]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
scsi: Only add commands to the device command list if required by the LLD
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54                                    unsigned char *sense_buffer)
55 {
56         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57                         sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61         gfp_t gfp_mask, int numa_node)
62 {
63         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64                                      gfp_mask, numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69         struct kmem_cache *cache;
70         int ret = 0;
71
72         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73         if (cache)
74                 return 0;
75
76         mutex_lock(&scsi_sense_cache_mutex);
77         if (shost->unchecked_isa_dma) {
78                 scsi_sense_isadma_cache =
79                         kmem_cache_create("scsi_sense_cache(DMA)",
80                         SCSI_SENSE_BUFFERSIZE, 0,
81                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82                 if (!scsi_sense_isadma_cache)
83                         ret = -ENOMEM;
84         } else {
85                 scsi_sense_cache =
86                         kmem_cache_create("scsi_sense_cache",
87                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88                 if (!scsi_sense_cache)
89                         ret = -ENOMEM;
90         }
91
92         mutex_unlock(&scsi_sense_cache_mutex);
93         return ret;
94 }
95
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY        3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106         struct Scsi_Host *host = cmd->device->host;
107         struct scsi_device *device = cmd->device;
108         struct scsi_target *starget = scsi_target(device);
109
110         /*
111          * Set the appropriate busy bit for the device/host.
112          *
113          * If the host/device isn't busy, assume that something actually
114          * completed, and that we should be able to queue a command now.
115          *
116          * Note that the prior mid-layer assumption that any host could
117          * always queue at least one command is now broken.  The mid-layer
118          * will implement a user specifiable stall (see
119          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120          * if a command is requeued with no other commands outstanding
121          * either for the device or for the host.
122          */
123         switch (reason) {
124         case SCSI_MLQUEUE_HOST_BUSY:
125                 atomic_set(&host->host_blocked, host->max_host_blocked);
126                 break;
127         case SCSI_MLQUEUE_DEVICE_BUSY:
128         case SCSI_MLQUEUE_EH_RETRY:
129                 atomic_set(&device->device_blocked,
130                            device->max_device_blocked);
131                 break;
132         case SCSI_MLQUEUE_TARGET_BUSY:
133                 atomic_set(&starget->target_blocked,
134                            starget->max_target_blocked);
135                 break;
136         }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141         struct scsi_device *sdev = cmd->device;
142
143         blk_mq_requeue_request(cmd->request, true);
144         put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161         struct scsi_device *device = cmd->device;
162         struct request_queue *q = device->request_queue;
163         unsigned long flags;
164
165         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166                 "Inserting command %p into mlqueue\n", cmd));
167
168         scsi_set_blocked(cmd, reason);
169
170         /*
171          * Decrement the counters, since these commands are no longer
172          * active on the host/device.
173          */
174         if (unbusy)
175                 scsi_device_unbusy(device);
176
177         /*
178          * Requeue this command.  It will go before all other commands
179          * that are already in the queue. Schedule requeue work under
180          * lock such that the kblockd_schedule_work() call happens
181          * before blk_cleanup_queue() finishes.
182          */
183         cmd->result = 0;
184         if (q->mq_ops) {
185                 scsi_mq_requeue_cmd(cmd);
186                 return;
187         }
188         spin_lock_irqsave(q->queue_lock, flags);
189         blk_requeue_request(q, cmd->request);
190         kblockd_schedule_work(&device->requeue_work);
191         spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215         __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:       scsi device
222  * @cmd:        scsi command
223  * @data_direction: data direction
224  * @buffer:     data buffer
225  * @bufflen:    len of buffer
226  * @sense:      optional sense buffer
227  * @sshdr:      optional decoded sense header
228  * @timeout:    request timeout in seconds
229  * @retries:    number of times to retry request
230  * @flags:      flags for ->cmd_flags
231  * @rq_flags:   flags for ->rq_flags
232  * @resid:      optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238                  int data_direction, void *buffer, unsigned bufflen,
239                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
240                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
241                  int *resid)
242 {
243         struct request *req;
244         struct scsi_request *rq;
245         int ret = DRIVER_ERROR << 24;
246
247         req = blk_get_request(sdev->request_queue,
248                         data_direction == DMA_TO_DEVICE ?
249                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250         if (IS_ERR(req))
251                 return ret;
252         rq = scsi_req(req);
253         scsi_req_init(req);
254
255         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
256                                         buffer, bufflen, __GFP_RECLAIM))
257                 goto out;
258
259         rq->cmd_len = COMMAND_SIZE(cmd[0]);
260         memcpy(rq->cmd, cmd, rq->cmd_len);
261         rq->retries = retries;
262         req->timeout = timeout;
263         req->cmd_flags |= flags;
264         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
265
266         /*
267          * head injection *required* here otherwise quiesce won't work
268          */
269         blk_execute_rq(req->q, NULL, req, 1);
270
271         /*
272          * Some devices (USB mass-storage in particular) may transfer
273          * garbage data together with a residue indicating that the data
274          * is invalid.  Prevent the garbage from being misinterpreted
275          * and prevent security leaks by zeroing out the excess data.
276          */
277         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
278                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
279
280         if (resid)
281                 *resid = rq->resid_len;
282         if (sense && rq->sense_len)
283                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
284         if (sshdr)
285                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
286         ret = rq->result;
287  out:
288         blk_put_request(req);
289
290         return ret;
291 }
292 EXPORT_SYMBOL(scsi_execute);
293
294 /*
295  * Function:    scsi_init_cmd_errh()
296  *
297  * Purpose:     Initialize cmd fields related to error handling.
298  *
299  * Arguments:   cmd     - command that is ready to be queued.
300  *
301  * Notes:       This function has the job of initializing a number of
302  *              fields related to error handling.   Typically this will
303  *              be called once for each command, as required.
304  */
305 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
306 {
307         cmd->serial_number = 0;
308         scsi_set_resid(cmd, 0);
309         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
310         if (cmd->cmd_len == 0)
311                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
312 }
313
314 void scsi_device_unbusy(struct scsi_device *sdev)
315 {
316         struct Scsi_Host *shost = sdev->host;
317         struct scsi_target *starget = scsi_target(sdev);
318         unsigned long flags;
319
320         atomic_dec(&shost->host_busy);
321         if (starget->can_queue > 0)
322                 atomic_dec(&starget->target_busy);
323
324         if (unlikely(scsi_host_in_recovery(shost) &&
325                      (shost->host_failed || shost->host_eh_scheduled))) {
326                 spin_lock_irqsave(shost->host_lock, flags);
327                 scsi_eh_wakeup(shost);
328                 spin_unlock_irqrestore(shost->host_lock, flags);
329         }
330
331         atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336         if (q->mq_ops)
337                 blk_mq_start_hw_queues(q);
338         else
339                 blk_run_queue(q);
340 }
341
342 /*
343  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
344  * and call blk_run_queue for all the scsi_devices on the target -
345  * including current_sdev first.
346  *
347  * Called with *no* scsi locks held.
348  */
349 static void scsi_single_lun_run(struct scsi_device *current_sdev)
350 {
351         struct Scsi_Host *shost = current_sdev->host;
352         struct scsi_device *sdev, *tmp;
353         struct scsi_target *starget = scsi_target(current_sdev);
354         unsigned long flags;
355
356         spin_lock_irqsave(shost->host_lock, flags);
357         starget->starget_sdev_user = NULL;
358         spin_unlock_irqrestore(shost->host_lock, flags);
359
360         /*
361          * Call blk_run_queue for all LUNs on the target, starting with
362          * current_sdev. We race with others (to set starget_sdev_user),
363          * but in most cases, we will be first. Ideally, each LU on the
364          * target would get some limited time or requests on the target.
365          */
366         scsi_kick_queue(current_sdev->request_queue);
367
368         spin_lock_irqsave(shost->host_lock, flags);
369         if (starget->starget_sdev_user)
370                 goto out;
371         list_for_each_entry_safe(sdev, tmp, &starget->devices,
372                         same_target_siblings) {
373                 if (sdev == current_sdev)
374                         continue;
375                 if (scsi_device_get(sdev))
376                         continue;
377
378                 spin_unlock_irqrestore(shost->host_lock, flags);
379                 scsi_kick_queue(sdev->request_queue);
380                 spin_lock_irqsave(shost->host_lock, flags);
381         
382                 scsi_device_put(sdev);
383         }
384  out:
385         spin_unlock_irqrestore(shost->host_lock, flags);
386 }
387
388 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
389 {
390         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
391                 return true;
392         if (atomic_read(&sdev->device_blocked) > 0)
393                 return true;
394         return false;
395 }
396
397 static inline bool scsi_target_is_busy(struct scsi_target *starget)
398 {
399         if (starget->can_queue > 0) {
400                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
401                         return true;
402                 if (atomic_read(&starget->target_blocked) > 0)
403                         return true;
404         }
405         return false;
406 }
407
408 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
409 {
410         if (shost->can_queue > 0 &&
411             atomic_read(&shost->host_busy) >= shost->can_queue)
412                 return true;
413         if (atomic_read(&shost->host_blocked) > 0)
414                 return true;
415         if (shost->host_self_blocked)
416                 return true;
417         return false;
418 }
419
420 static void scsi_starved_list_run(struct Scsi_Host *shost)
421 {
422         LIST_HEAD(starved_list);
423         struct scsi_device *sdev;
424         unsigned long flags;
425
426         spin_lock_irqsave(shost->host_lock, flags);
427         list_splice_init(&shost->starved_list, &starved_list);
428
429         while (!list_empty(&starved_list)) {
430                 struct request_queue *slq;
431
432                 /*
433                  * As long as shost is accepting commands and we have
434                  * starved queues, call blk_run_queue. scsi_request_fn
435                  * drops the queue_lock and can add us back to the
436                  * starved_list.
437                  *
438                  * host_lock protects the starved_list and starved_entry.
439                  * scsi_request_fn must get the host_lock before checking
440                  * or modifying starved_list or starved_entry.
441                  */
442                 if (scsi_host_is_busy(shost))
443                         break;
444
445                 sdev = list_entry(starved_list.next,
446                                   struct scsi_device, starved_entry);
447                 list_del_init(&sdev->starved_entry);
448                 if (scsi_target_is_busy(scsi_target(sdev))) {
449                         list_move_tail(&sdev->starved_entry,
450                                        &shost->starved_list);
451                         continue;
452                 }
453
454                 /*
455                  * Once we drop the host lock, a racing scsi_remove_device()
456                  * call may remove the sdev from the starved list and destroy
457                  * it and the queue.  Mitigate by taking a reference to the
458                  * queue and never touching the sdev again after we drop the
459                  * host lock.  Note: if __scsi_remove_device() invokes
460                  * blk_cleanup_queue() before the queue is run from this
461                  * function then blk_run_queue() will return immediately since
462                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
463                  */
464                 slq = sdev->request_queue;
465                 if (!blk_get_queue(slq))
466                         continue;
467                 spin_unlock_irqrestore(shost->host_lock, flags);
468
469                 scsi_kick_queue(slq);
470                 blk_put_queue(slq);
471
472                 spin_lock_irqsave(shost->host_lock, flags);
473         }
474         /* put any unprocessed entries back */
475         list_splice(&starved_list, &shost->starved_list);
476         spin_unlock_irqrestore(shost->host_lock, flags);
477 }
478
479 /*
480  * Function:   scsi_run_queue()
481  *
482  * Purpose:    Select a proper request queue to serve next
483  *
484  * Arguments:  q       - last request's queue
485  *
486  * Returns:     Nothing
487  *
488  * Notes:      The previous command was completely finished, start
489  *             a new one if possible.
490  */
491 static void scsi_run_queue(struct request_queue *q)
492 {
493         struct scsi_device *sdev = q->queuedata;
494
495         if (scsi_target(sdev)->single_lun)
496                 scsi_single_lun_run(sdev);
497         if (!list_empty(&sdev->host->starved_list))
498                 scsi_starved_list_run(sdev->host);
499
500         if (q->mq_ops)
501                 blk_mq_run_hw_queues(q, false);
502         else
503                 blk_run_queue(q);
504 }
505
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508         struct scsi_device *sdev;
509         struct request_queue *q;
510
511         sdev = container_of(work, struct scsi_device, requeue_work);
512         q = sdev->request_queue;
513         scsi_run_queue(q);
514 }
515
516 /*
517  * Function:    scsi_requeue_command()
518  *
519  * Purpose:     Handle post-processing of completed commands.
520  *
521  * Arguments:   q       - queue to operate on
522  *              cmd     - command that may need to be requeued.
523  *
524  * Returns:     Nothing
525  *
526  * Notes:       After command completion, there may be blocks left
527  *              over which weren't finished by the previous command
528  *              this can be for a number of reasons - the main one is
529  *              I/O errors in the middle of the request, in which case
530  *              we need to request the blocks that come after the bad
531  *              sector.
532  * Notes:       Upon return, cmd is a stale pointer.
533  */
534 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
535 {
536         struct scsi_device *sdev = cmd->device;
537         struct request *req = cmd->request;
538         unsigned long flags;
539
540         spin_lock_irqsave(q->queue_lock, flags);
541         blk_unprep_request(req);
542         req->special = NULL;
543         scsi_put_command(cmd);
544         blk_requeue_request(q, req);
545         spin_unlock_irqrestore(q->queue_lock, flags);
546
547         scsi_run_queue(q);
548
549         put_device(&sdev->sdev_gendev);
550 }
551
552 void scsi_run_host_queues(struct Scsi_Host *shost)
553 {
554         struct scsi_device *sdev;
555
556         shost_for_each_device(sdev, shost)
557                 scsi_run_queue(sdev->request_queue);
558 }
559
560 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
561 {
562         if (!blk_rq_is_passthrough(cmd->request)) {
563                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
564
565                 if (drv->uninit_command)
566                         drv->uninit_command(cmd);
567         }
568 }
569
570 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
571 {
572         struct scsi_data_buffer *sdb;
573
574         if (cmd->sdb.table.nents)
575                 sg_free_table_chained(&cmd->sdb.table, true);
576         if (cmd->request->next_rq) {
577                 sdb = cmd->request->next_rq->special;
578                 if (sdb)
579                         sg_free_table_chained(&sdb->table, true);
580         }
581         if (scsi_prot_sg_count(cmd))
582                 sg_free_table_chained(&cmd->prot_sdb->table, true);
583 }
584
585 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587         scsi_mq_free_sgtables(cmd);
588         scsi_uninit_cmd(cmd);
589         scsi_del_cmd_from_list(cmd);
590 }
591
592 /*
593  * Function:    scsi_release_buffers()
594  *
595  * Purpose:     Free resources allocate for a scsi_command.
596  *
597  * Arguments:   cmd     - command that we are bailing.
598  *
599  * Lock status: Assumed that no lock is held upon entry.
600  *
601  * Returns:     Nothing
602  *
603  * Notes:       In the event that an upper level driver rejects a
604  *              command, we must release resources allocated during
605  *              the __init_io() function.  Primarily this would involve
606  *              the scatter-gather table.
607  */
608 static void scsi_release_buffers(struct scsi_cmnd *cmd)
609 {
610         if (cmd->sdb.table.nents)
611                 sg_free_table_chained(&cmd->sdb.table, false);
612
613         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
614
615         if (scsi_prot_sg_count(cmd))
616                 sg_free_table_chained(&cmd->prot_sdb->table, false);
617 }
618
619 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
620 {
621         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
622
623         sg_free_table_chained(&bidi_sdb->table, false);
624         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
625         cmd->request->next_rq->special = NULL;
626 }
627
628 static bool scsi_end_request(struct request *req, int error,
629                 unsigned int bytes, unsigned int bidi_bytes)
630 {
631         struct scsi_cmnd *cmd = req->special;
632         struct scsi_device *sdev = cmd->device;
633         struct request_queue *q = sdev->request_queue;
634
635         if (blk_update_request(req, error, bytes))
636                 return true;
637
638         /* Bidi request must be completed as a whole */
639         if (unlikely(bidi_bytes) &&
640             blk_update_request(req->next_rq, error, bidi_bytes))
641                 return true;
642
643         if (blk_queue_add_random(q))
644                 add_disk_randomness(req->rq_disk);
645
646         if (req->mq_ctx) {
647                 /*
648                  * In the MQ case the command gets freed by __blk_mq_end_request,
649                  * so we have to do all cleanup that depends on it earlier.
650                  *
651                  * We also can't kick the queues from irq context, so we
652                  * will have to defer it to a workqueue.
653                  */
654                 scsi_mq_uninit_cmd(cmd);
655
656                 __blk_mq_end_request(req, error);
657
658                 if (scsi_target(sdev)->single_lun ||
659                     !list_empty(&sdev->host->starved_list))
660                         kblockd_schedule_work(&sdev->requeue_work);
661                 else
662                         blk_mq_run_hw_queues(q, true);
663         } else {
664                 unsigned long flags;
665
666                 if (bidi_bytes)
667                         scsi_release_bidi_buffers(cmd);
668                 scsi_release_buffers(cmd);
669                 scsi_put_command(cmd);
670
671                 spin_lock_irqsave(q->queue_lock, flags);
672                 blk_finish_request(req, error);
673                 spin_unlock_irqrestore(q->queue_lock, flags);
674
675                 scsi_run_queue(q);
676         }
677
678         put_device(&sdev->sdev_gendev);
679         return false;
680 }
681
682 /**
683  * __scsi_error_from_host_byte - translate SCSI error code into errno
684  * @cmd:        SCSI command (unused)
685  * @result:     scsi error code
686  *
687  * Translate SCSI error code into standard UNIX errno.
688  * Return values:
689  * -ENOLINK     temporary transport failure
690  * -EREMOTEIO   permanent target failure, do not retry
691  * -EBADE       permanent nexus failure, retry on other path
692  * -ENOSPC      No write space available
693  * -ENODATA     Medium error
694  * -EIO         unspecified I/O error
695  */
696 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
697 {
698         int error = 0;
699
700         switch(host_byte(result)) {
701         case DID_TRANSPORT_FAILFAST:
702                 error = -ENOLINK;
703                 break;
704         case DID_TARGET_FAILURE:
705                 set_host_byte(cmd, DID_OK);
706                 error = -EREMOTEIO;
707                 break;
708         case DID_NEXUS_FAILURE:
709                 set_host_byte(cmd, DID_OK);
710                 error = -EBADE;
711                 break;
712         case DID_ALLOC_FAILURE:
713                 set_host_byte(cmd, DID_OK);
714                 error = -ENOSPC;
715                 break;
716         case DID_MEDIUM_ERROR:
717                 set_host_byte(cmd, DID_OK);
718                 error = -ENODATA;
719                 break;
720         default:
721                 error = -EIO;
722                 break;
723         }
724
725         return error;
726 }
727
728 /*
729  * Function:    scsi_io_completion()
730  *
731  * Purpose:     Completion processing for block device I/O requests.
732  *
733  * Arguments:   cmd   - command that is finished.
734  *
735  * Lock status: Assumed that no lock is held upon entry.
736  *
737  * Returns:     Nothing
738  *
739  * Notes:       We will finish off the specified number of sectors.  If we
740  *              are done, the command block will be released and the queue
741  *              function will be goosed.  If we are not done then we have to
742  *              figure out what to do next:
743  *
744  *              a) We can call scsi_requeue_command().  The request
745  *                 will be unprepared and put back on the queue.  Then
746  *                 a new command will be created for it.  This should
747  *                 be used if we made forward progress, or if we want
748  *                 to switch from READ(10) to READ(6) for example.
749  *
750  *              b) We can call __scsi_queue_insert().  The request will
751  *                 be put back on the queue and retried using the same
752  *                 command as before, possibly after a delay.
753  *
754  *              c) We can call scsi_end_request() with -EIO to fail
755  *                 the remainder of the request.
756  */
757 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
758 {
759         int result = cmd->result;
760         struct request_queue *q = cmd->device->request_queue;
761         struct request *req = cmd->request;
762         int error = 0;
763         struct scsi_sense_hdr sshdr;
764         bool sense_valid = false;
765         int sense_deferred = 0, level = 0;
766         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
767               ACTION_DELAYED_RETRY} action;
768         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
769
770         if (result) {
771                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
772                 if (sense_valid)
773                         sense_deferred = scsi_sense_is_deferred(&sshdr);
774         }
775
776         if (blk_rq_is_passthrough(req)) {
777                 if (result) {
778                         if (sense_valid) {
779                                 /*
780                                  * SG_IO wants current and deferred errors
781                                  */
782                                 scsi_req(req)->sense_len =
783                                         min(8 + cmd->sense_buffer[7],
784                                             SCSI_SENSE_BUFFERSIZE);
785                         }
786                         if (!sense_deferred)
787                                 error = __scsi_error_from_host_byte(cmd, result);
788                 }
789                 /*
790                  * __scsi_error_from_host_byte may have reset the host_byte
791                  */
792                 scsi_req(req)->result = cmd->result;
793                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
794
795                 if (scsi_bidi_cmnd(cmd)) {
796                         /*
797                          * Bidi commands Must be complete as a whole,
798                          * both sides at once.
799                          */
800                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
801                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
802                                         blk_rq_bytes(req->next_rq)))
803                                 BUG();
804                         return;
805                 }
806         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
807                 /*
808                  * Flush commands do not transfers any data, and thus cannot use
809                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
810                  * This sets the error explicitly for the problem case.
811                  */
812                 error = __scsi_error_from_host_byte(cmd, result);
813         }
814
815         /* no bidi support for !blk_rq_is_passthrough yet */
816         BUG_ON(blk_bidi_rq(req));
817
818         /*
819          * Next deal with any sectors which we were able to correctly
820          * handle.
821          */
822         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
823                 "%u sectors total, %d bytes done.\n",
824                 blk_rq_sectors(req), good_bytes));
825
826         /*
827          * Recovered errors need reporting, but they're always treated as
828          * success, so fiddle the result code here.  For passthrough requests
829          * we already took a copy of the original into sreq->result which
830          * is what gets returned to the user
831          */
832         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
833                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
834                  * print since caller wants ATA registers. Only occurs on
835                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
836                  */
837                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
838                         ;
839                 else if (!(req->rq_flags & RQF_QUIET))
840                         scsi_print_sense(cmd);
841                 result = 0;
842                 /* for passthrough error may be set */
843                 error = 0;
844         }
845
846         /*
847          * special case: failed zero length commands always need to
848          * drop down into the retry code. Otherwise, if we finished
849          * all bytes in the request we are done now.
850          */
851         if (!(blk_rq_bytes(req) == 0 && error) &&
852             !scsi_end_request(req, error, good_bytes, 0))
853                 return;
854
855         /*
856          * Kill remainder if no retrys.
857          */
858         if (error && scsi_noretry_cmd(cmd)) {
859                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
860                         BUG();
861                 return;
862         }
863
864         /*
865          * If there had been no error, but we have leftover bytes in the
866          * requeues just queue the command up again.
867          */
868         if (result == 0)
869                 goto requeue;
870
871         error = __scsi_error_from_host_byte(cmd, result);
872
873         if (host_byte(result) == DID_RESET) {
874                 /* Third party bus reset or reset for error recovery
875                  * reasons.  Just retry the command and see what
876                  * happens.
877                  */
878                 action = ACTION_RETRY;
879         } else if (sense_valid && !sense_deferred) {
880                 switch (sshdr.sense_key) {
881                 case UNIT_ATTENTION:
882                         if (cmd->device->removable) {
883                                 /* Detected disc change.  Set a bit
884                                  * and quietly refuse further access.
885                                  */
886                                 cmd->device->changed = 1;
887                                 action = ACTION_FAIL;
888                         } else {
889                                 /* Must have been a power glitch, or a
890                                  * bus reset.  Could not have been a
891                                  * media change, so we just retry the
892                                  * command and see what happens.
893                                  */
894                                 action = ACTION_RETRY;
895                         }
896                         break;
897                 case ILLEGAL_REQUEST:
898                         /* If we had an ILLEGAL REQUEST returned, then
899                          * we may have performed an unsupported
900                          * command.  The only thing this should be
901                          * would be a ten byte read where only a six
902                          * byte read was supported.  Also, on a system
903                          * where READ CAPACITY failed, we may have
904                          * read past the end of the disk.
905                          */
906                         if ((cmd->device->use_10_for_rw &&
907                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
908                             (cmd->cmnd[0] == READ_10 ||
909                              cmd->cmnd[0] == WRITE_10)) {
910                                 /* This will issue a new 6-byte command. */
911                                 cmd->device->use_10_for_rw = 0;
912                                 action = ACTION_REPREP;
913                         } else if (sshdr.asc == 0x10) /* DIX */ {
914                                 action = ACTION_FAIL;
915                                 error = -EILSEQ;
916                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
917                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
918                                 action = ACTION_FAIL;
919                                 error = -EREMOTEIO;
920                         } else
921                                 action = ACTION_FAIL;
922                         break;
923                 case ABORTED_COMMAND:
924                         action = ACTION_FAIL;
925                         if (sshdr.asc == 0x10) /* DIF */
926                                 error = -EILSEQ;
927                         break;
928                 case NOT_READY:
929                         /* If the device is in the process of becoming
930                          * ready, or has a temporary blockage, retry.
931                          */
932                         if (sshdr.asc == 0x04) {
933                                 switch (sshdr.ascq) {
934                                 case 0x01: /* becoming ready */
935                                 case 0x04: /* format in progress */
936                                 case 0x05: /* rebuild in progress */
937                                 case 0x06: /* recalculation in progress */
938                                 case 0x07: /* operation in progress */
939                                 case 0x08: /* Long write in progress */
940                                 case 0x09: /* self test in progress */
941                                 case 0x14: /* space allocation in progress */
942                                         action = ACTION_DELAYED_RETRY;
943                                         break;
944                                 default:
945                                         action = ACTION_FAIL;
946                                         break;
947                                 }
948                         } else
949                                 action = ACTION_FAIL;
950                         break;
951                 case VOLUME_OVERFLOW:
952                         /* See SSC3rXX or current. */
953                         action = ACTION_FAIL;
954                         break;
955                 default:
956                         action = ACTION_FAIL;
957                         break;
958                 }
959         } else
960                 action = ACTION_FAIL;
961
962         if (action != ACTION_FAIL &&
963             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
964                 action = ACTION_FAIL;
965
966         switch (action) {
967         case ACTION_FAIL:
968                 /* Give up and fail the remainder of the request */
969                 if (!(req->rq_flags & RQF_QUIET)) {
970                         static DEFINE_RATELIMIT_STATE(_rs,
971                                         DEFAULT_RATELIMIT_INTERVAL,
972                                         DEFAULT_RATELIMIT_BURST);
973
974                         if (unlikely(scsi_logging_level))
975                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
976                                                        SCSI_LOG_MLCOMPLETE_BITS);
977
978                         /*
979                          * if logging is enabled the failure will be printed
980                          * in scsi_log_completion(), so avoid duplicate messages
981                          */
982                         if (!level && __ratelimit(&_rs)) {
983                                 scsi_print_result(cmd, NULL, FAILED);
984                                 if (driver_byte(result) & DRIVER_SENSE)
985                                         scsi_print_sense(cmd);
986                                 scsi_print_command(cmd);
987                         }
988                 }
989                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
990                         return;
991                 /*FALLTHRU*/
992         case ACTION_REPREP:
993         requeue:
994                 /* Unprep the request and put it back at the head of the queue.
995                  * A new command will be prepared and issued.
996                  */
997                 if (q->mq_ops) {
998                         cmd->request->rq_flags &= ~RQF_DONTPREP;
999                         scsi_mq_uninit_cmd(cmd);
1000                         scsi_mq_requeue_cmd(cmd);
1001                 } else {
1002                         scsi_release_buffers(cmd);
1003                         scsi_requeue_command(q, cmd);
1004                 }
1005                 break;
1006         case ACTION_RETRY:
1007                 /* Retry the same command immediately */
1008                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1009                 break;
1010         case ACTION_DELAYED_RETRY:
1011                 /* Retry the same command after a delay */
1012                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1013                 break;
1014         }
1015 }
1016
1017 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1018 {
1019         int count;
1020
1021         /*
1022          * If sg table allocation fails, requeue request later.
1023          */
1024         if (unlikely(sg_alloc_table_chained(&sdb->table,
1025                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1026                 return BLKPREP_DEFER;
1027
1028         /* 
1029          * Next, walk the list, and fill in the addresses and sizes of
1030          * each segment.
1031          */
1032         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1033         BUG_ON(count > sdb->table.nents);
1034         sdb->table.nents = count;
1035         sdb->length = blk_rq_payload_bytes(req);
1036         return BLKPREP_OK;
1037 }
1038
1039 /*
1040  * Function:    scsi_init_io()
1041  *
1042  * Purpose:     SCSI I/O initialize function.
1043  *
1044  * Arguments:   cmd   - Command descriptor we wish to initialize
1045  *
1046  * Returns:     0 on success
1047  *              BLKPREP_DEFER if the failure is retryable
1048  *              BLKPREP_KILL if the failure is fatal
1049  */
1050 int scsi_init_io(struct scsi_cmnd *cmd)
1051 {
1052         struct scsi_device *sdev = cmd->device;
1053         struct request *rq = cmd->request;
1054         bool is_mq = (rq->mq_ctx != NULL);
1055         int error = BLKPREP_KILL;
1056
1057         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1058                 goto err_exit;
1059
1060         error = scsi_init_sgtable(rq, &cmd->sdb);
1061         if (error)
1062                 goto err_exit;
1063
1064         if (blk_bidi_rq(rq)) {
1065                 if (!rq->q->mq_ops) {
1066                         struct scsi_data_buffer *bidi_sdb =
1067                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1068                         if (!bidi_sdb) {
1069                                 error = BLKPREP_DEFER;
1070                                 goto err_exit;
1071                         }
1072
1073                         rq->next_rq->special = bidi_sdb;
1074                 }
1075
1076                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1077                 if (error)
1078                         goto err_exit;
1079         }
1080
1081         if (blk_integrity_rq(rq)) {
1082                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1083                 int ivecs, count;
1084
1085                 if (prot_sdb == NULL) {
1086                         /*
1087                          * This can happen if someone (e.g. multipath)
1088                          * queues a command to a device on an adapter
1089                          * that does not support DIX.
1090                          */
1091                         WARN_ON_ONCE(1);
1092                         error = BLKPREP_KILL;
1093                         goto err_exit;
1094                 }
1095
1096                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1097
1098                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1099                                 prot_sdb->table.sgl)) {
1100                         error = BLKPREP_DEFER;
1101                         goto err_exit;
1102                 }
1103
1104                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1105                                                 prot_sdb->table.sgl);
1106                 BUG_ON(unlikely(count > ivecs));
1107                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1108
1109                 cmd->prot_sdb = prot_sdb;
1110                 cmd->prot_sdb->table.nents = count;
1111         }
1112
1113         return BLKPREP_OK;
1114 err_exit:
1115         if (is_mq) {
1116                 scsi_mq_free_sgtables(cmd);
1117         } else {
1118                 scsi_release_buffers(cmd);
1119                 cmd->request->special = NULL;
1120                 scsi_put_command(cmd);
1121                 put_device(&sdev->sdev_gendev);
1122         }
1123         return error;
1124 }
1125 EXPORT_SYMBOL(scsi_init_io);
1126
1127 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1128 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1129 {
1130         struct scsi_device *sdev = cmd->device;
1131         struct Scsi_Host *shost = sdev->host;
1132         unsigned long flags;
1133
1134         if (shost->use_cmd_list) {
1135                 spin_lock_irqsave(&sdev->list_lock, flags);
1136                 list_add_tail(&cmd->list, &sdev->cmd_list);
1137                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1138         }
1139 }
1140
1141 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1143 {
1144         struct scsi_device *sdev = cmd->device;
1145         struct Scsi_Host *shost = sdev->host;
1146         unsigned long flags;
1147
1148         if (shost->use_cmd_list) {
1149                 spin_lock_irqsave(&sdev->list_lock, flags);
1150                 BUG_ON(list_empty(&cmd->list));
1151                 list_del_init(&cmd->list);
1152                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1153         }
1154 }
1155
1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1157 {
1158         void *buf = cmd->sense_buffer;
1159         void *prot = cmd->prot_sdb;
1160         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1161
1162         /* zero out the cmd, except for the embedded scsi_request */
1163         memset((char *)cmd + sizeof(cmd->req), 0,
1164                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1165
1166         cmd->device = dev;
1167         cmd->sense_buffer = buf;
1168         cmd->prot_sdb = prot;
1169         cmd->flags = unchecked_isa_dma;
1170         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1171         cmd->jiffies_at_alloc = jiffies;
1172
1173         scsi_add_cmd_to_list(cmd);
1174 }
1175
1176 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1177 {
1178         struct scsi_cmnd *cmd = req->special;
1179
1180         /*
1181          * Passthrough requests may transfer data, in which case they must
1182          * a bio attached to them.  Or they might contain a SCSI command
1183          * that does not transfer data, in which case they may optionally
1184          * submit a request without an attached bio.
1185          */
1186         if (req->bio) {
1187                 int ret = scsi_init_io(cmd);
1188                 if (unlikely(ret))
1189                         return ret;
1190         } else {
1191                 BUG_ON(blk_rq_bytes(req));
1192
1193                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194         }
1195
1196         cmd->cmd_len = scsi_req(req)->cmd_len;
1197         cmd->cmnd = scsi_req(req)->cmd;
1198         cmd->transfersize = blk_rq_bytes(req);
1199         cmd->allowed = scsi_req(req)->retries;
1200         return BLKPREP_OK;
1201 }
1202
1203 /*
1204  * Setup a normal block command.  These are simple request from filesystems
1205  * that still need to be translated to SCSI CDBs from the ULD.
1206  */
1207 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1208 {
1209         struct scsi_cmnd *cmd = req->special;
1210
1211         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1212                 int ret = sdev->handler->prep_fn(sdev, req);
1213                 if (ret != BLKPREP_OK)
1214                         return ret;
1215         }
1216
1217         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1218         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1219         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1220 }
1221
1222 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1223 {
1224         struct scsi_cmnd *cmd = req->special;
1225
1226         if (!blk_rq_bytes(req))
1227                 cmd->sc_data_direction = DMA_NONE;
1228         else if (rq_data_dir(req) == WRITE)
1229                 cmd->sc_data_direction = DMA_TO_DEVICE;
1230         else
1231                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1232
1233         if (blk_rq_is_scsi(req))
1234                 return scsi_setup_scsi_cmnd(sdev, req);
1235         else
1236                 return scsi_setup_fs_cmnd(sdev, req);
1237 }
1238
1239 static int
1240 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1241 {
1242         int ret = BLKPREP_OK;
1243
1244         /*
1245          * If the device is not in running state we will reject some
1246          * or all commands.
1247          */
1248         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1249                 switch (sdev->sdev_state) {
1250                 case SDEV_OFFLINE:
1251                 case SDEV_TRANSPORT_OFFLINE:
1252                         /*
1253                          * If the device is offline we refuse to process any
1254                          * commands.  The device must be brought online
1255                          * before trying any recovery commands.
1256                          */
1257                         sdev_printk(KERN_ERR, sdev,
1258                                     "rejecting I/O to offline device\n");
1259                         ret = BLKPREP_KILL;
1260                         break;
1261                 case SDEV_DEL:
1262                         /*
1263                          * If the device is fully deleted, we refuse to
1264                          * process any commands as well.
1265                          */
1266                         sdev_printk(KERN_ERR, sdev,
1267                                     "rejecting I/O to dead device\n");
1268                         ret = BLKPREP_KILL;
1269                         break;
1270                 case SDEV_BLOCK:
1271                 case SDEV_CREATED_BLOCK:
1272                         ret = BLKPREP_DEFER;
1273                         break;
1274                 case SDEV_QUIESCE:
1275                         /*
1276                          * If the devices is blocked we defer normal commands.
1277                          */
1278                         if (!(req->rq_flags & RQF_PREEMPT))
1279                                 ret = BLKPREP_DEFER;
1280                         break;
1281                 default:
1282                         /*
1283                          * For any other not fully online state we only allow
1284                          * special commands.  In particular any user initiated
1285                          * command is not allowed.
1286                          */
1287                         if (!(req->rq_flags & RQF_PREEMPT))
1288                                 ret = BLKPREP_KILL;
1289                         break;
1290                 }
1291         }
1292         return ret;
1293 }
1294
1295 static int
1296 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297 {
1298         struct scsi_device *sdev = q->queuedata;
1299
1300         switch (ret) {
1301         case BLKPREP_KILL:
1302         case BLKPREP_INVALID:
1303                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1304                 /* release the command and kill it */
1305                 if (req->special) {
1306                         struct scsi_cmnd *cmd = req->special;
1307                         scsi_release_buffers(cmd);
1308                         scsi_put_command(cmd);
1309                         put_device(&sdev->sdev_gendev);
1310                         req->special = NULL;
1311                 }
1312                 break;
1313         case BLKPREP_DEFER:
1314                 /*
1315                  * If we defer, the blk_peek_request() returns NULL, but the
1316                  * queue must be restarted, so we schedule a callback to happen
1317                  * shortly.
1318                  */
1319                 if (atomic_read(&sdev->device_busy) == 0)
1320                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1321                 break;
1322         default:
1323                 req->rq_flags |= RQF_DONTPREP;
1324         }
1325
1326         return ret;
1327 }
1328
1329 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1330 {
1331         struct scsi_device *sdev = q->queuedata;
1332         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1333         int ret;
1334
1335         ret = scsi_prep_state_check(sdev, req);
1336         if (ret != BLKPREP_OK)
1337                 goto out;
1338
1339         if (!req->special) {
1340                 /* Bail if we can't get a reference to the device */
1341                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1342                         ret = BLKPREP_DEFER;
1343                         goto out;
1344                 }
1345
1346                 scsi_init_command(sdev, cmd);
1347                 req->special = cmd;
1348         }
1349
1350         cmd->tag = req->tag;
1351         cmd->request = req;
1352         cmd->prot_op = SCSI_PROT_NORMAL;
1353
1354         ret = scsi_setup_cmnd(sdev, req);
1355 out:
1356         return scsi_prep_return(q, req, ret);
1357 }
1358
1359 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1360 {
1361         scsi_uninit_cmd(req->special);
1362 }
1363
1364 /*
1365  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1366  * return 0.
1367  *
1368  * Called with the queue_lock held.
1369  */
1370 static inline int scsi_dev_queue_ready(struct request_queue *q,
1371                                   struct scsi_device *sdev)
1372 {
1373         unsigned int busy;
1374
1375         busy = atomic_inc_return(&sdev->device_busy) - 1;
1376         if (atomic_read(&sdev->device_blocked)) {
1377                 if (busy)
1378                         goto out_dec;
1379
1380                 /*
1381                  * unblock after device_blocked iterates to zero
1382                  */
1383                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1384                         /*
1385                          * For the MQ case we take care of this in the caller.
1386                          */
1387                         if (!q->mq_ops)
1388                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1389                         goto out_dec;
1390                 }
1391                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1392                                    "unblocking device at zero depth\n"));
1393         }
1394
1395         if (busy >= sdev->queue_depth)
1396                 goto out_dec;
1397
1398         return 1;
1399 out_dec:
1400         atomic_dec(&sdev->device_busy);
1401         return 0;
1402 }
1403
1404 /*
1405  * scsi_target_queue_ready: checks if there we can send commands to target
1406  * @sdev: scsi device on starget to check.
1407  */
1408 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1409                                            struct scsi_device *sdev)
1410 {
1411         struct scsi_target *starget = scsi_target(sdev);
1412         unsigned int busy;
1413
1414         if (starget->single_lun) {
1415                 spin_lock_irq(shost->host_lock);
1416                 if (starget->starget_sdev_user &&
1417                     starget->starget_sdev_user != sdev) {
1418                         spin_unlock_irq(shost->host_lock);
1419                         return 0;
1420                 }
1421                 starget->starget_sdev_user = sdev;
1422                 spin_unlock_irq(shost->host_lock);
1423         }
1424
1425         if (starget->can_queue <= 0)
1426                 return 1;
1427
1428         busy = atomic_inc_return(&starget->target_busy) - 1;
1429         if (atomic_read(&starget->target_blocked) > 0) {
1430                 if (busy)
1431                         goto starved;
1432
1433                 /*
1434                  * unblock after target_blocked iterates to zero
1435                  */
1436                 if (atomic_dec_return(&starget->target_blocked) > 0)
1437                         goto out_dec;
1438
1439                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1440                                  "unblocking target at zero depth\n"));
1441         }
1442
1443         if (busy >= starget->can_queue)
1444                 goto starved;
1445
1446         return 1;
1447
1448 starved:
1449         spin_lock_irq(shost->host_lock);
1450         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1451         spin_unlock_irq(shost->host_lock);
1452 out_dec:
1453         if (starget->can_queue > 0)
1454                 atomic_dec(&starget->target_busy);
1455         return 0;
1456 }
1457
1458 /*
1459  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1460  * return 0. We must end up running the queue again whenever 0 is
1461  * returned, else IO can hang.
1462  */
1463 static inline int scsi_host_queue_ready(struct request_queue *q,
1464                                    struct Scsi_Host *shost,
1465                                    struct scsi_device *sdev)
1466 {
1467         unsigned int busy;
1468
1469         if (scsi_host_in_recovery(shost))
1470                 return 0;
1471
1472         busy = atomic_inc_return(&shost->host_busy) - 1;
1473         if (atomic_read(&shost->host_blocked) > 0) {
1474                 if (busy)
1475                         goto starved;
1476
1477                 /*
1478                  * unblock after host_blocked iterates to zero
1479                  */
1480                 if (atomic_dec_return(&shost->host_blocked) > 0)
1481                         goto out_dec;
1482
1483                 SCSI_LOG_MLQUEUE(3,
1484                         shost_printk(KERN_INFO, shost,
1485                                      "unblocking host at zero depth\n"));
1486         }
1487
1488         if (shost->can_queue > 0 && busy >= shost->can_queue)
1489                 goto starved;
1490         if (shost->host_self_blocked)
1491                 goto starved;
1492
1493         /* We're OK to process the command, so we can't be starved */
1494         if (!list_empty(&sdev->starved_entry)) {
1495                 spin_lock_irq(shost->host_lock);
1496                 if (!list_empty(&sdev->starved_entry))
1497                         list_del_init(&sdev->starved_entry);
1498                 spin_unlock_irq(shost->host_lock);
1499         }
1500
1501         return 1;
1502
1503 starved:
1504         spin_lock_irq(shost->host_lock);
1505         if (list_empty(&sdev->starved_entry))
1506                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1507         spin_unlock_irq(shost->host_lock);
1508 out_dec:
1509         atomic_dec(&shost->host_busy);
1510         return 0;
1511 }
1512
1513 /*
1514  * Busy state exporting function for request stacking drivers.
1515  *
1516  * For efficiency, no lock is taken to check the busy state of
1517  * shost/starget/sdev, since the returned value is not guaranteed and
1518  * may be changed after request stacking drivers call the function,
1519  * regardless of taking lock or not.
1520  *
1521  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1522  * needs to return 'not busy'. Otherwise, request stacking drivers
1523  * may hold requests forever.
1524  */
1525 static int scsi_lld_busy(struct request_queue *q)
1526 {
1527         struct scsi_device *sdev = q->queuedata;
1528         struct Scsi_Host *shost;
1529
1530         if (blk_queue_dying(q))
1531                 return 0;
1532
1533         shost = sdev->host;
1534
1535         /*
1536          * Ignore host/starget busy state.
1537          * Since block layer does not have a concept of fairness across
1538          * multiple queues, congestion of host/starget needs to be handled
1539          * in SCSI layer.
1540          */
1541         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1542                 return 1;
1543
1544         return 0;
1545 }
1546
1547 /*
1548  * Kill a request for a dead device
1549  */
1550 static void scsi_kill_request(struct request *req, struct request_queue *q)
1551 {
1552         struct scsi_cmnd *cmd = req->special;
1553         struct scsi_device *sdev;
1554         struct scsi_target *starget;
1555         struct Scsi_Host *shost;
1556
1557         blk_start_request(req);
1558
1559         scmd_printk(KERN_INFO, cmd, "killing request\n");
1560
1561         sdev = cmd->device;
1562         starget = scsi_target(sdev);
1563         shost = sdev->host;
1564         scsi_init_cmd_errh(cmd);
1565         cmd->result = DID_NO_CONNECT << 16;
1566         atomic_inc(&cmd->device->iorequest_cnt);
1567
1568         /*
1569          * SCSI request completion path will do scsi_device_unbusy(),
1570          * bump busy counts.  To bump the counters, we need to dance
1571          * with the locks as normal issue path does.
1572          */
1573         atomic_inc(&sdev->device_busy);
1574         atomic_inc(&shost->host_busy);
1575         if (starget->can_queue > 0)
1576                 atomic_inc(&starget->target_busy);
1577
1578         blk_complete_request(req);
1579 }
1580
1581 static void scsi_softirq_done(struct request *rq)
1582 {
1583         struct scsi_cmnd *cmd = rq->special;
1584         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1585         int disposition;
1586
1587         INIT_LIST_HEAD(&cmd->eh_entry);
1588
1589         atomic_inc(&cmd->device->iodone_cnt);
1590         if (cmd->result)
1591                 atomic_inc(&cmd->device->ioerr_cnt);
1592
1593         disposition = scsi_decide_disposition(cmd);
1594         if (disposition != SUCCESS &&
1595             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1596                 sdev_printk(KERN_ERR, cmd->device,
1597                             "timing out command, waited %lus\n",
1598                             wait_for/HZ);
1599                 disposition = SUCCESS;
1600         }
1601
1602         scsi_log_completion(cmd, disposition);
1603
1604         switch (disposition) {
1605                 case SUCCESS:
1606                         scsi_finish_command(cmd);
1607                         break;
1608                 case NEEDS_RETRY:
1609                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1610                         break;
1611                 case ADD_TO_MLQUEUE:
1612                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1613                         break;
1614                 default:
1615                         scsi_eh_scmd_add(cmd);
1616                         break;
1617         }
1618 }
1619
1620 /**
1621  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1622  * @cmd: command block we are dispatching.
1623  *
1624  * Return: nonzero return request was rejected and device's queue needs to be
1625  * plugged.
1626  */
1627 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1628 {
1629         struct Scsi_Host *host = cmd->device->host;
1630         int rtn = 0;
1631
1632         atomic_inc(&cmd->device->iorequest_cnt);
1633
1634         /* check if the device is still usable */
1635         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1636                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1637                  * returns an immediate error upwards, and signals
1638                  * that the device is no longer present */
1639                 cmd->result = DID_NO_CONNECT << 16;
1640                 goto done;
1641         }
1642
1643         /* Check to see if the scsi lld made this device blocked. */
1644         if (unlikely(scsi_device_blocked(cmd->device))) {
1645                 /*
1646                  * in blocked state, the command is just put back on
1647                  * the device queue.  The suspend state has already
1648                  * blocked the queue so future requests should not
1649                  * occur until the device transitions out of the
1650                  * suspend state.
1651                  */
1652                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1653                         "queuecommand : device blocked\n"));
1654                 return SCSI_MLQUEUE_DEVICE_BUSY;
1655         }
1656
1657         /* Store the LUN value in cmnd, if needed. */
1658         if (cmd->device->lun_in_cdb)
1659                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1660                                (cmd->device->lun << 5 & 0xe0);
1661
1662         scsi_log_send(cmd);
1663
1664         /*
1665          * Before we queue this command, check if the command
1666          * length exceeds what the host adapter can handle.
1667          */
1668         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1669                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1670                                "queuecommand : command too long. "
1671                                "cdb_size=%d host->max_cmd_len=%d\n",
1672                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1673                 cmd->result = (DID_ABORT << 16);
1674                 goto done;
1675         }
1676
1677         if (unlikely(host->shost_state == SHOST_DEL)) {
1678                 cmd->result = (DID_NO_CONNECT << 16);
1679                 goto done;
1680
1681         }
1682
1683         trace_scsi_dispatch_cmd_start(cmd);
1684         rtn = host->hostt->queuecommand(host, cmd);
1685         if (rtn) {
1686                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1687                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1688                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1689                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1690
1691                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1692                         "queuecommand : request rejected\n"));
1693         }
1694
1695         return rtn;
1696  done:
1697         cmd->scsi_done(cmd);
1698         return 0;
1699 }
1700
1701 /**
1702  * scsi_done - Invoke completion on finished SCSI command.
1703  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1704  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1705  *
1706  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1707  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1708  * calls blk_complete_request() for further processing.
1709  *
1710  * This function is interrupt context safe.
1711  */
1712 static void scsi_done(struct scsi_cmnd *cmd)
1713 {
1714         trace_scsi_dispatch_cmd_done(cmd);
1715         blk_complete_request(cmd->request);
1716 }
1717
1718 /*
1719  * Function:    scsi_request_fn()
1720  *
1721  * Purpose:     Main strategy routine for SCSI.
1722  *
1723  * Arguments:   q       - Pointer to actual queue.
1724  *
1725  * Returns:     Nothing
1726  *
1727  * Lock status: IO request lock assumed to be held when called.
1728  */
1729 static void scsi_request_fn(struct request_queue *q)
1730         __releases(q->queue_lock)
1731         __acquires(q->queue_lock)
1732 {
1733         struct scsi_device *sdev = q->queuedata;
1734         struct Scsi_Host *shost;
1735         struct scsi_cmnd *cmd;
1736         struct request *req;
1737
1738         /*
1739          * To start with, we keep looping until the queue is empty, or until
1740          * the host is no longer able to accept any more requests.
1741          */
1742         shost = sdev->host;
1743         for (;;) {
1744                 int rtn;
1745                 /*
1746                  * get next queueable request.  We do this early to make sure
1747                  * that the request is fully prepared even if we cannot
1748                  * accept it.
1749                  */
1750                 req = blk_peek_request(q);
1751                 if (!req)
1752                         break;
1753
1754                 if (unlikely(!scsi_device_online(sdev))) {
1755                         sdev_printk(KERN_ERR, sdev,
1756                                     "rejecting I/O to offline device\n");
1757                         scsi_kill_request(req, q);
1758                         continue;
1759                 }
1760
1761                 if (!scsi_dev_queue_ready(q, sdev))
1762                         break;
1763
1764                 /*
1765                  * Remove the request from the request list.
1766                  */
1767                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1768                         blk_start_request(req);
1769
1770                 spin_unlock_irq(q->queue_lock);
1771                 cmd = req->special;
1772                 if (unlikely(cmd == NULL)) {
1773                         printk(KERN_CRIT "impossible request in %s.\n"
1774                                          "please mail a stack trace to "
1775                                          "linux-scsi@vger.kernel.org\n",
1776                                          __func__);
1777                         blk_dump_rq_flags(req, "foo");
1778                         BUG();
1779                 }
1780
1781                 /*
1782                  * We hit this when the driver is using a host wide
1783                  * tag map. For device level tag maps the queue_depth check
1784                  * in the device ready fn would prevent us from trying
1785                  * to allocate a tag. Since the map is a shared host resource
1786                  * we add the dev to the starved list so it eventually gets
1787                  * a run when a tag is freed.
1788                  */
1789                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1790                         spin_lock_irq(shost->host_lock);
1791                         if (list_empty(&sdev->starved_entry))
1792                                 list_add_tail(&sdev->starved_entry,
1793                                               &shost->starved_list);
1794                         spin_unlock_irq(shost->host_lock);
1795                         goto not_ready;
1796                 }
1797
1798                 if (!scsi_target_queue_ready(shost, sdev))
1799                         goto not_ready;
1800
1801                 if (!scsi_host_queue_ready(q, shost, sdev))
1802                         goto host_not_ready;
1803         
1804                 if (sdev->simple_tags)
1805                         cmd->flags |= SCMD_TAGGED;
1806                 else
1807                         cmd->flags &= ~SCMD_TAGGED;
1808
1809                 /*
1810                  * Finally, initialize any error handling parameters, and set up
1811                  * the timers for timeouts.
1812                  */
1813                 scsi_init_cmd_errh(cmd);
1814
1815                 /*
1816                  * Dispatch the command to the low-level driver.
1817                  */
1818                 cmd->scsi_done = scsi_done;
1819                 rtn = scsi_dispatch_cmd(cmd);
1820                 if (rtn) {
1821                         scsi_queue_insert(cmd, rtn);
1822                         spin_lock_irq(q->queue_lock);
1823                         goto out_delay;
1824                 }
1825                 spin_lock_irq(q->queue_lock);
1826         }
1827
1828         return;
1829
1830  host_not_ready:
1831         if (scsi_target(sdev)->can_queue > 0)
1832                 atomic_dec(&scsi_target(sdev)->target_busy);
1833  not_ready:
1834         /*
1835          * lock q, handle tag, requeue req, and decrement device_busy. We
1836          * must return with queue_lock held.
1837          *
1838          * Decrementing device_busy without checking it is OK, as all such
1839          * cases (host limits or settings) should run the queue at some
1840          * later time.
1841          */
1842         spin_lock_irq(q->queue_lock);
1843         blk_requeue_request(q, req);
1844         atomic_dec(&sdev->device_busy);
1845 out_delay:
1846         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1847                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1848 }
1849
1850 static inline int prep_to_mq(int ret)
1851 {
1852         switch (ret) {
1853         case BLKPREP_OK:
1854                 return BLK_MQ_RQ_QUEUE_OK;
1855         case BLKPREP_DEFER:
1856                 return BLK_MQ_RQ_QUEUE_BUSY;
1857         default:
1858                 return BLK_MQ_RQ_QUEUE_ERROR;
1859         }
1860 }
1861
1862 static int scsi_mq_prep_fn(struct request *req)
1863 {
1864         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1865         struct scsi_device *sdev = req->q->queuedata;
1866         struct Scsi_Host *shost = sdev->host;
1867         unsigned char *sense_buf = cmd->sense_buffer;
1868         unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1869         struct scatterlist *sg;
1870
1871         /* zero out the cmd, except for the embedded scsi_request */
1872         memset((char *)cmd + sizeof(cmd->req), 0,
1873                 sizeof(*cmd) - sizeof(cmd->req) + shost->hostt->cmd_size);
1874
1875         req->special = cmd;
1876
1877         cmd->request = req;
1878         cmd->device = sdev;
1879         cmd->sense_buffer = sense_buf;
1880         cmd->flags = unchecked_isa_dma;
1881
1882         cmd->tag = req->tag;
1883
1884         cmd->prot_op = SCSI_PROT_NORMAL;
1885
1886         INIT_LIST_HEAD(&cmd->list);
1887         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1888         cmd->jiffies_at_alloc = jiffies;
1889
1890         scsi_add_cmd_to_list(cmd);
1891
1892         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1893         cmd->sdb.table.sgl = sg;
1894
1895         if (scsi_host_get_prot(shost)) {
1896                 cmd->prot_sdb = (void *)sg +
1897                         min_t(unsigned int,
1898                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1899                         sizeof(struct scatterlist);
1900                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1901
1902                 cmd->prot_sdb->table.sgl =
1903                         (struct scatterlist *)(cmd->prot_sdb + 1);
1904         }
1905
1906         if (blk_bidi_rq(req)) {
1907                 struct request *next_rq = req->next_rq;
1908                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1909
1910                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1911                 bidi_sdb->table.sgl =
1912                         (struct scatterlist *)(bidi_sdb + 1);
1913
1914                 next_rq->special = bidi_sdb;
1915         }
1916
1917         blk_mq_start_request(req);
1918
1919         return scsi_setup_cmnd(sdev, req);
1920 }
1921
1922 static void scsi_mq_done(struct scsi_cmnd *cmd)
1923 {
1924         trace_scsi_dispatch_cmd_done(cmd);
1925         blk_mq_complete_request(cmd->request);
1926 }
1927
1928 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1929                          const struct blk_mq_queue_data *bd)
1930 {
1931         struct request *req = bd->rq;
1932         struct request_queue *q = req->q;
1933         struct scsi_device *sdev = q->queuedata;
1934         struct Scsi_Host *shost = sdev->host;
1935         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1936         int ret;
1937         int reason;
1938
1939         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1940         if (ret != BLK_MQ_RQ_QUEUE_OK)
1941                 goto out;
1942
1943         ret = BLK_MQ_RQ_QUEUE_BUSY;
1944         if (!get_device(&sdev->sdev_gendev))
1945                 goto out;
1946
1947         if (!scsi_dev_queue_ready(q, sdev))
1948                 goto out_put_device;
1949         if (!scsi_target_queue_ready(shost, sdev))
1950                 goto out_dec_device_busy;
1951         if (!scsi_host_queue_ready(q, shost, sdev))
1952                 goto out_dec_target_busy;
1953
1954         if (!(req->rq_flags & RQF_DONTPREP)) {
1955                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1956                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1957                         goto out_dec_host_busy;
1958                 req->rq_flags |= RQF_DONTPREP;
1959         } else {
1960                 blk_mq_start_request(req);
1961         }
1962
1963         if (sdev->simple_tags)
1964                 cmd->flags |= SCMD_TAGGED;
1965         else
1966                 cmd->flags &= ~SCMD_TAGGED;
1967
1968         scsi_init_cmd_errh(cmd);
1969         cmd->scsi_done = scsi_mq_done;
1970
1971         reason = scsi_dispatch_cmd(cmd);
1972         if (reason) {
1973                 scsi_set_blocked(cmd, reason);
1974                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1975                 goto out_dec_host_busy;
1976         }
1977
1978         return BLK_MQ_RQ_QUEUE_OK;
1979
1980 out_dec_host_busy:
1981         atomic_dec(&shost->host_busy);
1982 out_dec_target_busy:
1983         if (scsi_target(sdev)->can_queue > 0)
1984                 atomic_dec(&scsi_target(sdev)->target_busy);
1985 out_dec_device_busy:
1986         atomic_dec(&sdev->device_busy);
1987 out_put_device:
1988         put_device(&sdev->sdev_gendev);
1989 out:
1990         switch (ret) {
1991         case BLK_MQ_RQ_QUEUE_BUSY:
1992                 if (atomic_read(&sdev->device_busy) == 0 &&
1993                     !scsi_device_blocked(sdev))
1994                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1995                 break;
1996         case BLK_MQ_RQ_QUEUE_ERROR:
1997                 /*
1998                  * Make sure to release all allocated ressources when
1999                  * we hit an error, as we will never see this command
2000                  * again.
2001                  */
2002                 if (req->rq_flags & RQF_DONTPREP)
2003                         scsi_mq_uninit_cmd(cmd);
2004                 break;
2005         default:
2006                 break;
2007         }
2008         return ret;
2009 }
2010
2011 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2012                 bool reserved)
2013 {
2014         if (reserved)
2015                 return BLK_EH_RESET_TIMER;
2016         return scsi_times_out(req);
2017 }
2018
2019 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2020                 unsigned int hctx_idx, unsigned int numa_node)
2021 {
2022         struct Scsi_Host *shost = set->driver_data;
2023         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2024         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2025
2026         if (unchecked_isa_dma)
2027                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2028         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2029                                                     GFP_KERNEL, numa_node);
2030         if (!cmd->sense_buffer)
2031                 return -ENOMEM;
2032         cmd->req.sense = cmd->sense_buffer;
2033         return 0;
2034 }
2035
2036 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2037                 unsigned int hctx_idx)
2038 {
2039         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2040
2041         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2042                                cmd->sense_buffer);
2043 }
2044
2045 static int scsi_map_queues(struct blk_mq_tag_set *set)
2046 {
2047         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2048
2049         if (shost->hostt->map_queues)
2050                 return shost->hostt->map_queues(shost);
2051         return blk_mq_map_queues(set);
2052 }
2053
2054 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2055 {
2056         struct device *host_dev;
2057         u64 bounce_limit = 0xffffffff;
2058
2059         if (shost->unchecked_isa_dma)
2060                 return BLK_BOUNCE_ISA;
2061         /*
2062          * Platforms with virtual-DMA translation
2063          * hardware have no practical limit.
2064          */
2065         if (!PCI_DMA_BUS_IS_PHYS)
2066                 return BLK_BOUNCE_ANY;
2067
2068         host_dev = scsi_get_device(shost);
2069         if (host_dev && host_dev->dma_mask)
2070                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2071
2072         return bounce_limit;
2073 }
2074
2075 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2076 {
2077         struct device *dev = shost->dma_dev;
2078
2079         /*
2080          * this limit is imposed by hardware restrictions
2081          */
2082         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2083                                         SG_MAX_SEGMENTS));
2084
2085         if (scsi_host_prot_dma(shost)) {
2086                 shost->sg_prot_tablesize =
2087                         min_not_zero(shost->sg_prot_tablesize,
2088                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2089                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2090                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2091         }
2092
2093         blk_queue_max_hw_sectors(q, shost->max_sectors);
2094         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2095         blk_queue_segment_boundary(q, shost->dma_boundary);
2096         dma_set_seg_boundary(dev, shost->dma_boundary);
2097
2098         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2099
2100         if (!shost->use_clustering)
2101                 q->limits.cluster = 0;
2102
2103         /*
2104          * set a reasonable default alignment on word boundaries: the
2105          * host and device may alter it using
2106          * blk_queue_update_dma_alignment() later.
2107          */
2108         blk_queue_dma_alignment(q, 0x03);
2109 }
2110 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2111
2112 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2113 {
2114         struct Scsi_Host *shost = q->rq_alloc_data;
2115         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2116         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2117
2118         memset(cmd, 0, sizeof(*cmd));
2119
2120         if (unchecked_isa_dma)
2121                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2122         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2123                                                     NUMA_NO_NODE);
2124         if (!cmd->sense_buffer)
2125                 goto fail;
2126         cmd->req.sense = cmd->sense_buffer;
2127
2128         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2129                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2130                 if (!cmd->prot_sdb)
2131                         goto fail_free_sense;
2132         }
2133
2134         return 0;
2135
2136 fail_free_sense:
2137         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2138 fail:
2139         return -ENOMEM;
2140 }
2141
2142 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2143 {
2144         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2145
2146         if (cmd->prot_sdb)
2147                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2148         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2149                                cmd->sense_buffer);
2150 }
2151
2152 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2153 {
2154         struct Scsi_Host *shost = sdev->host;
2155         struct request_queue *q;
2156
2157         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2158         if (!q)
2159                 return NULL;
2160         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2161         q->rq_alloc_data = shost;
2162         q->request_fn = scsi_request_fn;
2163         q->init_rq_fn = scsi_init_rq;
2164         q->exit_rq_fn = scsi_exit_rq;
2165
2166         if (blk_init_allocated_queue(q) < 0) {
2167                 blk_cleanup_queue(q);
2168                 return NULL;
2169         }
2170
2171         __scsi_init_queue(shost, q);
2172         blk_queue_prep_rq(q, scsi_prep_fn);
2173         blk_queue_unprep_rq(q, scsi_unprep_fn);
2174         blk_queue_softirq_done(q, scsi_softirq_done);
2175         blk_queue_rq_timed_out(q, scsi_times_out);
2176         blk_queue_lld_busy(q, scsi_lld_busy);
2177         return q;
2178 }
2179
2180 static const struct blk_mq_ops scsi_mq_ops = {
2181         .queue_rq       = scsi_queue_rq,
2182         .complete       = scsi_softirq_done,
2183         .timeout        = scsi_timeout,
2184 #ifdef CONFIG_BLK_DEBUG_FS
2185         .show_rq        = scsi_show_rq,
2186 #endif
2187         .init_request   = scsi_init_request,
2188         .exit_request   = scsi_exit_request,
2189         .map_queues     = scsi_map_queues,
2190 };
2191
2192 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2193 {
2194         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2195         if (IS_ERR(sdev->request_queue))
2196                 return NULL;
2197
2198         sdev->request_queue->queuedata = sdev;
2199         __scsi_init_queue(sdev->host, sdev->request_queue);
2200         return sdev->request_queue;
2201 }
2202
2203 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2204 {
2205         unsigned int cmd_size, sgl_size, tbl_size;
2206
2207         tbl_size = shost->sg_tablesize;
2208         if (tbl_size > SG_CHUNK_SIZE)
2209                 tbl_size = SG_CHUNK_SIZE;
2210         sgl_size = tbl_size * sizeof(struct scatterlist);
2211         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2212         if (scsi_host_get_prot(shost))
2213                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2214
2215         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2216         shost->tag_set.ops = &scsi_mq_ops;
2217         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2218         shost->tag_set.queue_depth = shost->can_queue;
2219         shost->tag_set.cmd_size = cmd_size;
2220         shost->tag_set.numa_node = NUMA_NO_NODE;
2221         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2222         shost->tag_set.flags |=
2223                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2224         shost->tag_set.driver_data = shost;
2225
2226         return blk_mq_alloc_tag_set(&shost->tag_set);
2227 }
2228
2229 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2230 {
2231         blk_mq_free_tag_set(&shost->tag_set);
2232 }
2233
2234 /**
2235  * scsi_device_from_queue - return sdev associated with a request_queue
2236  * @q: The request queue to return the sdev from
2237  *
2238  * Return the sdev associated with a request queue or NULL if the
2239  * request_queue does not reference a SCSI device.
2240  */
2241 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2242 {
2243         struct scsi_device *sdev = NULL;
2244
2245         if (q->mq_ops) {
2246                 if (q->mq_ops == &scsi_mq_ops)
2247                         sdev = q->queuedata;
2248         } else if (q->request_fn == scsi_request_fn)
2249                 sdev = q->queuedata;
2250         if (!sdev || !get_device(&sdev->sdev_gendev))
2251                 sdev = NULL;
2252
2253         return sdev;
2254 }
2255 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2256
2257 /*
2258  * Function:    scsi_block_requests()
2259  *
2260  * Purpose:     Utility function used by low-level drivers to prevent further
2261  *              commands from being queued to the device.
2262  *
2263  * Arguments:   shost       - Host in question
2264  *
2265  * Returns:     Nothing
2266  *
2267  * Lock status: No locks are assumed held.
2268  *
2269  * Notes:       There is no timer nor any other means by which the requests
2270  *              get unblocked other than the low-level driver calling
2271  *              scsi_unblock_requests().
2272  */
2273 void scsi_block_requests(struct Scsi_Host *shost)
2274 {
2275         shost->host_self_blocked = 1;
2276 }
2277 EXPORT_SYMBOL(scsi_block_requests);
2278
2279 /*
2280  * Function:    scsi_unblock_requests()
2281  *
2282  * Purpose:     Utility function used by low-level drivers to allow further
2283  *              commands from being queued to the device.
2284  *
2285  * Arguments:   shost       - Host in question
2286  *
2287  * Returns:     Nothing
2288  *
2289  * Lock status: No locks are assumed held.
2290  *
2291  * Notes:       There is no timer nor any other means by which the requests
2292  *              get unblocked other than the low-level driver calling
2293  *              scsi_unblock_requests().
2294  *
2295  *              This is done as an API function so that changes to the
2296  *              internals of the scsi mid-layer won't require wholesale
2297  *              changes to drivers that use this feature.
2298  */
2299 void scsi_unblock_requests(struct Scsi_Host *shost)
2300 {
2301         shost->host_self_blocked = 0;
2302         scsi_run_host_queues(shost);
2303 }
2304 EXPORT_SYMBOL(scsi_unblock_requests);
2305
2306 int __init scsi_init_queue(void)
2307 {
2308         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2309                                            sizeof(struct scsi_data_buffer),
2310                                            0, 0, NULL);
2311         if (!scsi_sdb_cache) {
2312                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2313                 return -ENOMEM;
2314         }
2315
2316         return 0;
2317 }
2318
2319 void scsi_exit_queue(void)
2320 {
2321         kmem_cache_destroy(scsi_sense_cache);
2322         kmem_cache_destroy(scsi_sense_isadma_cache);
2323         kmem_cache_destroy(scsi_sdb_cache);
2324 }
2325
2326 /**
2327  *      scsi_mode_select - issue a mode select
2328  *      @sdev:  SCSI device to be queried
2329  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2330  *      @sp:    Save page bit (0 == don't save, 1 == save)
2331  *      @modepage: mode page being requested
2332  *      @buffer: request buffer (may not be smaller than eight bytes)
2333  *      @len:   length of request buffer.
2334  *      @timeout: command timeout
2335  *      @retries: number of retries before failing
2336  *      @data: returns a structure abstracting the mode header data
2337  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2338  *              must be SCSI_SENSE_BUFFERSIZE big.
2339  *
2340  *      Returns zero if successful; negative error number or scsi
2341  *      status on error
2342  *
2343  */
2344 int
2345 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2346                  unsigned char *buffer, int len, int timeout, int retries,
2347                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2348 {
2349         unsigned char cmd[10];
2350         unsigned char *real_buffer;
2351         int ret;
2352
2353         memset(cmd, 0, sizeof(cmd));
2354         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2355
2356         if (sdev->use_10_for_ms) {
2357                 if (len > 65535)
2358                         return -EINVAL;
2359                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2360                 if (!real_buffer)
2361                         return -ENOMEM;
2362                 memcpy(real_buffer + 8, buffer, len);
2363                 len += 8;
2364                 real_buffer[0] = 0;
2365                 real_buffer[1] = 0;
2366                 real_buffer[2] = data->medium_type;
2367                 real_buffer[3] = data->device_specific;
2368                 real_buffer[4] = data->longlba ? 0x01 : 0;
2369                 real_buffer[5] = 0;
2370                 real_buffer[6] = data->block_descriptor_length >> 8;
2371                 real_buffer[7] = data->block_descriptor_length;
2372
2373                 cmd[0] = MODE_SELECT_10;
2374                 cmd[7] = len >> 8;
2375                 cmd[8] = len;
2376         } else {
2377                 if (len > 255 || data->block_descriptor_length > 255 ||
2378                     data->longlba)
2379                         return -EINVAL;
2380
2381                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2382                 if (!real_buffer)
2383                         return -ENOMEM;
2384                 memcpy(real_buffer + 4, buffer, len);
2385                 len += 4;
2386                 real_buffer[0] = 0;
2387                 real_buffer[1] = data->medium_type;
2388                 real_buffer[2] = data->device_specific;
2389                 real_buffer[3] = data->block_descriptor_length;
2390                 
2391
2392                 cmd[0] = MODE_SELECT;
2393                 cmd[4] = len;
2394         }
2395
2396         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2397                                sshdr, timeout, retries, NULL);
2398         kfree(real_buffer);
2399         return ret;
2400 }
2401 EXPORT_SYMBOL_GPL(scsi_mode_select);
2402
2403 /**
2404  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2405  *      @sdev:  SCSI device to be queried
2406  *      @dbd:   set if mode sense will allow block descriptors to be returned
2407  *      @modepage: mode page being requested
2408  *      @buffer: request buffer (may not be smaller than eight bytes)
2409  *      @len:   length of request buffer.
2410  *      @timeout: command timeout
2411  *      @retries: number of retries before failing
2412  *      @data: returns a structure abstracting the mode header data
2413  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2414  *              must be SCSI_SENSE_BUFFERSIZE big.
2415  *
2416  *      Returns zero if unsuccessful, or the header offset (either 4
2417  *      or 8 depending on whether a six or ten byte command was
2418  *      issued) if successful.
2419  */
2420 int
2421 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2422                   unsigned char *buffer, int len, int timeout, int retries,
2423                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2424 {
2425         unsigned char cmd[12];
2426         int use_10_for_ms;
2427         int header_length;
2428         int result, retry_count = retries;
2429         struct scsi_sense_hdr my_sshdr;
2430
2431         memset(data, 0, sizeof(*data));
2432         memset(&cmd[0], 0, 12);
2433         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2434         cmd[2] = modepage;
2435
2436         /* caller might not be interested in sense, but we need it */
2437         if (!sshdr)
2438                 sshdr = &my_sshdr;
2439
2440  retry:
2441         use_10_for_ms = sdev->use_10_for_ms;
2442
2443         if (use_10_for_ms) {
2444                 if (len < 8)
2445                         len = 8;
2446
2447                 cmd[0] = MODE_SENSE_10;
2448                 cmd[8] = len;
2449                 header_length = 8;
2450         } else {
2451                 if (len < 4)
2452                         len = 4;
2453
2454                 cmd[0] = MODE_SENSE;
2455                 cmd[4] = len;
2456                 header_length = 4;
2457         }
2458
2459         memset(buffer, 0, len);
2460
2461         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2462                                   sshdr, timeout, retries, NULL);
2463
2464         /* This code looks awful: what it's doing is making sure an
2465          * ILLEGAL REQUEST sense return identifies the actual command
2466          * byte as the problem.  MODE_SENSE commands can return
2467          * ILLEGAL REQUEST if the code page isn't supported */
2468
2469         if (use_10_for_ms && !scsi_status_is_good(result) &&
2470             (driver_byte(result) & DRIVER_SENSE)) {
2471                 if (scsi_sense_valid(sshdr)) {
2472                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2473                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2474                                 /* 
2475                                  * Invalid command operation code
2476                                  */
2477                                 sdev->use_10_for_ms = 0;
2478                                 goto retry;
2479                         }
2480                 }
2481         }
2482
2483         if(scsi_status_is_good(result)) {
2484                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2485                              (modepage == 6 || modepage == 8))) {
2486                         /* Initio breakage? */
2487                         header_length = 0;
2488                         data->length = 13;
2489                         data->medium_type = 0;
2490                         data->device_specific = 0;
2491                         data->longlba = 0;
2492                         data->block_descriptor_length = 0;
2493                 } else if(use_10_for_ms) {
2494                         data->length = buffer[0]*256 + buffer[1] + 2;
2495                         data->medium_type = buffer[2];
2496                         data->device_specific = buffer[3];
2497                         data->longlba = buffer[4] & 0x01;
2498                         data->block_descriptor_length = buffer[6]*256
2499                                 + buffer[7];
2500                 } else {
2501                         data->length = buffer[0] + 1;
2502                         data->medium_type = buffer[1];
2503                         data->device_specific = buffer[2];
2504                         data->block_descriptor_length = buffer[3];
2505                 }
2506                 data->header_length = header_length;
2507         } else if ((status_byte(result) == CHECK_CONDITION) &&
2508                    scsi_sense_valid(sshdr) &&
2509                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2510                 retry_count--;
2511                 goto retry;
2512         }
2513
2514         return result;
2515 }
2516 EXPORT_SYMBOL(scsi_mode_sense);
2517
2518 /**
2519  *      scsi_test_unit_ready - test if unit is ready
2520  *      @sdev:  scsi device to change the state of.
2521  *      @timeout: command timeout
2522  *      @retries: number of retries before failing
2523  *      @sshdr: outpout pointer for decoded sense information.
2524  *
2525  *      Returns zero if unsuccessful or an error if TUR failed.  For
2526  *      removable media, UNIT_ATTENTION sets ->changed flag.
2527  **/
2528 int
2529 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2530                      struct scsi_sense_hdr *sshdr)
2531 {
2532         char cmd[] = {
2533                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2534         };
2535         int result;
2536
2537         /* try to eat the UNIT_ATTENTION if there are enough retries */
2538         do {
2539                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2540                                           timeout, retries, NULL);
2541                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2542                     sshdr->sense_key == UNIT_ATTENTION)
2543                         sdev->changed = 1;
2544         } while (scsi_sense_valid(sshdr) &&
2545                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2546
2547         return result;
2548 }
2549 EXPORT_SYMBOL(scsi_test_unit_ready);
2550
2551 /**
2552  *      scsi_device_set_state - Take the given device through the device state model.
2553  *      @sdev:  scsi device to change the state of.
2554  *      @state: state to change to.
2555  *
2556  *      Returns zero if unsuccessful or an error if the requested 
2557  *      transition is illegal.
2558  */
2559 int
2560 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2561 {
2562         enum scsi_device_state oldstate = sdev->sdev_state;
2563
2564         if (state == oldstate)
2565                 return 0;
2566
2567         switch (state) {
2568         case SDEV_CREATED:
2569                 switch (oldstate) {
2570                 case SDEV_CREATED_BLOCK:
2571                         break;
2572                 default:
2573                         goto illegal;
2574                 }
2575                 break;
2576                         
2577         case SDEV_RUNNING:
2578                 switch (oldstate) {
2579                 case SDEV_CREATED:
2580                 case SDEV_OFFLINE:
2581                 case SDEV_TRANSPORT_OFFLINE:
2582                 case SDEV_QUIESCE:
2583                 case SDEV_BLOCK:
2584                         break;
2585                 default:
2586                         goto illegal;
2587                 }
2588                 break;
2589
2590         case SDEV_QUIESCE:
2591                 switch (oldstate) {
2592                 case SDEV_RUNNING:
2593                 case SDEV_OFFLINE:
2594                 case SDEV_TRANSPORT_OFFLINE:
2595                         break;
2596                 default:
2597                         goto illegal;
2598                 }
2599                 break;
2600
2601         case SDEV_OFFLINE:
2602         case SDEV_TRANSPORT_OFFLINE:
2603                 switch (oldstate) {
2604                 case SDEV_CREATED:
2605                 case SDEV_RUNNING:
2606                 case SDEV_QUIESCE:
2607                 case SDEV_BLOCK:
2608                         break;
2609                 default:
2610                         goto illegal;
2611                 }
2612                 break;
2613
2614         case SDEV_BLOCK:
2615                 switch (oldstate) {
2616                 case SDEV_RUNNING:
2617                 case SDEV_CREATED_BLOCK:
2618                         break;
2619                 default:
2620                         goto illegal;
2621                 }
2622                 break;
2623
2624         case SDEV_CREATED_BLOCK:
2625                 switch (oldstate) {
2626                 case SDEV_CREATED:
2627                         break;
2628                 default:
2629                         goto illegal;
2630                 }
2631                 break;
2632
2633         case SDEV_CANCEL:
2634                 switch (oldstate) {
2635                 case SDEV_CREATED:
2636                 case SDEV_RUNNING:
2637                 case SDEV_QUIESCE:
2638                 case SDEV_OFFLINE:
2639                 case SDEV_TRANSPORT_OFFLINE:
2640                         break;
2641                 default:
2642                         goto illegal;
2643                 }
2644                 break;
2645
2646         case SDEV_DEL:
2647                 switch (oldstate) {
2648                 case SDEV_CREATED:
2649                 case SDEV_RUNNING:
2650                 case SDEV_OFFLINE:
2651                 case SDEV_TRANSPORT_OFFLINE:
2652                 case SDEV_CANCEL:
2653                 case SDEV_BLOCK:
2654                 case SDEV_CREATED_BLOCK:
2655                         break;
2656                 default:
2657                         goto illegal;
2658                 }
2659                 break;
2660
2661         }
2662         sdev->sdev_state = state;
2663         return 0;
2664
2665  illegal:
2666         SCSI_LOG_ERROR_RECOVERY(1,
2667                                 sdev_printk(KERN_ERR, sdev,
2668                                             "Illegal state transition %s->%s",
2669                                             scsi_device_state_name(oldstate),
2670                                             scsi_device_state_name(state))
2671                                 );
2672         return -EINVAL;
2673 }
2674 EXPORT_SYMBOL(scsi_device_set_state);
2675
2676 /**
2677  *      sdev_evt_emit - emit a single SCSI device uevent
2678  *      @sdev: associated SCSI device
2679  *      @evt: event to emit
2680  *
2681  *      Send a single uevent (scsi_event) to the associated scsi_device.
2682  */
2683 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2684 {
2685         int idx = 0;
2686         char *envp[3];
2687
2688         switch (evt->evt_type) {
2689         case SDEV_EVT_MEDIA_CHANGE:
2690                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2691                 break;
2692         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2693                 scsi_rescan_device(&sdev->sdev_gendev);
2694                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2695                 break;
2696         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2697                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2698                 break;
2699         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2700                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2701                 break;
2702         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2703                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2704                 break;
2705         case SDEV_EVT_LUN_CHANGE_REPORTED:
2706                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2707                 break;
2708         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2709                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2710                 break;
2711         default:
2712                 /* do nothing */
2713                 break;
2714         }
2715
2716         envp[idx++] = NULL;
2717
2718         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2719 }
2720
2721 /**
2722  *      sdev_evt_thread - send a uevent for each scsi event
2723  *      @work: work struct for scsi_device
2724  *
2725  *      Dispatch queued events to their associated scsi_device kobjects
2726  *      as uevents.
2727  */
2728 void scsi_evt_thread(struct work_struct *work)
2729 {
2730         struct scsi_device *sdev;
2731         enum scsi_device_event evt_type;
2732         LIST_HEAD(event_list);
2733
2734         sdev = container_of(work, struct scsi_device, event_work);
2735
2736         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2737                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2738                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2739
2740         while (1) {
2741                 struct scsi_event *evt;
2742                 struct list_head *this, *tmp;
2743                 unsigned long flags;
2744
2745                 spin_lock_irqsave(&sdev->list_lock, flags);
2746                 list_splice_init(&sdev->event_list, &event_list);
2747                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2748
2749                 if (list_empty(&event_list))
2750                         break;
2751
2752                 list_for_each_safe(this, tmp, &event_list) {
2753                         evt = list_entry(this, struct scsi_event, node);
2754                         list_del(&evt->node);
2755                         scsi_evt_emit(sdev, evt);
2756                         kfree(evt);
2757                 }
2758         }
2759 }
2760
2761 /**
2762  *      sdev_evt_send - send asserted event to uevent thread
2763  *      @sdev: scsi_device event occurred on
2764  *      @evt: event to send
2765  *
2766  *      Assert scsi device event asynchronously.
2767  */
2768 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2769 {
2770         unsigned long flags;
2771
2772 #if 0
2773         /* FIXME: currently this check eliminates all media change events
2774          * for polled devices.  Need to update to discriminate between AN
2775          * and polled events */
2776         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2777                 kfree(evt);
2778                 return;
2779         }
2780 #endif
2781
2782         spin_lock_irqsave(&sdev->list_lock, flags);
2783         list_add_tail(&evt->node, &sdev->event_list);
2784         schedule_work(&sdev->event_work);
2785         spin_unlock_irqrestore(&sdev->list_lock, flags);
2786 }
2787 EXPORT_SYMBOL_GPL(sdev_evt_send);
2788
2789 /**
2790  *      sdev_evt_alloc - allocate a new scsi event
2791  *      @evt_type: type of event to allocate
2792  *      @gfpflags: GFP flags for allocation
2793  *
2794  *      Allocates and returns a new scsi_event.
2795  */
2796 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2797                                   gfp_t gfpflags)
2798 {
2799         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2800         if (!evt)
2801                 return NULL;
2802
2803         evt->evt_type = evt_type;
2804         INIT_LIST_HEAD(&evt->node);
2805
2806         /* evt_type-specific initialization, if any */
2807         switch (evt_type) {
2808         case SDEV_EVT_MEDIA_CHANGE:
2809         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2810         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2811         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2812         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2813         case SDEV_EVT_LUN_CHANGE_REPORTED:
2814         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2815         default:
2816                 /* do nothing */
2817                 break;
2818         }
2819
2820         return evt;
2821 }
2822 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2823
2824 /**
2825  *      sdev_evt_send_simple - send asserted event to uevent thread
2826  *      @sdev: scsi_device event occurred on
2827  *      @evt_type: type of event to send
2828  *      @gfpflags: GFP flags for allocation
2829  *
2830  *      Assert scsi device event asynchronously, given an event type.
2831  */
2832 void sdev_evt_send_simple(struct scsi_device *sdev,
2833                           enum scsi_device_event evt_type, gfp_t gfpflags)
2834 {
2835         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2836         if (!evt) {
2837                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2838                             evt_type);
2839                 return;
2840         }
2841
2842         sdev_evt_send(sdev, evt);
2843 }
2844 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2845
2846 /**
2847  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2848  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2849  */
2850 static int scsi_request_fn_active(struct scsi_device *sdev)
2851 {
2852         struct request_queue *q = sdev->request_queue;
2853         int request_fn_active;
2854
2855         WARN_ON_ONCE(sdev->host->use_blk_mq);
2856
2857         spin_lock_irq(q->queue_lock);
2858         request_fn_active = q->request_fn_active;
2859         spin_unlock_irq(q->queue_lock);
2860
2861         return request_fn_active;
2862 }
2863
2864 /**
2865  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2866  * @sdev: SCSI device pointer.
2867  *
2868  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2869  * invoked from scsi_request_fn() have finished.
2870  */
2871 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2872 {
2873         WARN_ON_ONCE(sdev->host->use_blk_mq);
2874
2875         while (scsi_request_fn_active(sdev))
2876                 msleep(20);
2877 }
2878
2879 /**
2880  *      scsi_device_quiesce - Block user issued commands.
2881  *      @sdev:  scsi device to quiesce.
2882  *
2883  *      This works by trying to transition to the SDEV_QUIESCE state
2884  *      (which must be a legal transition).  When the device is in this
2885  *      state, only special requests will be accepted, all others will
2886  *      be deferred.  Since special requests may also be requeued requests,
2887  *      a successful return doesn't guarantee the device will be 
2888  *      totally quiescent.
2889  *
2890  *      Must be called with user context, may sleep.
2891  *
2892  *      Returns zero if unsuccessful or an error if not.
2893  */
2894 int
2895 scsi_device_quiesce(struct scsi_device *sdev)
2896 {
2897         int err;
2898
2899         mutex_lock(&sdev->state_mutex);
2900         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2901         mutex_unlock(&sdev->state_mutex);
2902
2903         if (err)
2904                 return err;
2905
2906         scsi_run_queue(sdev->request_queue);
2907         while (atomic_read(&sdev->device_busy)) {
2908                 msleep_interruptible(200);
2909                 scsi_run_queue(sdev->request_queue);
2910         }
2911         return 0;
2912 }
2913 EXPORT_SYMBOL(scsi_device_quiesce);
2914
2915 /**
2916  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2917  *      @sdev:  scsi device to resume.
2918  *
2919  *      Moves the device from quiesced back to running and restarts the
2920  *      queues.
2921  *
2922  *      Must be called with user context, may sleep.
2923  */
2924 void scsi_device_resume(struct scsi_device *sdev)
2925 {
2926         /* check if the device state was mutated prior to resume, and if
2927          * so assume the state is being managed elsewhere (for example
2928          * device deleted during suspend)
2929          */
2930         mutex_lock(&sdev->state_mutex);
2931         if (sdev->sdev_state == SDEV_QUIESCE &&
2932             scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2933                 scsi_run_queue(sdev->request_queue);
2934         mutex_unlock(&sdev->state_mutex);
2935 }
2936 EXPORT_SYMBOL(scsi_device_resume);
2937
2938 static void
2939 device_quiesce_fn(struct scsi_device *sdev, void *data)
2940 {
2941         scsi_device_quiesce(sdev);
2942 }
2943
2944 void
2945 scsi_target_quiesce(struct scsi_target *starget)
2946 {
2947         starget_for_each_device(starget, NULL, device_quiesce_fn);
2948 }
2949 EXPORT_SYMBOL(scsi_target_quiesce);
2950
2951 static void
2952 device_resume_fn(struct scsi_device *sdev, void *data)
2953 {
2954         scsi_device_resume(sdev);
2955 }
2956
2957 void
2958 scsi_target_resume(struct scsi_target *starget)
2959 {
2960         starget_for_each_device(starget, NULL, device_resume_fn);
2961 }
2962 EXPORT_SYMBOL(scsi_target_resume);
2963
2964 /**
2965  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2966  * @sdev: device to block
2967  *
2968  * Pause SCSI command processing on the specified device. Does not sleep.
2969  *
2970  * Returns zero if successful or a negative error code upon failure.
2971  *
2972  * Notes:
2973  * This routine transitions the device to the SDEV_BLOCK state (which must be
2974  * a legal transition). When the device is in this state, command processing
2975  * is paused until the device leaves the SDEV_BLOCK state. See also
2976  * scsi_internal_device_unblock_nowait().
2977  */
2978 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2979 {
2980         struct request_queue *q = sdev->request_queue;
2981         unsigned long flags;
2982         int err = 0;
2983
2984         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2985         if (err) {
2986                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2987
2988                 if (err)
2989                         return err;
2990         }
2991
2992         /* 
2993          * The device has transitioned to SDEV_BLOCK.  Stop the
2994          * block layer from calling the midlayer with this device's
2995          * request queue. 
2996          */
2997         if (q->mq_ops) {
2998                 blk_mq_stop_hw_queues(q);
2999         } else {
3000                 spin_lock_irqsave(q->queue_lock, flags);
3001                 blk_stop_queue(q);
3002                 spin_unlock_irqrestore(q->queue_lock, flags);
3003         }
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3008
3009 /**
3010  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3011  * @sdev: device to block
3012  *
3013  * Pause SCSI command processing on the specified device and wait until all
3014  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3015  *
3016  * Returns zero if successful or a negative error code upon failure.
3017  *
3018  * Note:
3019  * This routine transitions the device to the SDEV_BLOCK state (which must be
3020  * a legal transition). When the device is in this state, command processing
3021  * is paused until the device leaves the SDEV_BLOCK state. See also
3022  * scsi_internal_device_unblock().
3023  *
3024  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3025  * scsi_internal_device_block() has blocked a SCSI device and also
3026  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3027  */
3028 static int scsi_internal_device_block(struct scsi_device *sdev)
3029 {
3030         struct request_queue *q = sdev->request_queue;
3031         int err;
3032
3033         mutex_lock(&sdev->state_mutex);
3034         err = scsi_internal_device_block_nowait(sdev);
3035         if (err == 0) {
3036                 if (q->mq_ops)
3037                         blk_mq_quiesce_queue(q);
3038                 else
3039                         scsi_wait_for_queuecommand(sdev);
3040         }
3041         mutex_unlock(&sdev->state_mutex);
3042
3043         return err;
3044 }
3045  
3046 void scsi_start_queue(struct scsi_device *sdev)
3047 {
3048         struct request_queue *q = sdev->request_queue;
3049         unsigned long flags;
3050
3051         if (q->mq_ops) {
3052                 blk_mq_start_stopped_hw_queues(q, false);
3053         } else {
3054                 spin_lock_irqsave(q->queue_lock, flags);
3055                 blk_start_queue(q);
3056                 spin_unlock_irqrestore(q->queue_lock, flags);
3057         }
3058 }
3059
3060 /**
3061  * scsi_internal_device_unblock_nowait - resume a device after a block request
3062  * @sdev:       device to resume
3063  * @new_state:  state to set the device to after unblocking
3064  *
3065  * Restart the device queue for a previously suspended SCSI device. Does not
3066  * sleep.
3067  *
3068  * Returns zero if successful or a negative error code upon failure.
3069  *
3070  * Notes:
3071  * This routine transitions the device to the SDEV_RUNNING state or to one of
3072  * the offline states (which must be a legal transition) allowing the midlayer
3073  * to goose the queue for this device.
3074  */
3075 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3076                                         enum scsi_device_state new_state)
3077 {
3078         /*
3079          * Try to transition the scsi device to SDEV_RUNNING or one of the
3080          * offlined states and goose the device queue if successful.
3081          */
3082         if ((sdev->sdev_state == SDEV_BLOCK) ||
3083             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3084                 sdev->sdev_state = new_state;
3085         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3086                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3087                     new_state == SDEV_OFFLINE)
3088                         sdev->sdev_state = new_state;
3089                 else
3090                         sdev->sdev_state = SDEV_CREATED;
3091         } else if (sdev->sdev_state != SDEV_CANCEL &&
3092                  sdev->sdev_state != SDEV_OFFLINE)
3093                 return -EINVAL;
3094
3095         scsi_start_queue(sdev);
3096
3097         return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3100
3101 /**
3102  * scsi_internal_device_unblock - resume a device after a block request
3103  * @sdev:       device to resume
3104  * @new_state:  state to set the device to after unblocking
3105  *
3106  * Restart the device queue for a previously suspended SCSI device. May sleep.
3107  *
3108  * Returns zero if successful or a negative error code upon failure.
3109  *
3110  * Notes:
3111  * This routine transitions the device to the SDEV_RUNNING state or to one of
3112  * the offline states (which must be a legal transition) allowing the midlayer
3113  * to goose the queue for this device.
3114  */
3115 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3116                                         enum scsi_device_state new_state)
3117 {
3118         int ret;
3119
3120         mutex_lock(&sdev->state_mutex);
3121         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3122         mutex_unlock(&sdev->state_mutex);
3123
3124         return ret;
3125 }
3126
3127 static void
3128 device_block(struct scsi_device *sdev, void *data)
3129 {
3130         scsi_internal_device_block(sdev);
3131 }
3132
3133 static int
3134 target_block(struct device *dev, void *data)
3135 {
3136         if (scsi_is_target_device(dev))
3137                 starget_for_each_device(to_scsi_target(dev), NULL,
3138                                         device_block);
3139         return 0;
3140 }
3141
3142 void
3143 scsi_target_block(struct device *dev)
3144 {
3145         if (scsi_is_target_device(dev))
3146                 starget_for_each_device(to_scsi_target(dev), NULL,
3147                                         device_block);
3148         else
3149                 device_for_each_child(dev, NULL, target_block);
3150 }
3151 EXPORT_SYMBOL_GPL(scsi_target_block);
3152
3153 static void
3154 device_unblock(struct scsi_device *sdev, void *data)
3155 {
3156         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3157 }
3158
3159 static int
3160 target_unblock(struct device *dev, void *data)
3161 {
3162         if (scsi_is_target_device(dev))
3163                 starget_for_each_device(to_scsi_target(dev), data,
3164                                         device_unblock);
3165         return 0;
3166 }
3167
3168 void
3169 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3170 {
3171         if (scsi_is_target_device(dev))
3172                 starget_for_each_device(to_scsi_target(dev), &new_state,
3173                                         device_unblock);
3174         else
3175                 device_for_each_child(dev, &new_state, target_unblock);
3176 }
3177 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3178
3179 /**
3180  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3181  * @sgl:        scatter-gather list
3182  * @sg_count:   number of segments in sg
3183  * @offset:     offset in bytes into sg, on return offset into the mapped area
3184  * @len:        bytes to map, on return number of bytes mapped
3185  *
3186  * Returns virtual address of the start of the mapped page
3187  */
3188 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3189                           size_t *offset, size_t *len)
3190 {
3191         int i;
3192         size_t sg_len = 0, len_complete = 0;
3193         struct scatterlist *sg;
3194         struct page *page;
3195
3196         WARN_ON(!irqs_disabled());
3197
3198         for_each_sg(sgl, sg, sg_count, i) {
3199                 len_complete = sg_len; /* Complete sg-entries */
3200                 sg_len += sg->length;
3201                 if (sg_len > *offset)
3202                         break;
3203         }
3204
3205         if (unlikely(i == sg_count)) {
3206                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3207                         "elements %d\n",
3208                        __func__, sg_len, *offset, sg_count);
3209                 WARN_ON(1);
3210                 return NULL;
3211         }
3212
3213         /* Offset starting from the beginning of first page in this sg-entry */
3214         *offset = *offset - len_complete + sg->offset;
3215
3216         /* Assumption: contiguous pages can be accessed as "page + i" */
3217         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3218         *offset &= ~PAGE_MASK;
3219
3220         /* Bytes in this sg-entry from *offset to the end of the page */
3221         sg_len = PAGE_SIZE - *offset;
3222         if (*len > sg_len)
3223                 *len = sg_len;
3224
3225         return kmap_atomic(page);
3226 }
3227 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3228
3229 /**
3230  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3231  * @virt:       virtual address to be unmapped
3232  */
3233 void scsi_kunmap_atomic_sg(void *virt)
3234 {
3235         kunmap_atomic(virt);
3236 }
3237 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3238
3239 void sdev_disable_disk_events(struct scsi_device *sdev)
3240 {
3241         atomic_inc(&sdev->disk_events_disable_depth);
3242 }
3243 EXPORT_SYMBOL(sdev_disable_disk_events);
3244
3245 void sdev_enable_disk_events(struct scsi_device *sdev)
3246 {
3247         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3248                 return;
3249         atomic_dec(&sdev->disk_events_disable_depth);
3250 }
3251 EXPORT_SYMBOL(sdev_enable_disk_events);
3252
3253 /**
3254  * scsi_vpd_lun_id - return a unique device identification
3255  * @sdev: SCSI device
3256  * @id:   buffer for the identification
3257  * @id_len:  length of the buffer
3258  *
3259  * Copies a unique device identification into @id based
3260  * on the information in the VPD page 0x83 of the device.
3261  * The string will be formatted as a SCSI name string.
3262  *
3263  * Returns the length of the identification or error on failure.
3264  * If the identifier is longer than the supplied buffer the actual
3265  * identifier length is returned and the buffer is not zero-padded.
3266  */
3267 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3268 {
3269         u8 cur_id_type = 0xff;
3270         u8 cur_id_size = 0;
3271         unsigned char *d, *cur_id_str;
3272         unsigned char __rcu *vpd_pg83;
3273         int id_size = -EINVAL;
3274
3275         rcu_read_lock();
3276         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3277         if (!vpd_pg83) {
3278                 rcu_read_unlock();
3279                 return -ENXIO;
3280         }
3281
3282         /*
3283          * Look for the correct descriptor.
3284          * Order of preference for lun descriptor:
3285          * - SCSI name string
3286          * - NAA IEEE Registered Extended
3287          * - EUI-64 based 16-byte
3288          * - EUI-64 based 12-byte
3289          * - NAA IEEE Registered
3290          * - NAA IEEE Extended
3291          * - T10 Vendor ID
3292          * as longer descriptors reduce the likelyhood
3293          * of identification clashes.
3294          */
3295
3296         /* The id string must be at least 20 bytes + terminating NULL byte */
3297         if (id_len < 21) {
3298                 rcu_read_unlock();
3299                 return -EINVAL;
3300         }
3301
3302         memset(id, 0, id_len);
3303         d = vpd_pg83 + 4;
3304         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3305                 /* Skip designators not referring to the LUN */
3306                 if ((d[1] & 0x30) != 0x00)
3307                         goto next_desig;
3308
3309                 switch (d[1] & 0xf) {
3310                 case 0x1:
3311                         /* T10 Vendor ID */
3312                         if (cur_id_size > d[3])
3313                                 break;
3314                         /* Prefer anything */
3315                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3316                                 break;
3317                         cur_id_size = d[3];
3318                         if (cur_id_size + 4 > id_len)
3319                                 cur_id_size = id_len - 4;
3320                         cur_id_str = d + 4;
3321                         cur_id_type = d[1] & 0xf;
3322                         id_size = snprintf(id, id_len, "t10.%*pE",
3323                                            cur_id_size, cur_id_str);
3324                         break;
3325                 case 0x2:
3326                         /* EUI-64 */
3327                         if (cur_id_size > d[3])
3328                                 break;
3329                         /* Prefer NAA IEEE Registered Extended */
3330                         if (cur_id_type == 0x3 &&
3331                             cur_id_size == d[3])
3332                                 break;
3333                         cur_id_size = d[3];
3334                         cur_id_str = d + 4;
3335                         cur_id_type = d[1] & 0xf;
3336                         switch (cur_id_size) {
3337                         case 8:
3338                                 id_size = snprintf(id, id_len,
3339                                                    "eui.%8phN",
3340                                                    cur_id_str);
3341                                 break;
3342                         case 12:
3343                                 id_size = snprintf(id, id_len,
3344                                                    "eui.%12phN",
3345                                                    cur_id_str);
3346                                 break;
3347                         case 16:
3348                                 id_size = snprintf(id, id_len,
3349                                                    "eui.%16phN",
3350                                                    cur_id_str);
3351                                 break;
3352                         default:
3353                                 cur_id_size = 0;
3354                                 break;
3355                         }
3356                         break;
3357                 case 0x3:
3358                         /* NAA */
3359                         if (cur_id_size > d[3])
3360                                 break;
3361                         cur_id_size = d[3];
3362                         cur_id_str = d + 4;
3363                         cur_id_type = d[1] & 0xf;
3364                         switch (cur_id_size) {
3365                         case 8:
3366                                 id_size = snprintf(id, id_len,
3367                                                    "naa.%8phN",
3368                                                    cur_id_str);
3369                                 break;
3370                         case 16:
3371                                 id_size = snprintf(id, id_len,
3372                                                    "naa.%16phN",
3373                                                    cur_id_str);
3374                                 break;
3375                         default:
3376                                 cur_id_size = 0;
3377                                 break;
3378                         }
3379                         break;
3380                 case 0x8:
3381                         /* SCSI name string */
3382                         if (cur_id_size + 4 > d[3])
3383                                 break;
3384                         /* Prefer others for truncated descriptor */
3385                         if (cur_id_size && d[3] > id_len)
3386                                 break;
3387                         cur_id_size = id_size = d[3];
3388                         cur_id_str = d + 4;
3389                         cur_id_type = d[1] & 0xf;
3390                         if (cur_id_size >= id_len)
3391                                 cur_id_size = id_len - 1;
3392                         memcpy(id, cur_id_str, cur_id_size);
3393                         /* Decrease priority for truncated descriptor */
3394                         if (cur_id_size != id_size)
3395                                 cur_id_size = 6;
3396                         break;
3397                 default:
3398                         break;
3399                 }
3400 next_desig:
3401                 d += d[3] + 4;
3402         }
3403         rcu_read_unlock();
3404
3405         return id_size;
3406 }
3407 EXPORT_SYMBOL(scsi_vpd_lun_id);
3408
3409 /*
3410  * scsi_vpd_tpg_id - return a target port group identifier
3411  * @sdev: SCSI device
3412  *
3413  * Returns the Target Port Group identifier from the information
3414  * froom VPD page 0x83 of the device.
3415  *
3416  * Returns the identifier or error on failure.
3417  */
3418 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3419 {
3420         unsigned char *d;
3421         unsigned char __rcu *vpd_pg83;
3422         int group_id = -EAGAIN, rel_port = -1;
3423
3424         rcu_read_lock();
3425         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3426         if (!vpd_pg83) {
3427                 rcu_read_unlock();
3428                 return -ENXIO;
3429         }
3430
3431         d = sdev->vpd_pg83 + 4;
3432         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3433                 switch (d[1] & 0xf) {
3434                 case 0x4:
3435                         /* Relative target port */
3436                         rel_port = get_unaligned_be16(&d[6]);
3437                         break;
3438                 case 0x5:
3439                         /* Target port group */
3440                         group_id = get_unaligned_be16(&d[6]);
3441                         break;
3442                 default:
3443                         break;
3444                 }
3445                 d += d[3] + 4;
3446         }
3447         rcu_read_unlock();
3448
3449         if (group_id >= 0 && rel_id && rel_port != -1)
3450                 *rel_id = rel_port;
3451
3452         return group_id;
3453 }
3454 EXPORT_SYMBOL(scsi_vpd_tpg_id);