]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/rtc/rtc-stmp3xxx.c
Merge tag 'v3.13' into stable-3.14
[karo-tx-linux.git] / drivers / rtc / rtc-stmp3xxx.c
1 /*
2  * Freescale STMP37XX/STMP378X Real Time Clock driver
3  *
4  * Copyright (c) 2007 Sigmatel, Inc.
5  * Peter Hartley, <peter.hartley@sigmatel.com>
6  *
7  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10  */
11
12 /*
13  * The code contained herein is licensed under the GNU General Public
14  * License. You may obtain a copy of the GNU General Public License
15  * Version 2 or later at the following locations:
16  *
17  * http://www.opensource.org/licenses/gpl-license.html
18  * http://www.gnu.org/copyleft/gpl.html
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
33
34 #define STMP3XXX_RTC_CTRL                       0x0
35 #define STMP3XXX_RTC_CTRL_SET                   0x4
36 #define STMP3XXX_RTC_CTRL_CLR                   0x8
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN          0x00000001
38 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN        0x00000002
39 #define STMP3XXX_RTC_CTRL_ALARM_IRQ             0x00000004
40 #define STMP3XXX_RTC_CTRL_WATCHDOGEN            0x00000010
41
42 #define STMP3XXX_RTC_STAT                       0x10
43 #define STMP3XXX_RTC_STAT_STALE_SHIFT           16
44 #define STMP3XXX_RTC_STAT_RTC_PRESENT           0x80000000
45
46 #define STMP3XXX_RTC_SECONDS                    0x30
47
48 #define STMP3XXX_RTC_ALARM                      0x40
49
50 #define STMP3XXX_RTC_WATCHDOG                   0x50
51
52 #define STMP3XXX_RTC_PERSISTENT0                0x60
53 #define STMP3XXX_RTC_PERSISTENT0_SET            0x64
54 #define STMP3XXX_RTC_PERSISTENT0_CLR            0x68
55 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN  0x00000002
56 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN       0x00000004
57 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE     0x00000080
58
59 #define STMP3XXX_RTC_PERSISTENT1                0x70
60 /* missing bitmask in headers */
61 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER  0x80000000
62
63 struct stmp3xxx_rtc_data {
64         struct rtc_device *rtc;
65         void __iomem *io;
66         int irq_alarm;
67 };
68
69 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
70 /**
71  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
72  * @dev: the parent device of the watchdog (= the RTC)
73  * @timeout: the desired value for the timeout register of the watchdog.
74  *           0 disables the watchdog
75  *
76  * The watchdog needs one register and two bits which are in the RTC domain.
77  * To handle the resource conflict, the RTC driver will create another
78  * platform_device for the watchdog driver as a child of the RTC device.
79  * The watchdog driver is passed the below accessor function via platform_data
80  * to configure the watchdog. Locking is not needed because accessing SET/CLR
81  * registers is atomic.
82  */
83
84 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
85 {
86         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
87
88         if (timeout) {
89                 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
90                 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
91                        rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
92                 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
93                        rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
94         } else {
95                 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
96                        rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
97                 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
98                        rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
99         }
100 }
101
102 static struct stmp3xxx_wdt_pdata wdt_pdata = {
103         .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
104 };
105
106 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
107 {
108         struct platform_device *wdt_pdev =
109                 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
110
111         if (wdt_pdev) {
112                 wdt_pdev->dev.parent = &rtc_pdev->dev;
113                 wdt_pdev->dev.platform_data = &wdt_pdata;
114                 platform_device_add(wdt_pdev);
115         }
116 }
117 #else
118 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
119 {
120 }
121 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
122
123 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
124 {
125         int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
126         /*
127          * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
128          * states:
129          * | The order in which registers are updated is
130          * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
131          * | (This list is in bitfield order, from LSB to MSB, as they would
132          * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
133          * | register. For example, the Seconds register corresponds to
134          * | STALE_REGS or NEW_REGS containing 0x80.)
135          */
136         do {
137                 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
138                                 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
139                         return 0;
140                 udelay(1);
141         } while (--timeout > 0);
142         return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
143                 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
144 }
145
146 /* Time read/write */
147 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
148 {
149         int ret;
150         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
151
152         ret = stmp3xxx_wait_time(rtc_data);
153         if (ret)
154                 return ret;
155
156         rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
157         return 0;
158 }
159
160 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
161 {
162         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
163
164         writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
165         return stmp3xxx_wait_time(rtc_data);
166 }
167
168 /* interrupt(s) handler */
169 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
170 {
171         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
172         u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
173
174         if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
175                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
176                                 rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
177                 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
178                 return IRQ_HANDLED;
179         }
180
181         return IRQ_NONE;
182 }
183
184 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
185 {
186         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
187
188         if (enabled) {
189                 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
190                                 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
191                                 rtc_data->io + STMP3XXX_RTC_PERSISTENT0_SET);
192                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
193                                 rtc_data->io + STMP3XXX_RTC_CTRL_SET);
194         } else {
195                 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
196                                 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
197                                 rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
198                 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
199                                 rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
200         }
201         return 0;
202 }
203
204 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
205 {
206         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
207
208         rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
209         return 0;
210 }
211
212 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
213 {
214         unsigned long t;
215         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
216
217         rtc_tm_to_time(&alm->time, &t);
218         writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
219
220         stmp3xxx_alarm_irq_enable(dev, alm->enabled);
221
222         return 0;
223 }
224
225 static struct rtc_class_ops stmp3xxx_rtc_ops = {
226         .alarm_irq_enable =
227                           stmp3xxx_alarm_irq_enable,
228         .read_time      = stmp3xxx_rtc_gettime,
229         .set_mmss       = stmp3xxx_rtc_set_mmss,
230         .read_alarm     = stmp3xxx_rtc_read_alarm,
231         .set_alarm      = stmp3xxx_rtc_set_alarm,
232 };
233
234 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
235 {
236         struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
237
238         if (!rtc_data)
239                 return 0;
240
241         writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
242                         rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
243
244         return 0;
245 }
246
247 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
248 {
249         struct stmp3xxx_rtc_data *rtc_data;
250         struct resource *r;
251         int err;
252
253         rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
254         if (!rtc_data)
255                 return -ENOMEM;
256
257         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
258         if (!r) {
259                 dev_err(&pdev->dev, "failed to get resource\n");
260                 return -ENXIO;
261         }
262
263         rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
264         if (!rtc_data->io) {
265                 dev_err(&pdev->dev, "ioremap failed\n");
266                 return -EIO;
267         }
268
269         rtc_data->irq_alarm = platform_get_irq(pdev, 0);
270
271         if (!(readl(STMP3XXX_RTC_STAT + rtc_data->io) &
272                         STMP3XXX_RTC_STAT_RTC_PRESENT)) {
273                 dev_err(&pdev->dev, "no device onboard\n");
274                 return -ENODEV;
275         }
276
277         platform_set_drvdata(pdev, rtc_data);
278
279         err = stmp_reset_block(rtc_data->io);
280         if (err) {
281                 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
282                 return err;
283         }
284
285         writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
286                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
287                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
288                         rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
289
290         writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
291                         STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
292                         rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
293
294         rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
295                                 &stmp3xxx_rtc_ops, THIS_MODULE);
296         if (IS_ERR(rtc_data->rtc))
297                 return PTR_ERR(rtc_data->rtc);
298
299         err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
300                         stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
301         if (err) {
302                 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
303                         rtc_data->irq_alarm);
304                 return err;
305         }
306
307         stmp3xxx_wdt_register(pdev);
308         return 0;
309 }
310
311 #ifdef CONFIG_PM_SLEEP
312 static int stmp3xxx_rtc_suspend(struct device *dev)
313 {
314         return 0;
315 }
316
317 static int stmp3xxx_rtc_resume(struct device *dev)
318 {
319         struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
320
321         stmp_reset_block(rtc_data->io);
322         writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
323                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
324                         STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
325                         rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
326         return 0;
327 }
328 #endif
329
330 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
331                         stmp3xxx_rtc_resume);
332
333 static const struct of_device_id rtc_dt_ids[] = {
334         { .compatible = "fsl,stmp3xxx-rtc", },
335         { /* sentinel */ }
336 };
337 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
338
339 static struct platform_driver stmp3xxx_rtcdrv = {
340         .probe          = stmp3xxx_rtc_probe,
341         .remove         = stmp3xxx_rtc_remove,
342         .driver         = {
343                 .name   = "stmp3xxx-rtc",
344                 .owner  = THIS_MODULE,
345                 .pm     = &stmp3xxx_rtc_pm_ops,
346                 .of_match_table = rtc_dt_ids,
347         },
348 };
349
350 module_platform_driver(stmp3xxx_rtcdrv);
351
352 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
353 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
354                 "Wolfram Sang <w.sang@pengutronix.de>");
355 MODULE_LICENSE("GPL");