]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
0554a6a7ea55b6491315cab1ae4b2691878451ce
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54                                    unsigned char *sense_buffer)
55 {
56         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57                         sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61         gfp_t gfp_mask, int numa_node)
62 {
63         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64                                      gfp_mask, numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69         struct kmem_cache *cache;
70         int ret = 0;
71
72         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73         if (cache)
74                 return 0;
75
76         mutex_lock(&scsi_sense_cache_mutex);
77         if (shost->unchecked_isa_dma) {
78                 scsi_sense_isadma_cache =
79                         kmem_cache_create("scsi_sense_cache(DMA)",
80                         SCSI_SENSE_BUFFERSIZE, 0,
81                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82                 if (!scsi_sense_isadma_cache)
83                         ret = -ENOMEM;
84         } else {
85                 scsi_sense_cache =
86                         kmem_cache_create("scsi_sense_cache",
87                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88                 if (!scsi_sense_cache)
89                         ret = -ENOMEM;
90         }
91
92         mutex_unlock(&scsi_sense_cache_mutex);
93         return ret;
94 }
95
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY        3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106         struct Scsi_Host *host = cmd->device->host;
107         struct scsi_device *device = cmd->device;
108         struct scsi_target *starget = scsi_target(device);
109
110         /*
111          * Set the appropriate busy bit for the device/host.
112          *
113          * If the host/device isn't busy, assume that something actually
114          * completed, and that we should be able to queue a command now.
115          *
116          * Note that the prior mid-layer assumption that any host could
117          * always queue at least one command is now broken.  The mid-layer
118          * will implement a user specifiable stall (see
119          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120          * if a command is requeued with no other commands outstanding
121          * either for the device or for the host.
122          */
123         switch (reason) {
124         case SCSI_MLQUEUE_HOST_BUSY:
125                 atomic_set(&host->host_blocked, host->max_host_blocked);
126                 break;
127         case SCSI_MLQUEUE_DEVICE_BUSY:
128         case SCSI_MLQUEUE_EH_RETRY:
129                 atomic_set(&device->device_blocked,
130                            device->max_device_blocked);
131                 break;
132         case SCSI_MLQUEUE_TARGET_BUSY:
133                 atomic_set(&starget->target_blocked,
134                            starget->max_target_blocked);
135                 break;
136         }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141         struct scsi_device *sdev = cmd->device;
142
143         blk_mq_requeue_request(cmd->request, true);
144         put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161         struct scsi_device *device = cmd->device;
162         struct request_queue *q = device->request_queue;
163         unsigned long flags;
164
165         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166                 "Inserting command %p into mlqueue\n", cmd));
167
168         scsi_set_blocked(cmd, reason);
169
170         /*
171          * Decrement the counters, since these commands are no longer
172          * active on the host/device.
173          */
174         if (unbusy)
175                 scsi_device_unbusy(device);
176
177         /*
178          * Requeue this command.  It will go before all other commands
179          * that are already in the queue. Schedule requeue work under
180          * lock such that the kblockd_schedule_work() call happens
181          * before blk_cleanup_queue() finishes.
182          */
183         cmd->result = 0;
184         if (q->mq_ops) {
185                 scsi_mq_requeue_cmd(cmd);
186                 return;
187         }
188         spin_lock_irqsave(q->queue_lock, flags);
189         blk_requeue_request(q, cmd->request);
190         kblockd_schedule_work(&device->requeue_work);
191         spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215         __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:       scsi device
222  * @cmd:        scsi command
223  * @data_direction: data direction
224  * @buffer:     data buffer
225  * @bufflen:    len of buffer
226  * @sense:      optional sense buffer
227  * @sshdr:      optional decoded sense header
228  * @timeout:    request timeout in seconds
229  * @retries:    number of times to retry request
230  * @flags:      flags for ->cmd_flags
231  * @rq_flags:   flags for ->rq_flags
232  * @resid:      optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238                  int data_direction, void *buffer, unsigned bufflen,
239                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
240                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
241                  int *resid)
242 {
243         struct request *req;
244         struct scsi_request *rq;
245         int ret = DRIVER_ERROR << 24;
246
247         req = blk_get_request(sdev->request_queue,
248                         data_direction == DMA_TO_DEVICE ?
249                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250         if (IS_ERR(req))
251                 return ret;
252         rq = scsi_req(req);
253         scsi_req_init(req);
254
255         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
256                                         buffer, bufflen, __GFP_RECLAIM))
257                 goto out;
258
259         rq->cmd_len = COMMAND_SIZE(cmd[0]);
260         memcpy(rq->cmd, cmd, rq->cmd_len);
261         rq->retries = retries;
262         req->timeout = timeout;
263         req->cmd_flags |= flags;
264         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
265
266         /*
267          * head injection *required* here otherwise quiesce won't work
268          */
269         blk_execute_rq(req->q, NULL, req, 1);
270
271         /*
272          * Some devices (USB mass-storage in particular) may transfer
273          * garbage data together with a residue indicating that the data
274          * is invalid.  Prevent the garbage from being misinterpreted
275          * and prevent security leaks by zeroing out the excess data.
276          */
277         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
278                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
279
280         if (resid)
281                 *resid = rq->resid_len;
282         if (sense && rq->sense_len)
283                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
284         if (sshdr)
285                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
286         ret = rq->result;
287  out:
288         blk_put_request(req);
289
290         return ret;
291 }
292 EXPORT_SYMBOL(scsi_execute);
293
294 /*
295  * Function:    scsi_init_cmd_errh()
296  *
297  * Purpose:     Initialize cmd fields related to error handling.
298  *
299  * Arguments:   cmd     - command that is ready to be queued.
300  *
301  * Notes:       This function has the job of initializing a number of
302  *              fields related to error handling.   Typically this will
303  *              be called once for each command, as required.
304  */
305 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
306 {
307         cmd->serial_number = 0;
308         scsi_set_resid(cmd, 0);
309         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
310         if (cmd->cmd_len == 0)
311                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
312 }
313
314 void scsi_device_unbusy(struct scsi_device *sdev)
315 {
316         struct Scsi_Host *shost = sdev->host;
317         struct scsi_target *starget = scsi_target(sdev);
318         unsigned long flags;
319
320         atomic_dec(&shost->host_busy);
321         if (starget->can_queue > 0)
322                 atomic_dec(&starget->target_busy);
323
324         if (unlikely(scsi_host_in_recovery(shost) &&
325                      (shost->host_failed || shost->host_eh_scheduled))) {
326                 spin_lock_irqsave(shost->host_lock, flags);
327                 scsi_eh_wakeup(shost);
328                 spin_unlock_irqrestore(shost->host_lock, flags);
329         }
330
331         atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336         if (q->mq_ops)
337                 blk_mq_start_hw_queues(q);
338         else
339                 blk_run_queue(q);
340 }
341
342 /*
343  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
344  * and call blk_run_queue for all the scsi_devices on the target -
345  * including current_sdev first.
346  *
347  * Called with *no* scsi locks held.
348  */
349 static void scsi_single_lun_run(struct scsi_device *current_sdev)
350 {
351         struct Scsi_Host *shost = current_sdev->host;
352         struct scsi_device *sdev, *tmp;
353         struct scsi_target *starget = scsi_target(current_sdev);
354         unsigned long flags;
355
356         spin_lock_irqsave(shost->host_lock, flags);
357         starget->starget_sdev_user = NULL;
358         spin_unlock_irqrestore(shost->host_lock, flags);
359
360         /*
361          * Call blk_run_queue for all LUNs on the target, starting with
362          * current_sdev. We race with others (to set starget_sdev_user),
363          * but in most cases, we will be first. Ideally, each LU on the
364          * target would get some limited time or requests on the target.
365          */
366         scsi_kick_queue(current_sdev->request_queue);
367
368         spin_lock_irqsave(shost->host_lock, flags);
369         if (starget->starget_sdev_user)
370                 goto out;
371         list_for_each_entry_safe(sdev, tmp, &starget->devices,
372                         same_target_siblings) {
373                 if (sdev == current_sdev)
374                         continue;
375                 if (scsi_device_get(sdev))
376                         continue;
377
378                 spin_unlock_irqrestore(shost->host_lock, flags);
379                 scsi_kick_queue(sdev->request_queue);
380                 spin_lock_irqsave(shost->host_lock, flags);
381         
382                 scsi_device_put(sdev);
383         }
384  out:
385         spin_unlock_irqrestore(shost->host_lock, flags);
386 }
387
388 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
389 {
390         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
391                 return true;
392         if (atomic_read(&sdev->device_blocked) > 0)
393                 return true;
394         return false;
395 }
396
397 static inline bool scsi_target_is_busy(struct scsi_target *starget)
398 {
399         if (starget->can_queue > 0) {
400                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
401                         return true;
402                 if (atomic_read(&starget->target_blocked) > 0)
403                         return true;
404         }
405         return false;
406 }
407
408 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
409 {
410         if (shost->can_queue > 0 &&
411             atomic_read(&shost->host_busy) >= shost->can_queue)
412                 return true;
413         if (atomic_read(&shost->host_blocked) > 0)
414                 return true;
415         if (shost->host_self_blocked)
416                 return true;
417         return false;
418 }
419
420 static void scsi_starved_list_run(struct Scsi_Host *shost)
421 {
422         LIST_HEAD(starved_list);
423         struct scsi_device *sdev;
424         unsigned long flags;
425
426         spin_lock_irqsave(shost->host_lock, flags);
427         list_splice_init(&shost->starved_list, &starved_list);
428
429         while (!list_empty(&starved_list)) {
430                 struct request_queue *slq;
431
432                 /*
433                  * As long as shost is accepting commands and we have
434                  * starved queues, call blk_run_queue. scsi_request_fn
435                  * drops the queue_lock and can add us back to the
436                  * starved_list.
437                  *
438                  * host_lock protects the starved_list and starved_entry.
439                  * scsi_request_fn must get the host_lock before checking
440                  * or modifying starved_list or starved_entry.
441                  */
442                 if (scsi_host_is_busy(shost))
443                         break;
444
445                 sdev = list_entry(starved_list.next,
446                                   struct scsi_device, starved_entry);
447                 list_del_init(&sdev->starved_entry);
448                 if (scsi_target_is_busy(scsi_target(sdev))) {
449                         list_move_tail(&sdev->starved_entry,
450                                        &shost->starved_list);
451                         continue;
452                 }
453
454                 /*
455                  * Once we drop the host lock, a racing scsi_remove_device()
456                  * call may remove the sdev from the starved list and destroy
457                  * it and the queue.  Mitigate by taking a reference to the
458                  * queue and never touching the sdev again after we drop the
459                  * host lock.  Note: if __scsi_remove_device() invokes
460                  * blk_cleanup_queue() before the queue is run from this
461                  * function then blk_run_queue() will return immediately since
462                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
463                  */
464                 slq = sdev->request_queue;
465                 if (!blk_get_queue(slq))
466                         continue;
467                 spin_unlock_irqrestore(shost->host_lock, flags);
468
469                 scsi_kick_queue(slq);
470                 blk_put_queue(slq);
471
472                 spin_lock_irqsave(shost->host_lock, flags);
473         }
474         /* put any unprocessed entries back */
475         list_splice(&starved_list, &shost->starved_list);
476         spin_unlock_irqrestore(shost->host_lock, flags);
477 }
478
479 /*
480  * Function:   scsi_run_queue()
481  *
482  * Purpose:    Select a proper request queue to serve next
483  *
484  * Arguments:  q       - last request's queue
485  *
486  * Returns:     Nothing
487  *
488  * Notes:      The previous command was completely finished, start
489  *             a new one if possible.
490  */
491 static void scsi_run_queue(struct request_queue *q)
492 {
493         struct scsi_device *sdev = q->queuedata;
494
495         if (scsi_target(sdev)->single_lun)
496                 scsi_single_lun_run(sdev);
497         if (!list_empty(&sdev->host->starved_list))
498                 scsi_starved_list_run(sdev->host);
499
500         if (q->mq_ops)
501                 blk_mq_run_hw_queues(q, false);
502         else
503                 blk_run_queue(q);
504 }
505
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508         struct scsi_device *sdev;
509         struct request_queue *q;
510
511         sdev = container_of(work, struct scsi_device, requeue_work);
512         q = sdev->request_queue;
513         scsi_run_queue(q);
514 }
515
516 /*
517  * Function:    scsi_requeue_command()
518  *
519  * Purpose:     Handle post-processing of completed commands.
520  *
521  * Arguments:   q       - queue to operate on
522  *              cmd     - command that may need to be requeued.
523  *
524  * Returns:     Nothing
525  *
526  * Notes:       After command completion, there may be blocks left
527  *              over which weren't finished by the previous command
528  *              this can be for a number of reasons - the main one is
529  *              I/O errors in the middle of the request, in which case
530  *              we need to request the blocks that come after the bad
531  *              sector.
532  * Notes:       Upon return, cmd is a stale pointer.
533  */
534 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
535 {
536         struct scsi_device *sdev = cmd->device;
537         struct request *req = cmd->request;
538         unsigned long flags;
539
540         spin_lock_irqsave(q->queue_lock, flags);
541         blk_unprep_request(req);
542         req->special = NULL;
543         scsi_put_command(cmd);
544         blk_requeue_request(q, req);
545         spin_unlock_irqrestore(q->queue_lock, flags);
546
547         scsi_run_queue(q);
548
549         put_device(&sdev->sdev_gendev);
550 }
551
552 void scsi_run_host_queues(struct Scsi_Host *shost)
553 {
554         struct scsi_device *sdev;
555
556         shost_for_each_device(sdev, shost)
557                 scsi_run_queue(sdev->request_queue);
558 }
559
560 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
561 {
562         if (!blk_rq_is_passthrough(cmd->request)) {
563                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
564
565                 if (drv->uninit_command)
566                         drv->uninit_command(cmd);
567         }
568 }
569
570 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
571 {
572         struct scsi_data_buffer *sdb;
573
574         if (cmd->sdb.table.nents)
575                 sg_free_table_chained(&cmd->sdb.table, true);
576         if (cmd->request->next_rq) {
577                 sdb = cmd->request->next_rq->special;
578                 if (sdb)
579                         sg_free_table_chained(&sdb->table, true);
580         }
581         if (scsi_prot_sg_count(cmd))
582                 sg_free_table_chained(&cmd->prot_sdb->table, true);
583 }
584
585 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587         struct scsi_device *sdev = cmd->device;
588         struct Scsi_Host *shost = sdev->host;
589         unsigned long flags;
590
591         scsi_mq_free_sgtables(cmd);
592         scsi_uninit_cmd(cmd);
593
594         if (shost->use_cmd_list) {
595                 BUG_ON(list_empty(&cmd->list));
596                 spin_lock_irqsave(&sdev->list_lock, flags);
597                 list_del_init(&cmd->list);
598                 spin_unlock_irqrestore(&sdev->list_lock, flags);
599         }
600 }
601
602 /*
603  * Function:    scsi_release_buffers()
604  *
605  * Purpose:     Free resources allocate for a scsi_command.
606  *
607  * Arguments:   cmd     - command that we are bailing.
608  *
609  * Lock status: Assumed that no lock is held upon entry.
610  *
611  * Returns:     Nothing
612  *
613  * Notes:       In the event that an upper level driver rejects a
614  *              command, we must release resources allocated during
615  *              the __init_io() function.  Primarily this would involve
616  *              the scatter-gather table.
617  */
618 static void scsi_release_buffers(struct scsi_cmnd *cmd)
619 {
620         if (cmd->sdb.table.nents)
621                 sg_free_table_chained(&cmd->sdb.table, false);
622
623         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
624
625         if (scsi_prot_sg_count(cmd))
626                 sg_free_table_chained(&cmd->prot_sdb->table, false);
627 }
628
629 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
630 {
631         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
632
633         sg_free_table_chained(&bidi_sdb->table, false);
634         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
635         cmd->request->next_rq->special = NULL;
636 }
637
638 static bool scsi_end_request(struct request *req, int error,
639                 unsigned int bytes, unsigned int bidi_bytes)
640 {
641         struct scsi_cmnd *cmd = req->special;
642         struct scsi_device *sdev = cmd->device;
643         struct request_queue *q = sdev->request_queue;
644
645         if (blk_update_request(req, error, bytes))
646                 return true;
647
648         /* Bidi request must be completed as a whole */
649         if (unlikely(bidi_bytes) &&
650             blk_update_request(req->next_rq, error, bidi_bytes))
651                 return true;
652
653         if (blk_queue_add_random(q))
654                 add_disk_randomness(req->rq_disk);
655
656         if (req->mq_ctx) {
657                 /*
658                  * In the MQ case the command gets freed by __blk_mq_end_request,
659                  * so we have to do all cleanup that depends on it earlier.
660                  *
661                  * We also can't kick the queues from irq context, so we
662                  * will have to defer it to a workqueue.
663                  */
664                 scsi_mq_uninit_cmd(cmd);
665
666                 __blk_mq_end_request(req, error);
667
668                 if (scsi_target(sdev)->single_lun ||
669                     !list_empty(&sdev->host->starved_list))
670                         kblockd_schedule_work(&sdev->requeue_work);
671                 else
672                         blk_mq_run_hw_queues(q, true);
673         } else {
674                 unsigned long flags;
675
676                 if (bidi_bytes)
677                         scsi_release_bidi_buffers(cmd);
678                 scsi_release_buffers(cmd);
679                 scsi_put_command(cmd);
680
681                 spin_lock_irqsave(q->queue_lock, flags);
682                 blk_finish_request(req, error);
683                 spin_unlock_irqrestore(q->queue_lock, flags);
684
685                 scsi_run_queue(q);
686         }
687
688         put_device(&sdev->sdev_gendev);
689         return false;
690 }
691
692 /**
693  * __scsi_error_from_host_byte - translate SCSI error code into errno
694  * @cmd:        SCSI command (unused)
695  * @result:     scsi error code
696  *
697  * Translate SCSI error code into standard UNIX errno.
698  * Return values:
699  * -ENOLINK     temporary transport failure
700  * -EREMOTEIO   permanent target failure, do not retry
701  * -EBADE       permanent nexus failure, retry on other path
702  * -ENOSPC      No write space available
703  * -ENODATA     Medium error
704  * -EIO         unspecified I/O error
705  */
706 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
707 {
708         int error = 0;
709
710         switch(host_byte(result)) {
711         case DID_TRANSPORT_FAILFAST:
712                 error = -ENOLINK;
713                 break;
714         case DID_TARGET_FAILURE:
715                 set_host_byte(cmd, DID_OK);
716                 error = -EREMOTEIO;
717                 break;
718         case DID_NEXUS_FAILURE:
719                 set_host_byte(cmd, DID_OK);
720                 error = -EBADE;
721                 break;
722         case DID_ALLOC_FAILURE:
723                 set_host_byte(cmd, DID_OK);
724                 error = -ENOSPC;
725                 break;
726         case DID_MEDIUM_ERROR:
727                 set_host_byte(cmd, DID_OK);
728                 error = -ENODATA;
729                 break;
730         default:
731                 error = -EIO;
732                 break;
733         }
734
735         return error;
736 }
737
738 /*
739  * Function:    scsi_io_completion()
740  *
741  * Purpose:     Completion processing for block device I/O requests.
742  *
743  * Arguments:   cmd   - command that is finished.
744  *
745  * Lock status: Assumed that no lock is held upon entry.
746  *
747  * Returns:     Nothing
748  *
749  * Notes:       We will finish off the specified number of sectors.  If we
750  *              are done, the command block will be released and the queue
751  *              function will be goosed.  If we are not done then we have to
752  *              figure out what to do next:
753  *
754  *              a) We can call scsi_requeue_command().  The request
755  *                 will be unprepared and put back on the queue.  Then
756  *                 a new command will be created for it.  This should
757  *                 be used if we made forward progress, or if we want
758  *                 to switch from READ(10) to READ(6) for example.
759  *
760  *              b) We can call __scsi_queue_insert().  The request will
761  *                 be put back on the queue and retried using the same
762  *                 command as before, possibly after a delay.
763  *
764  *              c) We can call scsi_end_request() with -EIO to fail
765  *                 the remainder of the request.
766  */
767 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
768 {
769         int result = cmd->result;
770         struct request_queue *q = cmd->device->request_queue;
771         struct request *req = cmd->request;
772         int error = 0;
773         struct scsi_sense_hdr sshdr;
774         bool sense_valid = false;
775         int sense_deferred = 0, level = 0;
776         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
777               ACTION_DELAYED_RETRY} action;
778         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
779
780         if (result) {
781                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
782                 if (sense_valid)
783                         sense_deferred = scsi_sense_is_deferred(&sshdr);
784         }
785
786         if (blk_rq_is_passthrough(req)) {
787                 if (result) {
788                         if (sense_valid) {
789                                 /*
790                                  * SG_IO wants current and deferred errors
791                                  */
792                                 scsi_req(req)->sense_len =
793                                         min(8 + cmd->sense_buffer[7],
794                                             SCSI_SENSE_BUFFERSIZE);
795                         }
796                         if (!sense_deferred)
797                                 error = __scsi_error_from_host_byte(cmd, result);
798                 }
799                 /*
800                  * __scsi_error_from_host_byte may have reset the host_byte
801                  */
802                 scsi_req(req)->result = cmd->result;
803                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
804
805                 if (scsi_bidi_cmnd(cmd)) {
806                         /*
807                          * Bidi commands Must be complete as a whole,
808                          * both sides at once.
809                          */
810                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
811                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
812                                         blk_rq_bytes(req->next_rq)))
813                                 BUG();
814                         return;
815                 }
816         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
817                 /*
818                  * Flush commands do not transfers any data, and thus cannot use
819                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
820                  * This sets the error explicitly for the problem case.
821                  */
822                 error = __scsi_error_from_host_byte(cmd, result);
823         }
824
825         /* no bidi support for !blk_rq_is_passthrough yet */
826         BUG_ON(blk_bidi_rq(req));
827
828         /*
829          * Next deal with any sectors which we were able to correctly
830          * handle.
831          */
832         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
833                 "%u sectors total, %d bytes done.\n",
834                 blk_rq_sectors(req), good_bytes));
835
836         /*
837          * Recovered errors need reporting, but they're always treated as
838          * success, so fiddle the result code here.  For passthrough requests
839          * we already took a copy of the original into sreq->result which
840          * is what gets returned to the user
841          */
842         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
843                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
844                  * print since caller wants ATA registers. Only occurs on
845                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
846                  */
847                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
848                         ;
849                 else if (!(req->rq_flags & RQF_QUIET))
850                         scsi_print_sense(cmd);
851                 result = 0;
852                 /* for passthrough error may be set */
853                 error = 0;
854         }
855
856         /*
857          * special case: failed zero length commands always need to
858          * drop down into the retry code. Otherwise, if we finished
859          * all bytes in the request we are done now.
860          */
861         if (!(blk_rq_bytes(req) == 0 && error) &&
862             !scsi_end_request(req, error, good_bytes, 0))
863                 return;
864
865         /*
866          * Kill remainder if no retrys.
867          */
868         if (error && scsi_noretry_cmd(cmd)) {
869                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
870                         BUG();
871                 return;
872         }
873
874         /*
875          * If there had been no error, but we have leftover bytes in the
876          * requeues just queue the command up again.
877          */
878         if (result == 0)
879                 goto requeue;
880
881         error = __scsi_error_from_host_byte(cmd, result);
882
883         if (host_byte(result) == DID_RESET) {
884                 /* Third party bus reset or reset for error recovery
885                  * reasons.  Just retry the command and see what
886                  * happens.
887                  */
888                 action = ACTION_RETRY;
889         } else if (sense_valid && !sense_deferred) {
890                 switch (sshdr.sense_key) {
891                 case UNIT_ATTENTION:
892                         if (cmd->device->removable) {
893                                 /* Detected disc change.  Set a bit
894                                  * and quietly refuse further access.
895                                  */
896                                 cmd->device->changed = 1;
897                                 action = ACTION_FAIL;
898                         } else {
899                                 /* Must have been a power glitch, or a
900                                  * bus reset.  Could not have been a
901                                  * media change, so we just retry the
902                                  * command and see what happens.
903                                  */
904                                 action = ACTION_RETRY;
905                         }
906                         break;
907                 case ILLEGAL_REQUEST:
908                         /* If we had an ILLEGAL REQUEST returned, then
909                          * we may have performed an unsupported
910                          * command.  The only thing this should be
911                          * would be a ten byte read where only a six
912                          * byte read was supported.  Also, on a system
913                          * where READ CAPACITY failed, we may have
914                          * read past the end of the disk.
915                          */
916                         if ((cmd->device->use_10_for_rw &&
917                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
918                             (cmd->cmnd[0] == READ_10 ||
919                              cmd->cmnd[0] == WRITE_10)) {
920                                 /* This will issue a new 6-byte command. */
921                                 cmd->device->use_10_for_rw = 0;
922                                 action = ACTION_REPREP;
923                         } else if (sshdr.asc == 0x10) /* DIX */ {
924                                 action = ACTION_FAIL;
925                                 error = -EILSEQ;
926                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
927                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
928                                 action = ACTION_FAIL;
929                                 error = -EREMOTEIO;
930                         } else
931                                 action = ACTION_FAIL;
932                         break;
933                 case ABORTED_COMMAND:
934                         action = ACTION_FAIL;
935                         if (sshdr.asc == 0x10) /* DIF */
936                                 error = -EILSEQ;
937                         break;
938                 case NOT_READY:
939                         /* If the device is in the process of becoming
940                          * ready, or has a temporary blockage, retry.
941                          */
942                         if (sshdr.asc == 0x04) {
943                                 switch (sshdr.ascq) {
944                                 case 0x01: /* becoming ready */
945                                 case 0x04: /* format in progress */
946                                 case 0x05: /* rebuild in progress */
947                                 case 0x06: /* recalculation in progress */
948                                 case 0x07: /* operation in progress */
949                                 case 0x08: /* Long write in progress */
950                                 case 0x09: /* self test in progress */
951                                 case 0x14: /* space allocation in progress */
952                                         action = ACTION_DELAYED_RETRY;
953                                         break;
954                                 default:
955                                         action = ACTION_FAIL;
956                                         break;
957                                 }
958                         } else
959                                 action = ACTION_FAIL;
960                         break;
961                 case VOLUME_OVERFLOW:
962                         /* See SSC3rXX or current. */
963                         action = ACTION_FAIL;
964                         break;
965                 default:
966                         action = ACTION_FAIL;
967                         break;
968                 }
969         } else
970                 action = ACTION_FAIL;
971
972         if (action != ACTION_FAIL &&
973             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
974                 action = ACTION_FAIL;
975
976         switch (action) {
977         case ACTION_FAIL:
978                 /* Give up and fail the remainder of the request */
979                 if (!(req->rq_flags & RQF_QUIET)) {
980                         static DEFINE_RATELIMIT_STATE(_rs,
981                                         DEFAULT_RATELIMIT_INTERVAL,
982                                         DEFAULT_RATELIMIT_BURST);
983
984                         if (unlikely(scsi_logging_level))
985                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
986                                                        SCSI_LOG_MLCOMPLETE_BITS);
987
988                         /*
989                          * if logging is enabled the failure will be printed
990                          * in scsi_log_completion(), so avoid duplicate messages
991                          */
992                         if (!level && __ratelimit(&_rs)) {
993                                 scsi_print_result(cmd, NULL, FAILED);
994                                 if (driver_byte(result) & DRIVER_SENSE)
995                                         scsi_print_sense(cmd);
996                                 scsi_print_command(cmd);
997                         }
998                 }
999                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1000                         return;
1001                 /*FALLTHRU*/
1002         case ACTION_REPREP:
1003         requeue:
1004                 /* Unprep the request and put it back at the head of the queue.
1005                  * A new command will be prepared and issued.
1006                  */
1007                 if (q->mq_ops) {
1008                         cmd->request->rq_flags &= ~RQF_DONTPREP;
1009                         scsi_mq_uninit_cmd(cmd);
1010                         scsi_mq_requeue_cmd(cmd);
1011                 } else {
1012                         scsi_release_buffers(cmd);
1013                         scsi_requeue_command(q, cmd);
1014                 }
1015                 break;
1016         case ACTION_RETRY:
1017                 /* Retry the same command immediately */
1018                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1019                 break;
1020         case ACTION_DELAYED_RETRY:
1021                 /* Retry the same command after a delay */
1022                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1023                 break;
1024         }
1025 }
1026
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1028 {
1029         int count;
1030
1031         /*
1032          * If sg table allocation fails, requeue request later.
1033          */
1034         if (unlikely(sg_alloc_table_chained(&sdb->table,
1035                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036                 return BLKPREP_DEFER;
1037
1038         /* 
1039          * Next, walk the list, and fill in the addresses and sizes of
1040          * each segment.
1041          */
1042         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043         BUG_ON(count > sdb->table.nents);
1044         sdb->table.nents = count;
1045         sdb->length = blk_rq_payload_bytes(req);
1046         return BLKPREP_OK;
1047 }
1048
1049 /*
1050  * Function:    scsi_init_io()
1051  *
1052  * Purpose:     SCSI I/O initialize function.
1053  *
1054  * Arguments:   cmd   - Command descriptor we wish to initialize
1055  *
1056  * Returns:     0 on success
1057  *              BLKPREP_DEFER if the failure is retryable
1058  *              BLKPREP_KILL if the failure is fatal
1059  */
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1061 {
1062         struct scsi_device *sdev = cmd->device;
1063         struct request *rq = cmd->request;
1064         bool is_mq = (rq->mq_ctx != NULL);
1065         int error = BLKPREP_KILL;
1066
1067         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068                 goto err_exit;
1069
1070         error = scsi_init_sgtable(rq, &cmd->sdb);
1071         if (error)
1072                 goto err_exit;
1073
1074         if (blk_bidi_rq(rq)) {
1075                 if (!rq->q->mq_ops) {
1076                         struct scsi_data_buffer *bidi_sdb =
1077                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078                         if (!bidi_sdb) {
1079                                 error = BLKPREP_DEFER;
1080                                 goto err_exit;
1081                         }
1082
1083                         rq->next_rq->special = bidi_sdb;
1084                 }
1085
1086                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087                 if (error)
1088                         goto err_exit;
1089         }
1090
1091         if (blk_integrity_rq(rq)) {
1092                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093                 int ivecs, count;
1094
1095                 if (prot_sdb == NULL) {
1096                         /*
1097                          * This can happen if someone (e.g. multipath)
1098                          * queues a command to a device on an adapter
1099                          * that does not support DIX.
1100                          */
1101                         WARN_ON_ONCE(1);
1102                         error = BLKPREP_KILL;
1103                         goto err_exit;
1104                 }
1105
1106                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1107
1108                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109                                 prot_sdb->table.sgl)) {
1110                         error = BLKPREP_DEFER;
1111                         goto err_exit;
1112                 }
1113
1114                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115                                                 prot_sdb->table.sgl);
1116                 BUG_ON(unlikely(count > ivecs));
1117                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1118
1119                 cmd->prot_sdb = prot_sdb;
1120                 cmd->prot_sdb->table.nents = count;
1121         }
1122
1123         return BLKPREP_OK;
1124 err_exit:
1125         if (is_mq) {
1126                 scsi_mq_free_sgtables(cmd);
1127         } else {
1128                 scsi_release_buffers(cmd);
1129                 cmd->request->special = NULL;
1130                 scsi_put_command(cmd);
1131                 put_device(&sdev->sdev_gendev);
1132         }
1133         return error;
1134 }
1135 EXPORT_SYMBOL(scsi_init_io);
1136
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139         void *buf = cmd->sense_buffer;
1140         void *prot = cmd->prot_sdb;
1141         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1142         unsigned long flags;
1143
1144         /* zero out the cmd, except for the embedded scsi_request */
1145         memset((char *)cmd + sizeof(cmd->req), 0,
1146                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1147
1148         cmd->device = dev;
1149         cmd->sense_buffer = buf;
1150         cmd->prot_sdb = prot;
1151         cmd->flags = unchecked_isa_dma;
1152         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1153         cmd->jiffies_at_alloc = jiffies;
1154
1155         spin_lock_irqsave(&dev->list_lock, flags);
1156         list_add_tail(&cmd->list, &dev->cmd_list);
1157         spin_unlock_irqrestore(&dev->list_lock, flags);
1158 }
1159
1160 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1161 {
1162         struct scsi_cmnd *cmd = req->special;
1163
1164         /*
1165          * Passthrough requests may transfer data, in which case they must
1166          * a bio attached to them.  Or they might contain a SCSI command
1167          * that does not transfer data, in which case they may optionally
1168          * submit a request without an attached bio.
1169          */
1170         if (req->bio) {
1171                 int ret = scsi_init_io(cmd);
1172                 if (unlikely(ret))
1173                         return ret;
1174         } else {
1175                 BUG_ON(blk_rq_bytes(req));
1176
1177                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1178         }
1179
1180         cmd->cmd_len = scsi_req(req)->cmd_len;
1181         cmd->cmnd = scsi_req(req)->cmd;
1182         cmd->transfersize = blk_rq_bytes(req);
1183         cmd->allowed = scsi_req(req)->retries;
1184         return BLKPREP_OK;
1185 }
1186
1187 /*
1188  * Setup a normal block command.  These are simple request from filesystems
1189  * that still need to be translated to SCSI CDBs from the ULD.
1190  */
1191 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1192 {
1193         struct scsi_cmnd *cmd = req->special;
1194
1195         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1196                 int ret = sdev->handler->prep_fn(sdev, req);
1197                 if (ret != BLKPREP_OK)
1198                         return ret;
1199         }
1200
1201         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1202         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1203         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1204 }
1205
1206 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1207 {
1208         struct scsi_cmnd *cmd = req->special;
1209
1210         if (!blk_rq_bytes(req))
1211                 cmd->sc_data_direction = DMA_NONE;
1212         else if (rq_data_dir(req) == WRITE)
1213                 cmd->sc_data_direction = DMA_TO_DEVICE;
1214         else
1215                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1216
1217         if (blk_rq_is_scsi(req))
1218                 return scsi_setup_scsi_cmnd(sdev, req);
1219         else
1220                 return scsi_setup_fs_cmnd(sdev, req);
1221 }
1222
1223 static int
1224 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1225 {
1226         int ret = BLKPREP_OK;
1227
1228         /*
1229          * If the device is not in running state we will reject some
1230          * or all commands.
1231          */
1232         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1233                 switch (sdev->sdev_state) {
1234                 case SDEV_OFFLINE:
1235                 case SDEV_TRANSPORT_OFFLINE:
1236                         /*
1237                          * If the device is offline we refuse to process any
1238                          * commands.  The device must be brought online
1239                          * before trying any recovery commands.
1240                          */
1241                         sdev_printk(KERN_ERR, sdev,
1242                                     "rejecting I/O to offline device\n");
1243                         ret = BLKPREP_KILL;
1244                         break;
1245                 case SDEV_DEL:
1246                         /*
1247                          * If the device is fully deleted, we refuse to
1248                          * process any commands as well.
1249                          */
1250                         sdev_printk(KERN_ERR, sdev,
1251                                     "rejecting I/O to dead device\n");
1252                         ret = BLKPREP_KILL;
1253                         break;
1254                 case SDEV_BLOCK:
1255                 case SDEV_CREATED_BLOCK:
1256                         ret = BLKPREP_DEFER;
1257                         break;
1258                 case SDEV_QUIESCE:
1259                         /*
1260                          * If the devices is blocked we defer normal commands.
1261                          */
1262                         if (!(req->rq_flags & RQF_PREEMPT))
1263                                 ret = BLKPREP_DEFER;
1264                         break;
1265                 default:
1266                         /*
1267                          * For any other not fully online state we only allow
1268                          * special commands.  In particular any user initiated
1269                          * command is not allowed.
1270                          */
1271                         if (!(req->rq_flags & RQF_PREEMPT))
1272                                 ret = BLKPREP_KILL;
1273                         break;
1274                 }
1275         }
1276         return ret;
1277 }
1278
1279 static int
1280 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1281 {
1282         struct scsi_device *sdev = q->queuedata;
1283
1284         switch (ret) {
1285         case BLKPREP_KILL:
1286         case BLKPREP_INVALID:
1287                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1288                 /* release the command and kill it */
1289                 if (req->special) {
1290                         struct scsi_cmnd *cmd = req->special;
1291                         scsi_release_buffers(cmd);
1292                         scsi_put_command(cmd);
1293                         put_device(&sdev->sdev_gendev);
1294                         req->special = NULL;
1295                 }
1296                 break;
1297         case BLKPREP_DEFER:
1298                 /*
1299                  * If we defer, the blk_peek_request() returns NULL, but the
1300                  * queue must be restarted, so we schedule a callback to happen
1301                  * shortly.
1302                  */
1303                 if (atomic_read(&sdev->device_busy) == 0)
1304                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1305                 break;
1306         default:
1307                 req->rq_flags |= RQF_DONTPREP;
1308         }
1309
1310         return ret;
1311 }
1312
1313 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1314 {
1315         struct scsi_device *sdev = q->queuedata;
1316         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1317         int ret;
1318
1319         ret = scsi_prep_state_check(sdev, req);
1320         if (ret != BLKPREP_OK)
1321                 goto out;
1322
1323         if (!req->special) {
1324                 /* Bail if we can't get a reference to the device */
1325                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1326                         ret = BLKPREP_DEFER;
1327                         goto out;
1328                 }
1329
1330                 scsi_init_command(sdev, cmd);
1331                 req->special = cmd;
1332         }
1333
1334         cmd->tag = req->tag;
1335         cmd->request = req;
1336         cmd->prot_op = SCSI_PROT_NORMAL;
1337
1338         ret = scsi_setup_cmnd(sdev, req);
1339 out:
1340         return scsi_prep_return(q, req, ret);
1341 }
1342
1343 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1344 {
1345         scsi_uninit_cmd(req->special);
1346 }
1347
1348 /*
1349  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1350  * return 0.
1351  *
1352  * Called with the queue_lock held.
1353  */
1354 static inline int scsi_dev_queue_ready(struct request_queue *q,
1355                                   struct scsi_device *sdev)
1356 {
1357         unsigned int busy;
1358
1359         busy = atomic_inc_return(&sdev->device_busy) - 1;
1360         if (atomic_read(&sdev->device_blocked)) {
1361                 if (busy)
1362                         goto out_dec;
1363
1364                 /*
1365                  * unblock after device_blocked iterates to zero
1366                  */
1367                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1368                         /*
1369                          * For the MQ case we take care of this in the caller.
1370                          */
1371                         if (!q->mq_ops)
1372                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1373                         goto out_dec;
1374                 }
1375                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1376                                    "unblocking device at zero depth\n"));
1377         }
1378
1379         if (busy >= sdev->queue_depth)
1380                 goto out_dec;
1381
1382         return 1;
1383 out_dec:
1384         atomic_dec(&sdev->device_busy);
1385         return 0;
1386 }
1387
1388 /*
1389  * scsi_target_queue_ready: checks if there we can send commands to target
1390  * @sdev: scsi device on starget to check.
1391  */
1392 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1393                                            struct scsi_device *sdev)
1394 {
1395         struct scsi_target *starget = scsi_target(sdev);
1396         unsigned int busy;
1397
1398         if (starget->single_lun) {
1399                 spin_lock_irq(shost->host_lock);
1400                 if (starget->starget_sdev_user &&
1401                     starget->starget_sdev_user != sdev) {
1402                         spin_unlock_irq(shost->host_lock);
1403                         return 0;
1404                 }
1405                 starget->starget_sdev_user = sdev;
1406                 spin_unlock_irq(shost->host_lock);
1407         }
1408
1409         if (starget->can_queue <= 0)
1410                 return 1;
1411
1412         busy = atomic_inc_return(&starget->target_busy) - 1;
1413         if (atomic_read(&starget->target_blocked) > 0) {
1414                 if (busy)
1415                         goto starved;
1416
1417                 /*
1418                  * unblock after target_blocked iterates to zero
1419                  */
1420                 if (atomic_dec_return(&starget->target_blocked) > 0)
1421                         goto out_dec;
1422
1423                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1424                                  "unblocking target at zero depth\n"));
1425         }
1426
1427         if (busy >= starget->can_queue)
1428                 goto starved;
1429
1430         return 1;
1431
1432 starved:
1433         spin_lock_irq(shost->host_lock);
1434         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1435         spin_unlock_irq(shost->host_lock);
1436 out_dec:
1437         if (starget->can_queue > 0)
1438                 atomic_dec(&starget->target_busy);
1439         return 0;
1440 }
1441
1442 /*
1443  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1444  * return 0. We must end up running the queue again whenever 0 is
1445  * returned, else IO can hang.
1446  */
1447 static inline int scsi_host_queue_ready(struct request_queue *q,
1448                                    struct Scsi_Host *shost,
1449                                    struct scsi_device *sdev)
1450 {
1451         unsigned int busy;
1452
1453         if (scsi_host_in_recovery(shost))
1454                 return 0;
1455
1456         busy = atomic_inc_return(&shost->host_busy) - 1;
1457         if (atomic_read(&shost->host_blocked) > 0) {
1458                 if (busy)
1459                         goto starved;
1460
1461                 /*
1462                  * unblock after host_blocked iterates to zero
1463                  */
1464                 if (atomic_dec_return(&shost->host_blocked) > 0)
1465                         goto out_dec;
1466
1467                 SCSI_LOG_MLQUEUE(3,
1468                         shost_printk(KERN_INFO, shost,
1469                                      "unblocking host at zero depth\n"));
1470         }
1471
1472         if (shost->can_queue > 0 && busy >= shost->can_queue)
1473                 goto starved;
1474         if (shost->host_self_blocked)
1475                 goto starved;
1476
1477         /* We're OK to process the command, so we can't be starved */
1478         if (!list_empty(&sdev->starved_entry)) {
1479                 spin_lock_irq(shost->host_lock);
1480                 if (!list_empty(&sdev->starved_entry))
1481                         list_del_init(&sdev->starved_entry);
1482                 spin_unlock_irq(shost->host_lock);
1483         }
1484
1485         return 1;
1486
1487 starved:
1488         spin_lock_irq(shost->host_lock);
1489         if (list_empty(&sdev->starved_entry))
1490                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1491         spin_unlock_irq(shost->host_lock);
1492 out_dec:
1493         atomic_dec(&shost->host_busy);
1494         return 0;
1495 }
1496
1497 /*
1498  * Busy state exporting function for request stacking drivers.
1499  *
1500  * For efficiency, no lock is taken to check the busy state of
1501  * shost/starget/sdev, since the returned value is not guaranteed and
1502  * may be changed after request stacking drivers call the function,
1503  * regardless of taking lock or not.
1504  *
1505  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1506  * needs to return 'not busy'. Otherwise, request stacking drivers
1507  * may hold requests forever.
1508  */
1509 static int scsi_lld_busy(struct request_queue *q)
1510 {
1511         struct scsi_device *sdev = q->queuedata;
1512         struct Scsi_Host *shost;
1513
1514         if (blk_queue_dying(q))
1515                 return 0;
1516
1517         shost = sdev->host;
1518
1519         /*
1520          * Ignore host/starget busy state.
1521          * Since block layer does not have a concept of fairness across
1522          * multiple queues, congestion of host/starget needs to be handled
1523          * in SCSI layer.
1524          */
1525         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1526                 return 1;
1527
1528         return 0;
1529 }
1530
1531 /*
1532  * Kill a request for a dead device
1533  */
1534 static void scsi_kill_request(struct request *req, struct request_queue *q)
1535 {
1536         struct scsi_cmnd *cmd = req->special;
1537         struct scsi_device *sdev;
1538         struct scsi_target *starget;
1539         struct Scsi_Host *shost;
1540
1541         blk_start_request(req);
1542
1543         scmd_printk(KERN_INFO, cmd, "killing request\n");
1544
1545         sdev = cmd->device;
1546         starget = scsi_target(sdev);
1547         shost = sdev->host;
1548         scsi_init_cmd_errh(cmd);
1549         cmd->result = DID_NO_CONNECT << 16;
1550         atomic_inc(&cmd->device->iorequest_cnt);
1551
1552         /*
1553          * SCSI request completion path will do scsi_device_unbusy(),
1554          * bump busy counts.  To bump the counters, we need to dance
1555          * with the locks as normal issue path does.
1556          */
1557         atomic_inc(&sdev->device_busy);
1558         atomic_inc(&shost->host_busy);
1559         if (starget->can_queue > 0)
1560                 atomic_inc(&starget->target_busy);
1561
1562         blk_complete_request(req);
1563 }
1564
1565 static void scsi_softirq_done(struct request *rq)
1566 {
1567         struct scsi_cmnd *cmd = rq->special;
1568         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1569         int disposition;
1570
1571         INIT_LIST_HEAD(&cmd->eh_entry);
1572
1573         atomic_inc(&cmd->device->iodone_cnt);
1574         if (cmd->result)
1575                 atomic_inc(&cmd->device->ioerr_cnt);
1576
1577         disposition = scsi_decide_disposition(cmd);
1578         if (disposition != SUCCESS &&
1579             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1580                 sdev_printk(KERN_ERR, cmd->device,
1581                             "timing out command, waited %lus\n",
1582                             wait_for/HZ);
1583                 disposition = SUCCESS;
1584         }
1585
1586         scsi_log_completion(cmd, disposition);
1587
1588         switch (disposition) {
1589                 case SUCCESS:
1590                         scsi_finish_command(cmd);
1591                         break;
1592                 case NEEDS_RETRY:
1593                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1594                         break;
1595                 case ADD_TO_MLQUEUE:
1596                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1597                         break;
1598                 default:
1599                         scsi_eh_scmd_add(cmd);
1600                         break;
1601         }
1602 }
1603
1604 /**
1605  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1606  * @cmd: command block we are dispatching.
1607  *
1608  * Return: nonzero return request was rejected and device's queue needs to be
1609  * plugged.
1610  */
1611 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1612 {
1613         struct Scsi_Host *host = cmd->device->host;
1614         int rtn = 0;
1615
1616         atomic_inc(&cmd->device->iorequest_cnt);
1617
1618         /* check if the device is still usable */
1619         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1620                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1621                  * returns an immediate error upwards, and signals
1622                  * that the device is no longer present */
1623                 cmd->result = DID_NO_CONNECT << 16;
1624                 goto done;
1625         }
1626
1627         /* Check to see if the scsi lld made this device blocked. */
1628         if (unlikely(scsi_device_blocked(cmd->device))) {
1629                 /*
1630                  * in blocked state, the command is just put back on
1631                  * the device queue.  The suspend state has already
1632                  * blocked the queue so future requests should not
1633                  * occur until the device transitions out of the
1634                  * suspend state.
1635                  */
1636                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1637                         "queuecommand : device blocked\n"));
1638                 return SCSI_MLQUEUE_DEVICE_BUSY;
1639         }
1640
1641         /* Store the LUN value in cmnd, if needed. */
1642         if (cmd->device->lun_in_cdb)
1643                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1644                                (cmd->device->lun << 5 & 0xe0);
1645
1646         scsi_log_send(cmd);
1647
1648         /*
1649          * Before we queue this command, check if the command
1650          * length exceeds what the host adapter can handle.
1651          */
1652         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1653                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1654                                "queuecommand : command too long. "
1655                                "cdb_size=%d host->max_cmd_len=%d\n",
1656                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1657                 cmd->result = (DID_ABORT << 16);
1658                 goto done;
1659         }
1660
1661         if (unlikely(host->shost_state == SHOST_DEL)) {
1662                 cmd->result = (DID_NO_CONNECT << 16);
1663                 goto done;
1664
1665         }
1666
1667         trace_scsi_dispatch_cmd_start(cmd);
1668         rtn = host->hostt->queuecommand(host, cmd);
1669         if (rtn) {
1670                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1671                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1672                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1673                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1674
1675                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1676                         "queuecommand : request rejected\n"));
1677         }
1678
1679         return rtn;
1680  done:
1681         cmd->scsi_done(cmd);
1682         return 0;
1683 }
1684
1685 /**
1686  * scsi_done - Invoke completion on finished SCSI command.
1687  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1688  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1689  *
1690  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1691  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1692  * calls blk_complete_request() for further processing.
1693  *
1694  * This function is interrupt context safe.
1695  */
1696 static void scsi_done(struct scsi_cmnd *cmd)
1697 {
1698         trace_scsi_dispatch_cmd_done(cmd);
1699         blk_complete_request(cmd->request);
1700 }
1701
1702 /*
1703  * Function:    scsi_request_fn()
1704  *
1705  * Purpose:     Main strategy routine for SCSI.
1706  *
1707  * Arguments:   q       - Pointer to actual queue.
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: IO request lock assumed to be held when called.
1712  */
1713 static void scsi_request_fn(struct request_queue *q)
1714         __releases(q->queue_lock)
1715         __acquires(q->queue_lock)
1716 {
1717         struct scsi_device *sdev = q->queuedata;
1718         struct Scsi_Host *shost;
1719         struct scsi_cmnd *cmd;
1720         struct request *req;
1721
1722         /*
1723          * To start with, we keep looping until the queue is empty, or until
1724          * the host is no longer able to accept any more requests.
1725          */
1726         shost = sdev->host;
1727         for (;;) {
1728                 int rtn;
1729                 /*
1730                  * get next queueable request.  We do this early to make sure
1731                  * that the request is fully prepared even if we cannot
1732                  * accept it.
1733                  */
1734                 req = blk_peek_request(q);
1735                 if (!req)
1736                         break;
1737
1738                 if (unlikely(!scsi_device_online(sdev))) {
1739                         sdev_printk(KERN_ERR, sdev,
1740                                     "rejecting I/O to offline device\n");
1741                         scsi_kill_request(req, q);
1742                         continue;
1743                 }
1744
1745                 if (!scsi_dev_queue_ready(q, sdev))
1746                         break;
1747
1748                 /*
1749                  * Remove the request from the request list.
1750                  */
1751                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1752                         blk_start_request(req);
1753
1754                 spin_unlock_irq(q->queue_lock);
1755                 cmd = req->special;
1756                 if (unlikely(cmd == NULL)) {
1757                         printk(KERN_CRIT "impossible request in %s.\n"
1758                                          "please mail a stack trace to "
1759                                          "linux-scsi@vger.kernel.org\n",
1760                                          __func__);
1761                         blk_dump_rq_flags(req, "foo");
1762                         BUG();
1763                 }
1764
1765                 /*
1766                  * We hit this when the driver is using a host wide
1767                  * tag map. For device level tag maps the queue_depth check
1768                  * in the device ready fn would prevent us from trying
1769                  * to allocate a tag. Since the map is a shared host resource
1770                  * we add the dev to the starved list so it eventually gets
1771                  * a run when a tag is freed.
1772                  */
1773                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1774                         spin_lock_irq(shost->host_lock);
1775                         if (list_empty(&sdev->starved_entry))
1776                                 list_add_tail(&sdev->starved_entry,
1777                                               &shost->starved_list);
1778                         spin_unlock_irq(shost->host_lock);
1779                         goto not_ready;
1780                 }
1781
1782                 if (!scsi_target_queue_ready(shost, sdev))
1783                         goto not_ready;
1784
1785                 if (!scsi_host_queue_ready(q, shost, sdev))
1786                         goto host_not_ready;
1787         
1788                 if (sdev->simple_tags)
1789                         cmd->flags |= SCMD_TAGGED;
1790                 else
1791                         cmd->flags &= ~SCMD_TAGGED;
1792
1793                 /*
1794                  * Finally, initialize any error handling parameters, and set up
1795                  * the timers for timeouts.
1796                  */
1797                 scsi_init_cmd_errh(cmd);
1798
1799                 /*
1800                  * Dispatch the command to the low-level driver.
1801                  */
1802                 cmd->scsi_done = scsi_done;
1803                 rtn = scsi_dispatch_cmd(cmd);
1804                 if (rtn) {
1805                         scsi_queue_insert(cmd, rtn);
1806                         spin_lock_irq(q->queue_lock);
1807                         goto out_delay;
1808                 }
1809                 spin_lock_irq(q->queue_lock);
1810         }
1811
1812         return;
1813
1814  host_not_ready:
1815         if (scsi_target(sdev)->can_queue > 0)
1816                 atomic_dec(&scsi_target(sdev)->target_busy);
1817  not_ready:
1818         /*
1819          * lock q, handle tag, requeue req, and decrement device_busy. We
1820          * must return with queue_lock held.
1821          *
1822          * Decrementing device_busy without checking it is OK, as all such
1823          * cases (host limits or settings) should run the queue at some
1824          * later time.
1825          */
1826         spin_lock_irq(q->queue_lock);
1827         blk_requeue_request(q, req);
1828         atomic_dec(&sdev->device_busy);
1829 out_delay:
1830         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1831                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1832 }
1833
1834 static inline int prep_to_mq(int ret)
1835 {
1836         switch (ret) {
1837         case BLKPREP_OK:
1838                 return BLK_MQ_RQ_QUEUE_OK;
1839         case BLKPREP_DEFER:
1840                 return BLK_MQ_RQ_QUEUE_BUSY;
1841         default:
1842                 return BLK_MQ_RQ_QUEUE_ERROR;
1843         }
1844 }
1845
1846 static int scsi_mq_prep_fn(struct request *req)
1847 {
1848         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1849         struct scsi_device *sdev = req->q->queuedata;
1850         struct Scsi_Host *shost = sdev->host;
1851         unsigned char *sense_buf = cmd->sense_buffer;
1852         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1853         struct scatterlist *sg;
1854
1855         /* zero out the cmd, except for the embedded scsi_request */
1856         memset((char *)cmd + sizeof(cmd->req), 0,
1857                 sizeof(*cmd) - sizeof(cmd->req) + shost->hostt->cmd_size);
1858
1859         req->special = cmd;
1860
1861         cmd->request = req;
1862         cmd->device = sdev;
1863         cmd->sense_buffer = sense_buf;
1864         cmd->flags = unchecked_isa_dma;
1865
1866         cmd->tag = req->tag;
1867
1868         cmd->prot_op = SCSI_PROT_NORMAL;
1869
1870         INIT_LIST_HEAD(&cmd->list);
1871         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1872         cmd->jiffies_at_alloc = jiffies;
1873
1874         if (shost->use_cmd_list) {
1875                 spin_lock_irq(&sdev->list_lock);
1876                 list_add_tail(&cmd->list, &sdev->cmd_list);
1877                 spin_unlock_irq(&sdev->list_lock);
1878         }
1879
1880         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1881         cmd->sdb.table.sgl = sg;
1882
1883         if (scsi_host_get_prot(shost)) {
1884                 cmd->prot_sdb = (void *)sg +
1885                         min_t(unsigned int,
1886                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1887                         sizeof(struct scatterlist);
1888                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1889
1890                 cmd->prot_sdb->table.sgl =
1891                         (struct scatterlist *)(cmd->prot_sdb + 1);
1892         }
1893
1894         if (blk_bidi_rq(req)) {
1895                 struct request *next_rq = req->next_rq;
1896                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1897
1898                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1899                 bidi_sdb->table.sgl =
1900                         (struct scatterlist *)(bidi_sdb + 1);
1901
1902                 next_rq->special = bidi_sdb;
1903         }
1904
1905         blk_mq_start_request(req);
1906
1907         return scsi_setup_cmnd(sdev, req);
1908 }
1909
1910 static void scsi_mq_done(struct scsi_cmnd *cmd)
1911 {
1912         trace_scsi_dispatch_cmd_done(cmd);
1913         blk_mq_complete_request(cmd->request);
1914 }
1915
1916 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1917                          const struct blk_mq_queue_data *bd)
1918 {
1919         struct request *req = bd->rq;
1920         struct request_queue *q = req->q;
1921         struct scsi_device *sdev = q->queuedata;
1922         struct Scsi_Host *shost = sdev->host;
1923         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1924         int ret;
1925         int reason;
1926
1927         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1928         if (ret != BLK_MQ_RQ_QUEUE_OK)
1929                 goto out;
1930
1931         ret = BLK_MQ_RQ_QUEUE_BUSY;
1932         if (!get_device(&sdev->sdev_gendev))
1933                 goto out;
1934
1935         if (!scsi_dev_queue_ready(q, sdev))
1936                 goto out_put_device;
1937         if (!scsi_target_queue_ready(shost, sdev))
1938                 goto out_dec_device_busy;
1939         if (!scsi_host_queue_ready(q, shost, sdev))
1940                 goto out_dec_target_busy;
1941
1942         if (!(req->rq_flags & RQF_DONTPREP)) {
1943                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1944                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1945                         goto out_dec_host_busy;
1946                 req->rq_flags |= RQF_DONTPREP;
1947         } else {
1948                 blk_mq_start_request(req);
1949         }
1950
1951         if (sdev->simple_tags)
1952                 cmd->flags |= SCMD_TAGGED;
1953         else
1954                 cmd->flags &= ~SCMD_TAGGED;
1955
1956         scsi_init_cmd_errh(cmd);
1957         cmd->scsi_done = scsi_mq_done;
1958
1959         reason = scsi_dispatch_cmd(cmd);
1960         if (reason) {
1961                 scsi_set_blocked(cmd, reason);
1962                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1963                 goto out_dec_host_busy;
1964         }
1965
1966         return BLK_MQ_RQ_QUEUE_OK;
1967
1968 out_dec_host_busy:
1969         atomic_dec(&shost->host_busy);
1970 out_dec_target_busy:
1971         if (scsi_target(sdev)->can_queue > 0)
1972                 atomic_dec(&scsi_target(sdev)->target_busy);
1973 out_dec_device_busy:
1974         atomic_dec(&sdev->device_busy);
1975 out_put_device:
1976         put_device(&sdev->sdev_gendev);
1977 out:
1978         switch (ret) {
1979         case BLK_MQ_RQ_QUEUE_BUSY:
1980                 if (atomic_read(&sdev->device_busy) == 0 &&
1981                     !scsi_device_blocked(sdev))
1982                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1983                 break;
1984         case BLK_MQ_RQ_QUEUE_ERROR:
1985                 /*
1986                  * Make sure to release all allocated ressources when
1987                  * we hit an error, as we will never see this command
1988                  * again.
1989                  */
1990                 if (req->rq_flags & RQF_DONTPREP)
1991                         scsi_mq_uninit_cmd(cmd);
1992                 break;
1993         default:
1994                 break;
1995         }
1996         return ret;
1997 }
1998
1999 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2000                 bool reserved)
2001 {
2002         if (reserved)
2003                 return BLK_EH_RESET_TIMER;
2004         return scsi_times_out(req);
2005 }
2006
2007 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2008                 unsigned int hctx_idx, unsigned int numa_node)
2009 {
2010         struct Scsi_Host *shost = set->driver_data;
2011         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2012         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2013
2014         if (unchecked_isa_dma)
2015                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2016         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2017                                                     GFP_KERNEL, numa_node);
2018         if (!cmd->sense_buffer)
2019                 return -ENOMEM;
2020         cmd->req.sense = cmd->sense_buffer;
2021         return 0;
2022 }
2023
2024 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2025                 unsigned int hctx_idx)
2026 {
2027         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2028
2029         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2030                                cmd->sense_buffer);
2031 }
2032
2033 static int scsi_map_queues(struct blk_mq_tag_set *set)
2034 {
2035         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2036
2037         if (shost->hostt->map_queues)
2038                 return shost->hostt->map_queues(shost);
2039         return blk_mq_map_queues(set);
2040 }
2041
2042 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2043 {
2044         struct device *host_dev;
2045         u64 bounce_limit = 0xffffffff;
2046
2047         if (shost->unchecked_isa_dma)
2048                 return BLK_BOUNCE_ISA;
2049         /*
2050          * Platforms with virtual-DMA translation
2051          * hardware have no practical limit.
2052          */
2053         if (!PCI_DMA_BUS_IS_PHYS)
2054                 return BLK_BOUNCE_ANY;
2055
2056         host_dev = scsi_get_device(shost);
2057         if (host_dev && host_dev->dma_mask)
2058                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2059
2060         return bounce_limit;
2061 }
2062
2063 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2064 {
2065         struct device *dev = shost->dma_dev;
2066
2067         /*
2068          * this limit is imposed by hardware restrictions
2069          */
2070         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2071                                         SG_MAX_SEGMENTS));
2072
2073         if (scsi_host_prot_dma(shost)) {
2074                 shost->sg_prot_tablesize =
2075                         min_not_zero(shost->sg_prot_tablesize,
2076                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2077                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2078                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2079         }
2080
2081         blk_queue_max_hw_sectors(q, shost->max_sectors);
2082         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2083         blk_queue_segment_boundary(q, shost->dma_boundary);
2084         dma_set_seg_boundary(dev, shost->dma_boundary);
2085
2086         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2087
2088         if (!shost->use_clustering)
2089                 q->limits.cluster = 0;
2090
2091         /*
2092          * set a reasonable default alignment on word boundaries: the
2093          * host and device may alter it using
2094          * blk_queue_update_dma_alignment() later.
2095          */
2096         blk_queue_dma_alignment(q, 0x03);
2097 }
2098 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2099
2100 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2101 {
2102         struct Scsi_Host *shost = q->rq_alloc_data;
2103         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2104         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2105
2106         memset(cmd, 0, sizeof(*cmd));
2107
2108         if (unchecked_isa_dma)
2109                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2110         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2111                                                     NUMA_NO_NODE);
2112         if (!cmd->sense_buffer)
2113                 goto fail;
2114         cmd->req.sense = cmd->sense_buffer;
2115
2116         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2117                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2118                 if (!cmd->prot_sdb)
2119                         goto fail_free_sense;
2120         }
2121
2122         return 0;
2123
2124 fail_free_sense:
2125         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2126 fail:
2127         return -ENOMEM;
2128 }
2129
2130 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2131 {
2132         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2133
2134         if (cmd->prot_sdb)
2135                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2136         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2137                                cmd->sense_buffer);
2138 }
2139
2140 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2141 {
2142         struct Scsi_Host *shost = sdev->host;
2143         struct request_queue *q;
2144
2145         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2146         if (!q)
2147                 return NULL;
2148         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2149         q->rq_alloc_data = shost;
2150         q->request_fn = scsi_request_fn;
2151         q->init_rq_fn = scsi_init_rq;
2152         q->exit_rq_fn = scsi_exit_rq;
2153
2154         if (blk_init_allocated_queue(q) < 0) {
2155                 blk_cleanup_queue(q);
2156                 return NULL;
2157         }
2158
2159         __scsi_init_queue(shost, q);
2160         blk_queue_prep_rq(q, scsi_prep_fn);
2161         blk_queue_unprep_rq(q, scsi_unprep_fn);
2162         blk_queue_softirq_done(q, scsi_softirq_done);
2163         blk_queue_rq_timed_out(q, scsi_times_out);
2164         blk_queue_lld_busy(q, scsi_lld_busy);
2165         return q;
2166 }
2167
2168 static const struct blk_mq_ops scsi_mq_ops = {
2169         .queue_rq       = scsi_queue_rq,
2170         .complete       = scsi_softirq_done,
2171         .timeout        = scsi_timeout,
2172 #ifdef CONFIG_BLK_DEBUG_FS
2173         .show_rq        = scsi_show_rq,
2174 #endif
2175         .init_request   = scsi_init_request,
2176         .exit_request   = scsi_exit_request,
2177         .map_queues     = scsi_map_queues,
2178 };
2179
2180 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2181 {
2182         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2183         if (IS_ERR(sdev->request_queue))
2184                 return NULL;
2185
2186         sdev->request_queue->queuedata = sdev;
2187         __scsi_init_queue(sdev->host, sdev->request_queue);
2188         return sdev->request_queue;
2189 }
2190
2191 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2192 {
2193         unsigned int cmd_size, sgl_size, tbl_size;
2194
2195         tbl_size = shost->sg_tablesize;
2196         if (tbl_size > SG_CHUNK_SIZE)
2197                 tbl_size = SG_CHUNK_SIZE;
2198         sgl_size = tbl_size * sizeof(struct scatterlist);
2199         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2200         if (scsi_host_get_prot(shost))
2201                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2202
2203         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2204         shost->tag_set.ops = &scsi_mq_ops;
2205         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2206         shost->tag_set.queue_depth = shost->can_queue;
2207         shost->tag_set.cmd_size = cmd_size;
2208         shost->tag_set.numa_node = NUMA_NO_NODE;
2209         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2210         shost->tag_set.flags |=
2211                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2212         shost->tag_set.driver_data = shost;
2213
2214         return blk_mq_alloc_tag_set(&shost->tag_set);
2215 }
2216
2217 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2218 {
2219         blk_mq_free_tag_set(&shost->tag_set);
2220 }
2221
2222 /**
2223  * scsi_device_from_queue - return sdev associated with a request_queue
2224  * @q: The request queue to return the sdev from
2225  *
2226  * Return the sdev associated with a request queue or NULL if the
2227  * request_queue does not reference a SCSI device.
2228  */
2229 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2230 {
2231         struct scsi_device *sdev = NULL;
2232
2233         if (q->mq_ops) {
2234                 if (q->mq_ops == &scsi_mq_ops)
2235                         sdev = q->queuedata;
2236         } else if (q->request_fn == scsi_request_fn)
2237                 sdev = q->queuedata;
2238         if (!sdev || !get_device(&sdev->sdev_gendev))
2239                 sdev = NULL;
2240
2241         return sdev;
2242 }
2243 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2244
2245 /*
2246  * Function:    scsi_block_requests()
2247  *
2248  * Purpose:     Utility function used by low-level drivers to prevent further
2249  *              commands from being queued to the device.
2250  *
2251  * Arguments:   shost       - Host in question
2252  *
2253  * Returns:     Nothing
2254  *
2255  * Lock status: No locks are assumed held.
2256  *
2257  * Notes:       There is no timer nor any other means by which the requests
2258  *              get unblocked other than the low-level driver calling
2259  *              scsi_unblock_requests().
2260  */
2261 void scsi_block_requests(struct Scsi_Host *shost)
2262 {
2263         shost->host_self_blocked = 1;
2264 }
2265 EXPORT_SYMBOL(scsi_block_requests);
2266
2267 /*
2268  * Function:    scsi_unblock_requests()
2269  *
2270  * Purpose:     Utility function used by low-level drivers to allow further
2271  *              commands from being queued to the device.
2272  *
2273  * Arguments:   shost       - Host in question
2274  *
2275  * Returns:     Nothing
2276  *
2277  * Lock status: No locks are assumed held.
2278  *
2279  * Notes:       There is no timer nor any other means by which the requests
2280  *              get unblocked other than the low-level driver calling
2281  *              scsi_unblock_requests().
2282  *
2283  *              This is done as an API function so that changes to the
2284  *              internals of the scsi mid-layer won't require wholesale
2285  *              changes to drivers that use this feature.
2286  */
2287 void scsi_unblock_requests(struct Scsi_Host *shost)
2288 {
2289         shost->host_self_blocked = 0;
2290         scsi_run_host_queues(shost);
2291 }
2292 EXPORT_SYMBOL(scsi_unblock_requests);
2293
2294 int __init scsi_init_queue(void)
2295 {
2296         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2297                                            sizeof(struct scsi_data_buffer),
2298                                            0, 0, NULL);
2299         if (!scsi_sdb_cache) {
2300                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2301                 return -ENOMEM;
2302         }
2303
2304         return 0;
2305 }
2306
2307 void scsi_exit_queue(void)
2308 {
2309         kmem_cache_destroy(scsi_sense_cache);
2310         kmem_cache_destroy(scsi_sense_isadma_cache);
2311         kmem_cache_destroy(scsi_sdb_cache);
2312 }
2313
2314 /**
2315  *      scsi_mode_select - issue a mode select
2316  *      @sdev:  SCSI device to be queried
2317  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2318  *      @sp:    Save page bit (0 == don't save, 1 == save)
2319  *      @modepage: mode page being requested
2320  *      @buffer: request buffer (may not be smaller than eight bytes)
2321  *      @len:   length of request buffer.
2322  *      @timeout: command timeout
2323  *      @retries: number of retries before failing
2324  *      @data: returns a structure abstracting the mode header data
2325  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2326  *              must be SCSI_SENSE_BUFFERSIZE big.
2327  *
2328  *      Returns zero if successful; negative error number or scsi
2329  *      status on error
2330  *
2331  */
2332 int
2333 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2334                  unsigned char *buffer, int len, int timeout, int retries,
2335                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2336 {
2337         unsigned char cmd[10];
2338         unsigned char *real_buffer;
2339         int ret;
2340
2341         memset(cmd, 0, sizeof(cmd));
2342         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2343
2344         if (sdev->use_10_for_ms) {
2345                 if (len > 65535)
2346                         return -EINVAL;
2347                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2348                 if (!real_buffer)
2349                         return -ENOMEM;
2350                 memcpy(real_buffer + 8, buffer, len);
2351                 len += 8;
2352                 real_buffer[0] = 0;
2353                 real_buffer[1] = 0;
2354                 real_buffer[2] = data->medium_type;
2355                 real_buffer[3] = data->device_specific;
2356                 real_buffer[4] = data->longlba ? 0x01 : 0;
2357                 real_buffer[5] = 0;
2358                 real_buffer[6] = data->block_descriptor_length >> 8;
2359                 real_buffer[7] = data->block_descriptor_length;
2360
2361                 cmd[0] = MODE_SELECT_10;
2362                 cmd[7] = len >> 8;
2363                 cmd[8] = len;
2364         } else {
2365                 if (len > 255 || data->block_descriptor_length > 255 ||
2366                     data->longlba)
2367                         return -EINVAL;
2368
2369                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2370                 if (!real_buffer)
2371                         return -ENOMEM;
2372                 memcpy(real_buffer + 4, buffer, len);
2373                 len += 4;
2374                 real_buffer[0] = 0;
2375                 real_buffer[1] = data->medium_type;
2376                 real_buffer[2] = data->device_specific;
2377                 real_buffer[3] = data->block_descriptor_length;
2378                 
2379
2380                 cmd[0] = MODE_SELECT;
2381                 cmd[4] = len;
2382         }
2383
2384         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2385                                sshdr, timeout, retries, NULL);
2386         kfree(real_buffer);
2387         return ret;
2388 }
2389 EXPORT_SYMBOL_GPL(scsi_mode_select);
2390
2391 /**
2392  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2393  *      @sdev:  SCSI device to be queried
2394  *      @dbd:   set if mode sense will allow block descriptors to be returned
2395  *      @modepage: mode page being requested
2396  *      @buffer: request buffer (may not be smaller than eight bytes)
2397  *      @len:   length of request buffer.
2398  *      @timeout: command timeout
2399  *      @retries: number of retries before failing
2400  *      @data: returns a structure abstracting the mode header data
2401  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2402  *              must be SCSI_SENSE_BUFFERSIZE big.
2403  *
2404  *      Returns zero if unsuccessful, or the header offset (either 4
2405  *      or 8 depending on whether a six or ten byte command was
2406  *      issued) if successful.
2407  */
2408 int
2409 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2410                   unsigned char *buffer, int len, int timeout, int retries,
2411                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2412 {
2413         unsigned char cmd[12];
2414         int use_10_for_ms;
2415         int header_length;
2416         int result, retry_count = retries;
2417         struct scsi_sense_hdr my_sshdr;
2418
2419         memset(data, 0, sizeof(*data));
2420         memset(&cmd[0], 0, 12);
2421         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2422         cmd[2] = modepage;
2423
2424         /* caller might not be interested in sense, but we need it */
2425         if (!sshdr)
2426                 sshdr = &my_sshdr;
2427
2428  retry:
2429         use_10_for_ms = sdev->use_10_for_ms;
2430
2431         if (use_10_for_ms) {
2432                 if (len < 8)
2433                         len = 8;
2434
2435                 cmd[0] = MODE_SENSE_10;
2436                 cmd[8] = len;
2437                 header_length = 8;
2438         } else {
2439                 if (len < 4)
2440                         len = 4;
2441
2442                 cmd[0] = MODE_SENSE;
2443                 cmd[4] = len;
2444                 header_length = 4;
2445         }
2446
2447         memset(buffer, 0, len);
2448
2449         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2450                                   sshdr, timeout, retries, NULL);
2451
2452         /* This code looks awful: what it's doing is making sure an
2453          * ILLEGAL REQUEST sense return identifies the actual command
2454          * byte as the problem.  MODE_SENSE commands can return
2455          * ILLEGAL REQUEST if the code page isn't supported */
2456
2457         if (use_10_for_ms && !scsi_status_is_good(result) &&
2458             (driver_byte(result) & DRIVER_SENSE)) {
2459                 if (scsi_sense_valid(sshdr)) {
2460                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2461                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2462                                 /* 
2463                                  * Invalid command operation code
2464                                  */
2465                                 sdev->use_10_for_ms = 0;
2466                                 goto retry;
2467                         }
2468                 }
2469         }
2470
2471         if(scsi_status_is_good(result)) {
2472                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2473                              (modepage == 6 || modepage == 8))) {
2474                         /* Initio breakage? */
2475                         header_length = 0;
2476                         data->length = 13;
2477                         data->medium_type = 0;
2478                         data->device_specific = 0;
2479                         data->longlba = 0;
2480                         data->block_descriptor_length = 0;
2481                 } else if(use_10_for_ms) {
2482                         data->length = buffer[0]*256 + buffer[1] + 2;
2483                         data->medium_type = buffer[2];
2484                         data->device_specific = buffer[3];
2485                         data->longlba = buffer[4] & 0x01;
2486                         data->block_descriptor_length = buffer[6]*256
2487                                 + buffer[7];
2488                 } else {
2489                         data->length = buffer[0] + 1;
2490                         data->medium_type = buffer[1];
2491                         data->device_specific = buffer[2];
2492                         data->block_descriptor_length = buffer[3];
2493                 }
2494                 data->header_length = header_length;
2495         } else if ((status_byte(result) == CHECK_CONDITION) &&
2496                    scsi_sense_valid(sshdr) &&
2497                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2498                 retry_count--;
2499                 goto retry;
2500         }
2501
2502         return result;
2503 }
2504 EXPORT_SYMBOL(scsi_mode_sense);
2505
2506 /**
2507  *      scsi_test_unit_ready - test if unit is ready
2508  *      @sdev:  scsi device to change the state of.
2509  *      @timeout: command timeout
2510  *      @retries: number of retries before failing
2511  *      @sshdr: outpout pointer for decoded sense information.
2512  *
2513  *      Returns zero if unsuccessful or an error if TUR failed.  For
2514  *      removable media, UNIT_ATTENTION sets ->changed flag.
2515  **/
2516 int
2517 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2518                      struct scsi_sense_hdr *sshdr)
2519 {
2520         char cmd[] = {
2521                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2522         };
2523         int result;
2524
2525         /* try to eat the UNIT_ATTENTION if there are enough retries */
2526         do {
2527                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2528                                           timeout, retries, NULL);
2529                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2530                     sshdr->sense_key == UNIT_ATTENTION)
2531                         sdev->changed = 1;
2532         } while (scsi_sense_valid(sshdr) &&
2533                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2534
2535         return result;
2536 }
2537 EXPORT_SYMBOL(scsi_test_unit_ready);
2538
2539 /**
2540  *      scsi_device_set_state - Take the given device through the device state model.
2541  *      @sdev:  scsi device to change the state of.
2542  *      @state: state to change to.
2543  *
2544  *      Returns zero if unsuccessful or an error if the requested 
2545  *      transition is illegal.
2546  */
2547 int
2548 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2549 {
2550         enum scsi_device_state oldstate = sdev->sdev_state;
2551
2552         if (state == oldstate)
2553                 return 0;
2554
2555         switch (state) {
2556         case SDEV_CREATED:
2557                 switch (oldstate) {
2558                 case SDEV_CREATED_BLOCK:
2559                         break;
2560                 default:
2561                         goto illegal;
2562                 }
2563                 break;
2564                         
2565         case SDEV_RUNNING:
2566                 switch (oldstate) {
2567                 case SDEV_CREATED:
2568                 case SDEV_OFFLINE:
2569                 case SDEV_TRANSPORT_OFFLINE:
2570                 case SDEV_QUIESCE:
2571                 case SDEV_BLOCK:
2572                         break;
2573                 default:
2574                         goto illegal;
2575                 }
2576                 break;
2577
2578         case SDEV_QUIESCE:
2579                 switch (oldstate) {
2580                 case SDEV_RUNNING:
2581                 case SDEV_OFFLINE:
2582                 case SDEV_TRANSPORT_OFFLINE:
2583                         break;
2584                 default:
2585                         goto illegal;
2586                 }
2587                 break;
2588
2589         case SDEV_OFFLINE:
2590         case SDEV_TRANSPORT_OFFLINE:
2591                 switch (oldstate) {
2592                 case SDEV_CREATED:
2593                 case SDEV_RUNNING:
2594                 case SDEV_QUIESCE:
2595                 case SDEV_BLOCK:
2596                         break;
2597                 default:
2598                         goto illegal;
2599                 }
2600                 break;
2601
2602         case SDEV_BLOCK:
2603                 switch (oldstate) {
2604                 case SDEV_RUNNING:
2605                 case SDEV_CREATED_BLOCK:
2606                         break;
2607                 default:
2608                         goto illegal;
2609                 }
2610                 break;
2611
2612         case SDEV_CREATED_BLOCK:
2613                 switch (oldstate) {
2614                 case SDEV_CREATED:
2615                         break;
2616                 default:
2617                         goto illegal;
2618                 }
2619                 break;
2620
2621         case SDEV_CANCEL:
2622                 switch (oldstate) {
2623                 case SDEV_CREATED:
2624                 case SDEV_RUNNING:
2625                 case SDEV_QUIESCE:
2626                 case SDEV_OFFLINE:
2627                 case SDEV_TRANSPORT_OFFLINE:
2628                         break;
2629                 default:
2630                         goto illegal;
2631                 }
2632                 break;
2633
2634         case SDEV_DEL:
2635                 switch (oldstate) {
2636                 case SDEV_CREATED:
2637                 case SDEV_RUNNING:
2638                 case SDEV_OFFLINE:
2639                 case SDEV_TRANSPORT_OFFLINE:
2640                 case SDEV_CANCEL:
2641                 case SDEV_BLOCK:
2642                 case SDEV_CREATED_BLOCK:
2643                         break;
2644                 default:
2645                         goto illegal;
2646                 }
2647                 break;
2648
2649         }
2650         sdev->sdev_state = state;
2651         return 0;
2652
2653  illegal:
2654         SCSI_LOG_ERROR_RECOVERY(1,
2655                                 sdev_printk(KERN_ERR, sdev,
2656                                             "Illegal state transition %s->%s",
2657                                             scsi_device_state_name(oldstate),
2658                                             scsi_device_state_name(state))
2659                                 );
2660         return -EINVAL;
2661 }
2662 EXPORT_SYMBOL(scsi_device_set_state);
2663
2664 /**
2665  *      sdev_evt_emit - emit a single SCSI device uevent
2666  *      @sdev: associated SCSI device
2667  *      @evt: event to emit
2668  *
2669  *      Send a single uevent (scsi_event) to the associated scsi_device.
2670  */
2671 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2672 {
2673         int idx = 0;
2674         char *envp[3];
2675
2676         switch (evt->evt_type) {
2677         case SDEV_EVT_MEDIA_CHANGE:
2678                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2679                 break;
2680         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2681                 scsi_rescan_device(&sdev->sdev_gendev);
2682                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2683                 break;
2684         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2685                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2686                 break;
2687         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2688                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2689                 break;
2690         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2691                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2692                 break;
2693         case SDEV_EVT_LUN_CHANGE_REPORTED:
2694                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2695                 break;
2696         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2697                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2698                 break;
2699         default:
2700                 /* do nothing */
2701                 break;
2702         }
2703
2704         envp[idx++] = NULL;
2705
2706         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2707 }
2708
2709 /**
2710  *      sdev_evt_thread - send a uevent for each scsi event
2711  *      @work: work struct for scsi_device
2712  *
2713  *      Dispatch queued events to their associated scsi_device kobjects
2714  *      as uevents.
2715  */
2716 void scsi_evt_thread(struct work_struct *work)
2717 {
2718         struct scsi_device *sdev;
2719         enum scsi_device_event evt_type;
2720         LIST_HEAD(event_list);
2721
2722         sdev = container_of(work, struct scsi_device, event_work);
2723
2724         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2725                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2726                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2727
2728         while (1) {
2729                 struct scsi_event *evt;
2730                 struct list_head *this, *tmp;
2731                 unsigned long flags;
2732
2733                 spin_lock_irqsave(&sdev->list_lock, flags);
2734                 list_splice_init(&sdev->event_list, &event_list);
2735                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2736
2737                 if (list_empty(&event_list))
2738                         break;
2739
2740                 list_for_each_safe(this, tmp, &event_list) {
2741                         evt = list_entry(this, struct scsi_event, node);
2742                         list_del(&evt->node);
2743                         scsi_evt_emit(sdev, evt);
2744                         kfree(evt);
2745                 }
2746         }
2747 }
2748
2749 /**
2750  *      sdev_evt_send - send asserted event to uevent thread
2751  *      @sdev: scsi_device event occurred on
2752  *      @evt: event to send
2753  *
2754  *      Assert scsi device event asynchronously.
2755  */
2756 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2757 {
2758         unsigned long flags;
2759
2760 #if 0
2761         /* FIXME: currently this check eliminates all media change events
2762          * for polled devices.  Need to update to discriminate between AN
2763          * and polled events */
2764         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2765                 kfree(evt);
2766                 return;
2767         }
2768 #endif
2769
2770         spin_lock_irqsave(&sdev->list_lock, flags);
2771         list_add_tail(&evt->node, &sdev->event_list);
2772         schedule_work(&sdev->event_work);
2773         spin_unlock_irqrestore(&sdev->list_lock, flags);
2774 }
2775 EXPORT_SYMBOL_GPL(sdev_evt_send);
2776
2777 /**
2778  *      sdev_evt_alloc - allocate a new scsi event
2779  *      @evt_type: type of event to allocate
2780  *      @gfpflags: GFP flags for allocation
2781  *
2782  *      Allocates and returns a new scsi_event.
2783  */
2784 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2785                                   gfp_t gfpflags)
2786 {
2787         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2788         if (!evt)
2789                 return NULL;
2790
2791         evt->evt_type = evt_type;
2792         INIT_LIST_HEAD(&evt->node);
2793
2794         /* evt_type-specific initialization, if any */
2795         switch (evt_type) {
2796         case SDEV_EVT_MEDIA_CHANGE:
2797         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2798         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2799         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2800         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2801         case SDEV_EVT_LUN_CHANGE_REPORTED:
2802         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2803         default:
2804                 /* do nothing */
2805                 break;
2806         }
2807
2808         return evt;
2809 }
2810 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2811
2812 /**
2813  *      sdev_evt_send_simple - send asserted event to uevent thread
2814  *      @sdev: scsi_device event occurred on
2815  *      @evt_type: type of event to send
2816  *      @gfpflags: GFP flags for allocation
2817  *
2818  *      Assert scsi device event asynchronously, given an event type.
2819  */
2820 void sdev_evt_send_simple(struct scsi_device *sdev,
2821                           enum scsi_device_event evt_type, gfp_t gfpflags)
2822 {
2823         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2824         if (!evt) {
2825                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2826                             evt_type);
2827                 return;
2828         }
2829
2830         sdev_evt_send(sdev, evt);
2831 }
2832 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2833
2834 /**
2835  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2836  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2837  */
2838 static int scsi_request_fn_active(struct scsi_device *sdev)
2839 {
2840         struct request_queue *q = sdev->request_queue;
2841         int request_fn_active;
2842
2843         WARN_ON_ONCE(sdev->host->use_blk_mq);
2844
2845         spin_lock_irq(q->queue_lock);
2846         request_fn_active = q->request_fn_active;
2847         spin_unlock_irq(q->queue_lock);
2848
2849         return request_fn_active;
2850 }
2851
2852 /**
2853  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2854  * @sdev: SCSI device pointer.
2855  *
2856  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2857  * invoked from scsi_request_fn() have finished.
2858  */
2859 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2860 {
2861         WARN_ON_ONCE(sdev->host->use_blk_mq);
2862
2863         while (scsi_request_fn_active(sdev))
2864                 msleep(20);
2865 }
2866
2867 /**
2868  *      scsi_device_quiesce - Block user issued commands.
2869  *      @sdev:  scsi device to quiesce.
2870  *
2871  *      This works by trying to transition to the SDEV_QUIESCE state
2872  *      (which must be a legal transition).  When the device is in this
2873  *      state, only special requests will be accepted, all others will
2874  *      be deferred.  Since special requests may also be requeued requests,
2875  *      a successful return doesn't guarantee the device will be 
2876  *      totally quiescent.
2877  *
2878  *      Must be called with user context, may sleep.
2879  *
2880  *      Returns zero if unsuccessful or an error if not.
2881  */
2882 int
2883 scsi_device_quiesce(struct scsi_device *sdev)
2884 {
2885         int err;
2886
2887         mutex_lock(&sdev->state_mutex);
2888         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2889         mutex_unlock(&sdev->state_mutex);
2890
2891         if (err)
2892                 return err;
2893
2894         scsi_run_queue(sdev->request_queue);
2895         while (atomic_read(&sdev->device_busy)) {
2896                 msleep_interruptible(200);
2897                 scsi_run_queue(sdev->request_queue);
2898         }
2899         return 0;
2900 }
2901 EXPORT_SYMBOL(scsi_device_quiesce);
2902
2903 /**
2904  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2905  *      @sdev:  scsi device to resume.
2906  *
2907  *      Moves the device from quiesced back to running and restarts the
2908  *      queues.
2909  *
2910  *      Must be called with user context, may sleep.
2911  */
2912 void scsi_device_resume(struct scsi_device *sdev)
2913 {
2914         /* check if the device state was mutated prior to resume, and if
2915          * so assume the state is being managed elsewhere (for example
2916          * device deleted during suspend)
2917          */
2918         mutex_lock(&sdev->state_mutex);
2919         if (sdev->sdev_state == SDEV_QUIESCE &&
2920             scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2921                 scsi_run_queue(sdev->request_queue);
2922         mutex_unlock(&sdev->state_mutex);
2923 }
2924 EXPORT_SYMBOL(scsi_device_resume);
2925
2926 static void
2927 device_quiesce_fn(struct scsi_device *sdev, void *data)
2928 {
2929         scsi_device_quiesce(sdev);
2930 }
2931
2932 void
2933 scsi_target_quiesce(struct scsi_target *starget)
2934 {
2935         starget_for_each_device(starget, NULL, device_quiesce_fn);
2936 }
2937 EXPORT_SYMBOL(scsi_target_quiesce);
2938
2939 static void
2940 device_resume_fn(struct scsi_device *sdev, void *data)
2941 {
2942         scsi_device_resume(sdev);
2943 }
2944
2945 void
2946 scsi_target_resume(struct scsi_target *starget)
2947 {
2948         starget_for_each_device(starget, NULL, device_resume_fn);
2949 }
2950 EXPORT_SYMBOL(scsi_target_resume);
2951
2952 /**
2953  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2954  * @sdev: device to block
2955  *
2956  * Pause SCSI command processing on the specified device. Does not sleep.
2957  *
2958  * Returns zero if successful or a negative error code upon failure.
2959  *
2960  * Notes:
2961  * This routine transitions the device to the SDEV_BLOCK state (which must be
2962  * a legal transition). When the device is in this state, command processing
2963  * is paused until the device leaves the SDEV_BLOCK state. See also
2964  * scsi_internal_device_unblock_nowait().
2965  */
2966 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2967 {
2968         struct request_queue *q = sdev->request_queue;
2969         unsigned long flags;
2970         int err = 0;
2971
2972         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2973         if (err) {
2974                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2975
2976                 if (err)
2977                         return err;
2978         }
2979
2980         /* 
2981          * The device has transitioned to SDEV_BLOCK.  Stop the
2982          * block layer from calling the midlayer with this device's
2983          * request queue. 
2984          */
2985         if (q->mq_ops) {
2986                 blk_mq_stop_hw_queues(q);
2987         } else {
2988                 spin_lock_irqsave(q->queue_lock, flags);
2989                 blk_stop_queue(q);
2990                 spin_unlock_irqrestore(q->queue_lock, flags);
2991         }
2992
2993         return 0;
2994 }
2995 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2996
2997 /**
2998  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2999  * @sdev: device to block
3000  *
3001  * Pause SCSI command processing on the specified device and wait until all
3002  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3003  *
3004  * Returns zero if successful or a negative error code upon failure.
3005  *
3006  * Note:
3007  * This routine transitions the device to the SDEV_BLOCK state (which must be
3008  * a legal transition). When the device is in this state, command processing
3009  * is paused until the device leaves the SDEV_BLOCK state. See also
3010  * scsi_internal_device_unblock().
3011  *
3012  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3013  * scsi_internal_device_block() has blocked a SCSI device and also
3014  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3015  */
3016 static int scsi_internal_device_block(struct scsi_device *sdev)
3017 {
3018         struct request_queue *q = sdev->request_queue;
3019         int err;
3020
3021         mutex_lock(&sdev->state_mutex);
3022         err = scsi_internal_device_block_nowait(sdev);
3023         if (err == 0) {
3024                 if (q->mq_ops)
3025                         blk_mq_quiesce_queue(q);
3026                 else
3027                         scsi_wait_for_queuecommand(sdev);
3028         }
3029         mutex_unlock(&sdev->state_mutex);
3030
3031         return err;
3032 }
3033  
3034 void scsi_start_queue(struct scsi_device *sdev)
3035 {
3036         struct request_queue *q = sdev->request_queue;
3037         unsigned long flags;
3038
3039         if (q->mq_ops) {
3040                 blk_mq_start_stopped_hw_queues(q, false);
3041         } else {
3042                 spin_lock_irqsave(q->queue_lock, flags);
3043                 blk_start_queue(q);
3044                 spin_unlock_irqrestore(q->queue_lock, flags);
3045         }
3046 }
3047
3048 /**
3049  * scsi_internal_device_unblock_nowait - resume a device after a block request
3050  * @sdev:       device to resume
3051  * @new_state:  state to set the device to after unblocking
3052  *
3053  * Restart the device queue for a previously suspended SCSI device. Does not
3054  * sleep.
3055  *
3056  * Returns zero if successful or a negative error code upon failure.
3057  *
3058  * Notes:
3059  * This routine transitions the device to the SDEV_RUNNING state or to one of
3060  * the offline states (which must be a legal transition) allowing the midlayer
3061  * to goose the queue for this device.
3062  */
3063 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3064                                         enum scsi_device_state new_state)
3065 {
3066         /*
3067          * Try to transition the scsi device to SDEV_RUNNING or one of the
3068          * offlined states and goose the device queue if successful.
3069          */
3070         if ((sdev->sdev_state == SDEV_BLOCK) ||
3071             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3072                 sdev->sdev_state = new_state;
3073         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3074                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3075                     new_state == SDEV_OFFLINE)
3076                         sdev->sdev_state = new_state;
3077                 else
3078                         sdev->sdev_state = SDEV_CREATED;
3079         } else if (sdev->sdev_state != SDEV_CANCEL &&
3080                  sdev->sdev_state != SDEV_OFFLINE)
3081                 return -EINVAL;
3082
3083         scsi_start_queue(sdev);
3084
3085         return 0;
3086 }
3087 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3088
3089 /**
3090  * scsi_internal_device_unblock - resume a device after a block request
3091  * @sdev:       device to resume
3092  * @new_state:  state to set the device to after unblocking
3093  *
3094  * Restart the device queue for a previously suspended SCSI device. May sleep.
3095  *
3096  * Returns zero if successful or a negative error code upon failure.
3097  *
3098  * Notes:
3099  * This routine transitions the device to the SDEV_RUNNING state or to one of
3100  * the offline states (which must be a legal transition) allowing the midlayer
3101  * to goose the queue for this device.
3102  */
3103 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3104                                         enum scsi_device_state new_state)
3105 {
3106         int ret;
3107
3108         mutex_lock(&sdev->state_mutex);
3109         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3110         mutex_unlock(&sdev->state_mutex);
3111
3112         return ret;
3113 }
3114
3115 static void
3116 device_block(struct scsi_device *sdev, void *data)
3117 {
3118         scsi_internal_device_block(sdev);
3119 }
3120
3121 static int
3122 target_block(struct device *dev, void *data)
3123 {
3124         if (scsi_is_target_device(dev))
3125                 starget_for_each_device(to_scsi_target(dev), NULL,
3126                                         device_block);
3127         return 0;
3128 }
3129
3130 void
3131 scsi_target_block(struct device *dev)
3132 {
3133         if (scsi_is_target_device(dev))
3134                 starget_for_each_device(to_scsi_target(dev), NULL,
3135                                         device_block);
3136         else
3137                 device_for_each_child(dev, NULL, target_block);
3138 }
3139 EXPORT_SYMBOL_GPL(scsi_target_block);
3140
3141 static void
3142 device_unblock(struct scsi_device *sdev, void *data)
3143 {
3144         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3145 }
3146
3147 static int
3148 target_unblock(struct device *dev, void *data)
3149 {
3150         if (scsi_is_target_device(dev))
3151                 starget_for_each_device(to_scsi_target(dev), data,
3152                                         device_unblock);
3153         return 0;
3154 }
3155
3156 void
3157 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3158 {
3159         if (scsi_is_target_device(dev))
3160                 starget_for_each_device(to_scsi_target(dev), &new_state,
3161                                         device_unblock);
3162         else
3163                 device_for_each_child(dev, &new_state, target_unblock);
3164 }
3165 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3166
3167 /**
3168  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3169  * @sgl:        scatter-gather list
3170  * @sg_count:   number of segments in sg
3171  * @offset:     offset in bytes into sg, on return offset into the mapped area
3172  * @len:        bytes to map, on return number of bytes mapped
3173  *
3174  * Returns virtual address of the start of the mapped page
3175  */
3176 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3177                           size_t *offset, size_t *len)
3178 {
3179         int i;
3180         size_t sg_len = 0, len_complete = 0;
3181         struct scatterlist *sg;
3182         struct page *page;
3183
3184         WARN_ON(!irqs_disabled());
3185
3186         for_each_sg(sgl, sg, sg_count, i) {
3187                 len_complete = sg_len; /* Complete sg-entries */
3188                 sg_len += sg->length;
3189                 if (sg_len > *offset)
3190                         break;
3191         }
3192
3193         if (unlikely(i == sg_count)) {
3194                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3195                         "elements %d\n",
3196                        __func__, sg_len, *offset, sg_count);
3197                 WARN_ON(1);
3198                 return NULL;
3199         }
3200
3201         /* Offset starting from the beginning of first page in this sg-entry */
3202         *offset = *offset - len_complete + sg->offset;
3203
3204         /* Assumption: contiguous pages can be accessed as "page + i" */
3205         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3206         *offset &= ~PAGE_MASK;
3207
3208         /* Bytes in this sg-entry from *offset to the end of the page */
3209         sg_len = PAGE_SIZE - *offset;
3210         if (*len > sg_len)
3211                 *len = sg_len;
3212
3213         return kmap_atomic(page);
3214 }
3215 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3216
3217 /**
3218  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3219  * @virt:       virtual address to be unmapped
3220  */
3221 void scsi_kunmap_atomic_sg(void *virt)
3222 {
3223         kunmap_atomic(virt);
3224 }
3225 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3226
3227 void sdev_disable_disk_events(struct scsi_device *sdev)
3228 {
3229         atomic_inc(&sdev->disk_events_disable_depth);
3230 }
3231 EXPORT_SYMBOL(sdev_disable_disk_events);
3232
3233 void sdev_enable_disk_events(struct scsi_device *sdev)
3234 {
3235         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3236                 return;
3237         atomic_dec(&sdev->disk_events_disable_depth);
3238 }
3239 EXPORT_SYMBOL(sdev_enable_disk_events);
3240
3241 /**
3242  * scsi_vpd_lun_id - return a unique device identification
3243  * @sdev: SCSI device
3244  * @id:   buffer for the identification
3245  * @id_len:  length of the buffer
3246  *
3247  * Copies a unique device identification into @id based
3248  * on the information in the VPD page 0x83 of the device.
3249  * The string will be formatted as a SCSI name string.
3250  *
3251  * Returns the length of the identification or error on failure.
3252  * If the identifier is longer than the supplied buffer the actual
3253  * identifier length is returned and the buffer is not zero-padded.
3254  */
3255 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3256 {
3257         u8 cur_id_type = 0xff;
3258         u8 cur_id_size = 0;
3259         unsigned char *d, *cur_id_str;
3260         unsigned char __rcu *vpd_pg83;
3261         int id_size = -EINVAL;
3262
3263         rcu_read_lock();
3264         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3265         if (!vpd_pg83) {
3266                 rcu_read_unlock();
3267                 return -ENXIO;
3268         }
3269
3270         /*
3271          * Look for the correct descriptor.
3272          * Order of preference for lun descriptor:
3273          * - SCSI name string
3274          * - NAA IEEE Registered Extended
3275          * - EUI-64 based 16-byte
3276          * - EUI-64 based 12-byte
3277          * - NAA IEEE Registered
3278          * - NAA IEEE Extended
3279          * - T10 Vendor ID
3280          * as longer descriptors reduce the likelyhood
3281          * of identification clashes.
3282          */
3283
3284         /* The id string must be at least 20 bytes + terminating NULL byte */
3285         if (id_len < 21) {
3286                 rcu_read_unlock();
3287                 return -EINVAL;
3288         }
3289
3290         memset(id, 0, id_len);
3291         d = vpd_pg83 + 4;
3292         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3293                 /* Skip designators not referring to the LUN */
3294                 if ((d[1] & 0x30) != 0x00)
3295                         goto next_desig;
3296
3297                 switch (d[1] & 0xf) {
3298                 case 0x1:
3299                         /* T10 Vendor ID */
3300                         if (cur_id_size > d[3])
3301                                 break;
3302                         /* Prefer anything */
3303                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3304                                 break;
3305                         cur_id_size = d[3];
3306                         if (cur_id_size + 4 > id_len)
3307                                 cur_id_size = id_len - 4;
3308                         cur_id_str = d + 4;
3309                         cur_id_type = d[1] & 0xf;
3310                         id_size = snprintf(id, id_len, "t10.%*pE",
3311                                            cur_id_size, cur_id_str);
3312                         break;
3313                 case 0x2:
3314                         /* EUI-64 */
3315                         if (cur_id_size > d[3])
3316                                 break;
3317                         /* Prefer NAA IEEE Registered Extended */
3318                         if (cur_id_type == 0x3 &&
3319                             cur_id_size == d[3])
3320                                 break;
3321                         cur_id_size = d[3];
3322                         cur_id_str = d + 4;
3323                         cur_id_type = d[1] & 0xf;
3324                         switch (cur_id_size) {
3325                         case 8:
3326                                 id_size = snprintf(id, id_len,
3327                                                    "eui.%8phN",
3328                                                    cur_id_str);
3329                                 break;
3330                         case 12:
3331                                 id_size = snprintf(id, id_len,
3332                                                    "eui.%12phN",
3333                                                    cur_id_str);
3334                                 break;
3335                         case 16:
3336                                 id_size = snprintf(id, id_len,
3337                                                    "eui.%16phN",
3338                                                    cur_id_str);
3339                                 break;
3340                         default:
3341                                 cur_id_size = 0;
3342                                 break;
3343                         }
3344                         break;
3345                 case 0x3:
3346                         /* NAA */
3347                         if (cur_id_size > d[3])
3348                                 break;
3349                         cur_id_size = d[3];
3350                         cur_id_str = d + 4;
3351                         cur_id_type = d[1] & 0xf;
3352                         switch (cur_id_size) {
3353                         case 8:
3354                                 id_size = snprintf(id, id_len,
3355                                                    "naa.%8phN",
3356                                                    cur_id_str);
3357                                 break;
3358                         case 16:
3359                                 id_size = snprintf(id, id_len,
3360                                                    "naa.%16phN",
3361                                                    cur_id_str);
3362                                 break;
3363                         default:
3364                                 cur_id_size = 0;
3365                                 break;
3366                         }
3367                         break;
3368                 case 0x8:
3369                         /* SCSI name string */
3370                         if (cur_id_size + 4 > d[3])
3371                                 break;
3372                         /* Prefer others for truncated descriptor */
3373                         if (cur_id_size && d[3] > id_len)
3374                                 break;
3375                         cur_id_size = id_size = d[3];
3376                         cur_id_str = d + 4;
3377                         cur_id_type = d[1] & 0xf;
3378                         if (cur_id_size >= id_len)
3379                                 cur_id_size = id_len - 1;
3380                         memcpy(id, cur_id_str, cur_id_size);
3381                         /* Decrease priority for truncated descriptor */
3382                         if (cur_id_size != id_size)
3383                                 cur_id_size = 6;
3384                         break;
3385                 default:
3386                         break;
3387                 }
3388 next_desig:
3389                 d += d[3] + 4;
3390         }
3391         rcu_read_unlock();
3392
3393         return id_size;
3394 }
3395 EXPORT_SYMBOL(scsi_vpd_lun_id);
3396
3397 /*
3398  * scsi_vpd_tpg_id - return a target port group identifier
3399  * @sdev: SCSI device
3400  *
3401  * Returns the Target Port Group identifier from the information
3402  * froom VPD page 0x83 of the device.
3403  *
3404  * Returns the identifier or error on failure.
3405  */
3406 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3407 {
3408         unsigned char *d;
3409         unsigned char __rcu *vpd_pg83;
3410         int group_id = -EAGAIN, rel_port = -1;
3411
3412         rcu_read_lock();
3413         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3414         if (!vpd_pg83) {
3415                 rcu_read_unlock();
3416                 return -ENXIO;
3417         }
3418
3419         d = sdev->vpd_pg83 + 4;
3420         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3421                 switch (d[1] & 0xf) {
3422                 case 0x4:
3423                         /* Relative target port */
3424                         rel_port = get_unaligned_be16(&d[6]);
3425                         break;
3426                 case 0x5:
3427                         /* Target port group */
3428                         group_id = get_unaligned_be16(&d[6]);
3429                         break;
3430                 default:
3431                         break;
3432                 }
3433                 d += d[3] + 4;
3434         }
3435         rcu_read_unlock();
3436
3437         if (group_id >= 0 && rel_id && rel_port != -1)
3438                 *rel_id = rel_port;
3439
3440         return group_id;
3441 }
3442 EXPORT_SYMBOL(scsi_vpd_tpg_id);