]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branches 'regulator/fix/constrain' and 'regulator/fix/defer...
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV && rdev->constraints->max_uV) {
910                 int target_min, target_max;
911                 int current_uV = _regulator_get_voltage(rdev);
912                 if (current_uV < 0) {
913                         rdev_err(rdev,
914                                  "failed to get the current voltage(%d)\n",
915                                  current_uV);
916                         return current_uV;
917                 }
918
919                 /*
920                  * If we're below the minimum voltage move up to the
921                  * minimum voltage, if we're above the maximum voltage
922                  * then move down to the maximum.
923                  */
924                 target_min = current_uV;
925                 target_max = current_uV;
926
927                 if (current_uV < rdev->constraints->min_uV) {
928                         target_min = rdev->constraints->min_uV;
929                         target_max = rdev->constraints->min_uV;
930                 }
931
932                 if (current_uV > rdev->constraints->max_uV) {
933                         target_min = rdev->constraints->max_uV;
934                         target_max = rdev->constraints->max_uV;
935                 }
936
937                 if (target_min != current_uV || target_max != current_uV) {
938                         ret = _regulator_do_set_voltage(
939                                 rdev, target_min, target_max);
940                         if (ret < 0) {
941                                 rdev_err(rdev,
942                                         "failed to apply %d-%duV constraint(%d)\n",
943                                         target_min, target_max, ret);
944                                 return ret;
945                         }
946                 }
947         }
948
949         /* constrain machine-level voltage specs to fit
950          * the actual range supported by this regulator.
951          */
952         if (ops->list_voltage && rdev->desc->n_voltages) {
953                 int     count = rdev->desc->n_voltages;
954                 int     i;
955                 int     min_uV = INT_MAX;
956                 int     max_uV = INT_MIN;
957                 int     cmin = constraints->min_uV;
958                 int     cmax = constraints->max_uV;
959
960                 /* it's safe to autoconfigure fixed-voltage supplies
961                    and the constraints are used by list_voltage. */
962                 if (count == 1 && !cmin) {
963                         cmin = 1;
964                         cmax = INT_MAX;
965                         constraints->min_uV = cmin;
966                         constraints->max_uV = cmax;
967                 }
968
969                 /* voltage constraints are optional */
970                 if ((cmin == 0) && (cmax == 0))
971                         return 0;
972
973                 /* else require explicit machine-level constraints */
974                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
975                         rdev_err(rdev, "invalid voltage constraints\n");
976                         return -EINVAL;
977                 }
978
979                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
980                 for (i = 0; i < count; i++) {
981                         int     value;
982
983                         value = ops->list_voltage(rdev, i);
984                         if (value <= 0)
985                                 continue;
986
987                         /* maybe adjust [min_uV..max_uV] */
988                         if (value >= cmin && value < min_uV)
989                                 min_uV = value;
990                         if (value <= cmax && value > max_uV)
991                                 max_uV = value;
992                 }
993
994                 /* final: [min_uV..max_uV] valid iff constraints valid */
995                 if (max_uV < min_uV) {
996                         rdev_err(rdev,
997                                  "unsupportable voltage constraints %u-%uuV\n",
998                                  min_uV, max_uV);
999                         return -EINVAL;
1000                 }
1001
1002                 /* use regulator's subset of machine constraints */
1003                 if (constraints->min_uV < min_uV) {
1004                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1005                                  constraints->min_uV, min_uV);
1006                         constraints->min_uV = min_uV;
1007                 }
1008                 if (constraints->max_uV > max_uV) {
1009                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1010                                  constraints->max_uV, max_uV);
1011                         constraints->max_uV = max_uV;
1012                 }
1013         }
1014
1015         return 0;
1016 }
1017
1018 static int machine_constraints_current(struct regulator_dev *rdev,
1019         struct regulation_constraints *constraints)
1020 {
1021         const struct regulator_ops *ops = rdev->desc->ops;
1022         int ret;
1023
1024         if (!constraints->min_uA && !constraints->max_uA)
1025                 return 0;
1026
1027         if (constraints->min_uA > constraints->max_uA) {
1028                 rdev_err(rdev, "Invalid current constraints\n");
1029                 return -EINVAL;
1030         }
1031
1032         if (!ops->set_current_limit || !ops->get_current_limit) {
1033                 rdev_warn(rdev, "Operation of current configuration missing\n");
1034                 return 0;
1035         }
1036
1037         /* Set regulator current in constraints range */
1038         ret = ops->set_current_limit(rdev, constraints->min_uA,
1039                         constraints->max_uA);
1040         if (ret < 0) {
1041                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1042                 return ret;
1043         }
1044
1045         return 0;
1046 }
1047
1048 static int _regulator_do_enable(struct regulator_dev *rdev);
1049
1050 /**
1051  * set_machine_constraints - sets regulator constraints
1052  * @rdev: regulator source
1053  * @constraints: constraints to apply
1054  *
1055  * Allows platform initialisation code to define and constrain
1056  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1057  * Constraints *must* be set by platform code in order for some
1058  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1059  * set_mode.
1060  */
1061 static int set_machine_constraints(struct regulator_dev *rdev,
1062         const struct regulation_constraints *constraints)
1063 {
1064         int ret = 0;
1065         const struct regulator_ops *ops = rdev->desc->ops;
1066
1067         if (constraints)
1068                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1069                                             GFP_KERNEL);
1070         else
1071                 rdev->constraints = kzalloc(sizeof(*constraints),
1072                                             GFP_KERNEL);
1073         if (!rdev->constraints)
1074                 return -ENOMEM;
1075
1076         ret = machine_constraints_voltage(rdev, rdev->constraints);
1077         if (ret != 0)
1078                 return ret;
1079
1080         ret = machine_constraints_current(rdev, rdev->constraints);
1081         if (ret != 0)
1082                 return ret;
1083
1084         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1085                 ret = ops->set_input_current_limit(rdev,
1086                                                    rdev->constraints->ilim_uA);
1087                 if (ret < 0) {
1088                         rdev_err(rdev, "failed to set input limit\n");
1089                         return ret;
1090                 }
1091         }
1092
1093         /* do we need to setup our suspend state */
1094         if (rdev->constraints->initial_state) {
1095                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1096                 if (ret < 0) {
1097                         rdev_err(rdev, "failed to set suspend state\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if (rdev->constraints->initial_mode) {
1103                 if (!ops->set_mode) {
1104                         rdev_err(rdev, "no set_mode operation\n");
1105                         return -EINVAL;
1106                 }
1107
1108                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1109                 if (ret < 0) {
1110                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1111                         return ret;
1112                 }
1113         }
1114
1115         /* If the constraints say the regulator should be on at this point
1116          * and we have control then make sure it is enabled.
1117          */
1118         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1119                 ret = _regulator_do_enable(rdev);
1120                 if (ret < 0 && ret != -EINVAL) {
1121                         rdev_err(rdev, "failed to enable\n");
1122                         return ret;
1123                 }
1124         }
1125
1126         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1127                 && ops->set_ramp_delay) {
1128                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set ramp_delay\n");
1131                         return ret;
1132                 }
1133         }
1134
1135         if (rdev->constraints->pull_down && ops->set_pull_down) {
1136                 ret = ops->set_pull_down(rdev);
1137                 if (ret < 0) {
1138                         rdev_err(rdev, "failed to set pull down\n");
1139                         return ret;
1140                 }
1141         }
1142
1143         if (rdev->constraints->soft_start && ops->set_soft_start) {
1144                 ret = ops->set_soft_start(rdev);
1145                 if (ret < 0) {
1146                         rdev_err(rdev, "failed to set soft start\n");
1147                         return ret;
1148                 }
1149         }
1150
1151         if (rdev->constraints->over_current_protection
1152                 && ops->set_over_current_protection) {
1153                 ret = ops->set_over_current_protection(rdev);
1154                 if (ret < 0) {
1155                         rdev_err(rdev, "failed to set over current protection\n");
1156                         return ret;
1157                 }
1158         }
1159
1160         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1161                 bool ad_state = (rdev->constraints->active_discharge ==
1162                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1163
1164                 ret = ops->set_active_discharge(rdev, ad_state);
1165                 if (ret < 0) {
1166                         rdev_err(rdev, "failed to set active discharge\n");
1167                         return ret;
1168                 }
1169         }
1170
1171         print_constraints(rdev);
1172         return 0;
1173 }
1174
1175 /**
1176  * set_supply - set regulator supply regulator
1177  * @rdev: regulator name
1178  * @supply_rdev: supply regulator name
1179  *
1180  * Called by platform initialisation code to set the supply regulator for this
1181  * regulator. This ensures that a regulators supply will also be enabled by the
1182  * core if it's child is enabled.
1183  */
1184 static int set_supply(struct regulator_dev *rdev,
1185                       struct regulator_dev *supply_rdev)
1186 {
1187         int err;
1188
1189         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1190
1191         if (!try_module_get(supply_rdev->owner))
1192                 return -ENODEV;
1193
1194         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1195         if (rdev->supply == NULL) {
1196                 err = -ENOMEM;
1197                 return err;
1198         }
1199         supply_rdev->open_count++;
1200
1201         return 0;
1202 }
1203
1204 /**
1205  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1206  * @rdev:         regulator source
1207  * @consumer_dev_name: dev_name() string for device supply applies to
1208  * @supply:       symbolic name for supply
1209  *
1210  * Allows platform initialisation code to map physical regulator
1211  * sources to symbolic names for supplies for use by devices.  Devices
1212  * should use these symbolic names to request regulators, avoiding the
1213  * need to provide board-specific regulator names as platform data.
1214  */
1215 static int set_consumer_device_supply(struct regulator_dev *rdev,
1216                                       const char *consumer_dev_name,
1217                                       const char *supply)
1218 {
1219         struct regulator_map *node;
1220         int has_dev;
1221
1222         if (supply == NULL)
1223                 return -EINVAL;
1224
1225         if (consumer_dev_name != NULL)
1226                 has_dev = 1;
1227         else
1228                 has_dev = 0;
1229
1230         list_for_each_entry(node, &regulator_map_list, list) {
1231                 if (node->dev_name && consumer_dev_name) {
1232                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1233                                 continue;
1234                 } else if (node->dev_name || consumer_dev_name) {
1235                         continue;
1236                 }
1237
1238                 if (strcmp(node->supply, supply) != 0)
1239                         continue;
1240
1241                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1242                          consumer_dev_name,
1243                          dev_name(&node->regulator->dev),
1244                          node->regulator->desc->name,
1245                          supply,
1246                          dev_name(&rdev->dev), rdev_get_name(rdev));
1247                 return -EBUSY;
1248         }
1249
1250         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1251         if (node == NULL)
1252                 return -ENOMEM;
1253
1254         node->regulator = rdev;
1255         node->supply = supply;
1256
1257         if (has_dev) {
1258                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1259                 if (node->dev_name == NULL) {
1260                         kfree(node);
1261                         return -ENOMEM;
1262                 }
1263         }
1264
1265         list_add(&node->list, &regulator_map_list);
1266         return 0;
1267 }
1268
1269 static void unset_regulator_supplies(struct regulator_dev *rdev)
1270 {
1271         struct regulator_map *node, *n;
1272
1273         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1274                 if (rdev == node->regulator) {
1275                         list_del(&node->list);
1276                         kfree(node->dev_name);
1277                         kfree(node);
1278                 }
1279         }
1280 }
1281
1282 #define REG_STR_SIZE    64
1283
1284 static struct regulator *create_regulator(struct regulator_dev *rdev,
1285                                           struct device *dev,
1286                                           const char *supply_name)
1287 {
1288         struct regulator *regulator;
1289         char buf[REG_STR_SIZE];
1290         int err, size;
1291
1292         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1293         if (regulator == NULL)
1294                 return NULL;
1295
1296         mutex_lock(&rdev->mutex);
1297         regulator->rdev = rdev;
1298         list_add(&regulator->list, &rdev->consumer_list);
1299
1300         if (dev) {
1301                 regulator->dev = dev;
1302
1303                 /* Add a link to the device sysfs entry */
1304                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1305                                  dev->kobj.name, supply_name);
1306                 if (size >= REG_STR_SIZE)
1307                         goto overflow_err;
1308
1309                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1310                 if (regulator->supply_name == NULL)
1311                         goto overflow_err;
1312
1313                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1314                                         buf);
1315                 if (err) {
1316                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1317                                   dev->kobj.name, err);
1318                         /* non-fatal */
1319                 }
1320         } else {
1321                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1322                 if (regulator->supply_name == NULL)
1323                         goto overflow_err;
1324         }
1325
1326         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1327                                                 rdev->debugfs);
1328         if (!regulator->debugfs) {
1329                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1330         } else {
1331                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1332                                    &regulator->uA_load);
1333                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1334                                    &regulator->min_uV);
1335                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1336                                    &regulator->max_uV);
1337         }
1338
1339         /*
1340          * Check now if the regulator is an always on regulator - if
1341          * it is then we don't need to do nearly so much work for
1342          * enable/disable calls.
1343          */
1344         if (!_regulator_can_change_status(rdev) &&
1345             _regulator_is_enabled(rdev))
1346                 regulator->always_on = true;
1347
1348         mutex_unlock(&rdev->mutex);
1349         return regulator;
1350 overflow_err:
1351         list_del(&regulator->list);
1352         kfree(regulator);
1353         mutex_unlock(&rdev->mutex);
1354         return NULL;
1355 }
1356
1357 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1358 {
1359         if (rdev->constraints && rdev->constraints->enable_time)
1360                 return rdev->constraints->enable_time;
1361         if (!rdev->desc->ops->enable_time)
1362                 return rdev->desc->enable_time;
1363         return rdev->desc->ops->enable_time(rdev);
1364 }
1365
1366 static struct regulator_supply_alias *regulator_find_supply_alias(
1367                 struct device *dev, const char *supply)
1368 {
1369         struct regulator_supply_alias *map;
1370
1371         list_for_each_entry(map, &regulator_supply_alias_list, list)
1372                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1373                         return map;
1374
1375         return NULL;
1376 }
1377
1378 static void regulator_supply_alias(struct device **dev, const char **supply)
1379 {
1380         struct regulator_supply_alias *map;
1381
1382         map = regulator_find_supply_alias(*dev, *supply);
1383         if (map) {
1384                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1385                                 *supply, map->alias_supply,
1386                                 dev_name(map->alias_dev));
1387                 *dev = map->alias_dev;
1388                 *supply = map->alias_supply;
1389         }
1390 }
1391
1392 static int of_node_match(struct device *dev, const void *data)
1393 {
1394         return dev->of_node == data;
1395 }
1396
1397 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1398 {
1399         struct device *dev;
1400
1401         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1402
1403         return dev ? dev_to_rdev(dev) : NULL;
1404 }
1405
1406 static int regulator_match(struct device *dev, const void *data)
1407 {
1408         struct regulator_dev *r = dev_to_rdev(dev);
1409
1410         return strcmp(rdev_get_name(r), data) == 0;
1411 }
1412
1413 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1414 {
1415         struct device *dev;
1416
1417         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1418
1419         return dev ? dev_to_rdev(dev) : NULL;
1420 }
1421
1422 /**
1423  * regulator_dev_lookup - lookup a regulator device.
1424  * @dev: device for regulator "consumer".
1425  * @supply: Supply name or regulator ID.
1426  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1427  * lookup could succeed in the future.
1428  *
1429  * If successful, returns a struct regulator_dev that corresponds to the name
1430  * @supply and with the embedded struct device refcount incremented by one,
1431  * or NULL on failure. The refcount must be dropped by calling put_device().
1432  */
1433 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1434                                                   const char *supply,
1435                                                   int *ret)
1436 {
1437         struct regulator_dev *r;
1438         struct device_node *node;
1439         struct regulator_map *map;
1440         const char *devname = NULL;
1441
1442         regulator_supply_alias(&dev, &supply);
1443
1444         /* first do a dt based lookup */
1445         if (dev && dev->of_node) {
1446                 node = of_get_regulator(dev, supply);
1447                 if (node) {
1448                         r = of_find_regulator_by_node(node);
1449                         if (r)
1450                                 return r;
1451                         *ret = -EPROBE_DEFER;
1452                         return NULL;
1453                 } else {
1454                         /*
1455                          * If we couldn't even get the node then it's
1456                          * not just that the device didn't register
1457                          * yet, there's no node and we'll never
1458                          * succeed.
1459                          */
1460                         *ret = -ENODEV;
1461                 }
1462         }
1463
1464         /* if not found, try doing it non-dt way */
1465         if (dev)
1466                 devname = dev_name(dev);
1467
1468         r = regulator_lookup_by_name(supply);
1469         if (r)
1470                 return r;
1471
1472         mutex_lock(&regulator_list_mutex);
1473         list_for_each_entry(map, &regulator_map_list, list) {
1474                 /* If the mapping has a device set up it must match */
1475                 if (map->dev_name &&
1476                     (!devname || strcmp(map->dev_name, devname)))
1477                         continue;
1478
1479                 if (strcmp(map->supply, supply) == 0 &&
1480                     get_device(&map->regulator->dev)) {
1481                         mutex_unlock(&regulator_list_mutex);
1482                         return map->regulator;
1483                 }
1484         }
1485         mutex_unlock(&regulator_list_mutex);
1486
1487         return NULL;
1488 }
1489
1490 static int regulator_resolve_supply(struct regulator_dev *rdev)
1491 {
1492         struct regulator_dev *r;
1493         struct device *dev = rdev->dev.parent;
1494         int ret;
1495
1496         /* No supply to resovle? */
1497         if (!rdev->supply_name)
1498                 return 0;
1499
1500         /* Supply already resolved? */
1501         if (rdev->supply)
1502                 return 0;
1503
1504         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1505         if (!r) {
1506                 if (ret == -ENODEV) {
1507                         /*
1508                          * No supply was specified for this regulator and
1509                          * there will never be one.
1510                          */
1511                         return 0;
1512                 }
1513
1514                 /* Did the lookup explicitly defer for us? */
1515                 if (ret == -EPROBE_DEFER)
1516                         return ret;
1517
1518                 if (have_full_constraints()) {
1519                         r = dummy_regulator_rdev;
1520                         get_device(&r->dev);
1521                 } else {
1522                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1523                                 rdev->supply_name, rdev->desc->name);
1524                         return -EPROBE_DEFER;
1525                 }
1526         }
1527
1528         /* Recursively resolve the supply of the supply */
1529         ret = regulator_resolve_supply(r);
1530         if (ret < 0) {
1531                 put_device(&r->dev);
1532                 return ret;
1533         }
1534
1535         ret = set_supply(rdev, r);
1536         if (ret < 0) {
1537                 put_device(&r->dev);
1538                 return ret;
1539         }
1540
1541         /* Cascade always-on state to supply */
1542         if (_regulator_is_enabled(rdev) && rdev->supply) {
1543                 ret = regulator_enable(rdev->supply);
1544                 if (ret < 0) {
1545                         _regulator_put(rdev->supply);
1546                         return ret;
1547                 }
1548         }
1549
1550         return 0;
1551 }
1552
1553 /* Internal regulator request function */
1554 static struct regulator *_regulator_get(struct device *dev, const char *id,
1555                                         bool exclusive, bool allow_dummy)
1556 {
1557         struct regulator_dev *rdev;
1558         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1559         const char *devname = NULL;
1560         int ret;
1561
1562         if (id == NULL) {
1563                 pr_err("get() with no identifier\n");
1564                 return ERR_PTR(-EINVAL);
1565         }
1566
1567         if (dev)
1568                 devname = dev_name(dev);
1569
1570         if (have_full_constraints())
1571                 ret = -ENODEV;
1572         else
1573                 ret = -EPROBE_DEFER;
1574
1575         rdev = regulator_dev_lookup(dev, id, &ret);
1576         if (rdev)
1577                 goto found;
1578
1579         regulator = ERR_PTR(ret);
1580
1581         /*
1582          * If we have return value from dev_lookup fail, we do not expect to
1583          * succeed, so, quit with appropriate error value
1584          */
1585         if (ret && ret != -ENODEV)
1586                 return regulator;
1587
1588         if (!devname)
1589                 devname = "deviceless";
1590
1591         /*
1592          * Assume that a regulator is physically present and enabled
1593          * even if it isn't hooked up and just provide a dummy.
1594          */
1595         if (have_full_constraints() && allow_dummy) {
1596                 pr_warn("%s supply %s not found, using dummy regulator\n",
1597                         devname, id);
1598
1599                 rdev = dummy_regulator_rdev;
1600                 get_device(&rdev->dev);
1601                 goto found;
1602         /* Don't log an error when called from regulator_get_optional() */
1603         } else if (!have_full_constraints() || exclusive) {
1604                 dev_warn(dev, "dummy supplies not allowed\n");
1605         }
1606
1607         return regulator;
1608
1609 found:
1610         if (rdev->exclusive) {
1611                 regulator = ERR_PTR(-EPERM);
1612                 put_device(&rdev->dev);
1613                 return regulator;
1614         }
1615
1616         if (exclusive && rdev->open_count) {
1617                 regulator = ERR_PTR(-EBUSY);
1618                 put_device(&rdev->dev);
1619                 return regulator;
1620         }
1621
1622         ret = regulator_resolve_supply(rdev);
1623         if (ret < 0) {
1624                 regulator = ERR_PTR(ret);
1625                 put_device(&rdev->dev);
1626                 return regulator;
1627         }
1628
1629         if (!try_module_get(rdev->owner)) {
1630                 put_device(&rdev->dev);
1631                 return regulator;
1632         }
1633
1634         regulator = create_regulator(rdev, dev, id);
1635         if (regulator == NULL) {
1636                 regulator = ERR_PTR(-ENOMEM);
1637                 put_device(&rdev->dev);
1638                 module_put(rdev->owner);
1639                 return regulator;
1640         }
1641
1642         rdev->open_count++;
1643         if (exclusive) {
1644                 rdev->exclusive = 1;
1645
1646                 ret = _regulator_is_enabled(rdev);
1647                 if (ret > 0)
1648                         rdev->use_count = 1;
1649                 else
1650                         rdev->use_count = 0;
1651         }
1652
1653         return regulator;
1654 }
1655
1656 /**
1657  * regulator_get - lookup and obtain a reference to a regulator.
1658  * @dev: device for regulator "consumer"
1659  * @id: Supply name or regulator ID.
1660  *
1661  * Returns a struct regulator corresponding to the regulator producer,
1662  * or IS_ERR() condition containing errno.
1663  *
1664  * Use of supply names configured via regulator_set_device_supply() is
1665  * strongly encouraged.  It is recommended that the supply name used
1666  * should match the name used for the supply and/or the relevant
1667  * device pins in the datasheet.
1668  */
1669 struct regulator *regulator_get(struct device *dev, const char *id)
1670 {
1671         return _regulator_get(dev, id, false, true);
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_get);
1674
1675 /**
1676  * regulator_get_exclusive - obtain exclusive access to a regulator.
1677  * @dev: device for regulator "consumer"
1678  * @id: Supply name or regulator ID.
1679  *
1680  * Returns a struct regulator corresponding to the regulator producer,
1681  * or IS_ERR() condition containing errno.  Other consumers will be
1682  * unable to obtain this regulator while this reference is held and the
1683  * use count for the regulator will be initialised to reflect the current
1684  * state of the regulator.
1685  *
1686  * This is intended for use by consumers which cannot tolerate shared
1687  * use of the regulator such as those which need to force the
1688  * regulator off for correct operation of the hardware they are
1689  * controlling.
1690  *
1691  * Use of supply names configured via regulator_set_device_supply() is
1692  * strongly encouraged.  It is recommended that the supply name used
1693  * should match the name used for the supply and/or the relevant
1694  * device pins in the datasheet.
1695  */
1696 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1697 {
1698         return _regulator_get(dev, id, true, false);
1699 }
1700 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1701
1702 /**
1703  * regulator_get_optional - obtain optional access to a regulator.
1704  * @dev: device for regulator "consumer"
1705  * @id: Supply name or regulator ID.
1706  *
1707  * Returns a struct regulator corresponding to the regulator producer,
1708  * or IS_ERR() condition containing errno.
1709  *
1710  * This is intended for use by consumers for devices which can have
1711  * some supplies unconnected in normal use, such as some MMC devices.
1712  * It can allow the regulator core to provide stub supplies for other
1713  * supplies requested using normal regulator_get() calls without
1714  * disrupting the operation of drivers that can handle absent
1715  * supplies.
1716  *
1717  * Use of supply names configured via regulator_set_device_supply() is
1718  * strongly encouraged.  It is recommended that the supply name used
1719  * should match the name used for the supply and/or the relevant
1720  * device pins in the datasheet.
1721  */
1722 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1723 {
1724         return _regulator_get(dev, id, false, false);
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_get_optional);
1727
1728 /* regulator_list_mutex lock held by regulator_put() */
1729 static void _regulator_put(struct regulator *regulator)
1730 {
1731         struct regulator_dev *rdev;
1732
1733         if (IS_ERR_OR_NULL(regulator))
1734                 return;
1735
1736         lockdep_assert_held_once(&regulator_list_mutex);
1737
1738         rdev = regulator->rdev;
1739
1740         debugfs_remove_recursive(regulator->debugfs);
1741
1742         /* remove any sysfs entries */
1743         if (regulator->dev)
1744                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1745         mutex_lock(&rdev->mutex);
1746         list_del(&regulator->list);
1747
1748         rdev->open_count--;
1749         rdev->exclusive = 0;
1750         put_device(&rdev->dev);
1751         mutex_unlock(&rdev->mutex);
1752
1753         kfree(regulator->supply_name);
1754         kfree(regulator);
1755
1756         module_put(rdev->owner);
1757 }
1758
1759 /**
1760  * regulator_put - "free" the regulator source
1761  * @regulator: regulator source
1762  *
1763  * Note: drivers must ensure that all regulator_enable calls made on this
1764  * regulator source are balanced by regulator_disable calls prior to calling
1765  * this function.
1766  */
1767 void regulator_put(struct regulator *regulator)
1768 {
1769         mutex_lock(&regulator_list_mutex);
1770         _regulator_put(regulator);
1771         mutex_unlock(&regulator_list_mutex);
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_put);
1774
1775 /**
1776  * regulator_register_supply_alias - Provide device alias for supply lookup
1777  *
1778  * @dev: device that will be given as the regulator "consumer"
1779  * @id: Supply name or regulator ID
1780  * @alias_dev: device that should be used to lookup the supply
1781  * @alias_id: Supply name or regulator ID that should be used to lookup the
1782  * supply
1783  *
1784  * All lookups for id on dev will instead be conducted for alias_id on
1785  * alias_dev.
1786  */
1787 int regulator_register_supply_alias(struct device *dev, const char *id,
1788                                     struct device *alias_dev,
1789                                     const char *alias_id)
1790 {
1791         struct regulator_supply_alias *map;
1792
1793         map = regulator_find_supply_alias(dev, id);
1794         if (map)
1795                 return -EEXIST;
1796
1797         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1798         if (!map)
1799                 return -ENOMEM;
1800
1801         map->src_dev = dev;
1802         map->src_supply = id;
1803         map->alias_dev = alias_dev;
1804         map->alias_supply = alias_id;
1805
1806         list_add(&map->list, &regulator_supply_alias_list);
1807
1808         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1809                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1810
1811         return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1814
1815 /**
1816  * regulator_unregister_supply_alias - Remove device alias
1817  *
1818  * @dev: device that will be given as the regulator "consumer"
1819  * @id: Supply name or regulator ID
1820  *
1821  * Remove a lookup alias if one exists for id on dev.
1822  */
1823 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1824 {
1825         struct regulator_supply_alias *map;
1826
1827         map = regulator_find_supply_alias(dev, id);
1828         if (map) {
1829                 list_del(&map->list);
1830                 kfree(map);
1831         }
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1834
1835 /**
1836  * regulator_bulk_register_supply_alias - register multiple aliases
1837  *
1838  * @dev: device that will be given as the regulator "consumer"
1839  * @id: List of supply names or regulator IDs
1840  * @alias_dev: device that should be used to lookup the supply
1841  * @alias_id: List of supply names or regulator IDs that should be used to
1842  * lookup the supply
1843  * @num_id: Number of aliases to register
1844  *
1845  * @return 0 on success, an errno on failure.
1846  *
1847  * This helper function allows drivers to register several supply
1848  * aliases in one operation.  If any of the aliases cannot be
1849  * registered any aliases that were registered will be removed
1850  * before returning to the caller.
1851  */
1852 int regulator_bulk_register_supply_alias(struct device *dev,
1853                                          const char *const *id,
1854                                          struct device *alias_dev,
1855                                          const char *const *alias_id,
1856                                          int num_id)
1857 {
1858         int i;
1859         int ret;
1860
1861         for (i = 0; i < num_id; ++i) {
1862                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1863                                                       alias_id[i]);
1864                 if (ret < 0)
1865                         goto err;
1866         }
1867
1868         return 0;
1869
1870 err:
1871         dev_err(dev,
1872                 "Failed to create supply alias %s,%s -> %s,%s\n",
1873                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1874
1875         while (--i >= 0)
1876                 regulator_unregister_supply_alias(dev, id[i]);
1877
1878         return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1881
1882 /**
1883  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1884  *
1885  * @dev: device that will be given as the regulator "consumer"
1886  * @id: List of supply names or regulator IDs
1887  * @num_id: Number of aliases to unregister
1888  *
1889  * This helper function allows drivers to unregister several supply
1890  * aliases in one operation.
1891  */
1892 void regulator_bulk_unregister_supply_alias(struct device *dev,
1893                                             const char *const *id,
1894                                             int num_id)
1895 {
1896         int i;
1897
1898         for (i = 0; i < num_id; ++i)
1899                 regulator_unregister_supply_alias(dev, id[i]);
1900 }
1901 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1902
1903
1904 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1905 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1906                                 const struct regulator_config *config)
1907 {
1908         struct regulator_enable_gpio *pin;
1909         struct gpio_desc *gpiod;
1910         int ret;
1911
1912         gpiod = gpio_to_desc(config->ena_gpio);
1913
1914         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1915                 if (pin->gpiod == gpiod) {
1916                         rdev_dbg(rdev, "GPIO %d is already used\n",
1917                                 config->ena_gpio);
1918                         goto update_ena_gpio_to_rdev;
1919                 }
1920         }
1921
1922         ret = gpio_request_one(config->ena_gpio,
1923                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1924                                 rdev_get_name(rdev));
1925         if (ret)
1926                 return ret;
1927
1928         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1929         if (pin == NULL) {
1930                 gpio_free(config->ena_gpio);
1931                 return -ENOMEM;
1932         }
1933
1934         pin->gpiod = gpiod;
1935         pin->ena_gpio_invert = config->ena_gpio_invert;
1936         list_add(&pin->list, &regulator_ena_gpio_list);
1937
1938 update_ena_gpio_to_rdev:
1939         pin->request_count++;
1940         rdev->ena_pin = pin;
1941         return 0;
1942 }
1943
1944 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1945 {
1946         struct regulator_enable_gpio *pin, *n;
1947
1948         if (!rdev->ena_pin)
1949                 return;
1950
1951         /* Free the GPIO only in case of no use */
1952         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1953                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1954                         if (pin->request_count <= 1) {
1955                                 pin->request_count = 0;
1956                                 gpiod_put(pin->gpiod);
1957                                 list_del(&pin->list);
1958                                 kfree(pin);
1959                                 rdev->ena_pin = NULL;
1960                                 return;
1961                         } else {
1962                                 pin->request_count--;
1963                         }
1964                 }
1965         }
1966 }
1967
1968 /**
1969  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1970  * @rdev: regulator_dev structure
1971  * @enable: enable GPIO at initial use?
1972  *
1973  * GPIO is enabled in case of initial use. (enable_count is 0)
1974  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1975  */
1976 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1977 {
1978         struct regulator_enable_gpio *pin = rdev->ena_pin;
1979
1980         if (!pin)
1981                 return -EINVAL;
1982
1983         if (enable) {
1984                 /* Enable GPIO at initial use */
1985                 if (pin->enable_count == 0)
1986                         gpiod_set_value_cansleep(pin->gpiod,
1987                                                  !pin->ena_gpio_invert);
1988
1989                 pin->enable_count++;
1990         } else {
1991                 if (pin->enable_count > 1) {
1992                         pin->enable_count--;
1993                         return 0;
1994                 }
1995
1996                 /* Disable GPIO if not used */
1997                 if (pin->enable_count <= 1) {
1998                         gpiod_set_value_cansleep(pin->gpiod,
1999                                                  pin->ena_gpio_invert);
2000                         pin->enable_count = 0;
2001                 }
2002         }
2003
2004         return 0;
2005 }
2006
2007 /**
2008  * _regulator_enable_delay - a delay helper function
2009  * @delay: time to delay in microseconds
2010  *
2011  * Delay for the requested amount of time as per the guidelines in:
2012  *
2013  *     Documentation/timers/timers-howto.txt
2014  *
2015  * The assumption here is that regulators will never be enabled in
2016  * atomic context and therefore sleeping functions can be used.
2017  */
2018 static void _regulator_enable_delay(unsigned int delay)
2019 {
2020         unsigned int ms = delay / 1000;
2021         unsigned int us = delay % 1000;
2022
2023         if (ms > 0) {
2024                 /*
2025                  * For small enough values, handle super-millisecond
2026                  * delays in the usleep_range() call below.
2027                  */
2028                 if (ms < 20)
2029                         us += ms * 1000;
2030                 else
2031                         msleep(ms);
2032         }
2033
2034         /*
2035          * Give the scheduler some room to coalesce with any other
2036          * wakeup sources. For delays shorter than 10 us, don't even
2037          * bother setting up high-resolution timers and just busy-
2038          * loop.
2039          */
2040         if (us >= 10)
2041                 usleep_range(us, us + 100);
2042         else
2043                 udelay(us);
2044 }
2045
2046 static int _regulator_do_enable(struct regulator_dev *rdev)
2047 {
2048         int ret, delay;
2049
2050         /* Query before enabling in case configuration dependent.  */
2051         ret = _regulator_get_enable_time(rdev);
2052         if (ret >= 0) {
2053                 delay = ret;
2054         } else {
2055                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2056                 delay = 0;
2057         }
2058
2059         trace_regulator_enable(rdev_get_name(rdev));
2060
2061         if (rdev->desc->off_on_delay) {
2062                 /* if needed, keep a distance of off_on_delay from last time
2063                  * this regulator was disabled.
2064                  */
2065                 unsigned long start_jiffy = jiffies;
2066                 unsigned long intended, max_delay, remaining;
2067
2068                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2069                 intended = rdev->last_off_jiffy + max_delay;
2070
2071                 if (time_before(start_jiffy, intended)) {
2072                         /* calc remaining jiffies to deal with one-time
2073                          * timer wrapping.
2074                          * in case of multiple timer wrapping, either it can be
2075                          * detected by out-of-range remaining, or it cannot be
2076                          * detected and we gets a panelty of
2077                          * _regulator_enable_delay().
2078                          */
2079                         remaining = intended - start_jiffy;
2080                         if (remaining <= max_delay)
2081                                 _regulator_enable_delay(
2082                                                 jiffies_to_usecs(remaining));
2083                 }
2084         }
2085
2086         if (rdev->ena_pin) {
2087                 if (!rdev->ena_gpio_state) {
2088                         ret = regulator_ena_gpio_ctrl(rdev, true);
2089                         if (ret < 0)
2090                                 return ret;
2091                         rdev->ena_gpio_state = 1;
2092                 }
2093         } else if (rdev->desc->ops->enable) {
2094                 ret = rdev->desc->ops->enable(rdev);
2095                 if (ret < 0)
2096                         return ret;
2097         } else {
2098                 return -EINVAL;
2099         }
2100
2101         /* Allow the regulator to ramp; it would be useful to extend
2102          * this for bulk operations so that the regulators can ramp
2103          * together.  */
2104         trace_regulator_enable_delay(rdev_get_name(rdev));
2105
2106         _regulator_enable_delay(delay);
2107
2108         trace_regulator_enable_complete(rdev_get_name(rdev));
2109
2110         return 0;
2111 }
2112
2113 /* locks held by regulator_enable() */
2114 static int _regulator_enable(struct regulator_dev *rdev)
2115 {
2116         int ret;
2117
2118         lockdep_assert_held_once(&rdev->mutex);
2119
2120         /* check voltage and requested load before enabling */
2121         if (rdev->constraints &&
2122             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2123                 drms_uA_update(rdev);
2124
2125         if (rdev->use_count == 0) {
2126                 /* The regulator may on if it's not switchable or left on */
2127                 ret = _regulator_is_enabled(rdev);
2128                 if (ret == -EINVAL || ret == 0) {
2129                         if (!_regulator_can_change_status(rdev))
2130                                 return -EPERM;
2131
2132                         ret = _regulator_do_enable(rdev);
2133                         if (ret < 0)
2134                                 return ret;
2135
2136                 } else if (ret < 0) {
2137                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2138                         return ret;
2139                 }
2140                 /* Fallthrough on positive return values - already enabled */
2141         }
2142
2143         rdev->use_count++;
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * regulator_enable - enable regulator output
2150  * @regulator: regulator source
2151  *
2152  * Request that the regulator be enabled with the regulator output at
2153  * the predefined voltage or current value.  Calls to regulator_enable()
2154  * must be balanced with calls to regulator_disable().
2155  *
2156  * NOTE: the output value can be set by other drivers, boot loader or may be
2157  * hardwired in the regulator.
2158  */
2159 int regulator_enable(struct regulator *regulator)
2160 {
2161         struct regulator_dev *rdev = regulator->rdev;
2162         int ret = 0;
2163
2164         if (regulator->always_on)
2165                 return 0;
2166
2167         if (rdev->supply) {
2168                 ret = regulator_enable(rdev->supply);
2169                 if (ret != 0)
2170                         return ret;
2171         }
2172
2173         mutex_lock(&rdev->mutex);
2174         ret = _regulator_enable(rdev);
2175         mutex_unlock(&rdev->mutex);
2176
2177         if (ret != 0 && rdev->supply)
2178                 regulator_disable(rdev->supply);
2179
2180         return ret;
2181 }
2182 EXPORT_SYMBOL_GPL(regulator_enable);
2183
2184 static int _regulator_do_disable(struct regulator_dev *rdev)
2185 {
2186         int ret;
2187
2188         trace_regulator_disable(rdev_get_name(rdev));
2189
2190         if (rdev->ena_pin) {
2191                 if (rdev->ena_gpio_state) {
2192                         ret = regulator_ena_gpio_ctrl(rdev, false);
2193                         if (ret < 0)
2194                                 return ret;
2195                         rdev->ena_gpio_state = 0;
2196                 }
2197
2198         } else if (rdev->desc->ops->disable) {
2199                 ret = rdev->desc->ops->disable(rdev);
2200                 if (ret != 0)
2201                         return ret;
2202         }
2203
2204         /* cares about last_off_jiffy only if off_on_delay is required by
2205          * device.
2206          */
2207         if (rdev->desc->off_on_delay)
2208                 rdev->last_off_jiffy = jiffies;
2209
2210         trace_regulator_disable_complete(rdev_get_name(rdev));
2211
2212         return 0;
2213 }
2214
2215 /* locks held by regulator_disable() */
2216 static int _regulator_disable(struct regulator_dev *rdev)
2217 {
2218         int ret = 0;
2219
2220         lockdep_assert_held_once(&rdev->mutex);
2221
2222         if (WARN(rdev->use_count <= 0,
2223                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2224                 return -EIO;
2225
2226         /* are we the last user and permitted to disable ? */
2227         if (rdev->use_count == 1 &&
2228             (rdev->constraints && !rdev->constraints->always_on)) {
2229
2230                 /* we are last user */
2231                 if (_regulator_can_change_status(rdev)) {
2232                         ret = _notifier_call_chain(rdev,
2233                                                    REGULATOR_EVENT_PRE_DISABLE,
2234                                                    NULL);
2235                         if (ret & NOTIFY_STOP_MASK)
2236                                 return -EINVAL;
2237
2238                         ret = _regulator_do_disable(rdev);
2239                         if (ret < 0) {
2240                                 rdev_err(rdev, "failed to disable\n");
2241                                 _notifier_call_chain(rdev,
2242                                                 REGULATOR_EVENT_ABORT_DISABLE,
2243                                                 NULL);
2244                                 return ret;
2245                         }
2246                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2247                                         NULL);
2248                 }
2249
2250                 rdev->use_count = 0;
2251         } else if (rdev->use_count > 1) {
2252
2253                 if (rdev->constraints &&
2254                         (rdev->constraints->valid_ops_mask &
2255                         REGULATOR_CHANGE_DRMS))
2256                         drms_uA_update(rdev);
2257
2258                 rdev->use_count--;
2259         }
2260
2261         return ret;
2262 }
2263
2264 /**
2265  * regulator_disable - disable regulator output
2266  * @regulator: regulator source
2267  *
2268  * Disable the regulator output voltage or current.  Calls to
2269  * regulator_enable() must be balanced with calls to
2270  * regulator_disable().
2271  *
2272  * NOTE: this will only disable the regulator output if no other consumer
2273  * devices have it enabled, the regulator device supports disabling and
2274  * machine constraints permit this operation.
2275  */
2276 int regulator_disable(struct regulator *regulator)
2277 {
2278         struct regulator_dev *rdev = regulator->rdev;
2279         int ret = 0;
2280
2281         if (regulator->always_on)
2282                 return 0;
2283
2284         mutex_lock(&rdev->mutex);
2285         ret = _regulator_disable(rdev);
2286         mutex_unlock(&rdev->mutex);
2287
2288         if (ret == 0 && rdev->supply)
2289                 regulator_disable(rdev->supply);
2290
2291         return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_disable);
2294
2295 /* locks held by regulator_force_disable() */
2296 static int _regulator_force_disable(struct regulator_dev *rdev)
2297 {
2298         int ret = 0;
2299
2300         lockdep_assert_held_once(&rdev->mutex);
2301
2302         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2303                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2304         if (ret & NOTIFY_STOP_MASK)
2305                 return -EINVAL;
2306
2307         ret = _regulator_do_disable(rdev);
2308         if (ret < 0) {
2309                 rdev_err(rdev, "failed to force disable\n");
2310                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2311                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2312                 return ret;
2313         }
2314
2315         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2316                         REGULATOR_EVENT_DISABLE, NULL);
2317
2318         return 0;
2319 }
2320
2321 /**
2322  * regulator_force_disable - force disable regulator output
2323  * @regulator: regulator source
2324  *
2325  * Forcibly disable the regulator output voltage or current.
2326  * NOTE: this *will* disable the regulator output even if other consumer
2327  * devices have it enabled. This should be used for situations when device
2328  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2329  */
2330 int regulator_force_disable(struct regulator *regulator)
2331 {
2332         struct regulator_dev *rdev = regulator->rdev;
2333         int ret;
2334
2335         mutex_lock(&rdev->mutex);
2336         regulator->uA_load = 0;
2337         ret = _regulator_force_disable(regulator->rdev);
2338         mutex_unlock(&rdev->mutex);
2339
2340         if (rdev->supply)
2341                 while (rdev->open_count--)
2342                         regulator_disable(rdev->supply);
2343
2344         return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_force_disable);
2347
2348 static void regulator_disable_work(struct work_struct *work)
2349 {
2350         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2351                                                   disable_work.work);
2352         int count, i, ret;
2353
2354         mutex_lock(&rdev->mutex);
2355
2356         BUG_ON(!rdev->deferred_disables);
2357
2358         count = rdev->deferred_disables;
2359         rdev->deferred_disables = 0;
2360
2361         for (i = 0; i < count; i++) {
2362                 ret = _regulator_disable(rdev);
2363                 if (ret != 0)
2364                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2365         }
2366
2367         mutex_unlock(&rdev->mutex);
2368
2369         if (rdev->supply) {
2370                 for (i = 0; i < count; i++) {
2371                         ret = regulator_disable(rdev->supply);
2372                         if (ret != 0) {
2373                                 rdev_err(rdev,
2374                                          "Supply disable failed: %d\n", ret);
2375                         }
2376                 }
2377         }
2378 }
2379
2380 /**
2381  * regulator_disable_deferred - disable regulator output with delay
2382  * @regulator: regulator source
2383  * @ms: miliseconds until the regulator is disabled
2384  *
2385  * Execute regulator_disable() on the regulator after a delay.  This
2386  * is intended for use with devices that require some time to quiesce.
2387  *
2388  * NOTE: this will only disable the regulator output if no other consumer
2389  * devices have it enabled, the regulator device supports disabling and
2390  * machine constraints permit this operation.
2391  */
2392 int regulator_disable_deferred(struct regulator *regulator, int ms)
2393 {
2394         struct regulator_dev *rdev = regulator->rdev;
2395
2396         if (regulator->always_on)
2397                 return 0;
2398
2399         if (!ms)
2400                 return regulator_disable(regulator);
2401
2402         mutex_lock(&rdev->mutex);
2403         rdev->deferred_disables++;
2404         mutex_unlock(&rdev->mutex);
2405
2406         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2407                            msecs_to_jiffies(ms));
2408         return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2411
2412 static int _regulator_is_enabled(struct regulator_dev *rdev)
2413 {
2414         /* A GPIO control always takes precedence */
2415         if (rdev->ena_pin)
2416                 return rdev->ena_gpio_state;
2417
2418         /* If we don't know then assume that the regulator is always on */
2419         if (!rdev->desc->ops->is_enabled)
2420                 return 1;
2421
2422         return rdev->desc->ops->is_enabled(rdev);
2423 }
2424
2425 static int _regulator_list_voltage(struct regulator *regulator,
2426                                     unsigned selector, int lock)
2427 {
2428         struct regulator_dev *rdev = regulator->rdev;
2429         const struct regulator_ops *ops = rdev->desc->ops;
2430         int ret;
2431
2432         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2433                 return rdev->desc->fixed_uV;
2434
2435         if (ops->list_voltage) {
2436                 if (selector >= rdev->desc->n_voltages)
2437                         return -EINVAL;
2438                 if (lock)
2439                         mutex_lock(&rdev->mutex);
2440                 ret = ops->list_voltage(rdev, selector);
2441                 if (lock)
2442                         mutex_unlock(&rdev->mutex);
2443         } else if (rdev->supply) {
2444                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2445         } else {
2446                 return -EINVAL;
2447         }
2448
2449         if (ret > 0) {
2450                 if (ret < rdev->constraints->min_uV)
2451                         ret = 0;
2452                 else if (ret > rdev->constraints->max_uV)
2453                         ret = 0;
2454         }
2455
2456         return ret;
2457 }
2458
2459 /**
2460  * regulator_is_enabled - is the regulator output enabled
2461  * @regulator: regulator source
2462  *
2463  * Returns positive if the regulator driver backing the source/client
2464  * has requested that the device be enabled, zero if it hasn't, else a
2465  * negative errno code.
2466  *
2467  * Note that the device backing this regulator handle can have multiple
2468  * users, so it might be enabled even if regulator_enable() was never
2469  * called for this particular source.
2470  */
2471 int regulator_is_enabled(struct regulator *regulator)
2472 {
2473         int ret;
2474
2475         if (regulator->always_on)
2476                 return 1;
2477
2478         mutex_lock(&regulator->rdev->mutex);
2479         ret = _regulator_is_enabled(regulator->rdev);
2480         mutex_unlock(&regulator->rdev->mutex);
2481
2482         return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2485
2486 /**
2487  * regulator_can_change_voltage - check if regulator can change voltage
2488  * @regulator: regulator source
2489  *
2490  * Returns positive if the regulator driver backing the source/client
2491  * can change its voltage, false otherwise. Useful for detecting fixed
2492  * or dummy regulators and disabling voltage change logic in the client
2493  * driver.
2494  */
2495 int regulator_can_change_voltage(struct regulator *regulator)
2496 {
2497         struct regulator_dev    *rdev = regulator->rdev;
2498
2499         if (rdev->constraints &&
2500             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2501                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2502                         return 1;
2503
2504                 if (rdev->desc->continuous_voltage_range &&
2505                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2506                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2507                         return 1;
2508         }
2509
2510         return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2513
2514 /**
2515  * regulator_count_voltages - count regulator_list_voltage() selectors
2516  * @regulator: regulator source
2517  *
2518  * Returns number of selectors, or negative errno.  Selectors are
2519  * numbered starting at zero, and typically correspond to bitfields
2520  * in hardware registers.
2521  */
2522 int regulator_count_voltages(struct regulator *regulator)
2523 {
2524         struct regulator_dev    *rdev = regulator->rdev;
2525
2526         if (rdev->desc->n_voltages)
2527                 return rdev->desc->n_voltages;
2528
2529         if (!rdev->supply)
2530                 return -EINVAL;
2531
2532         return regulator_count_voltages(rdev->supply);
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2535
2536 /**
2537  * regulator_list_voltage - enumerate supported voltages
2538  * @regulator: regulator source
2539  * @selector: identify voltage to list
2540  * Context: can sleep
2541  *
2542  * Returns a voltage that can be passed to @regulator_set_voltage(),
2543  * zero if this selector code can't be used on this system, or a
2544  * negative errno.
2545  */
2546 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2547 {
2548         return _regulator_list_voltage(regulator, selector, 1);
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2551
2552 /**
2553  * regulator_get_regmap - get the regulator's register map
2554  * @regulator: regulator source
2555  *
2556  * Returns the register map for the given regulator, or an ERR_PTR value
2557  * if the regulator doesn't use regmap.
2558  */
2559 struct regmap *regulator_get_regmap(struct regulator *regulator)
2560 {
2561         struct regmap *map = regulator->rdev->regmap;
2562
2563         return map ? map : ERR_PTR(-EOPNOTSUPP);
2564 }
2565
2566 /**
2567  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2568  * @regulator: regulator source
2569  * @vsel_reg: voltage selector register, output parameter
2570  * @vsel_mask: mask for voltage selector bitfield, output parameter
2571  *
2572  * Returns the hardware register offset and bitmask used for setting the
2573  * regulator voltage. This might be useful when configuring voltage-scaling
2574  * hardware or firmware that can make I2C requests behind the kernel's back,
2575  * for example.
2576  *
2577  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2578  * and 0 is returned, otherwise a negative errno is returned.
2579  */
2580 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2581                                          unsigned *vsel_reg,
2582                                          unsigned *vsel_mask)
2583 {
2584         struct regulator_dev *rdev = regulator->rdev;
2585         const struct regulator_ops *ops = rdev->desc->ops;
2586
2587         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2588                 return -EOPNOTSUPP;
2589
2590          *vsel_reg = rdev->desc->vsel_reg;
2591          *vsel_mask = rdev->desc->vsel_mask;
2592
2593          return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2596
2597 /**
2598  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2599  * @regulator: regulator source
2600  * @selector: identify voltage to list
2601  *
2602  * Converts the selector to a hardware-specific voltage selector that can be
2603  * directly written to the regulator registers. The address of the voltage
2604  * register can be determined by calling @regulator_get_hardware_vsel_register.
2605  *
2606  * On error a negative errno is returned.
2607  */
2608 int regulator_list_hardware_vsel(struct regulator *regulator,
2609                                  unsigned selector)
2610 {
2611         struct regulator_dev *rdev = regulator->rdev;
2612         const struct regulator_ops *ops = rdev->desc->ops;
2613
2614         if (selector >= rdev->desc->n_voltages)
2615                 return -EINVAL;
2616         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2617                 return -EOPNOTSUPP;
2618
2619         return selector;
2620 }
2621 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2622
2623 /**
2624  * regulator_get_linear_step - return the voltage step size between VSEL values
2625  * @regulator: regulator source
2626  *
2627  * Returns the voltage step size between VSEL values for linear
2628  * regulators, or return 0 if the regulator isn't a linear regulator.
2629  */
2630 unsigned int regulator_get_linear_step(struct regulator *regulator)
2631 {
2632         struct regulator_dev *rdev = regulator->rdev;
2633
2634         return rdev->desc->uV_step;
2635 }
2636 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2637
2638 /**
2639  * regulator_is_supported_voltage - check if a voltage range can be supported
2640  *
2641  * @regulator: Regulator to check.
2642  * @min_uV: Minimum required voltage in uV.
2643  * @max_uV: Maximum required voltage in uV.
2644  *
2645  * Returns a boolean or a negative error code.
2646  */
2647 int regulator_is_supported_voltage(struct regulator *regulator,
2648                                    int min_uV, int max_uV)
2649 {
2650         struct regulator_dev *rdev = regulator->rdev;
2651         int i, voltages, ret;
2652
2653         /* If we can't change voltage check the current voltage */
2654         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2655                 ret = regulator_get_voltage(regulator);
2656                 if (ret >= 0)
2657                         return min_uV <= ret && ret <= max_uV;
2658                 else
2659                         return ret;
2660         }
2661
2662         /* Any voltage within constrains range is fine? */
2663         if (rdev->desc->continuous_voltage_range)
2664                 return min_uV >= rdev->constraints->min_uV &&
2665                                 max_uV <= rdev->constraints->max_uV;
2666
2667         ret = regulator_count_voltages(regulator);
2668         if (ret < 0)
2669                 return ret;
2670         voltages = ret;
2671
2672         for (i = 0; i < voltages; i++) {
2673                 ret = regulator_list_voltage(regulator, i);
2674
2675                 if (ret >= min_uV && ret <= max_uV)
2676                         return 1;
2677         }
2678
2679         return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2682
2683 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2684                                  int max_uV)
2685 {
2686         const struct regulator_desc *desc = rdev->desc;
2687
2688         if (desc->ops->map_voltage)
2689                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2690
2691         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2692                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2693
2694         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2695                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2696
2697         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2698 }
2699
2700 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2701                                        int min_uV, int max_uV,
2702                                        unsigned *selector)
2703 {
2704         struct pre_voltage_change_data data;
2705         int ret;
2706
2707         data.old_uV = _regulator_get_voltage(rdev);
2708         data.min_uV = min_uV;
2709         data.max_uV = max_uV;
2710         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2711                                    &data);
2712         if (ret & NOTIFY_STOP_MASK)
2713                 return -EINVAL;
2714
2715         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2716         if (ret >= 0)
2717                 return ret;
2718
2719         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2720                              (void *)data.old_uV);
2721
2722         return ret;
2723 }
2724
2725 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2726                                            int uV, unsigned selector)
2727 {
2728         struct pre_voltage_change_data data;
2729         int ret;
2730
2731         data.old_uV = _regulator_get_voltage(rdev);
2732         data.min_uV = uV;
2733         data.max_uV = uV;
2734         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2735                                    &data);
2736         if (ret & NOTIFY_STOP_MASK)
2737                 return -EINVAL;
2738
2739         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2740         if (ret >= 0)
2741                 return ret;
2742
2743         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2744                              (void *)data.old_uV);
2745
2746         return ret;
2747 }
2748
2749 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2750                                      int min_uV, int max_uV)
2751 {
2752         int ret;
2753         int delay = 0;
2754         int best_val = 0;
2755         unsigned int selector;
2756         int old_selector = -1;
2757
2758         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2759
2760         min_uV += rdev->constraints->uV_offset;
2761         max_uV += rdev->constraints->uV_offset;
2762
2763         /*
2764          * If we can't obtain the old selector there is not enough
2765          * info to call set_voltage_time_sel().
2766          */
2767         if (_regulator_is_enabled(rdev) &&
2768             rdev->desc->ops->set_voltage_time_sel &&
2769             rdev->desc->ops->get_voltage_sel) {
2770                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2771                 if (old_selector < 0)
2772                         return old_selector;
2773         }
2774
2775         if (rdev->desc->ops->set_voltage) {
2776                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2777                                                   &selector);
2778
2779                 if (ret >= 0) {
2780                         if (rdev->desc->ops->list_voltage)
2781                                 best_val = rdev->desc->ops->list_voltage(rdev,
2782                                                                          selector);
2783                         else
2784                                 best_val = _regulator_get_voltage(rdev);
2785                 }
2786
2787         } else if (rdev->desc->ops->set_voltage_sel) {
2788                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2789                 if (ret >= 0) {
2790                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2791                         if (min_uV <= best_val && max_uV >= best_val) {
2792                                 selector = ret;
2793                                 if (old_selector == selector)
2794                                         ret = 0;
2795                                 else
2796                                         ret = _regulator_call_set_voltage_sel(
2797                                                 rdev, best_val, selector);
2798                         } else {
2799                                 ret = -EINVAL;
2800                         }
2801                 }
2802         } else {
2803                 ret = -EINVAL;
2804         }
2805
2806         /* Call set_voltage_time_sel if successfully obtained old_selector */
2807         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2808                 && old_selector != selector) {
2809
2810                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2811                                                 old_selector, selector);
2812                 if (delay < 0) {
2813                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2814                                   delay);
2815                         delay = 0;
2816                 }
2817
2818                 /* Insert any necessary delays */
2819                 if (delay >= 1000) {
2820                         mdelay(delay / 1000);
2821                         udelay(delay % 1000);
2822                 } else if (delay) {
2823                         udelay(delay);
2824                 }
2825         }
2826
2827         if (ret == 0 && best_val >= 0) {
2828                 unsigned long data = best_val;
2829
2830                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2831                                      (void *)data);
2832         }
2833
2834         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2835
2836         return ret;
2837 }
2838
2839 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2840                                           int min_uV, int max_uV)
2841 {
2842         struct regulator_dev *rdev = regulator->rdev;
2843         int ret = 0;
2844         int old_min_uV, old_max_uV;
2845         int current_uV;
2846         int best_supply_uV = 0;
2847         int supply_change_uV = 0;
2848
2849         /* If we're setting the same range as last time the change
2850          * should be a noop (some cpufreq implementations use the same
2851          * voltage for multiple frequencies, for example).
2852          */
2853         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2854                 goto out;
2855
2856         /* If we're trying to set a range that overlaps the current voltage,
2857          * return successfully even though the regulator does not support
2858          * changing the voltage.
2859          */
2860         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2861                 current_uV = _regulator_get_voltage(rdev);
2862                 if (min_uV <= current_uV && current_uV <= max_uV) {
2863                         regulator->min_uV = min_uV;
2864                         regulator->max_uV = max_uV;
2865                         goto out;
2866                 }
2867         }
2868
2869         /* sanity check */
2870         if (!rdev->desc->ops->set_voltage &&
2871             !rdev->desc->ops->set_voltage_sel) {
2872                 ret = -EINVAL;
2873                 goto out;
2874         }
2875
2876         /* constraints check */
2877         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2878         if (ret < 0)
2879                 goto out;
2880
2881         /* restore original values in case of error */
2882         old_min_uV = regulator->min_uV;
2883         old_max_uV = regulator->max_uV;
2884         regulator->min_uV = min_uV;
2885         regulator->max_uV = max_uV;
2886
2887         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2888         if (ret < 0)
2889                 goto out2;
2890
2891         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2892                                 !rdev->desc->ops->get_voltage)) {
2893                 int current_supply_uV;
2894                 int selector;
2895
2896                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2897                 if (selector < 0) {
2898                         ret = selector;
2899                         goto out2;
2900                 }
2901
2902                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2903                 if (best_supply_uV < 0) {
2904                         ret = best_supply_uV;
2905                         goto out2;
2906                 }
2907
2908                 best_supply_uV += rdev->desc->min_dropout_uV;
2909
2910                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2911                 if (current_supply_uV < 0) {
2912                         ret = current_supply_uV;
2913                         goto out2;
2914                 }
2915
2916                 supply_change_uV = best_supply_uV - current_supply_uV;
2917         }
2918
2919         if (supply_change_uV > 0) {
2920                 ret = regulator_set_voltage_unlocked(rdev->supply,
2921                                 best_supply_uV, INT_MAX);
2922                 if (ret) {
2923                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2924                                         ret);
2925                         goto out2;
2926                 }
2927         }
2928
2929         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2930         if (ret < 0)
2931                 goto out2;
2932
2933         if (supply_change_uV < 0) {
2934                 ret = regulator_set_voltage_unlocked(rdev->supply,
2935                                 best_supply_uV, INT_MAX);
2936                 if (ret)
2937                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2938                                         ret);
2939                 /* No need to fail here */
2940                 ret = 0;
2941         }
2942
2943 out:
2944         return ret;
2945 out2:
2946         regulator->min_uV = old_min_uV;
2947         regulator->max_uV = old_max_uV;
2948
2949         return ret;
2950 }
2951
2952 /**
2953  * regulator_set_voltage - set regulator output voltage
2954  * @regulator: regulator source
2955  * @min_uV: Minimum required voltage in uV
2956  * @max_uV: Maximum acceptable voltage in uV
2957  *
2958  * Sets a voltage regulator to the desired output voltage. This can be set
2959  * during any regulator state. IOW, regulator can be disabled or enabled.
2960  *
2961  * If the regulator is enabled then the voltage will change to the new value
2962  * immediately otherwise if the regulator is disabled the regulator will
2963  * output at the new voltage when enabled.
2964  *
2965  * NOTE: If the regulator is shared between several devices then the lowest
2966  * request voltage that meets the system constraints will be used.
2967  * Regulator system constraints must be set for this regulator before
2968  * calling this function otherwise this call will fail.
2969  */
2970 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2971 {
2972         int ret = 0;
2973
2974         regulator_lock_supply(regulator->rdev);
2975
2976         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2977
2978         regulator_unlock_supply(regulator->rdev);
2979
2980         return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2983
2984 /**
2985  * regulator_set_voltage_time - get raise/fall time
2986  * @regulator: regulator source
2987  * @old_uV: starting voltage in microvolts
2988  * @new_uV: target voltage in microvolts
2989  *
2990  * Provided with the starting and ending voltage, this function attempts to
2991  * calculate the time in microseconds required to rise or fall to this new
2992  * voltage.
2993  */
2994 int regulator_set_voltage_time(struct regulator *regulator,
2995                                int old_uV, int new_uV)
2996 {
2997         struct regulator_dev *rdev = regulator->rdev;
2998         const struct regulator_ops *ops = rdev->desc->ops;
2999         int old_sel = -1;
3000         int new_sel = -1;
3001         int voltage;
3002         int i;
3003
3004         /* Currently requires operations to do this */
3005         if (!ops->list_voltage || !ops->set_voltage_time_sel
3006             || !rdev->desc->n_voltages)
3007                 return -EINVAL;
3008
3009         for (i = 0; i < rdev->desc->n_voltages; i++) {
3010                 /* We only look for exact voltage matches here */
3011                 voltage = regulator_list_voltage(regulator, i);
3012                 if (voltage < 0)
3013                         return -EINVAL;
3014                 if (voltage == 0)
3015                         continue;
3016                 if (voltage == old_uV)
3017                         old_sel = i;
3018                 if (voltage == new_uV)
3019                         new_sel = i;
3020         }
3021
3022         if (old_sel < 0 || new_sel < 0)
3023                 return -EINVAL;
3024
3025         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3026 }
3027 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3028
3029 /**
3030  * regulator_set_voltage_time_sel - get raise/fall time
3031  * @rdev: regulator source device
3032  * @old_selector: selector for starting voltage
3033  * @new_selector: selector for target voltage
3034  *
3035  * Provided with the starting and target voltage selectors, this function
3036  * returns time in microseconds required to rise or fall to this new voltage
3037  *
3038  * Drivers providing ramp_delay in regulation_constraints can use this as their
3039  * set_voltage_time_sel() operation.
3040  */
3041 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3042                                    unsigned int old_selector,
3043                                    unsigned int new_selector)
3044 {
3045         unsigned int ramp_delay = 0;
3046         int old_volt, new_volt;
3047
3048         if (rdev->constraints->ramp_delay)
3049                 ramp_delay = rdev->constraints->ramp_delay;
3050         else if (rdev->desc->ramp_delay)
3051                 ramp_delay = rdev->desc->ramp_delay;
3052
3053         if (ramp_delay == 0) {
3054                 rdev_warn(rdev, "ramp_delay not set\n");
3055                 return 0;
3056         }
3057
3058         /* sanity check */
3059         if (!rdev->desc->ops->list_voltage)
3060                 return -EINVAL;
3061
3062         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3063         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3064
3065         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3068
3069 /**
3070  * regulator_sync_voltage - re-apply last regulator output voltage
3071  * @regulator: regulator source
3072  *
3073  * Re-apply the last configured voltage.  This is intended to be used
3074  * where some external control source the consumer is cooperating with
3075  * has caused the configured voltage to change.
3076  */
3077 int regulator_sync_voltage(struct regulator *regulator)
3078 {
3079         struct regulator_dev *rdev = regulator->rdev;
3080         int ret, min_uV, max_uV;
3081
3082         mutex_lock(&rdev->mutex);
3083
3084         if (!rdev->desc->ops->set_voltage &&
3085             !rdev->desc->ops->set_voltage_sel) {
3086                 ret = -EINVAL;
3087                 goto out;
3088         }
3089
3090         /* This is only going to work if we've had a voltage configured. */
3091         if (!regulator->min_uV && !regulator->max_uV) {
3092                 ret = -EINVAL;
3093                 goto out;
3094         }
3095
3096         min_uV = regulator->min_uV;
3097         max_uV = regulator->max_uV;
3098
3099         /* This should be a paranoia check... */
3100         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3101         if (ret < 0)
3102                 goto out;
3103
3104         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3105         if (ret < 0)
3106                 goto out;
3107
3108         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3109
3110 out:
3111         mutex_unlock(&rdev->mutex);
3112         return ret;
3113 }
3114 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3115
3116 static int _regulator_get_voltage(struct regulator_dev *rdev)
3117 {
3118         int sel, ret;
3119
3120         if (rdev->desc->ops->get_voltage_sel) {
3121                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3122                 if (sel < 0)
3123                         return sel;
3124                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3125         } else if (rdev->desc->ops->get_voltage) {
3126                 ret = rdev->desc->ops->get_voltage(rdev);
3127         } else if (rdev->desc->ops->list_voltage) {
3128                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3129         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3130                 ret = rdev->desc->fixed_uV;
3131         } else if (rdev->supply) {
3132                 ret = _regulator_get_voltage(rdev->supply->rdev);
3133         } else {
3134                 return -EINVAL;
3135         }
3136
3137         if (ret < 0)
3138                 return ret;
3139         return ret - rdev->constraints->uV_offset;
3140 }
3141
3142 /**
3143  * regulator_get_voltage - get regulator output voltage
3144  * @regulator: regulator source
3145  *
3146  * This returns the current regulator voltage in uV.
3147  *
3148  * NOTE: If the regulator is disabled it will return the voltage value. This
3149  * function should not be used to determine regulator state.
3150  */
3151 int regulator_get_voltage(struct regulator *regulator)
3152 {
3153         int ret;
3154
3155         regulator_lock_supply(regulator->rdev);
3156
3157         ret = _regulator_get_voltage(regulator->rdev);
3158
3159         regulator_unlock_supply(regulator->rdev);
3160
3161         return ret;
3162 }
3163 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3164
3165 /**
3166  * regulator_set_current_limit - set regulator output current limit
3167  * @regulator: regulator source
3168  * @min_uA: Minimum supported current in uA
3169  * @max_uA: Maximum supported current in uA
3170  *
3171  * Sets current sink to the desired output current. This can be set during
3172  * any regulator state. IOW, regulator can be disabled or enabled.
3173  *
3174  * If the regulator is enabled then the current will change to the new value
3175  * immediately otherwise if the regulator is disabled the regulator will
3176  * output at the new current when enabled.
3177  *
3178  * NOTE: Regulator system constraints must be set for this regulator before
3179  * calling this function otherwise this call will fail.
3180  */
3181 int regulator_set_current_limit(struct regulator *regulator,
3182                                int min_uA, int max_uA)
3183 {
3184         struct regulator_dev *rdev = regulator->rdev;
3185         int ret;
3186
3187         mutex_lock(&rdev->mutex);
3188
3189         /* sanity check */
3190         if (!rdev->desc->ops->set_current_limit) {
3191                 ret = -EINVAL;
3192                 goto out;
3193         }
3194
3195         /* constraints check */
3196         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3197         if (ret < 0)
3198                 goto out;
3199
3200         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3201 out:
3202         mutex_unlock(&rdev->mutex);
3203         return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3206
3207 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3208 {
3209         int ret;
3210
3211         mutex_lock(&rdev->mutex);
3212
3213         /* sanity check */
3214         if (!rdev->desc->ops->get_current_limit) {
3215                 ret = -EINVAL;
3216                 goto out;
3217         }
3218
3219         ret = rdev->desc->ops->get_current_limit(rdev);
3220 out:
3221         mutex_unlock(&rdev->mutex);
3222         return ret;
3223 }
3224
3225 /**
3226  * regulator_get_current_limit - get regulator output current
3227  * @regulator: regulator source
3228  *
3229  * This returns the current supplied by the specified current sink in uA.
3230  *
3231  * NOTE: If the regulator is disabled it will return the current value. This
3232  * function should not be used to determine regulator state.
3233  */
3234 int regulator_get_current_limit(struct regulator *regulator)
3235 {
3236         return _regulator_get_current_limit(regulator->rdev);
3237 }
3238 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3239
3240 /**
3241  * regulator_set_mode - set regulator operating mode
3242  * @regulator: regulator source
3243  * @mode: operating mode - one of the REGULATOR_MODE constants
3244  *
3245  * Set regulator operating mode to increase regulator efficiency or improve
3246  * regulation performance.
3247  *
3248  * NOTE: Regulator system constraints must be set for this regulator before
3249  * calling this function otherwise this call will fail.
3250  */
3251 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3252 {
3253         struct regulator_dev *rdev = regulator->rdev;
3254         int ret;
3255         int regulator_curr_mode;
3256
3257         mutex_lock(&rdev->mutex);
3258
3259         /* sanity check */
3260         if (!rdev->desc->ops->set_mode) {
3261                 ret = -EINVAL;
3262                 goto out;
3263         }
3264
3265         /* return if the same mode is requested */
3266         if (rdev->desc->ops->get_mode) {
3267                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3268                 if (regulator_curr_mode == mode) {
3269                         ret = 0;
3270                         goto out;
3271                 }
3272         }
3273
3274         /* constraints check */
3275         ret = regulator_mode_constrain(rdev, &mode);
3276         if (ret < 0)
3277                 goto out;
3278
3279         ret = rdev->desc->ops->set_mode(rdev, mode);
3280 out:
3281         mutex_unlock(&rdev->mutex);
3282         return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_set_mode);
3285
3286 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3287 {
3288         int ret;
3289
3290         mutex_lock(&rdev->mutex);
3291
3292         /* sanity check */
3293         if (!rdev->desc->ops->get_mode) {
3294                 ret = -EINVAL;
3295                 goto out;
3296         }
3297
3298         ret = rdev->desc->ops->get_mode(rdev);
3299 out:
3300         mutex_unlock(&rdev->mutex);
3301         return ret;
3302 }
3303
3304 /**
3305  * regulator_get_mode - get regulator operating mode
3306  * @regulator: regulator source
3307  *
3308  * Get the current regulator operating mode.
3309  */
3310 unsigned int regulator_get_mode(struct regulator *regulator)
3311 {
3312         return _regulator_get_mode(regulator->rdev);
3313 }
3314 EXPORT_SYMBOL_GPL(regulator_get_mode);
3315
3316 /**
3317  * regulator_set_load - set regulator load
3318  * @regulator: regulator source
3319  * @uA_load: load current
3320  *
3321  * Notifies the regulator core of a new device load. This is then used by
3322  * DRMS (if enabled by constraints) to set the most efficient regulator
3323  * operating mode for the new regulator loading.
3324  *
3325  * Consumer devices notify their supply regulator of the maximum power
3326  * they will require (can be taken from device datasheet in the power
3327  * consumption tables) when they change operational status and hence power
3328  * state. Examples of operational state changes that can affect power
3329  * consumption are :-
3330  *
3331  *    o Device is opened / closed.
3332  *    o Device I/O is about to begin or has just finished.
3333  *    o Device is idling in between work.
3334  *
3335  * This information is also exported via sysfs to userspace.
3336  *
3337  * DRMS will sum the total requested load on the regulator and change
3338  * to the most efficient operating mode if platform constraints allow.
3339  *
3340  * On error a negative errno is returned.
3341  */
3342 int regulator_set_load(struct regulator *regulator, int uA_load)
3343 {
3344         struct regulator_dev *rdev = regulator->rdev;
3345         int ret;
3346
3347         mutex_lock(&rdev->mutex);
3348         regulator->uA_load = uA_load;
3349         ret = drms_uA_update(rdev);
3350         mutex_unlock(&rdev->mutex);
3351
3352         return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(regulator_set_load);
3355
3356 /**
3357  * regulator_allow_bypass - allow the regulator to go into bypass mode
3358  *
3359  * @regulator: Regulator to configure
3360  * @enable: enable or disable bypass mode
3361  *
3362  * Allow the regulator to go into bypass mode if all other consumers
3363  * for the regulator also enable bypass mode and the machine
3364  * constraints allow this.  Bypass mode means that the regulator is
3365  * simply passing the input directly to the output with no regulation.
3366  */
3367 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3368 {
3369         struct regulator_dev *rdev = regulator->rdev;
3370         int ret = 0;
3371
3372         if (!rdev->desc->ops->set_bypass)
3373                 return 0;
3374
3375         if (rdev->constraints &&
3376             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3377                 return 0;
3378
3379         mutex_lock(&rdev->mutex);
3380
3381         if (enable && !regulator->bypass) {
3382                 rdev->bypass_count++;
3383
3384                 if (rdev->bypass_count == rdev->open_count) {
3385                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3386                         if (ret != 0)
3387                                 rdev->bypass_count--;
3388                 }
3389
3390         } else if (!enable && regulator->bypass) {
3391                 rdev->bypass_count--;
3392
3393                 if (rdev->bypass_count != rdev->open_count) {
3394                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3395                         if (ret != 0)
3396                                 rdev->bypass_count++;
3397                 }
3398         }
3399
3400         if (ret == 0)
3401                 regulator->bypass = enable;
3402
3403         mutex_unlock(&rdev->mutex);
3404
3405         return ret;
3406 }
3407 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3408
3409 /**
3410  * regulator_register_notifier - register regulator event notifier
3411  * @regulator: regulator source
3412  * @nb: notifier block
3413  *
3414  * Register notifier block to receive regulator events.
3415  */
3416 int regulator_register_notifier(struct regulator *regulator,
3417                               struct notifier_block *nb)
3418 {
3419         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3420                                                 nb);
3421 }
3422 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3423
3424 /**
3425  * regulator_unregister_notifier - unregister regulator event notifier
3426  * @regulator: regulator source
3427  * @nb: notifier block
3428  *
3429  * Unregister regulator event notifier block.
3430  */
3431 int regulator_unregister_notifier(struct regulator *regulator,
3432                                 struct notifier_block *nb)
3433 {
3434         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3435                                                   nb);
3436 }
3437 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3438
3439 /* notify regulator consumers and downstream regulator consumers.
3440  * Note mutex must be held by caller.
3441  */
3442 static int _notifier_call_chain(struct regulator_dev *rdev,
3443                                   unsigned long event, void *data)
3444 {
3445         /* call rdev chain first */
3446         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3447 }
3448
3449 /**
3450  * regulator_bulk_get - get multiple regulator consumers
3451  *
3452  * @dev:           Device to supply
3453  * @num_consumers: Number of consumers to register
3454  * @consumers:     Configuration of consumers; clients are stored here.
3455  *
3456  * @return 0 on success, an errno on failure.
3457  *
3458  * This helper function allows drivers to get several regulator
3459  * consumers in one operation.  If any of the regulators cannot be
3460  * acquired then any regulators that were allocated will be freed
3461  * before returning to the caller.
3462  */
3463 int regulator_bulk_get(struct device *dev, int num_consumers,
3464                        struct regulator_bulk_data *consumers)
3465 {
3466         int i;
3467         int ret;
3468
3469         for (i = 0; i < num_consumers; i++)
3470                 consumers[i].consumer = NULL;
3471
3472         for (i = 0; i < num_consumers; i++) {
3473                 consumers[i].consumer = _regulator_get(dev,
3474                                                        consumers[i].supply,
3475                                                        false,
3476                                                        !consumers[i].optional);
3477                 if (IS_ERR(consumers[i].consumer)) {
3478                         ret = PTR_ERR(consumers[i].consumer);
3479                         dev_err(dev, "Failed to get supply '%s': %d\n",
3480                                 consumers[i].supply, ret);
3481                         consumers[i].consumer = NULL;
3482                         goto err;
3483                 }
3484         }
3485
3486         return 0;
3487
3488 err:
3489         while (--i >= 0)
3490                 regulator_put(consumers[i].consumer);
3491
3492         return ret;
3493 }
3494 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3495
3496 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3497 {
3498         struct regulator_bulk_data *bulk = data;
3499
3500         bulk->ret = regulator_enable(bulk->consumer);
3501 }
3502
3503 /**
3504  * regulator_bulk_enable - enable multiple regulator consumers
3505  *
3506  * @num_consumers: Number of consumers
3507  * @consumers:     Consumer data; clients are stored here.
3508  * @return         0 on success, an errno on failure
3509  *
3510  * This convenience API allows consumers to enable multiple regulator
3511  * clients in a single API call.  If any consumers cannot be enabled
3512  * then any others that were enabled will be disabled again prior to
3513  * return.
3514  */
3515 int regulator_bulk_enable(int num_consumers,
3516                           struct regulator_bulk_data *consumers)
3517 {
3518         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3519         int i;
3520         int ret = 0;
3521
3522         for (i = 0; i < num_consumers; i++) {
3523                 if (consumers[i].consumer->always_on)
3524                         consumers[i].ret = 0;
3525                 else
3526                         async_schedule_domain(regulator_bulk_enable_async,
3527                                               &consumers[i], &async_domain);
3528         }
3529
3530         async_synchronize_full_domain(&async_domain);
3531
3532         /* If any consumer failed we need to unwind any that succeeded */
3533         for (i = 0; i < num_consumers; i++) {
3534                 if (consumers[i].ret != 0) {
3535                         ret = consumers[i].ret;
3536                         goto err;
3537                 }
3538         }
3539
3540         return 0;
3541
3542 err:
3543         for (i = 0; i < num_consumers; i++) {
3544                 if (consumers[i].ret < 0)
3545                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3546                                consumers[i].ret);
3547                 else
3548                         regulator_disable(consumers[i].consumer);
3549         }
3550
3551         return ret;
3552 }
3553 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3554
3555 /**
3556  * regulator_bulk_disable - disable multiple regulator consumers
3557  *
3558  * @num_consumers: Number of consumers
3559  * @consumers:     Consumer data; clients are stored here.
3560  * @return         0 on success, an errno on failure
3561  *
3562  * This convenience API allows consumers to disable multiple regulator
3563  * clients in a single API call.  If any consumers cannot be disabled
3564  * then any others that were disabled will be enabled again prior to
3565  * return.
3566  */
3567 int regulator_bulk_disable(int num_consumers,
3568                            struct regulator_bulk_data *consumers)
3569 {
3570         int i;
3571         int ret, r;
3572
3573         for (i = num_consumers - 1; i >= 0; --i) {
3574                 ret = regulator_disable(consumers[i].consumer);
3575                 if (ret != 0)
3576                         goto err;
3577         }
3578
3579         return 0;
3580
3581 err:
3582         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3583         for (++i; i < num_consumers; ++i) {
3584                 r = regulator_enable(consumers[i].consumer);
3585                 if (r != 0)
3586                         pr_err("Failed to reename %s: %d\n",
3587                                consumers[i].supply, r);
3588         }
3589
3590         return ret;
3591 }
3592 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3593
3594 /**
3595  * regulator_bulk_force_disable - force disable multiple regulator consumers
3596  *
3597  * @num_consumers: Number of consumers
3598  * @consumers:     Consumer data; clients are stored here.
3599  * @return         0 on success, an errno on failure
3600  *
3601  * This convenience API allows consumers to forcibly disable multiple regulator
3602  * clients in a single API call.
3603  * NOTE: This should be used for situations when device damage will
3604  * likely occur if the regulators are not disabled (e.g. over temp).
3605  * Although regulator_force_disable function call for some consumers can
3606  * return error numbers, the function is called for all consumers.
3607  */
3608 int regulator_bulk_force_disable(int num_consumers,
3609                            struct regulator_bulk_data *consumers)
3610 {
3611         int i;
3612         int ret;
3613
3614         for (i = 0; i < num_consumers; i++)
3615                 consumers[i].ret =
3616                             regulator_force_disable(consumers[i].consumer);
3617
3618         for (i = 0; i < num_consumers; i++) {
3619                 if (consumers[i].ret != 0) {
3620                         ret = consumers[i].ret;
3621                         goto out;
3622                 }
3623         }
3624
3625         return 0;
3626 out:
3627         return ret;
3628 }
3629 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3630
3631 /**
3632  * regulator_bulk_free - free multiple regulator consumers
3633  *
3634  * @num_consumers: Number of consumers
3635  * @consumers:     Consumer data; clients are stored here.
3636  *
3637  * This convenience API allows consumers to free multiple regulator
3638  * clients in a single API call.
3639  */
3640 void regulator_bulk_free(int num_consumers,
3641                          struct regulator_bulk_data *consumers)
3642 {
3643         int i;
3644
3645         for (i = 0; i < num_consumers; i++) {
3646                 regulator_put(consumers[i].consumer);
3647                 consumers[i].consumer = NULL;
3648         }
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3651
3652 /**
3653  * regulator_notifier_call_chain - call regulator event notifier
3654  * @rdev: regulator source
3655  * @event: notifier block
3656  * @data: callback-specific data.
3657  *
3658  * Called by regulator drivers to notify clients a regulator event has
3659  * occurred. We also notify regulator clients downstream.
3660  * Note lock must be held by caller.
3661  */
3662 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3663                                   unsigned long event, void *data)
3664 {
3665         lockdep_assert_held_once(&rdev->mutex);
3666
3667         _notifier_call_chain(rdev, event, data);
3668         return NOTIFY_DONE;
3669
3670 }
3671 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3672
3673 /**
3674  * regulator_mode_to_status - convert a regulator mode into a status
3675  *
3676  * @mode: Mode to convert
3677  *
3678  * Convert a regulator mode into a status.
3679  */
3680 int regulator_mode_to_status(unsigned int mode)
3681 {
3682         switch (mode) {
3683         case REGULATOR_MODE_FAST:
3684                 return REGULATOR_STATUS_FAST;
3685         case REGULATOR_MODE_NORMAL:
3686                 return REGULATOR_STATUS_NORMAL;
3687         case REGULATOR_MODE_IDLE:
3688                 return REGULATOR_STATUS_IDLE;
3689         case REGULATOR_MODE_STANDBY:
3690                 return REGULATOR_STATUS_STANDBY;
3691         default:
3692                 return REGULATOR_STATUS_UNDEFINED;
3693         }
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3696
3697 static struct attribute *regulator_dev_attrs[] = {
3698         &dev_attr_name.attr,
3699         &dev_attr_num_users.attr,
3700         &dev_attr_type.attr,
3701         &dev_attr_microvolts.attr,
3702         &dev_attr_microamps.attr,
3703         &dev_attr_opmode.attr,
3704         &dev_attr_state.attr,
3705         &dev_attr_status.attr,
3706         &dev_attr_bypass.attr,
3707         &dev_attr_requested_microamps.attr,
3708         &dev_attr_min_microvolts.attr,
3709         &dev_attr_max_microvolts.attr,
3710         &dev_attr_min_microamps.attr,
3711         &dev_attr_max_microamps.attr,
3712         &dev_attr_suspend_standby_state.attr,
3713         &dev_attr_suspend_mem_state.attr,
3714         &dev_attr_suspend_disk_state.attr,
3715         &dev_attr_suspend_standby_microvolts.attr,
3716         &dev_attr_suspend_mem_microvolts.attr,
3717         &dev_attr_suspend_disk_microvolts.attr,
3718         &dev_attr_suspend_standby_mode.attr,
3719         &dev_attr_suspend_mem_mode.attr,
3720         &dev_attr_suspend_disk_mode.attr,
3721         NULL
3722 };
3723
3724 /*
3725  * To avoid cluttering sysfs (and memory) with useless state, only
3726  * create attributes that can be meaningfully displayed.
3727  */
3728 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3729                                          struct attribute *attr, int idx)
3730 {
3731         struct device *dev = kobj_to_dev(kobj);
3732         struct regulator_dev *rdev = dev_to_rdev(dev);
3733         const struct regulator_ops *ops = rdev->desc->ops;
3734         umode_t mode = attr->mode;
3735
3736         /* these three are always present */
3737         if (attr == &dev_attr_name.attr ||
3738             attr == &dev_attr_num_users.attr ||
3739             attr == &dev_attr_type.attr)
3740                 return mode;
3741
3742         /* some attributes need specific methods to be displayed */
3743         if (attr == &dev_attr_microvolts.attr) {
3744                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3745                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3746                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3747                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3748                         return mode;
3749                 return 0;
3750         }
3751
3752         if (attr == &dev_attr_microamps.attr)
3753                 return ops->get_current_limit ? mode : 0;
3754
3755         if (attr == &dev_attr_opmode.attr)
3756                 return ops->get_mode ? mode : 0;
3757
3758         if (attr == &dev_attr_state.attr)
3759                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3760
3761         if (attr == &dev_attr_status.attr)
3762                 return ops->get_status ? mode : 0;
3763
3764         if (attr == &dev_attr_bypass.attr)
3765                 return ops->get_bypass ? mode : 0;
3766
3767         /* some attributes are type-specific */
3768         if (attr == &dev_attr_requested_microamps.attr)
3769                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3770
3771         /* constraints need specific supporting methods */
3772         if (attr == &dev_attr_min_microvolts.attr ||
3773             attr == &dev_attr_max_microvolts.attr)
3774                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3775
3776         if (attr == &dev_attr_min_microamps.attr ||
3777             attr == &dev_attr_max_microamps.attr)
3778                 return ops->set_current_limit ? mode : 0;
3779
3780         if (attr == &dev_attr_suspend_standby_state.attr ||
3781             attr == &dev_attr_suspend_mem_state.attr ||
3782             attr == &dev_attr_suspend_disk_state.attr)
3783                 return mode;
3784
3785         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3786             attr == &dev_attr_suspend_mem_microvolts.attr ||
3787             attr == &dev_attr_suspend_disk_microvolts.attr)
3788                 return ops->set_suspend_voltage ? mode : 0;
3789
3790         if (attr == &dev_attr_suspend_standby_mode.attr ||
3791             attr == &dev_attr_suspend_mem_mode.attr ||
3792             attr == &dev_attr_suspend_disk_mode.attr)
3793                 return ops->set_suspend_mode ? mode : 0;
3794
3795         return mode;
3796 }
3797
3798 static const struct attribute_group regulator_dev_group = {
3799         .attrs = regulator_dev_attrs,
3800         .is_visible = regulator_attr_is_visible,
3801 };
3802
3803 static const struct attribute_group *regulator_dev_groups[] = {
3804         &regulator_dev_group,
3805         NULL
3806 };
3807
3808 static void regulator_dev_release(struct device *dev)
3809 {
3810         struct regulator_dev *rdev = dev_get_drvdata(dev);
3811
3812         kfree(rdev->constraints);
3813         of_node_put(rdev->dev.of_node);
3814         kfree(rdev);
3815 }
3816
3817 static struct class regulator_class = {
3818         .name = "regulator",
3819         .dev_release = regulator_dev_release,
3820         .dev_groups = regulator_dev_groups,
3821 };
3822
3823 static void rdev_init_debugfs(struct regulator_dev *rdev)
3824 {
3825         struct device *parent = rdev->dev.parent;
3826         const char *rname = rdev_get_name(rdev);
3827         char name[NAME_MAX];
3828
3829         /* Avoid duplicate debugfs directory names */
3830         if (parent && rname == rdev->desc->name) {
3831                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3832                          rname);
3833                 rname = name;
3834         }
3835
3836         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3837         if (!rdev->debugfs) {
3838                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3839                 return;
3840         }
3841
3842         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3843                            &rdev->use_count);
3844         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3845                            &rdev->open_count);
3846         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3847                            &rdev->bypass_count);
3848 }
3849
3850 static int regulator_register_resolve_supply(struct device *dev, void *data)
3851 {
3852         return regulator_resolve_supply(dev_to_rdev(dev));
3853 }
3854
3855 /**
3856  * regulator_register - register regulator
3857  * @regulator_desc: regulator to register
3858  * @cfg: runtime configuration for regulator
3859  *
3860  * Called by regulator drivers to register a regulator.
3861  * Returns a valid pointer to struct regulator_dev on success
3862  * or an ERR_PTR() on error.
3863  */
3864 struct regulator_dev *
3865 regulator_register(const struct regulator_desc *regulator_desc,
3866                    const struct regulator_config *cfg)
3867 {
3868         const struct regulation_constraints *constraints = NULL;
3869         const struct regulator_init_data *init_data;
3870         struct regulator_config *config = NULL;
3871         static atomic_t regulator_no = ATOMIC_INIT(-1);
3872         struct regulator_dev *rdev;
3873         struct device *dev;
3874         int ret, i;
3875
3876         if (regulator_desc == NULL || cfg == NULL)
3877                 return ERR_PTR(-EINVAL);
3878
3879         dev = cfg->dev;
3880         WARN_ON(!dev);
3881
3882         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3883                 return ERR_PTR(-EINVAL);
3884
3885         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3886             regulator_desc->type != REGULATOR_CURRENT)
3887                 return ERR_PTR(-EINVAL);
3888
3889         /* Only one of each should be implemented */
3890         WARN_ON(regulator_desc->ops->get_voltage &&
3891                 regulator_desc->ops->get_voltage_sel);
3892         WARN_ON(regulator_desc->ops->set_voltage &&
3893                 regulator_desc->ops->set_voltage_sel);
3894
3895         /* If we're using selectors we must implement list_voltage. */
3896         if (regulator_desc->ops->get_voltage_sel &&
3897             !regulator_desc->ops->list_voltage) {
3898                 return ERR_PTR(-EINVAL);
3899         }
3900         if (regulator_desc->ops->set_voltage_sel &&
3901             !regulator_desc->ops->list_voltage) {
3902                 return ERR_PTR(-EINVAL);
3903         }
3904
3905         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3906         if (rdev == NULL)
3907                 return ERR_PTR(-ENOMEM);
3908
3909         /*
3910          * Duplicate the config so the driver could override it after
3911          * parsing init data.
3912          */
3913         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3914         if (config == NULL) {
3915                 kfree(rdev);
3916                 return ERR_PTR(-ENOMEM);
3917         }
3918
3919         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3920                                                &rdev->dev.of_node);
3921         if (!init_data) {
3922                 init_data = config->init_data;
3923                 rdev->dev.of_node = of_node_get(config->of_node);
3924         }
3925
3926         mutex_lock(&regulator_list_mutex);
3927
3928         mutex_init(&rdev->mutex);
3929         rdev->reg_data = config->driver_data;
3930         rdev->owner = regulator_desc->owner;
3931         rdev->desc = regulator_desc;
3932         if (config->regmap)
3933                 rdev->regmap = config->regmap;
3934         else if (dev_get_regmap(dev, NULL))
3935                 rdev->regmap = dev_get_regmap(dev, NULL);
3936         else if (dev->parent)
3937                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3938         INIT_LIST_HEAD(&rdev->consumer_list);
3939         INIT_LIST_HEAD(&rdev->list);
3940         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3941         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3942
3943         /* preform any regulator specific init */
3944         if (init_data && init_data->regulator_init) {
3945                 ret = init_data->regulator_init(rdev->reg_data);
3946                 if (ret < 0)
3947                         goto clean;
3948         }
3949
3950         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3951             gpio_is_valid(config->ena_gpio)) {
3952                 ret = regulator_ena_gpio_request(rdev, config);
3953                 if (ret != 0) {
3954                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3955                                  config->ena_gpio, ret);
3956                         goto clean;
3957                 }
3958         }
3959
3960         /* register with sysfs */
3961         rdev->dev.class = &regulator_class;
3962         rdev->dev.parent = dev;
3963         dev_set_name(&rdev->dev, "regulator.%lu",
3964                     (unsigned long) atomic_inc_return(&regulator_no));
3965         ret = device_register(&rdev->dev);
3966         if (ret != 0) {
3967                 put_device(&rdev->dev);
3968                 goto wash;
3969         }
3970
3971         dev_set_drvdata(&rdev->dev, rdev);
3972
3973         /* set regulator constraints */
3974         if (init_data)
3975                 constraints = &init_data->constraints;
3976
3977         ret = set_machine_constraints(rdev, constraints);
3978         if (ret < 0)
3979                 goto scrub;
3980
3981         if (init_data && init_data->supply_regulator)
3982                 rdev->supply_name = init_data->supply_regulator;
3983         else if (regulator_desc->supply_name)
3984                 rdev->supply_name = regulator_desc->supply_name;
3985
3986         /* add consumers devices */
3987         if (init_data) {
3988                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3989                         ret = set_consumer_device_supply(rdev,
3990                                 init_data->consumer_supplies[i].dev_name,
3991                                 init_data->consumer_supplies[i].supply);
3992                         if (ret < 0) {
3993                                 dev_err(dev, "Failed to set supply %s\n",
3994                                         init_data->consumer_supplies[i].supply);
3995                                 goto unset_supplies;
3996                         }
3997                 }
3998         }
3999
4000         rdev_init_debugfs(rdev);
4001         mutex_unlock(&regulator_list_mutex);
4002
4003         /* try to resolve regulators supply since a new one was registered */
4004         class_for_each_device(&regulator_class, NULL, NULL,
4005                               regulator_register_resolve_supply);
4006         kfree(config);
4007         return rdev;
4008
4009 unset_supplies:
4010         unset_regulator_supplies(rdev);
4011
4012 scrub:
4013         regulator_ena_gpio_free(rdev);
4014         device_unregister(&rdev->dev);
4015         /* device core frees rdev */
4016         goto out;
4017
4018 wash:
4019         regulator_ena_gpio_free(rdev);
4020 clean:
4021         kfree(rdev);
4022 out:
4023         mutex_unlock(&regulator_list_mutex);
4024         kfree(config);
4025         return ERR_PTR(ret);
4026 }
4027 EXPORT_SYMBOL_GPL(regulator_register);
4028
4029 /**
4030  * regulator_unregister - unregister regulator
4031  * @rdev: regulator to unregister
4032  *
4033  * Called by regulator drivers to unregister a regulator.
4034  */
4035 void regulator_unregister(struct regulator_dev *rdev)
4036 {
4037         if (rdev == NULL)
4038                 return;
4039
4040         if (rdev->supply) {
4041                 while (rdev->use_count--)
4042                         regulator_disable(rdev->supply);
4043                 regulator_put(rdev->supply);
4044         }
4045         mutex_lock(&regulator_list_mutex);
4046         debugfs_remove_recursive(rdev->debugfs);
4047         flush_work(&rdev->disable_work.work);
4048         WARN_ON(rdev->open_count);
4049         unset_regulator_supplies(rdev);
4050         list_del(&rdev->list);
4051         regulator_ena_gpio_free(rdev);
4052         mutex_unlock(&regulator_list_mutex);
4053         device_unregister(&rdev->dev);
4054 }
4055 EXPORT_SYMBOL_GPL(regulator_unregister);
4056
4057 static int _regulator_suspend_prepare(struct device *dev, void *data)
4058 {
4059         struct regulator_dev *rdev = dev_to_rdev(dev);
4060         const suspend_state_t *state = data;
4061         int ret;
4062
4063         mutex_lock(&rdev->mutex);
4064         ret = suspend_prepare(rdev, *state);
4065         mutex_unlock(&rdev->mutex);
4066
4067         return ret;
4068 }
4069
4070 /**
4071  * regulator_suspend_prepare - prepare regulators for system wide suspend
4072  * @state: system suspend state
4073  *
4074  * Configure each regulator with it's suspend operating parameters for state.
4075  * This will usually be called by machine suspend code prior to supending.
4076  */
4077 int regulator_suspend_prepare(suspend_state_t state)
4078 {
4079         /* ON is handled by regulator active state */
4080         if (state == PM_SUSPEND_ON)
4081                 return -EINVAL;
4082
4083         return class_for_each_device(&regulator_class, NULL, &state,
4084                                      _regulator_suspend_prepare);
4085 }
4086 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4087
4088 static int _regulator_suspend_finish(struct device *dev, void *data)
4089 {
4090         struct regulator_dev *rdev = dev_to_rdev(dev);
4091         int ret;
4092
4093         mutex_lock(&rdev->mutex);
4094         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4095                 if (!_regulator_is_enabled(rdev)) {
4096                         ret = _regulator_do_enable(rdev);
4097                         if (ret)
4098                                 dev_err(dev,
4099                                         "Failed to resume regulator %d\n",
4100                                         ret);
4101                 }
4102         } else {
4103                 if (!have_full_constraints())
4104                         goto unlock;
4105                 if (!_regulator_is_enabled(rdev))
4106                         goto unlock;
4107
4108                 ret = _regulator_do_disable(rdev);
4109                 if (ret)
4110                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4111         }
4112 unlock:
4113         mutex_unlock(&rdev->mutex);
4114
4115         /* Keep processing regulators in spite of any errors */
4116         return 0;
4117 }
4118
4119 /**
4120  * regulator_suspend_finish - resume regulators from system wide suspend
4121  *
4122  * Turn on regulators that might be turned off by regulator_suspend_prepare
4123  * and that should be turned on according to the regulators properties.
4124  */
4125 int regulator_suspend_finish(void)
4126 {
4127         return class_for_each_device(&regulator_class, NULL, NULL,
4128                                      _regulator_suspend_finish);
4129 }
4130 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4131
4132 /**
4133  * regulator_has_full_constraints - the system has fully specified constraints
4134  *
4135  * Calling this function will cause the regulator API to disable all
4136  * regulators which have a zero use count and don't have an always_on
4137  * constraint in a late_initcall.
4138  *
4139  * The intention is that this will become the default behaviour in a
4140  * future kernel release so users are encouraged to use this facility
4141  * now.
4142  */
4143 void regulator_has_full_constraints(void)
4144 {
4145         has_full_constraints = 1;
4146 }
4147 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4148
4149 /**
4150  * rdev_get_drvdata - get rdev regulator driver data
4151  * @rdev: regulator
4152  *
4153  * Get rdev regulator driver private data. This call can be used in the
4154  * regulator driver context.
4155  */
4156 void *rdev_get_drvdata(struct regulator_dev *rdev)
4157 {
4158         return rdev->reg_data;
4159 }
4160 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4161
4162 /**
4163  * regulator_get_drvdata - get regulator driver data
4164  * @regulator: regulator
4165  *
4166  * Get regulator driver private data. This call can be used in the consumer
4167  * driver context when non API regulator specific functions need to be called.
4168  */
4169 void *regulator_get_drvdata(struct regulator *regulator)
4170 {
4171         return regulator->rdev->reg_data;
4172 }
4173 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4174
4175 /**
4176  * regulator_set_drvdata - set regulator driver data
4177  * @regulator: regulator
4178  * @data: data
4179  */
4180 void regulator_set_drvdata(struct regulator *regulator, void *data)
4181 {
4182         regulator->rdev->reg_data = data;
4183 }
4184 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4185
4186 /**
4187  * regulator_get_id - get regulator ID
4188  * @rdev: regulator
4189  */
4190 int rdev_get_id(struct regulator_dev *rdev)
4191 {
4192         return rdev->desc->id;
4193 }
4194 EXPORT_SYMBOL_GPL(rdev_get_id);
4195
4196 struct device *rdev_get_dev(struct regulator_dev *rdev)
4197 {
4198         return &rdev->dev;
4199 }
4200 EXPORT_SYMBOL_GPL(rdev_get_dev);
4201
4202 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4203 {
4204         return reg_init_data->driver_data;
4205 }
4206 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4207
4208 #ifdef CONFIG_DEBUG_FS
4209 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4210                                     size_t count, loff_t *ppos)
4211 {
4212         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4213         ssize_t len, ret = 0;
4214         struct regulator_map *map;
4215
4216         if (!buf)
4217                 return -ENOMEM;
4218
4219         list_for_each_entry(map, &regulator_map_list, list) {
4220                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4221                                "%s -> %s.%s\n",
4222                                rdev_get_name(map->regulator), map->dev_name,
4223                                map->supply);
4224                 if (len >= 0)
4225                         ret += len;
4226                 if (ret > PAGE_SIZE) {
4227                         ret = PAGE_SIZE;
4228                         break;
4229                 }
4230         }
4231
4232         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4233
4234         kfree(buf);
4235
4236         return ret;
4237 }
4238 #endif
4239
4240 static const struct file_operations supply_map_fops = {
4241 #ifdef CONFIG_DEBUG_FS
4242         .read = supply_map_read_file,
4243         .llseek = default_llseek,
4244 #endif
4245 };
4246
4247 #ifdef CONFIG_DEBUG_FS
4248 struct summary_data {
4249         struct seq_file *s;
4250         struct regulator_dev *parent;
4251         int level;
4252 };
4253
4254 static void regulator_summary_show_subtree(struct seq_file *s,
4255                                            struct regulator_dev *rdev,
4256                                            int level);
4257
4258 static int regulator_summary_show_children(struct device *dev, void *data)
4259 {
4260         struct regulator_dev *rdev = dev_to_rdev(dev);
4261         struct summary_data *summary_data = data;
4262
4263         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4264                 regulator_summary_show_subtree(summary_data->s, rdev,
4265                                                summary_data->level + 1);
4266
4267         return 0;
4268 }
4269
4270 static void regulator_summary_show_subtree(struct seq_file *s,
4271                                            struct regulator_dev *rdev,
4272                                            int level)
4273 {
4274         struct regulation_constraints *c;
4275         struct regulator *consumer;
4276         struct summary_data summary_data;
4277
4278         if (!rdev)
4279                 return;
4280
4281         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4282                    level * 3 + 1, "",
4283                    30 - level * 3, rdev_get_name(rdev),
4284                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4285
4286         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4287         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4288
4289         c = rdev->constraints;
4290         if (c) {
4291                 switch (rdev->desc->type) {
4292                 case REGULATOR_VOLTAGE:
4293                         seq_printf(s, "%5dmV %5dmV ",
4294                                    c->min_uV / 1000, c->max_uV / 1000);
4295                         break;
4296                 case REGULATOR_CURRENT:
4297                         seq_printf(s, "%5dmA %5dmA ",
4298                                    c->min_uA / 1000, c->max_uA / 1000);
4299                         break;
4300                 }
4301         }
4302
4303         seq_puts(s, "\n");
4304
4305         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4306                 if (consumer->dev->class == &regulator_class)
4307                         continue;
4308
4309                 seq_printf(s, "%*s%-*s ",
4310                            (level + 1) * 3 + 1, "",
4311                            30 - (level + 1) * 3, dev_name(consumer->dev));
4312
4313                 switch (rdev->desc->type) {
4314                 case REGULATOR_VOLTAGE:
4315                         seq_printf(s, "%37dmV %5dmV",
4316                                    consumer->min_uV / 1000,
4317                                    consumer->max_uV / 1000);
4318                         break;
4319                 case REGULATOR_CURRENT:
4320                         break;
4321                 }
4322
4323                 seq_puts(s, "\n");
4324         }
4325
4326         summary_data.s = s;
4327         summary_data.level = level;
4328         summary_data.parent = rdev;
4329
4330         class_for_each_device(&regulator_class, NULL, &summary_data,
4331                               regulator_summary_show_children);
4332 }
4333
4334 static int regulator_summary_show_roots(struct device *dev, void *data)
4335 {
4336         struct regulator_dev *rdev = dev_to_rdev(dev);
4337         struct seq_file *s = data;
4338
4339         if (!rdev->supply)
4340                 regulator_summary_show_subtree(s, rdev, 0);
4341
4342         return 0;
4343 }
4344
4345 static int regulator_summary_show(struct seq_file *s, void *data)
4346 {
4347         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4348         seq_puts(s, "-------------------------------------------------------------------------------\n");
4349
4350         class_for_each_device(&regulator_class, NULL, s,
4351                               regulator_summary_show_roots);
4352
4353         return 0;
4354 }
4355
4356 static int regulator_summary_open(struct inode *inode, struct file *file)
4357 {
4358         return single_open(file, regulator_summary_show, inode->i_private);
4359 }
4360 #endif
4361
4362 static const struct file_operations regulator_summary_fops = {
4363 #ifdef CONFIG_DEBUG_FS
4364         .open           = regulator_summary_open,
4365         .read           = seq_read,
4366         .llseek         = seq_lseek,
4367         .release        = single_release,
4368 #endif
4369 };
4370
4371 static int __init regulator_init(void)
4372 {
4373         int ret;
4374
4375         ret = class_register(&regulator_class);
4376
4377         debugfs_root = debugfs_create_dir("regulator", NULL);
4378         if (!debugfs_root)
4379                 pr_warn("regulator: Failed to create debugfs directory\n");
4380
4381         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4382                             &supply_map_fops);
4383
4384         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4385                             NULL, &regulator_summary_fops);
4386
4387         regulator_dummy_init();
4388
4389         return ret;
4390 }
4391
4392 /* init early to allow our consumers to complete system booting */
4393 core_initcall(regulator_init);
4394
4395 static int __init regulator_late_cleanup(struct device *dev, void *data)
4396 {
4397         struct regulator_dev *rdev = dev_to_rdev(dev);
4398         const struct regulator_ops *ops = rdev->desc->ops;
4399         struct regulation_constraints *c = rdev->constraints;
4400         int enabled, ret;
4401
4402         if (c && c->always_on)
4403                 return 0;
4404
4405         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4406                 return 0;
4407
4408         mutex_lock(&rdev->mutex);
4409
4410         if (rdev->use_count)
4411                 goto unlock;
4412
4413         /* If we can't read the status assume it's on. */
4414         if (ops->is_enabled)
4415                 enabled = ops->is_enabled(rdev);
4416         else
4417                 enabled = 1;
4418
4419         if (!enabled)
4420                 goto unlock;
4421
4422         if (have_full_constraints()) {
4423                 /* We log since this may kill the system if it goes
4424                  * wrong. */
4425                 rdev_info(rdev, "disabling\n");
4426                 ret = _regulator_do_disable(rdev);
4427                 if (ret != 0)
4428                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4429         } else {
4430                 /* The intention is that in future we will
4431                  * assume that full constraints are provided
4432                  * so warn even if we aren't going to do
4433                  * anything here.
4434                  */
4435                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4436         }
4437
4438 unlock:
4439         mutex_unlock(&rdev->mutex);
4440
4441         return 0;
4442 }
4443
4444 static int __init regulator_init_complete(void)
4445 {
4446         /*
4447          * Since DT doesn't provide an idiomatic mechanism for
4448          * enabling full constraints and since it's much more natural
4449          * with DT to provide them just assume that a DT enabled
4450          * system has full constraints.
4451          */
4452         if (of_have_populated_dt())
4453                 has_full_constraints = true;
4454
4455         /* If we have a full configuration then disable any regulators
4456          * we have permission to change the status for and which are
4457          * not in use or always_on.  This is effectively the default
4458          * for DT and ACPI as they have full constraints.
4459          */
4460         class_for_each_device(&regulator_class, NULL, NULL,
4461                               regulator_late_cleanup);
4462
4463         return 0;
4464 }
4465 late_initcall_sync(regulator_init_complete);