irq;
558         int irq = per_cpu(hw_events->irq, cpu);
559         if (!irq)
560                 return 0;
561
562         if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
563                 err = request_percpu_irq(irq, handler, "arm-pmu",
564                                          &hw_events->percpu_pmu);
565         } else if (irq_is_percpu(irq)) {
566                 int other_cpu = cpumask_first(&armpmu->active_irqs);
567                 int other_irq = per_cpu(hw_events->irq, other_cpu);
568
569                 if (irq != other_irq) {
570                         pr_warn("mismatched PPIs detected.\n");
571                         err = -EINVAL;
572                 }
573         } else {
574                 err = request_irq(irq, handler,
575                                   IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
576                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
577         }
578
579         if (err) {
580                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
581                         irq);
582                 return err;
583         }
584
585         cpumask_set_cpu(cpu, &armpmu->active_irqs);
586
587         return 0;
588 }
589
590 int armpmu_request_irqs(struct arm_pmu *armpmu)
591 {
592         int cpu, err;
593
594         for_each_cpu(cpu, &armpmu->supported_cpus) {
595                 err = armpmu_request_irq(armpmu, cpu);
596                 if (err)
597                         break;
598         }
599
600         return err;
601 }
602
603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
604 {
605         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
606         return per_cpu(hw_events->irq, cpu);
607 }
608
609 /*
610  * PMU hardware loses all context when a CPU goes offline.
611  * When a CPU is hotplugged back in, since some hardware registers are
612  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613  * junk values out of them.
614  */
615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
616 {
617         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
618         int irq;
619
620         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
621                 return 0;
622         if (pmu->reset)
623                 pmu->reset(pmu);
624
625         irq = armpmu_get_cpu_irq(pmu, cpu);
626         if (irq) {
627                 if (irq_is_percpu(irq)) {
628                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
629                         return 0;
630                 }
631
632                 if (irq_force_affinity(irq, cpumask_of(cpu)) &&
633                     num_possible_cpus() > 1) {
634                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
635                                 irq, cpu);
636                 }
637         }
638
639         return 0;
640 }
641
642 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
643 {
644         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
645         int irq;
646
647         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
648                 return 0;
649
650         irq = armpmu_get_cpu_irq(pmu, cpu);
651         if (irq && irq_is_percpu(irq))
652                 disable_percpu_irq(irq);
653
654         return 0;
655 }
656
657 #ifdef CONFIG_CPU_PM
658 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
659 {
660         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
661         struct perf_event *event;
662         int idx;
663
664         for (idx = 0; idx < armpmu->num_events; idx++) {
665                 /*
666                  * If the counter is not used skip it, there is no
667                  * need of stopping/restarting it.
668                  */
669                 if (!test_bit(idx, hw_events->used_mask))
670                         continue;
671
672                 event = hw_events->events[idx];
673
674                 switch (cmd) {
675                 case CPU_PM_ENTER:
676                         /*
677                          * Stop and update the counter
678                          */
679                         armpmu_stop(event, PERF_EF_UPDATE);
680                         break;
681                 case CPU_PM_EXIT:
682                 case CPU_PM_ENTER_FAILED:
683                          /*
684                           * Restore and enable the counter.
685                           * armpmu_start() indirectly calls
686                           *
687                           * perf_event_update_userpage()
688                           *
689                           * that requires RCU read locking to be functional,
690                           * wrap the call within RCU_NONIDLE to make the
691                           * RCU subsystem aware this cpu is not idle from
692                           * an RCU perspective for the armpmu_start() call
693                           * duration.
694                           */
695                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
696                         break;
697                 default:
698                         break;
699                 }
700         }
701 }
702
703 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
704                              void *v)
705 {
706         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
707         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
708         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
709
710         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
711                 return NOTIFY_DONE;
712
713         /*
714          * Always reset the PMU registers on power-up even if
715          * there are no events running.
716          */
717         if (cmd == CPU_PM_EXIT && armpmu->reset)
718                 armpmu->reset(armpmu);
719
720         if (!enabled)
721                 return NOTIFY_OK;
722
723         switch (cmd) {
724         case CPU_PM_ENTER:
725                 armpmu->stop(armpmu);
726                 cpu_pm_pmu_setup(armpmu, cmd);
727                 break;
728         case CPU_PM_EXIT:
729                 cpu_pm_pmu_setup(armpmu, cmd);
730         case CPU_PM_ENTER_FAILED:
731                 armpmu->start(armpmu);
732                 break;
733         default:
734                 return NOTIFY_DONE;
735         }
736
737         return NOTIFY_OK;
738 }
739
740 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
741 {
742         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
743         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
744 }
745
746 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
747 {
748         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
749 }
750 #else
751 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
752 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
753 #endif
754
755 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
756 {
757         int err;
758
759         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
760                                        &cpu_pmu->node);
761         if (err)
762                 goto out;
763
764         err = cpu_pm_pmu_register(cpu_pmu);
765         if (err)
766                 goto out_unregister;
767
768         return 0;
769
770 out_unregister:
771         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
772                                             &cpu_pmu->node);
773 out:
774         return err;
775 }
776
777 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
778 {
779         cpu_pm_pmu_unregister(cpu_pmu);
780         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
781                                             &cpu_pmu->node);
782 }
783
784 struct arm_pmu *armpmu_alloc(void)
785 {
786         struct arm_pmu *pmu;
787         int cpu;
788
789         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
790         if (!pmu) {
791                 pr_info("failed to allocate PMU device!\n");
792                 goto out;
793         }
794
795         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
796         if (!pmu->hw_events) {
797                 pr_info("failed to allocate per-cpu PMU data.\n");
798                 goto out_free_pmu;
799         }
800
801         pmu->pmu = (struct pmu) {
802                 .pmu_enable     = armpmu_enable,
803                 .pmu_disable    = armpmu_disable,
804                 .event_init     = armpmu_event_init,
805                 .add            = armpmu_add,
806                 .del            = armpmu_del,
807                 .start          = armpmu_start,
808                 .stop           = armpmu_stop,
809                 .read           = armpmu_read,
810                 .filter_match   = armpmu_filter_match,
811                 .attr_groups    = pmu->attr_groups,
812                 /*
813                  * This is a CPU PMU potentially in a heterogeneous
814                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
815                  * and we have taken ctx sharing into account (e.g. with our
816                  * pmu::filter_match callback and pmu::event_init group
817                  * validation).
818                  */
819                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
820         };
821
822         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
823                 &armpmu_common_attr_group;
824
825         for_each_possible_cpu(cpu) {
826                 struct pmu_hw_events *events;
827
828                 events = per_cpu_ptr(pmu->hw_events, cpu);
829                 raw_spin_lock_init(&events->pmu_lock);
830                 events->percpu_pmu = pmu;
831         }
832
833         return pmu;
834
835 out_free_pmu:
836         kfree(pmu);
837 out:
838         return NULL;
839 }
840
841 void armpmu_free(struct arm_pmu *pmu)
842 {
843         free_percpu(pmu->hw_events);
844         kfree(pmu);
845 }
846
847 int armpmu_register(struct arm_pmu *pmu)
848 {
849         int ret;
850
851         ret = cpu_pmu_init(pmu);
852         if (ret)
853                 return ret;
854
855         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
856         if (ret)
857                 goto out_destroy;
858
859         if (!__oprofile_cpu_pmu)
860                 __oprofile_cpu_pmu = pmu;
861
862         pr_info("enabled with %s PMU driver, %d counters available\n",
863                 pmu->name, pmu->num_events);
864
865         return 0;
866
867 out_destroy:
868         cpu_pmu_destroy(pmu);
869         return ret;
870 }
871
872 static int arm_pmu_hp_init(void)
873 {
874         int ret;
875
876         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
877                                       "perf/arm/pmu:starting",
878                                       arm_perf_starting_cpu,
879                                       arm_perf_teardown_cpu);
880         if (ret)
881                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
882                        ret);
883         return ret;
884 }
885 subsys_initcall(arm_pmu_hp_init);