]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
Merge tag 'fbdev-v4.11' of git://github.com/bzolnier/linux
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 #include <linux/usb/otg.h>
50
51 #include "usb.h"
52
53
54 /*-------------------------------------------------------------------------*/
55
56 /*
57  * USB Host Controller Driver framework
58  *
59  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60  * HCD-specific behaviors/bugs.
61  *
62  * This does error checks, tracks devices and urbs, and delegates to a
63  * "hc_driver" only for code (and data) that really needs to know about
64  * hardware differences.  That includes root hub registers, i/o queues,
65  * and so on ... but as little else as possible.
66  *
67  * Shared code includes most of the "root hub" code (these are emulated,
68  * though each HC's hardware works differently) and PCI glue, plus request
69  * tracking overhead.  The HCD code should only block on spinlocks or on
70  * hardware handshaking; blocking on software events (such as other kernel
71  * threads releasing resources, or completing actions) is all generic.
72  *
73  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75  * only by the hub driver ... and that neither should be seen or used by
76  * usb client device drivers.
77  *
78  * Contributors of ideas or unattributed patches include: David Brownell,
79  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80  *
81  * HISTORY:
82  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
83  *              associated cleanup.  "usb_hcd" still != "usb_bus".
84  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
85  */
86
87 /*-------------------------------------------------------------------------*/
88
89 /* Keep track of which host controller drivers are loaded */
90 unsigned long usb_hcds_loaded;
91 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93 /* host controllers we manage */
94 DEFINE_IDR (usb_bus_idr);
95 EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97 /* used when allocating bus numbers */
98 #define USB_MAXBUS              64
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.1 root hub device descriptor */
132 static const u8 usb31_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 3.0 root hub device descriptor */
153 static const u8 usb3_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
161         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174 static const u8 usb25_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* usb 2.0 root hub device descriptor */
195 static const u8 usb2_rh_dev_descriptor[18] = {
196         0x12,       /*  __u8  bLength; */
197         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
199
200         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
201         0x00,       /*  __u8  bDeviceSubClass; */
202         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
203         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204
205         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
207         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208
209         0x03,       /*  __u8  iManufacturer; */
210         0x02,       /*  __u8  iProduct; */
211         0x01,       /*  __u8  iSerialNumber; */
212         0x01        /*  __u8  bNumConfigurations; */
213 };
214
215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217 /* usb 1.1 root hub device descriptor */
218 static const u8 usb11_rh_dev_descriptor[18] = {
219         0x12,       /*  __u8  bLength; */
220         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
222
223         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
224         0x00,       /*  __u8  bDeviceSubClass; */
225         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
226         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
227
228         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
229         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
230         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
231
232         0x03,       /*  __u8  iManufacturer; */
233         0x02,       /*  __u8  iProduct; */
234         0x01,       /*  __u8  iSerialNumber; */
235         0x01        /*  __u8  bNumConfigurations; */
236 };
237
238
239 /*-------------------------------------------------------------------------*/
240
241 /* Configuration descriptors for our root hubs */
242
243 static const u8 fs_rh_config_descriptor[] = {
244
245         /* one configuration */
246         0x09,       /*  __u8  bLength; */
247         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248         0x19, 0x00, /*  __le16 wTotalLength; */
249         0x01,       /*  __u8  bNumInterfaces; (1) */
250         0x01,       /*  __u8  bConfigurationValue; */
251         0x00,       /*  __u8  iConfiguration; */
252         0xc0,       /*  __u8  bmAttributes;
253                                  Bit 7: must be set,
254                                      6: Self-powered,
255                                      5: Remote wakeup,
256                                      4..0: resvd */
257         0x00,       /*  __u8  MaxPower; */
258
259         /* USB 1.1:
260          * USB 2.0, single TT organization (mandatory):
261          *      one interface, protocol 0
262          *
263          * USB 2.0, multiple TT organization (optional):
264          *      two interfaces, protocols 1 (like single TT)
265          *      and 2 (multiple TT mode) ... config is
266          *      sometimes settable
267          *      NOT IMPLEMENTED
268          */
269
270         /* one interface */
271         0x09,       /*  __u8  if_bLength; */
272         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
273         0x00,       /*  __u8  if_bInterfaceNumber; */
274         0x00,       /*  __u8  if_bAlternateSetting; */
275         0x01,       /*  __u8  if_bNumEndpoints; */
276         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
277         0x00,       /*  __u8  if_bInterfaceSubClass; */
278         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
279         0x00,       /*  __u8  if_iInterface; */
280
281         /* one endpoint (status change endpoint) */
282         0x07,       /*  __u8  ep_bLength; */
283         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
285         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
286         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
288 };
289
290 static const u8 hs_rh_config_descriptor[] = {
291
292         /* one configuration */
293         0x09,       /*  __u8  bLength; */
294         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295         0x19, 0x00, /*  __le16 wTotalLength; */
296         0x01,       /*  __u8  bNumInterfaces; (1) */
297         0x01,       /*  __u8  bConfigurationValue; */
298         0x00,       /*  __u8  iConfiguration; */
299         0xc0,       /*  __u8  bmAttributes;
300                                  Bit 7: must be set,
301                                      6: Self-powered,
302                                      5: Remote wakeup,
303                                      4..0: resvd */
304         0x00,       /*  __u8  MaxPower; */
305
306         /* USB 1.1:
307          * USB 2.0, single TT organization (mandatory):
308          *      one interface, protocol 0
309          *
310          * USB 2.0, multiple TT organization (optional):
311          *      two interfaces, protocols 1 (like single TT)
312          *      and 2 (multiple TT mode) ... config is
313          *      sometimes settable
314          *      NOT IMPLEMENTED
315          */
316
317         /* one interface */
318         0x09,       /*  __u8  if_bLength; */
319         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320         0x00,       /*  __u8  if_bInterfaceNumber; */
321         0x00,       /*  __u8  if_bAlternateSetting; */
322         0x01,       /*  __u8  if_bNumEndpoints; */
323         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
324         0x00,       /*  __u8  if_bInterfaceSubClass; */
325         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
326         0x00,       /*  __u8  if_iInterface; */
327
328         /* one endpoint (status change endpoint) */
329         0x07,       /*  __u8  ep_bLength; */
330         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
332         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
333                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334                      * see hub.c:hub_configure() for details. */
335         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
337 };
338
339 static const u8 ss_rh_config_descriptor[] = {
340         /* one configuration */
341         0x09,       /*  __u8  bLength; */
342         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343         0x1f, 0x00, /*  __le16 wTotalLength; */
344         0x01,       /*  __u8  bNumInterfaces; (1) */
345         0x01,       /*  __u8  bConfigurationValue; */
346         0x00,       /*  __u8  iConfiguration; */
347         0xc0,       /*  __u8  bmAttributes;
348                                  Bit 7: must be set,
349                                      6: Self-powered,
350                                      5: Remote wakeup,
351                                      4..0: resvd */
352         0x00,       /*  __u8  MaxPower; */
353
354         /* one interface */
355         0x09,       /*  __u8  if_bLength; */
356         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357         0x00,       /*  __u8  if_bInterfaceNumber; */
358         0x00,       /*  __u8  if_bAlternateSetting; */
359         0x01,       /*  __u8  if_bNumEndpoints; */
360         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
361         0x00,       /*  __u8  if_bInterfaceSubClass; */
362         0x00,       /*  __u8  if_bInterfaceProtocol; */
363         0x00,       /*  __u8  if_iInterface; */
364
365         /* one endpoint (status change endpoint) */
366         0x07,       /*  __u8  ep_bLength; */
367         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
369         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
370                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371                      * see hub.c:hub_configure() for details. */
372         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
374
375         /* one SuperSpeed endpoint companion descriptor */
376         0x06,        /* __u8 ss_bLength */
377         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378                      /* Companion */
379         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
381         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382 };
383
384 /* authorized_default behaviour:
385  * -1 is authorized for all devices except wireless (old behaviour)
386  * 0 is unauthorized for all devices
387  * 1 is authorized for all devices
388  */
389 static int authorized_default = -1;
390 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391 MODULE_PARM_DESC(authorized_default,
392                 "Default USB device authorization: 0 is not authorized, 1 is "
393                 "authorized, -1 is authorized except for wireless USB (default, "
394                 "old behaviour");
395 /*-------------------------------------------------------------------------*/
396
397 /**
398  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399  * @s: Null-terminated ASCII (actually ISO-8859-1) string
400  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401  * @len: Length (in bytes; may be odd) of descriptor buffer.
402  *
403  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404  * whichever is less.
405  *
406  * Note:
407  * USB String descriptors can contain at most 126 characters; input
408  * strings longer than that are truncated.
409  */
410 static unsigned
411 ascii2desc(char const *s, u8 *buf, unsigned len)
412 {
413         unsigned n, t = 2 + 2*strlen(s);
414
415         if (t > 254)
416                 t = 254;        /* Longest possible UTF string descriptor */
417         if (len > t)
418                 len = t;
419
420         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
421
422         n = len;
423         while (n--) {
424                 *buf++ = t;
425                 if (!n--)
426                         break;
427                 *buf++ = t >> 8;
428                 t = (unsigned char)*s++;
429         }
430         return len;
431 }
432
433 /**
434  * rh_string() - provides string descriptors for root hub
435  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436  * @hcd: the host controller for this root hub
437  * @data: buffer for output packet
438  * @len: length of the provided buffer
439  *
440  * Produces either a manufacturer, product or serial number string for the
441  * virtual root hub device.
442  *
443  * Return: The number of bytes filled in: the length of the descriptor or
444  * of the provided buffer, whichever is less.
445  */
446 static unsigned
447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448 {
449         char buf[100];
450         char const *s;
451         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453         /* language ids */
454         switch (id) {
455         case 0:
456                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458                 if (len > 4)
459                         len = 4;
460                 memcpy(data, langids, len);
461                 return len;
462         case 1:
463                 /* Serial number */
464                 s = hcd->self.bus_name;
465                 break;
466         case 2:
467                 /* Product name */
468                 s = hcd->product_desc;
469                 break;
470         case 3:
471                 /* Manufacturer */
472                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473                         init_utsname()->release, hcd->driver->description);
474                 s = buf;
475                 break;
476         default:
477                 /* Can't happen; caller guarantees it */
478                 return 0;
479         }
480
481         return ascii2desc(s, data, len);
482 }
483
484
485 /* Root hub control transfers execute synchronously */
486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487 {
488         struct usb_ctrlrequest *cmd;
489         u16             typeReq, wValue, wIndex, wLength;
490         u8              *ubuf = urb->transfer_buffer;
491         unsigned        len = 0;
492         int             status;
493         u8              patch_wakeup = 0;
494         u8              patch_protocol = 0;
495         u16             tbuf_size;
496         u8              *tbuf = NULL;
497         const u8        *bufp;
498
499         might_sleep();
500
501         spin_lock_irq(&hcd_root_hub_lock);
502         status = usb_hcd_link_urb_to_ep(hcd, urb);
503         spin_unlock_irq(&hcd_root_hub_lock);
504         if (status)
505                 return status;
506         urb->hcpriv = hcd;      /* Indicate it's queued */
507
508         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
510         wValue   = le16_to_cpu (cmd->wValue);
511         wIndex   = le16_to_cpu (cmd->wIndex);
512         wLength  = le16_to_cpu (cmd->wLength);
513
514         if (wLength > urb->transfer_buffer_length)
515                 goto error;
516
517         /*
518          * tbuf should be at least as big as the
519          * USB hub descriptor.
520          */
521         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523         if (!tbuf)
524                 return -ENOMEM;
525
526         bufp = tbuf;
527
528
529         urb->actual_length = 0;
530         switch (typeReq) {
531
532         /* DEVICE REQUESTS */
533
534         /* The root hub's remote wakeup enable bit is implemented using
535          * driver model wakeup flags.  If this system supports wakeup
536          * through USB, userspace may change the default "allow wakeup"
537          * policy through sysfs or these calls.
538          *
539          * Most root hubs support wakeup from downstream devices, for
540          * runtime power management (disabling USB clocks and reducing
541          * VBUS power usage).  However, not all of them do so; silicon,
542          * board, and BIOS bugs here are not uncommon, so these can't
543          * be treated quite like external hubs.
544          *
545          * Likewise, not all root hubs will pass wakeup events upstream,
546          * to wake up the whole system.  So don't assume root hub and
547          * controller capabilities are identical.
548          */
549
550         case DeviceRequest | USB_REQ_GET_STATUS:
551                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
552                                         << USB_DEVICE_REMOTE_WAKEUP)
553                                 | (1 << USB_DEVICE_SELF_POWERED);
554                 tbuf[1] = 0;
555                 len = 2;
556                 break;
557         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
558                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
559                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
560                 else
561                         goto error;
562                 break;
563         case DeviceOutRequest | USB_REQ_SET_FEATURE:
564                 if (device_can_wakeup(&hcd->self.root_hub->dev)
565                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
566                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
567                 else
568                         goto error;
569                 break;
570         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
571                 tbuf[0] = 1;
572                 len = 1;
573                         /* FALLTHROUGH */
574         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
575                 break;
576         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
577                 switch (wValue & 0xff00) {
578                 case USB_DT_DEVICE << 8:
579                         switch (hcd->speed) {
580                         case HCD_USB31:
581                                 bufp = usb31_rh_dev_descriptor;
582                                 break;
583                         case HCD_USB3:
584                                 bufp = usb3_rh_dev_descriptor;
585                                 break;
586                         case HCD_USB25:
587                                 bufp = usb25_rh_dev_descriptor;
588                                 break;
589                         case HCD_USB2:
590                                 bufp = usb2_rh_dev_descriptor;
591                                 break;
592                         case HCD_USB11:
593                                 bufp = usb11_rh_dev_descriptor;
594                                 break;
595                         default:
596                                 goto error;
597                         }
598                         len = 18;
599                         if (hcd->has_tt)
600                                 patch_protocol = 1;
601                         break;
602                 case USB_DT_CONFIG << 8:
603                         switch (hcd->speed) {
604                         case HCD_USB31:
605                         case HCD_USB3:
606                                 bufp = ss_rh_config_descriptor;
607                                 len = sizeof ss_rh_config_descriptor;
608                                 break;
609                         case HCD_USB25:
610                         case HCD_USB2:
611                                 bufp = hs_rh_config_descriptor;
612                                 len = sizeof hs_rh_config_descriptor;
613                                 break;
614                         case HCD_USB11:
615                                 bufp = fs_rh_config_descriptor;
616                                 len = sizeof fs_rh_config_descriptor;
617                                 break;
618                         default:
619                                 goto error;
620                         }
621                         if (device_can_wakeup(&hcd->self.root_hub->dev))
622                                 patch_wakeup = 1;
623                         break;
624                 case USB_DT_STRING << 8:
625                         if ((wValue & 0xff) < 4)
626                                 urb->actual_length = rh_string(wValue & 0xff,
627                                                 hcd, ubuf, wLength);
628                         else /* unsupported IDs --> "protocol stall" */
629                                 goto error;
630                         break;
631                 case USB_DT_BOS << 8:
632                         goto nongeneric;
633                 default:
634                         goto error;
635                 }
636                 break;
637         case DeviceRequest | USB_REQ_GET_INTERFACE:
638                 tbuf[0] = 0;
639                 len = 1;
640                         /* FALLTHROUGH */
641         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
642                 break;
643         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
644                 /* wValue == urb->dev->devaddr */
645                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
646                         wValue);
647                 break;
648
649         /* INTERFACE REQUESTS (no defined feature/status flags) */
650
651         /* ENDPOINT REQUESTS */
652
653         case EndpointRequest | USB_REQ_GET_STATUS:
654                 /* ENDPOINT_HALT flag */
655                 tbuf[0] = 0;
656                 tbuf[1] = 0;
657                 len = 2;
658                         /* FALLTHROUGH */
659         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
660         case EndpointOutRequest | USB_REQ_SET_FEATURE:
661                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
662                 break;
663
664         /* CLASS REQUESTS (and errors) */
665
666         default:
667 nongeneric:
668                 /* non-generic request */
669                 switch (typeReq) {
670                 case GetHubStatus:
671                         len = 4;
672                         break;
673                 case GetPortStatus:
674                         if (wValue == HUB_PORT_STATUS)
675                                 len = 4;
676                         else
677                                 /* other port status types return 8 bytes */
678                                 len = 8;
679                         break;
680                 case GetHubDescriptor:
681                         len = sizeof (struct usb_hub_descriptor);
682                         break;
683                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
684                         /* len is returned by hub_control */
685                         break;
686                 }
687                 status = hcd->driver->hub_control (hcd,
688                         typeReq, wValue, wIndex,
689                         tbuf, wLength);
690
691                 if (typeReq == GetHubDescriptor)
692                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
693                                 (struct usb_hub_descriptor *)tbuf);
694                 break;
695 error:
696                 /* "protocol stall" on error */
697                 status = -EPIPE;
698         }
699
700         if (status < 0) {
701                 len = 0;
702                 if (status != -EPIPE) {
703                         dev_dbg (hcd->self.controller,
704                                 "CTRL: TypeReq=0x%x val=0x%x "
705                                 "idx=0x%x len=%d ==> %d\n",
706                                 typeReq, wValue, wIndex,
707                                 wLength, status);
708                 }
709         } else if (status > 0) {
710                 /* hub_control may return the length of data copied. */
711                 len = status;
712                 status = 0;
713         }
714         if (len) {
715                 if (urb->transfer_buffer_length < len)
716                         len = urb->transfer_buffer_length;
717                 urb->actual_length = len;
718                 /* always USB_DIR_IN, toward host */
719                 memcpy (ubuf, bufp, len);
720
721                 /* report whether RH hardware supports remote wakeup */
722                 if (patch_wakeup &&
723                                 len > offsetof (struct usb_config_descriptor,
724                                                 bmAttributes))
725                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
726                                 |= USB_CONFIG_ATT_WAKEUP;
727
728                 /* report whether RH hardware has an integrated TT */
729                 if (patch_protocol &&
730                                 len > offsetof(struct usb_device_descriptor,
731                                                 bDeviceProtocol))
732                         ((struct usb_device_descriptor *) ubuf)->
733                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
734         }
735
736         kfree(tbuf);
737
738         /* any errors get returned through the urb completion */
739         spin_lock_irq(&hcd_root_hub_lock);
740         usb_hcd_unlink_urb_from_ep(hcd, urb);
741         usb_hcd_giveback_urb(hcd, urb, status);
742         spin_unlock_irq(&hcd_root_hub_lock);
743         return 0;
744 }
745
746 /*-------------------------------------------------------------------------*/
747
748 /*
749  * Root Hub interrupt transfers are polled using a timer if the
750  * driver requests it; otherwise the driver is responsible for
751  * calling usb_hcd_poll_rh_status() when an event occurs.
752  *
753  * Completions are called in_interrupt(), but they may or may not
754  * be in_irq().
755  */
756 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
757 {
758         struct urb      *urb;
759         int             length;
760         unsigned long   flags;
761         char            buffer[6];      /* Any root hubs with > 31 ports? */
762
763         if (unlikely(!hcd->rh_pollable))
764                 return;
765         if (!hcd->uses_new_polling && !hcd->status_urb)
766                 return;
767
768         length = hcd->driver->hub_status_data(hcd, buffer);
769         if (length > 0) {
770
771                 /* try to complete the status urb */
772                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
773                 urb = hcd->status_urb;
774                 if (urb) {
775                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
776                         hcd->status_urb = NULL;
777                         urb->actual_length = length;
778                         memcpy(urb->transfer_buffer, buffer, length);
779
780                         usb_hcd_unlink_urb_from_ep(hcd, urb);
781                         usb_hcd_giveback_urb(hcd, urb, 0);
782                 } else {
783                         length = 0;
784                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
785                 }
786                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
787         }
788
789         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
790          * exceed that limit if HZ is 100. The math is more clunky than
791          * maybe expected, this is to make sure that all timers for USB devices
792          * fire at the same time to give the CPU a break in between */
793         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
794                         (length == 0 && hcd->status_urb != NULL))
795                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796 }
797 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
798
799 /* timer callback */
800 static void rh_timer_func (unsigned long _hcd)
801 {
802         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
803 }
804
805 /*-------------------------------------------------------------------------*/
806
807 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
808 {
809         int             retval;
810         unsigned long   flags;
811         unsigned        len = 1 + (urb->dev->maxchild / 8);
812
813         spin_lock_irqsave (&hcd_root_hub_lock, flags);
814         if (hcd->status_urb || urb->transfer_buffer_length < len) {
815                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
816                 retval = -EINVAL;
817                 goto done;
818         }
819
820         retval = usb_hcd_link_urb_to_ep(hcd, urb);
821         if (retval)
822                 goto done;
823
824         hcd->status_urb = urb;
825         urb->hcpriv = hcd;      /* indicate it's queued */
826         if (!hcd->uses_new_polling)
827                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
828
829         /* If a status change has already occurred, report it ASAP */
830         else if (HCD_POLL_PENDING(hcd))
831                 mod_timer(&hcd->rh_timer, jiffies);
832         retval = 0;
833  done:
834         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
835         return retval;
836 }
837
838 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
839 {
840         if (usb_endpoint_xfer_int(&urb->ep->desc))
841                 return rh_queue_status (hcd, urb);
842         if (usb_endpoint_xfer_control(&urb->ep->desc))
843                 return rh_call_control (hcd, urb);
844         return -EINVAL;
845 }
846
847 /*-------------------------------------------------------------------------*/
848
849 /* Unlinks of root-hub control URBs are legal, but they don't do anything
850  * since these URBs always execute synchronously.
851  */
852 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
853 {
854         unsigned long   flags;
855         int             rc;
856
857         spin_lock_irqsave(&hcd_root_hub_lock, flags);
858         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
859         if (rc)
860                 goto done;
861
862         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
863                 ;       /* Do nothing */
864
865         } else {                                /* Status URB */
866                 if (!hcd->uses_new_polling)
867                         del_timer (&hcd->rh_timer);
868                 if (urb == hcd->status_urb) {
869                         hcd->status_urb = NULL;
870                         usb_hcd_unlink_urb_from_ep(hcd, urb);
871                         usb_hcd_giveback_urb(hcd, urb, status);
872                 }
873         }
874  done:
875         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
876         return rc;
877 }
878
879
880
881 /*
882  * Show & store the current value of authorized_default
883  */
884 static ssize_t authorized_default_show(struct device *dev,
885                                        struct device_attribute *attr, char *buf)
886 {
887         struct usb_device *rh_usb_dev = to_usb_device(dev);
888         struct usb_bus *usb_bus = rh_usb_dev->bus;
889         struct usb_hcd *hcd;
890
891         hcd = bus_to_hcd(usb_bus);
892         return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
893 }
894
895 static ssize_t authorized_default_store(struct device *dev,
896                                         struct device_attribute *attr,
897                                         const char *buf, size_t size)
898 {
899         ssize_t result;
900         unsigned val;
901         struct usb_device *rh_usb_dev = to_usb_device(dev);
902         struct usb_bus *usb_bus = rh_usb_dev->bus;
903         struct usb_hcd *hcd;
904
905         hcd = bus_to_hcd(usb_bus);
906         result = sscanf(buf, "%u\n", &val);
907         if (result == 1) {
908                 if (val)
909                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
910                 else
911                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
912
913                 result = size;
914         } else {
915                 result = -EINVAL;
916         }
917         return result;
918 }
919 static DEVICE_ATTR_RW(authorized_default);
920
921 /*
922  * interface_authorized_default_show - show default authorization status
923  * for USB interfaces
924  *
925  * note: interface_authorized_default is the default value
926  *       for initializing the authorized attribute of interfaces
927  */
928 static ssize_t interface_authorized_default_show(struct device *dev,
929                 struct device_attribute *attr, char *buf)
930 {
931         struct usb_device *usb_dev = to_usb_device(dev);
932         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
933
934         return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
935 }
936
937 /*
938  * interface_authorized_default_store - store default authorization status
939  * for USB interfaces
940  *
941  * note: interface_authorized_default is the default value
942  *       for initializing the authorized attribute of interfaces
943  */
944 static ssize_t interface_authorized_default_store(struct device *dev,
945                 struct device_attribute *attr, const char *buf, size_t count)
946 {
947         struct usb_device *usb_dev = to_usb_device(dev);
948         struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
949         int rc = count;
950         bool val;
951
952         if (strtobool(buf, &val) != 0)
953                 return -EINVAL;
954
955         if (val)
956                 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
957         else
958                 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
959
960         return rc;
961 }
962 static DEVICE_ATTR_RW(interface_authorized_default);
963
964 /* Group all the USB bus attributes */
965 static struct attribute *usb_bus_attrs[] = {
966                 &dev_attr_authorized_default.attr,
967                 &dev_attr_interface_authorized_default.attr,
968                 NULL,
969 };
970
971 static struct attribute_group usb_bus_attr_group = {
972         .name = NULL,   /* we want them in the same directory */
973         .attrs = usb_bus_attrs,
974 };
975
976
977
978 /*-------------------------------------------------------------------------*/
979
980 /**
981  * usb_bus_init - shared initialization code
982  * @bus: the bus structure being initialized
983  *
984  * This code is used to initialize a usb_bus structure, memory for which is
985  * separately managed.
986  */
987 static void usb_bus_init (struct usb_bus *bus)
988 {
989         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
990
991         bus->devnum_next = 1;
992
993         bus->root_hub = NULL;
994         bus->busnum = -1;
995         bus->bandwidth_allocated = 0;
996         bus->bandwidth_int_reqs  = 0;
997         bus->bandwidth_isoc_reqs = 0;
998         mutex_init(&bus->devnum_next_mutex);
999 }
1000
1001 /*-------------------------------------------------------------------------*/
1002
1003 /**
1004  * usb_register_bus - registers the USB host controller with the usb core
1005  * @bus: pointer to the bus to register
1006  * Context: !in_interrupt()
1007  *
1008  * Assigns a bus number, and links the controller into usbcore data
1009  * structures so that it can be seen by scanning the bus list.
1010  *
1011  * Return: 0 if successful. A negative error code otherwise.
1012  */
1013 static int usb_register_bus(struct usb_bus *bus)
1014 {
1015         int result = -E2BIG;
1016         int busnum;
1017
1018         mutex_lock(&usb_bus_idr_lock);
1019         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1020         if (busnum < 0) {
1021                 pr_err("%s: failed to get bus number\n", usbcore_name);
1022                 goto error_find_busnum;
1023         }
1024         bus->busnum = busnum;
1025         mutex_unlock(&usb_bus_idr_lock);
1026
1027         usb_notify_add_bus(bus);
1028
1029         dev_info (bus->controller, "new USB bus registered, assigned bus "
1030                   "number %d\n", bus->busnum);
1031         return 0;
1032
1033 error_find_busnum:
1034         mutex_unlock(&usb_bus_idr_lock);
1035         return result;
1036 }
1037
1038 /**
1039  * usb_deregister_bus - deregisters the USB host controller
1040  * @bus: pointer to the bus to deregister
1041  * Context: !in_interrupt()
1042  *
1043  * Recycles the bus number, and unlinks the controller from usbcore data
1044  * structures so that it won't be seen by scanning the bus list.
1045  */
1046 static void usb_deregister_bus (struct usb_bus *bus)
1047 {
1048         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1049
1050         /*
1051          * NOTE: make sure that all the devices are removed by the
1052          * controller code, as well as having it call this when cleaning
1053          * itself up
1054          */
1055         mutex_lock(&usb_bus_idr_lock);
1056         idr_remove(&usb_bus_idr, bus->busnum);
1057         mutex_unlock(&usb_bus_idr_lock);
1058
1059         usb_notify_remove_bus(bus);
1060 }
1061
1062 /**
1063  * register_root_hub - called by usb_add_hcd() to register a root hub
1064  * @hcd: host controller for this root hub
1065  *
1066  * This function registers the root hub with the USB subsystem.  It sets up
1067  * the device properly in the device tree and then calls usb_new_device()
1068  * to register the usb device.  It also assigns the root hub's USB address
1069  * (always 1).
1070  *
1071  * Return: 0 if successful. A negative error code otherwise.
1072  */
1073 static int register_root_hub(struct usb_hcd *hcd)
1074 {
1075         struct device *parent_dev = hcd->self.controller;
1076         struct usb_device *usb_dev = hcd->self.root_hub;
1077         const int devnum = 1;
1078         int retval;
1079
1080         usb_dev->devnum = devnum;
1081         usb_dev->bus->devnum_next = devnum + 1;
1082         memset (&usb_dev->bus->devmap.devicemap, 0,
1083                         sizeof usb_dev->bus->devmap.devicemap);
1084         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1085         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1086
1087         mutex_lock(&usb_bus_idr_lock);
1088
1089         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1090         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1091         if (retval != sizeof usb_dev->descriptor) {
1092                 mutex_unlock(&usb_bus_idr_lock);
1093                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1094                                 dev_name(&usb_dev->dev), retval);
1095                 return (retval < 0) ? retval : -EMSGSIZE;
1096         }
1097
1098         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1099                 retval = usb_get_bos_descriptor(usb_dev);
1100                 if (!retval) {
1101                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1102                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1103                         mutex_unlock(&usb_bus_idr_lock);
1104                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1105                                         dev_name(&usb_dev->dev), retval);
1106                         return retval;
1107                 }
1108         }
1109
1110         retval = usb_new_device (usb_dev);
1111         if (retval) {
1112                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1113                                 dev_name(&usb_dev->dev), retval);
1114         } else {
1115                 spin_lock_irq (&hcd_root_hub_lock);
1116                 hcd->rh_registered = 1;
1117                 spin_unlock_irq (&hcd_root_hub_lock);
1118
1119                 /* Did the HC die before the root hub was registered? */
1120                 if (HCD_DEAD(hcd))
1121                         usb_hc_died (hcd);      /* This time clean up */
1122                 usb_dev->dev.of_node = parent_dev->of_node;
1123         }
1124         mutex_unlock(&usb_bus_idr_lock);
1125
1126         return retval;
1127 }
1128
1129 /*
1130  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1131  * @bus: the bus which the root hub belongs to
1132  * @portnum: the port which is being resumed
1133  *
1134  * HCDs should call this function when they know that a resume signal is
1135  * being sent to a root-hub port.  The root hub will be prevented from
1136  * going into autosuspend until usb_hcd_end_port_resume() is called.
1137  *
1138  * The bus's private lock must be held by the caller.
1139  */
1140 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1141 {
1142         unsigned bit = 1 << portnum;
1143
1144         if (!(bus->resuming_ports & bit)) {
1145                 bus->resuming_ports |= bit;
1146                 pm_runtime_get_noresume(&bus->root_hub->dev);
1147         }
1148 }
1149 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1150
1151 /*
1152  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1153  * @bus: the bus which the root hub belongs to
1154  * @portnum: the port which is being resumed
1155  *
1156  * HCDs should call this function when they know that a resume signal has
1157  * stopped being sent to a root-hub port.  The root hub will be allowed to
1158  * autosuspend again.
1159  *
1160  * The bus's private lock must be held by the caller.
1161  */
1162 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1163 {
1164         unsigned bit = 1 << portnum;
1165
1166         if (bus->resuming_ports & bit) {
1167                 bus->resuming_ports &= ~bit;
1168                 pm_runtime_put_noidle(&bus->root_hub->dev);
1169         }
1170 }
1171 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1172
1173 /*-------------------------------------------------------------------------*/
1174
1175 /**
1176  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1177  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1178  * @is_input: true iff the transaction sends data to the host
1179  * @isoc: true for isochronous transactions, false for interrupt ones
1180  * @bytecount: how many bytes in the transaction.
1181  *
1182  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1183  *
1184  * Note:
1185  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1186  * scheduled in software, this function is only used for such scheduling.
1187  */
1188 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1189 {
1190         unsigned long   tmp;
1191
1192         switch (speed) {
1193         case USB_SPEED_LOW:     /* INTR only */
1194                 if (is_input) {
1195                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1196                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1197                 } else {
1198                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200                 }
1201         case USB_SPEED_FULL:    /* ISOC or INTR */
1202                 if (isoc) {
1203                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1204                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1205                 } else {
1206                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207                         return 9107L + BW_HOST_DELAY + tmp;
1208                 }
1209         case USB_SPEED_HIGH:    /* ISOC or INTR */
1210                 /* FIXME adjust for input vs output */
1211                 if (isoc)
1212                         tmp = HS_NSECS_ISO (bytecount);
1213                 else
1214                         tmp = HS_NSECS (bytecount);
1215                 return tmp;
1216         default:
1217                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1218                 return -1;
1219         }
1220 }
1221 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1222
1223
1224 /*-------------------------------------------------------------------------*/
1225
1226 /*
1227  * Generic HC operations.
1228  */
1229
1230 /*-------------------------------------------------------------------------*/
1231
1232 /**
1233  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1234  * @hcd: host controller to which @urb was submitted
1235  * @urb: URB being submitted
1236  *
1237  * Host controller drivers should call this routine in their enqueue()
1238  * method.  The HCD's private spinlock must be held and interrupts must
1239  * be disabled.  The actions carried out here are required for URB
1240  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1241  *
1242  * Return: 0 for no error, otherwise a negative error code (in which case
1243  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1244  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1245  * the private spinlock and returning.
1246  */
1247 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1248 {
1249         int             rc = 0;
1250
1251         spin_lock(&hcd_urb_list_lock);
1252
1253         /* Check that the URB isn't being killed */
1254         if (unlikely(atomic_read(&urb->reject))) {
1255                 rc = -EPERM;
1256                 goto done;
1257         }
1258
1259         if (unlikely(!urb->ep->enabled)) {
1260                 rc = -ENOENT;
1261                 goto done;
1262         }
1263
1264         if (unlikely(!urb->dev->can_submit)) {
1265                 rc = -EHOSTUNREACH;
1266                 goto done;
1267         }
1268
1269         /*
1270          * Check the host controller's state and add the URB to the
1271          * endpoint's queue.
1272          */
1273         if (HCD_RH_RUNNING(hcd)) {
1274                 urb->unlinked = 0;
1275                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1276         } else {
1277                 rc = -ESHUTDOWN;
1278                 goto done;
1279         }
1280  done:
1281         spin_unlock(&hcd_urb_list_lock);
1282         return rc;
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1285
1286 /**
1287  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1288  * @hcd: host controller to which @urb was submitted
1289  * @urb: URB being checked for unlinkability
1290  * @status: error code to store in @urb if the unlink succeeds
1291  *
1292  * Host controller drivers should call this routine in their dequeue()
1293  * method.  The HCD's private spinlock must be held and interrupts must
1294  * be disabled.  The actions carried out here are required for making
1295  * sure than an unlink is valid.
1296  *
1297  * Return: 0 for no error, otherwise a negative error code (in which case
1298  * the dequeue() method must fail).  The possible error codes are:
1299  *
1300  *      -EIDRM: @urb was not submitted or has already completed.
1301  *              The completion function may not have been called yet.
1302  *
1303  *      -EBUSY: @urb has already been unlinked.
1304  */
1305 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1306                 int status)
1307 {
1308         struct list_head        *tmp;
1309
1310         /* insist the urb is still queued */
1311         list_for_each(tmp, &urb->ep->urb_list) {
1312                 if (tmp == &urb->urb_list)
1313                         break;
1314         }
1315         if (tmp != &urb->urb_list)
1316                 return -EIDRM;
1317
1318         /* Any status except -EINPROGRESS means something already started to
1319          * unlink this URB from the hardware.  So there's no more work to do.
1320          */
1321         if (urb->unlinked)
1322                 return -EBUSY;
1323         urb->unlinked = status;
1324         return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1327
1328 /**
1329  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1330  * @hcd: host controller to which @urb was submitted
1331  * @urb: URB being unlinked
1332  *
1333  * Host controller drivers should call this routine before calling
1334  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1335  * interrupts must be disabled.  The actions carried out here are required
1336  * for URB completion.
1337  */
1338 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1339 {
1340         /* clear all state linking urb to this dev (and hcd) */
1341         spin_lock(&hcd_urb_list_lock);
1342         list_del_init(&urb->urb_list);
1343         spin_unlock(&hcd_urb_list_lock);
1344 }
1345 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1346
1347 /*
1348  * Some usb host controllers can only perform dma using a small SRAM area.
1349  * The usb core itself is however optimized for host controllers that can dma
1350  * using regular system memory - like pci devices doing bus mastering.
1351  *
1352  * To support host controllers with limited dma capabilities we provide dma
1353  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1354  * For this to work properly the host controller code must first use the
1355  * function dma_declare_coherent_memory() to point out which memory area
1356  * that should be used for dma allocations.
1357  *
1358  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1359  * dma using dma_alloc_coherent() which in turn allocates from the memory
1360  * area pointed out with dma_declare_coherent_memory().
1361  *
1362  * So, to summarize...
1363  *
1364  * - We need "local" memory, canonical example being
1365  *   a small SRAM on a discrete controller being the
1366  *   only memory that the controller can read ...
1367  *   (a) "normal" kernel memory is no good, and
1368  *   (b) there's not enough to share
1369  *
1370  * - The only *portable* hook for such stuff in the
1371  *   DMA framework is dma_declare_coherent_memory()
1372  *
1373  * - So we use that, even though the primary requirement
1374  *   is that the memory be "local" (hence addressable
1375  *   by that device), not "coherent".
1376  *
1377  */
1378
1379 static int hcd_alloc_coherent(struct usb_bus *bus,
1380                               gfp_t mem_flags, dma_addr_t *dma_handle,
1381                               void **vaddr_handle, size_t size,
1382                               enum dma_data_direction dir)
1383 {
1384         unsigned char *vaddr;
1385
1386         if (*vaddr_handle == NULL) {
1387                 WARN_ON_ONCE(1);
1388                 return -EFAULT;
1389         }
1390
1391         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1392                                  mem_flags, dma_handle);
1393         if (!vaddr)
1394                 return -ENOMEM;
1395
1396         /*
1397          * Store the virtual address of the buffer at the end
1398          * of the allocated dma buffer. The size of the buffer
1399          * may be uneven so use unaligned functions instead
1400          * of just rounding up. It makes sense to optimize for
1401          * memory footprint over access speed since the amount
1402          * of memory available for dma may be limited.
1403          */
1404         put_unaligned((unsigned long)*vaddr_handle,
1405                       (unsigned long *)(vaddr + size));
1406
1407         if (dir == DMA_TO_DEVICE)
1408                 memcpy(vaddr, *vaddr_handle, size);
1409
1410         *vaddr_handle = vaddr;
1411         return 0;
1412 }
1413
1414 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1415                               void **vaddr_handle, size_t size,
1416                               enum dma_data_direction dir)
1417 {
1418         unsigned char *vaddr = *vaddr_handle;
1419
1420         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1421
1422         if (dir == DMA_FROM_DEVICE)
1423                 memcpy(vaddr, *vaddr_handle, size);
1424
1425         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1426
1427         *vaddr_handle = vaddr;
1428         *dma_handle = 0;
1429 }
1430
1431 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1432 {
1433         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1434             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1435                 dma_unmap_single(hcd->self.controller,
1436                                 urb->setup_dma,
1437                                 sizeof(struct usb_ctrlrequest),
1438                                 DMA_TO_DEVICE);
1439         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1440                 hcd_free_coherent(urb->dev->bus,
1441                                 &urb->setup_dma,
1442                                 (void **) &urb->setup_packet,
1443                                 sizeof(struct usb_ctrlrequest),
1444                                 DMA_TO_DEVICE);
1445
1446         /* Make it safe to call this routine more than once */
1447         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1448 }
1449 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1450
1451 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453         if (hcd->driver->unmap_urb_for_dma)
1454                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1455         else
1456                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1457 }
1458
1459 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1460 {
1461         enum dma_data_direction dir;
1462
1463         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1464
1465         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1466         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1467             (urb->transfer_flags & URB_DMA_MAP_SG))
1468                 dma_unmap_sg(hcd->self.controller,
1469                                 urb->sg,
1470                                 urb->num_sgs,
1471                                 dir);
1472         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1473                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1474                 dma_unmap_page(hcd->self.controller,
1475                                 urb->transfer_dma,
1476                                 urb->transfer_buffer_length,
1477                                 dir);
1478         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1479                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1480                 dma_unmap_single(hcd->self.controller,
1481                                 urb->transfer_dma,
1482                                 urb->transfer_buffer_length,
1483                                 dir);
1484         else if (urb->transfer_flags & URB_MAP_LOCAL)
1485                 hcd_free_coherent(urb->dev->bus,
1486                                 &urb->transfer_dma,
1487                                 &urb->transfer_buffer,
1488                                 urb->transfer_buffer_length,
1489                                 dir);
1490
1491         /* Make it safe to call this routine more than once */
1492         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1493                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1494 }
1495 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1496
1497 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1498                            gfp_t mem_flags)
1499 {
1500         if (hcd->driver->map_urb_for_dma)
1501                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1502         else
1503                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1504 }
1505
1506 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1507                             gfp_t mem_flags)
1508 {
1509         enum dma_data_direction dir;
1510         int ret = 0;
1511
1512         /* Map the URB's buffers for DMA access.
1513          * Lower level HCD code should use *_dma exclusively,
1514          * unless it uses pio or talks to another transport,
1515          * or uses the provided scatter gather list for bulk.
1516          */
1517
1518         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1519                 if (hcd->self.uses_pio_for_control)
1520                         return ret;
1521                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1522                         urb->setup_dma = dma_map_single(
1523                                         hcd->self.controller,
1524                                         urb->setup_packet,
1525                                         sizeof(struct usb_ctrlrequest),
1526                                         DMA_TO_DEVICE);
1527                         if (dma_mapping_error(hcd->self.controller,
1528                                                 urb->setup_dma))
1529                                 return -EAGAIN;
1530                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1531                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1532                         ret = hcd_alloc_coherent(
1533                                         urb->dev->bus, mem_flags,
1534                                         &urb->setup_dma,
1535                                         (void **)&urb->setup_packet,
1536                                         sizeof(struct usb_ctrlrequest),
1537                                         DMA_TO_DEVICE);
1538                         if (ret)
1539                                 return ret;
1540                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1541                 }
1542         }
1543
1544         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1545         if (urb->transfer_buffer_length != 0
1546             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1547                 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1548                         if (urb->num_sgs) {
1549                                 int n;
1550
1551                                 /* We don't support sg for isoc transfers ! */
1552                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1553                                         WARN_ON(1);
1554                                         return -EINVAL;
1555                                 }
1556
1557                                 n = dma_map_sg(
1558                                                 hcd->self.controller,
1559                                                 urb->sg,
1560                                                 urb->num_sgs,
1561                                                 dir);
1562                                 if (n <= 0)
1563                                         ret = -EAGAIN;
1564                                 else
1565                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1566                                 urb->num_mapped_sgs = n;
1567                                 if (n != urb->num_sgs)
1568                                         urb->transfer_flags |=
1569                                                         URB_DMA_SG_COMBINED;
1570                         } else if (urb->sg) {
1571                                 struct scatterlist *sg = urb->sg;
1572                                 urb->transfer_dma = dma_map_page(
1573                                                 hcd->self.controller,
1574                                                 sg_page(sg),
1575                                                 sg->offset,
1576                                                 urb->transfer_buffer_length,
1577                                                 dir);
1578                                 if (dma_mapping_error(hcd->self.controller,
1579                                                 urb->transfer_dma))
1580                                         ret = -EAGAIN;
1581                                 else
1582                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1583                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1584                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1585                                 ret = -EAGAIN;
1586                         } else {
1587                                 urb->transfer_dma = dma_map_single(
1588                                                 hcd->self.controller,
1589                                                 urb->transfer_buffer,
1590                                                 urb->transfer_buffer_length,
1591                                                 dir);
1592                                 if (dma_mapping_error(hcd->self.controller,
1593                                                 urb->transfer_dma))
1594                                         ret = -EAGAIN;
1595                                 else
1596                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1597                         }
1598                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1599                         ret = hcd_alloc_coherent(
1600                                         urb->dev->bus, mem_flags,
1601                                         &urb->transfer_dma,
1602                                         &urb->transfer_buffer,
1603                                         urb->transfer_buffer_length,
1604                                         dir);
1605                         if (ret == 0)
1606                                 urb->transfer_flags |= URB_MAP_LOCAL;
1607                 }
1608                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1609                                 URB_SETUP_MAP_LOCAL)))
1610                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1611         }
1612         return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1615
1616 /*-------------------------------------------------------------------------*/
1617
1618 /* may be called in any context with a valid urb->dev usecount
1619  * caller surrenders "ownership" of urb
1620  * expects usb_submit_urb() to have sanity checked and conditioned all
1621  * inputs in the urb
1622  */
1623 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1624 {
1625         int                     status;
1626         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1627
1628         /* increment urb's reference count as part of giving it to the HCD
1629          * (which will control it).  HCD guarantees that it either returns
1630          * an error or calls giveback(), but not both.
1631          */
1632         usb_get_urb(urb);
1633         atomic_inc(&urb->use_count);
1634         atomic_inc(&urb->dev->urbnum);
1635         usbmon_urb_submit(&hcd->self, urb);
1636
1637         /* NOTE requirements on root-hub callers (usbfs and the hub
1638          * driver, for now):  URBs' urb->transfer_buffer must be
1639          * valid and usb_buffer_{sync,unmap}() not be needed, since
1640          * they could clobber root hub response data.  Also, control
1641          * URBs must be submitted in process context with interrupts
1642          * enabled.
1643          */
1644
1645         if (is_root_hub(urb->dev)) {
1646                 status = rh_urb_enqueue(hcd, urb);
1647         } else {
1648                 status = map_urb_for_dma(hcd, urb, mem_flags);
1649                 if (likely(status == 0)) {
1650                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1651                         if (unlikely(status))
1652                                 unmap_urb_for_dma(hcd, urb);
1653                 }
1654         }
1655
1656         if (unlikely(status)) {
1657                 usbmon_urb_submit_error(&hcd->self, urb, status);
1658                 urb->hcpriv = NULL;
1659                 INIT_LIST_HEAD(&urb->urb_list);
1660                 atomic_dec(&urb->use_count);
1661                 atomic_dec(&urb->dev->urbnum);
1662                 if (atomic_read(&urb->reject))
1663                         wake_up(&usb_kill_urb_queue);
1664                 usb_put_urb(urb);
1665         }
1666         return status;
1667 }
1668
1669 /*-------------------------------------------------------------------------*/
1670
1671 /* this makes the hcd giveback() the urb more quickly, by kicking it
1672  * off hardware queues (which may take a while) and returning it as
1673  * soon as practical.  we've already set up the urb's return status,
1674  * but we can't know if the callback completed already.
1675  */
1676 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1677 {
1678         int             value;
1679
1680         if (is_root_hub(urb->dev))
1681                 value = usb_rh_urb_dequeue(hcd, urb, status);
1682         else {
1683
1684                 /* The only reason an HCD might fail this call is if
1685                  * it has not yet fully queued the urb to begin with.
1686                  * Such failures should be harmless. */
1687                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1688         }
1689         return value;
1690 }
1691
1692 /*
1693  * called in any context
1694  *
1695  * caller guarantees urb won't be recycled till both unlink()
1696  * and the urb's completion function return
1697  */
1698 int usb_hcd_unlink_urb (struct urb *urb, int status)
1699 {
1700         struct usb_hcd          *hcd;
1701         struct usb_device       *udev = urb->dev;
1702         int                     retval = -EIDRM;
1703         unsigned long           flags;
1704
1705         /* Prevent the device and bus from going away while
1706          * the unlink is carried out.  If they are already gone
1707          * then urb->use_count must be 0, since disconnected
1708          * devices can't have any active URBs.
1709          */
1710         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1711         if (atomic_read(&urb->use_count) > 0) {
1712                 retval = 0;
1713                 usb_get_dev(udev);
1714         }
1715         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1716         if (retval == 0) {
1717                 hcd = bus_to_hcd(urb->dev->bus);
1718                 retval = unlink1(hcd, urb, status);
1719                 if (retval == 0)
1720                         retval = -EINPROGRESS;
1721                 else if (retval != -EIDRM && retval != -EBUSY)
1722                         dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1723                                         urb, retval);
1724                 usb_put_dev(udev);
1725         }
1726         return retval;
1727 }
1728
1729 /*-------------------------------------------------------------------------*/
1730
1731 static void __usb_hcd_giveback_urb(struct urb *urb)
1732 {
1733         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1734         struct usb_anchor *anchor = urb->anchor;
1735         int status = urb->unlinked;
1736         unsigned long flags;
1737
1738         urb->hcpriv = NULL;
1739         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1740             urb->actual_length < urb->transfer_buffer_length &&
1741             !status))
1742                 status = -EREMOTEIO;
1743
1744         unmap_urb_for_dma(hcd, urb);
1745         usbmon_urb_complete(&hcd->self, urb, status);
1746         usb_anchor_suspend_wakeups(anchor);
1747         usb_unanchor_urb(urb);
1748         if (likely(status == 0))
1749                 usb_led_activity(USB_LED_EVENT_HOST);
1750
1751         /* pass ownership to the completion handler */
1752         urb->status = status;
1753
1754         /*
1755          * We disable local IRQs here avoid possible deadlock because
1756          * drivers may call spin_lock() to hold lock which might be
1757          * acquired in one hard interrupt handler.
1758          *
1759          * The local_irq_save()/local_irq_restore() around complete()
1760          * will be removed if current USB drivers have been cleaned up
1761          * and no one may trigger the above deadlock situation when
1762          * running complete() in tasklet.
1763          */
1764         local_irq_save(flags);
1765         urb->complete(urb);
1766         local_irq_restore(flags);
1767
1768         usb_anchor_resume_wakeups(anchor);
1769         atomic_dec(&urb->use_count);
1770         if (unlikely(atomic_read(&urb->reject)))
1771                 wake_up(&usb_kill_urb_queue);
1772         usb_put_urb(urb);
1773 }
1774
1775 static void usb_giveback_urb_bh(unsigned long param)
1776 {
1777         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1778         struct list_head local_list;
1779
1780         spin_lock_irq(&bh->lock);
1781         bh->running = true;
1782  restart:
1783         list_replace_init(&bh->head, &local_list);
1784         spin_unlock_irq(&bh->lock);
1785
1786         while (!list_empty(&local_list)) {
1787                 struct urb *urb;
1788
1789                 urb = list_entry(local_list.next, struct urb, urb_list);
1790                 list_del_init(&urb->urb_list);
1791                 bh->completing_ep = urb->ep;
1792                 __usb_hcd_giveback_urb(urb);
1793                 bh->completing_ep = NULL;
1794         }
1795
1796         /* check if there are new URBs to giveback */
1797         spin_lock_irq(&bh->lock);
1798         if (!list_empty(&bh->head))
1799                 goto restart;
1800         bh->running = false;
1801         spin_unlock_irq(&bh->lock);
1802 }
1803
1804 /**
1805  * usb_hcd_giveback_urb - return URB from HCD to device driver
1806  * @hcd: host controller returning the URB
1807  * @urb: urb being returned to the USB device driver.
1808  * @status: completion status code for the URB.
1809  * Context: in_interrupt()
1810  *
1811  * This hands the URB from HCD to its USB device driver, using its
1812  * completion function.  The HCD has freed all per-urb resources
1813  * (and is done using urb->hcpriv).  It also released all HCD locks;
1814  * the device driver won't cause problems if it frees, modifies,
1815  * or resubmits this URB.
1816  *
1817  * If @urb was unlinked, the value of @status will be overridden by
1818  * @urb->unlinked.  Erroneous short transfers are detected in case
1819  * the HCD hasn't checked for them.
1820  */
1821 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1822 {
1823         struct giveback_urb_bh *bh;
1824         bool running, high_prio_bh;
1825
1826         /* pass status to tasklet via unlinked */
1827         if (likely(!urb->unlinked))
1828                 urb->unlinked = status;
1829
1830         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1831                 __usb_hcd_giveback_urb(urb);
1832                 return;
1833         }
1834
1835         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1836                 bh = &hcd->high_prio_bh;
1837                 high_prio_bh = true;
1838         } else {
1839                 bh = &hcd->low_prio_bh;
1840                 high_prio_bh = false;
1841         }
1842
1843         spin_lock(&bh->lock);
1844         list_add_tail(&urb->urb_list, &bh->head);
1845         running = bh->running;
1846         spin_unlock(&bh->lock);
1847
1848         if (running)
1849                 ;
1850         else if (high_prio_bh)
1851                 tasklet_hi_schedule(&bh->bh);
1852         else
1853                 tasklet_schedule(&bh->bh);
1854 }
1855 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1856
1857 /*-------------------------------------------------------------------------*/
1858
1859 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1860  * queue to drain completely.  The caller must first insure that no more
1861  * URBs can be submitted for this endpoint.
1862  */
1863 void usb_hcd_flush_endpoint(struct usb_device *udev,
1864                 struct usb_host_endpoint *ep)
1865 {
1866         struct usb_hcd          *hcd;
1867         struct urb              *urb;
1868
1869         if (!ep)
1870                 return;
1871         might_sleep();
1872         hcd = bus_to_hcd(udev->bus);
1873
1874         /* No more submits can occur */
1875         spin_lock_irq(&hcd_urb_list_lock);
1876 rescan:
1877         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1878                 int     is_in;
1879
1880                 if (urb->unlinked)
1881                         continue;
1882                 usb_get_urb (urb);
1883                 is_in = usb_urb_dir_in(urb);
1884                 spin_unlock(&hcd_urb_list_lock);
1885
1886                 /* kick hcd */
1887                 unlink1(hcd, urb, -ESHUTDOWN);
1888                 dev_dbg (hcd->self.controller,
1889                         "shutdown urb %p ep%d%s%s\n",
1890                         urb, usb_endpoint_num(&ep->desc),
1891                         is_in ? "in" : "out",
1892                         ({      char *s;
1893
1894                                  switch (usb_endpoint_type(&ep->desc)) {
1895                                  case USB_ENDPOINT_XFER_CONTROL:
1896                                         s = ""; break;
1897                                  case USB_ENDPOINT_XFER_BULK:
1898                                         s = "-bulk"; break;
1899                                  case USB_ENDPOINT_XFER_INT:
1900                                         s = "-intr"; break;
1901                                  default:
1902                                         s = "-iso"; break;
1903                                 };
1904                                 s;
1905                         }));
1906                 usb_put_urb (urb);
1907
1908                 /* list contents may have changed */
1909                 spin_lock(&hcd_urb_list_lock);
1910                 goto rescan;
1911         }
1912         spin_unlock_irq(&hcd_urb_list_lock);
1913
1914         /* Wait until the endpoint queue is completely empty */
1915         while (!list_empty (&ep->urb_list)) {
1916                 spin_lock_irq(&hcd_urb_list_lock);
1917
1918                 /* The list may have changed while we acquired the spinlock */
1919                 urb = NULL;
1920                 if (!list_empty (&ep->urb_list)) {
1921                         urb = list_entry (ep->urb_list.prev, struct urb,
1922                                         urb_list);
1923                         usb_get_urb (urb);
1924                 }
1925                 spin_unlock_irq(&hcd_urb_list_lock);
1926
1927                 if (urb) {
1928                         usb_kill_urb (urb);
1929                         usb_put_urb (urb);
1930                 }
1931         }
1932 }
1933
1934 /**
1935  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1936  *                              the bus bandwidth
1937  * @udev: target &usb_device
1938  * @new_config: new configuration to install
1939  * @cur_alt: the current alternate interface setting
1940  * @new_alt: alternate interface setting that is being installed
1941  *
1942  * To change configurations, pass in the new configuration in new_config,
1943  * and pass NULL for cur_alt and new_alt.
1944  *
1945  * To reset a device's configuration (put the device in the ADDRESSED state),
1946  * pass in NULL for new_config, cur_alt, and new_alt.
1947  *
1948  * To change alternate interface settings, pass in NULL for new_config,
1949  * pass in the current alternate interface setting in cur_alt,
1950  * and pass in the new alternate interface setting in new_alt.
1951  *
1952  * Return: An error if the requested bandwidth change exceeds the
1953  * bus bandwidth or host controller internal resources.
1954  */
1955 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1956                 struct usb_host_config *new_config,
1957                 struct usb_host_interface *cur_alt,
1958                 struct usb_host_interface *new_alt)
1959 {
1960         int num_intfs, i, j;
1961         struct usb_host_interface *alt = NULL;
1962         int ret = 0;
1963         struct usb_hcd *hcd;
1964         struct usb_host_endpoint *ep;
1965
1966         hcd = bus_to_hcd(udev->bus);
1967         if (!hcd->driver->check_bandwidth)
1968                 return 0;
1969
1970         /* Configuration is being removed - set configuration 0 */
1971         if (!new_config && !cur_alt) {
1972                 for (i = 1; i < 16; ++i) {
1973                         ep = udev->ep_out[i];
1974                         if (ep)
1975                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1976                         ep = udev->ep_in[i];
1977                         if (ep)
1978                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1979                 }
1980                 hcd->driver->check_bandwidth(hcd, udev);
1981                 return 0;
1982         }
1983         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1984          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1985          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1986          * ok to exclude it.
1987          */
1988         if (new_config) {
1989                 num_intfs = new_config->desc.bNumInterfaces;
1990                 /* Remove endpoints (except endpoint 0, which is always on the
1991                  * schedule) from the old config from the schedule
1992                  */
1993                 for (i = 1; i < 16; ++i) {
1994                         ep = udev->ep_out[i];
1995                         if (ep) {
1996                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1997                                 if (ret < 0)
1998                                         goto reset;
1999                         }
2000                         ep = udev->ep_in[i];
2001                         if (ep) {
2002                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2003                                 if (ret < 0)
2004                                         goto reset;
2005                         }
2006                 }
2007                 for (i = 0; i < num_intfs; ++i) {
2008                         struct usb_host_interface *first_alt;
2009                         int iface_num;
2010
2011                         first_alt = &new_config->intf_cache[i]->altsetting[0];
2012                         iface_num = first_alt->desc.bInterfaceNumber;
2013                         /* Set up endpoints for alternate interface setting 0 */
2014                         alt = usb_find_alt_setting(new_config, iface_num, 0);
2015                         if (!alt)
2016                                 /* No alt setting 0? Pick the first setting. */
2017                                 alt = first_alt;
2018
2019                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2020                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2021                                 if (ret < 0)
2022                                         goto reset;
2023                         }
2024                 }
2025         }
2026         if (cur_alt && new_alt) {
2027                 struct usb_interface *iface = usb_ifnum_to_if(udev,
2028                                 cur_alt->desc.bInterfaceNumber);
2029
2030                 if (!iface)
2031                         return -EINVAL;
2032                 if (iface->resetting_device) {
2033                         /*
2034                          * The USB core just reset the device, so the xHCI host
2035                          * and the device will think alt setting 0 is installed.
2036                          * However, the USB core will pass in the alternate
2037                          * setting installed before the reset as cur_alt.  Dig
2038                          * out the alternate setting 0 structure, or the first
2039                          * alternate setting if a broken device doesn't have alt
2040                          * setting 0.
2041                          */
2042                         cur_alt = usb_altnum_to_altsetting(iface, 0);
2043                         if (!cur_alt)
2044                                 cur_alt = &iface->altsetting[0];
2045                 }
2046
2047                 /* Drop all the endpoints in the current alt setting */
2048                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2049                         ret = hcd->driver->drop_endpoint(hcd, udev,
2050                                         &cur_alt->endpoint[i]);
2051                         if (ret < 0)
2052                                 goto reset;
2053                 }
2054                 /* Add all the endpoints in the new alt setting */
2055                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2056                         ret = hcd->driver->add_endpoint(hcd, udev,
2057                                         &new_alt->endpoint[i]);
2058                         if (ret < 0)
2059                                 goto reset;
2060                 }
2061         }
2062         ret = hcd->driver->check_bandwidth(hcd, udev);
2063 reset:
2064         if (ret < 0)
2065                 hcd->driver->reset_bandwidth(hcd, udev);
2066         return ret;
2067 }
2068
2069 /* Disables the endpoint: synchronizes with the hcd to make sure all
2070  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2071  * have been called previously.  Use for set_configuration, set_interface,
2072  * driver removal, physical disconnect.
2073  *
2074  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2075  * type, maxpacket size, toggle, halt status, and scheduling.
2076  */
2077 void usb_hcd_disable_endpoint(struct usb_device *udev,
2078                 struct usb_host_endpoint *ep)
2079 {
2080         struct usb_hcd          *hcd;
2081
2082         might_sleep();
2083         hcd = bus_to_hcd(udev->bus);
2084         if (hcd->driver->endpoint_disable)
2085                 hcd->driver->endpoint_disable(hcd, ep);
2086 }
2087
2088 /**
2089  * usb_hcd_reset_endpoint - reset host endpoint state
2090  * @udev: USB device.
2091  * @ep:   the endpoint to reset.
2092  *
2093  * Resets any host endpoint state such as the toggle bit, sequence
2094  * number and current window.
2095  */
2096 void usb_hcd_reset_endpoint(struct usb_device *udev,
2097                             struct usb_host_endpoint *ep)
2098 {
2099         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100
2101         if (hcd->driver->endpoint_reset)
2102                 hcd->driver->endpoint_reset(hcd, ep);
2103         else {
2104                 int epnum = usb_endpoint_num(&ep->desc);
2105                 int is_out = usb_endpoint_dir_out(&ep->desc);
2106                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2107
2108                 usb_settoggle(udev, epnum, is_out, 0);
2109                 if (is_control)
2110                         usb_settoggle(udev, epnum, !is_out, 0);
2111         }
2112 }
2113
2114 /**
2115  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2116  * @interface:          alternate setting that includes all endpoints.
2117  * @eps:                array of endpoints that need streams.
2118  * @num_eps:            number of endpoints in the array.
2119  * @num_streams:        number of streams to allocate.
2120  * @mem_flags:          flags hcd should use to allocate memory.
2121  *
2122  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2123  * Drivers may queue multiple transfers to different stream IDs, which may
2124  * complete in a different order than they were queued.
2125  *
2126  * Return: On success, the number of allocated streams. On failure, a negative
2127  * error code.
2128  */
2129 int usb_alloc_streams(struct usb_interface *interface,
2130                 struct usb_host_endpoint **eps, unsigned int num_eps,
2131                 unsigned int num_streams, gfp_t mem_flags)
2132 {
2133         struct usb_hcd *hcd;
2134         struct usb_device *dev;
2135         int i, ret;
2136
2137         dev = interface_to_usbdev(interface);
2138         hcd = bus_to_hcd(dev->bus);
2139         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2140                 return -EINVAL;
2141         if (dev->speed < USB_SPEED_SUPER)
2142                 return -EINVAL;
2143         if (dev->state < USB_STATE_CONFIGURED)
2144                 return -ENODEV;
2145
2146         for (i = 0; i < num_eps; i++) {
2147                 /* Streams only apply to bulk endpoints. */
2148                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2149                         return -EINVAL;
2150                 /* Re-alloc is not allowed */
2151                 if (eps[i]->streams)
2152                         return -EINVAL;
2153         }
2154
2155         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2156                         num_streams, mem_flags);
2157         if (ret < 0)
2158                 return ret;
2159
2160         for (i = 0; i < num_eps; i++)
2161                 eps[i]->streams = ret;
2162
2163         return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2166
2167 /**
2168  * usb_free_streams - free bulk endpoint stream IDs.
2169  * @interface:  alternate setting that includes all endpoints.
2170  * @eps:        array of endpoints to remove streams from.
2171  * @num_eps:    number of endpoints in the array.
2172  * @mem_flags:  flags hcd should use to allocate memory.
2173  *
2174  * Reverts a group of bulk endpoints back to not using stream IDs.
2175  * Can fail if we are given bad arguments, or HCD is broken.
2176  *
2177  * Return: 0 on success. On failure, a negative error code.
2178  */
2179 int usb_free_streams(struct usb_interface *interface,
2180                 struct usb_host_endpoint **eps, unsigned int num_eps,
2181                 gfp_t mem_flags)
2182 {
2183         struct usb_hcd *hcd;
2184         struct usb_device *dev;
2185         int i, ret;
2186
2187         dev = interface_to_usbdev(interface);
2188         hcd = bus_to_hcd(dev->bus);
2189         if (dev->speed < USB_SPEED_SUPER)
2190                 return -EINVAL;
2191
2192         /* Double-free is not allowed */
2193         for (i = 0; i < num_eps; i++)
2194                 if (!eps[i] || !eps[i]->streams)
2195                         return -EINVAL;
2196
2197         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2198         if (ret < 0)
2199                 return ret;
2200
2201         for (i = 0; i < num_eps; i++)
2202                 eps[i]->streams = 0;
2203
2204         return ret;
2205 }
2206 EXPORT_SYMBOL_GPL(usb_free_streams);
2207
2208 /* Protect against drivers that try to unlink URBs after the device
2209  * is gone, by waiting until all unlinks for @udev are finished.
2210  * Since we don't currently track URBs by device, simply wait until
2211  * nothing is running in the locked region of usb_hcd_unlink_urb().
2212  */
2213 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2214 {
2215         spin_lock_irq(&hcd_urb_unlink_lock);
2216         spin_unlock_irq(&hcd_urb_unlink_lock);
2217 }
2218
2219 /*-------------------------------------------------------------------------*/
2220
2221 /* called in any context */
2222 int usb_hcd_get_frame_number (struct usb_device *udev)
2223 {
2224         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2225
2226         if (!HCD_RH_RUNNING(hcd))
2227                 return -ESHUTDOWN;
2228         return hcd->driver->get_frame_number (hcd);
2229 }
2230
2231 /*-------------------------------------------------------------------------*/
2232
2233 #ifdef  CONFIG_PM
2234
2235 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2236 {
2237         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2238         int             status;
2239         int             old_state = hcd->state;
2240
2241         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2242                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2243                         rhdev->do_remote_wakeup);
2244         if (HCD_DEAD(hcd)) {
2245                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2246                 return 0;
2247         }
2248
2249         if (!hcd->driver->bus_suspend) {
2250                 status = -ENOENT;
2251         } else {
2252                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2253                 hcd->state = HC_STATE_QUIESCING;
2254                 status = hcd->driver->bus_suspend(hcd);
2255         }
2256         if (status == 0) {
2257                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2258                 hcd->state = HC_STATE_SUSPENDED;
2259
2260                 /* Did we race with a root-hub wakeup event? */
2261                 if (rhdev->do_remote_wakeup) {
2262                         char    buffer[6];
2263
2264                         status = hcd->driver->hub_status_data(hcd, buffer);
2265                         if (status != 0) {
2266                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2267                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2268                                 status = -EBUSY;
2269                         }
2270                 }
2271         } else {
2272                 spin_lock_irq(&hcd_root_hub_lock);
2273                 if (!HCD_DEAD(hcd)) {
2274                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2275                         hcd->state = old_state;
2276                 }
2277                 spin_unlock_irq(&hcd_root_hub_lock);
2278                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2279                                 "suspend", status);
2280         }
2281         return status;
2282 }
2283
2284 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2285 {
2286         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2287         int             status;
2288         int             old_state = hcd->state;
2289
2290         dev_dbg(&rhdev->dev, "usb %sresume\n",
2291                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2292         if (HCD_DEAD(hcd)) {
2293                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2294                 return 0;
2295         }
2296         if (!hcd->driver->bus_resume)
2297                 return -ENOENT;
2298         if (HCD_RH_RUNNING(hcd))
2299                 return 0;
2300
2301         hcd->state = HC_STATE_RESUMING;
2302         status = hcd->driver->bus_resume(hcd);
2303         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2304         if (status == 0) {
2305                 struct usb_device *udev;
2306                 int port1;
2307
2308                 spin_lock_irq(&hcd_root_hub_lock);
2309                 if (!HCD_DEAD(hcd)) {
2310                         usb_set_device_state(rhdev, rhdev->actconfig
2311                                         ? USB_STATE_CONFIGURED
2312                                         : USB_STATE_ADDRESS);
2313                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2314                         hcd->state = HC_STATE_RUNNING;
2315                 }
2316                 spin_unlock_irq(&hcd_root_hub_lock);
2317
2318                 /*
2319                  * Check whether any of the enabled ports on the root hub are
2320                  * unsuspended.  If they are then a TRSMRCY delay is needed
2321                  * (this is what the USB-2 spec calls a "global resume").
2322                  * Otherwise we can skip the delay.
2323                  */
2324                 usb_hub_for_each_child(rhdev, port1, udev) {
2325                         if (udev->state != USB_STATE_NOTATTACHED &&
2326                                         !udev->port_is_suspended) {
2327                                 usleep_range(10000, 11000);     /* TRSMRCY */
2328                                 break;
2329                         }
2330                 }
2331         } else {
2332                 hcd->state = old_state;
2333                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2334                                 "resume", status);
2335                 if (status != -ESHUTDOWN)
2336                         usb_hc_died(hcd);
2337         }
2338         return status;
2339 }
2340
2341 /* Workqueue routine for root-hub remote wakeup */
2342 static void hcd_resume_work(struct work_struct *work)
2343 {
2344         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2345         struct usb_device *udev = hcd->self.root_hub;
2346
2347         usb_remote_wakeup(udev);
2348 }
2349
2350 /**
2351  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2352  * @hcd: host controller for this root hub
2353  *
2354  * The USB host controller calls this function when its root hub is
2355  * suspended (with the remote wakeup feature enabled) and a remote
2356  * wakeup request is received.  The routine submits a workqueue request
2357  * to resume the root hub (that is, manage its downstream ports again).
2358  */
2359 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2360 {
2361         unsigned long flags;
2362
2363         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2364         if (hcd->rh_registered) {
2365                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2366                 queue_work(pm_wq, &hcd->wakeup_work);
2367         }
2368         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2369 }
2370 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2371
2372 #endif  /* CONFIG_PM */
2373
2374 /*-------------------------------------------------------------------------*/
2375
2376 #ifdef  CONFIG_USB_OTG
2377
2378 /**
2379  * usb_bus_start_enum - start immediate enumeration (for OTG)
2380  * @bus: the bus (must use hcd framework)
2381  * @port_num: 1-based number of port; usually bus->otg_port
2382  * Context: in_interrupt()
2383  *
2384  * Starts enumeration, with an immediate reset followed later by
2385  * hub_wq identifying and possibly configuring the device.
2386  * This is needed by OTG controller drivers, where it helps meet
2387  * HNP protocol timing requirements for starting a port reset.
2388  *
2389  * Return: 0 if successful.
2390  */
2391 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2392 {
2393         struct usb_hcd          *hcd;
2394         int                     status = -EOPNOTSUPP;
2395
2396         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2397          * boards with root hubs hooked up to internal devices (instead of
2398          * just the OTG port) may need more attention to resetting...
2399          */
2400         hcd = bus_to_hcd(bus);
2401         if (port_num && hcd->driver->start_port_reset)
2402                 status = hcd->driver->start_port_reset(hcd, port_num);
2403
2404         /* allocate hub_wq shortly after (first) root port reset finishes;
2405          * it may issue others, until at least 50 msecs have passed.
2406          */
2407         if (status == 0)
2408                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2409         return status;
2410 }
2411 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2412
2413 #endif
2414
2415 /*-------------------------------------------------------------------------*/
2416
2417 /**
2418  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2419  * @irq: the IRQ being raised
2420  * @__hcd: pointer to the HCD whose IRQ is being signaled
2421  *
2422  * If the controller isn't HALTed, calls the driver's irq handler.
2423  * Checks whether the controller is now dead.
2424  *
2425  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2426  */
2427 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2428 {
2429         struct usb_hcd          *hcd = __hcd;
2430         irqreturn_t             rc;
2431
2432         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2433                 rc = IRQ_NONE;
2434         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2435                 rc = IRQ_NONE;
2436         else
2437                 rc = IRQ_HANDLED;
2438
2439         return rc;
2440 }
2441 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2442
2443 /*-------------------------------------------------------------------------*/
2444
2445 /**
2446  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2447  * @hcd: pointer to the HCD representing the controller
2448  *
2449  * This is called by bus glue to report a USB host controller that died
2450  * while operations may still have been pending.  It's called automatically
2451  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2452  *
2453  * Only call this function with the primary HCD.
2454  */
2455 void usb_hc_died (struct usb_hcd *hcd)
2456 {
2457         unsigned long flags;
2458
2459         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2460
2461         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2462         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2463         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2464         if (hcd->rh_registered) {
2465                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2466
2467                 /* make hub_wq clean up old urbs and devices */
2468                 usb_set_device_state (hcd->self.root_hub,
2469                                 USB_STATE_NOTATTACHED);
2470                 usb_kick_hub_wq(hcd->self.root_hub);
2471         }
2472         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2473                 hcd = hcd->shared_hcd;
2474                 if (hcd->rh_registered) {
2475                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2476
2477                         /* make hub_wq clean up old urbs and devices */
2478                         usb_set_device_state(hcd->self.root_hub,
2479                                         USB_STATE_NOTATTACHED);
2480                         usb_kick_hub_wq(hcd->self.root_hub);
2481                 }
2482         }
2483         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2484         /* Make sure that the other roothub is also deallocated. */
2485 }
2486 EXPORT_SYMBOL_GPL (usb_hc_died);
2487
2488 /*-------------------------------------------------------------------------*/
2489
2490 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2491 {
2492
2493         spin_lock_init(&bh->lock);
2494         INIT_LIST_HEAD(&bh->head);
2495         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2496 }
2497
2498 /**
2499  * usb_create_shared_hcd - create and initialize an HCD structure
2500  * @driver: HC driver that will use this hcd
2501  * @dev: device for this HC, stored in hcd->self.controller
2502  * @bus_name: value to store in hcd->self.bus_name
2503  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2504  *              PCI device.  Only allocate certain resources for the primary HCD
2505  * Context: !in_interrupt()
2506  *
2507  * Allocate a struct usb_hcd, with extra space at the end for the
2508  * HC driver's private data.  Initialize the generic members of the
2509  * hcd structure.
2510  *
2511  * Return: On success, a pointer to the created and initialized HCD structure.
2512  * On failure (e.g. if memory is unavailable), %NULL.
2513  */
2514 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2515                 struct device *dev, const char *bus_name,
2516                 struct usb_hcd *primary_hcd)
2517 {
2518         struct usb_hcd *hcd;
2519
2520         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2521         if (!hcd)
2522                 return NULL;
2523         if (primary_hcd == NULL) {
2524                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2525                                 GFP_KERNEL);
2526                 if (!hcd->address0_mutex) {
2527                         kfree(hcd);
2528                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2529                         return NULL;
2530                 }
2531                 mutex_init(hcd->address0_mutex);
2532                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2533                                 GFP_KERNEL);
2534                 if (!hcd->bandwidth_mutex) {
2535                         kfree(hcd);
2536                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2537                         return NULL;
2538                 }
2539                 mutex_init(hcd->bandwidth_mutex);
2540                 dev_set_drvdata(dev, hcd);
2541         } else {
2542                 mutex_lock(&usb_port_peer_mutex);
2543                 hcd->address0_mutex = primary_hcd->address0_mutex;
2544                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2545                 hcd->primary_hcd = primary_hcd;
2546                 primary_hcd->primary_hcd = primary_hcd;
2547                 hcd->shared_hcd = primary_hcd;
2548                 primary_hcd->shared_hcd = hcd;
2549                 mutex_unlock(&usb_port_peer_mutex);
2550         }
2551
2552         kref_init(&hcd->kref);
2553
2554         usb_bus_init(&hcd->self);
2555         hcd->self.controller = dev;
2556         hcd->self.bus_name = bus_name;
2557         hcd->self.uses_dma = (dev->dma_mask != NULL);
2558
2559         init_timer(&hcd->rh_timer);
2560         hcd->rh_timer.function = rh_timer_func;
2561         hcd->rh_timer.data = (unsigned long) hcd;
2562 #ifdef CONFIG_PM
2563         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2564 #endif
2565
2566         hcd->driver = driver;
2567         hcd->speed = driver->flags & HCD_MASK;
2568         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2569                         "USB Host Controller";
2570         return hcd;
2571 }
2572 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2573
2574 /**
2575  * usb_create_hcd - create and initialize an HCD structure
2576  * @driver: HC driver that will use this hcd
2577  * @dev: device for this HC, stored in hcd->self.controller
2578  * @bus_name: value to store in hcd->self.bus_name
2579  * Context: !in_interrupt()
2580  *
2581  * Allocate a struct usb_hcd, with extra space at the end for the
2582  * HC driver's private data.  Initialize the generic members of the
2583  * hcd structure.
2584  *
2585  * Return: On success, a pointer to the created and initialized HCD
2586  * structure. On failure (e.g. if memory is unavailable), %NULL.
2587  */
2588 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2589                 struct device *dev, const char *bus_name)
2590 {
2591         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2592 }
2593 EXPORT_SYMBOL_GPL(usb_create_hcd);
2594
2595 /*
2596  * Roothubs that share one PCI device must also share the bandwidth mutex.
2597  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2598  * deallocated.
2599  *
2600  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2601  * freed.  When hcd_release() is called for either hcd in a peer set,
2602  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2603  */
2604 static void hcd_release(struct kref *kref)
2605 {
2606         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2607
2608         mutex_lock(&usb_port_peer_mutex);
2609         if (hcd->shared_hcd) {
2610                 struct usb_hcd *peer = hcd->shared_hcd;
2611
2612                 peer->shared_hcd = NULL;
2613                 peer->primary_hcd = NULL;
2614         } else {
2615                 kfree(hcd->address0_mutex);
2616                 kfree(hcd->bandwidth_mutex);
2617         }
2618         mutex_unlock(&usb_port_peer_mutex);
2619         kfree(hcd);
2620 }
2621
2622 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2623 {
2624         if (hcd)
2625                 kref_get (&hcd->kref);
2626         return hcd;
2627 }
2628 EXPORT_SYMBOL_GPL(usb_get_hcd);
2629
2630 void usb_put_hcd (struct usb_hcd *hcd)
2631 {
2632         if (hcd)
2633                 kref_put (&hcd->kref, hcd_release);
2634 }
2635 EXPORT_SYMBOL_GPL(usb_put_hcd);
2636
2637 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2638 {
2639         if (!hcd->primary_hcd)
2640                 return 1;
2641         return hcd == hcd->primary_hcd;
2642 }
2643 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2644
2645 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2646 {
2647         if (!hcd->driver->find_raw_port_number)
2648                 return port1;
2649
2650         return hcd->driver->find_raw_port_number(hcd, port1);
2651 }
2652
2653 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2654                 unsigned int irqnum, unsigned long irqflags)
2655 {
2656         int retval;
2657
2658         if (hcd->driver->irq) {
2659
2660                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2661                                 hcd->driver->description, hcd->self.busnum);
2662                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2663                                 hcd->irq_descr, hcd);
2664                 if (retval != 0) {
2665                         dev_err(hcd->self.controller,
2666                                         "request interrupt %d failed\n",
2667                                         irqnum);
2668                         return retval;
2669                 }
2670                 hcd->irq = irqnum;
2671                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2672                                 (hcd->driver->flags & HCD_MEMORY) ?
2673                                         "io mem" : "io base",
2674                                         (unsigned long long)hcd->rsrc_start);
2675         } else {
2676                 hcd->irq = 0;
2677                 if (hcd->rsrc_start)
2678                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2679                                         (hcd->driver->flags & HCD_MEMORY) ?
2680                                         "io mem" : "io base",
2681                                         (unsigned long long)hcd->rsrc_start);
2682         }
2683         return 0;
2684 }
2685
2686 /*
2687  * Before we free this root hub, flush in-flight peering attempts
2688  * and disable peer lookups
2689  */
2690 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2691 {
2692         struct usb_device *rhdev;
2693
2694         mutex_lock(&usb_port_peer_mutex);
2695         rhdev = hcd->self.root_hub;
2696         hcd->self.root_hub = NULL;
2697         mutex_unlock(&usb_port_peer_mutex);
2698         usb_put_dev(rhdev);
2699 }
2700
2701 /**
2702  * usb_add_hcd - finish generic HCD structure initialization and register
2703  * @hcd: the usb_hcd structure to initialize
2704  * @irqnum: Interrupt line to allocate
2705  * @irqflags: Interrupt type flags
2706  *
2707  * Finish the remaining parts of generic HCD initialization: allocate the
2708  * buffers of consistent memory, register the bus, request the IRQ line,
2709  * and call the driver's reset() and start() routines.
2710  */
2711 int usb_add_hcd(struct usb_hcd *hcd,
2712                 unsigned int irqnum, unsigned long irqflags)
2713 {
2714         int retval;
2715         struct usb_device *rhdev;
2716
2717         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2718                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2719
2720                 if (IS_ERR(phy)) {
2721                         retval = PTR_ERR(phy);
2722                         if (retval == -EPROBE_DEFER)
2723                                 return retval;
2724                 } else {
2725                         retval = usb_phy_init(phy);
2726                         if (retval) {
2727                                 usb_put_phy(phy);
2728                                 return retval;
2729                         }
2730                         hcd->usb_phy = phy;
2731                         hcd->remove_phy = 1;
2732                 }
2733         }
2734
2735         if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2736                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2737
2738                 if (IS_ERR(phy)) {
2739                         retval = PTR_ERR(phy);
2740                         if (retval == -EPROBE_DEFER)
2741                                 goto err_phy;
2742                 } else {
2743                         retval = phy_init(phy);
2744                         if (retval) {
2745                                 phy_put(phy);
2746                                 goto err_phy;
2747                         }
2748                         retval = phy_power_on(phy);
2749                         if (retval) {
2750                                 phy_exit(phy);
2751                                 phy_put(phy);
2752                                 goto err_phy;
2753                         }
2754                         hcd->phy = phy;
2755                         hcd->remove_phy = 1;
2756                 }
2757         }
2758
2759         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2760
2761         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2762         if (authorized_default < 0 || authorized_default > 1) {
2763                 if (hcd->wireless)
2764                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2765                 else
2766                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2767         } else {
2768                 if (authorized_default)
2769                         set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770                 else
2771                         clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2772         }
2773         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2774
2775         /* per default all interfaces are authorized */
2776         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2777
2778         /* HC is in reset state, but accessible.  Now do the one-time init,
2779          * bottom up so that hcds can customize the root hubs before hub_wq
2780          * starts talking to them.  (Note, bus id is assigned early too.)
2781          */
2782         retval = hcd_buffer_create(hcd);
2783         if (retval != 0) {
2784                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2785                 goto err_create_buf;
2786         }
2787
2788         retval = usb_register_bus(&hcd->self);
2789         if (retval < 0)
2790                 goto err_register_bus;
2791
2792         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2793         if (rhdev == NULL) {
2794                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2795                 retval = -ENOMEM;
2796                 goto err_allocate_root_hub;
2797         }
2798         mutex_lock(&usb_port_peer_mutex);
2799         hcd->self.root_hub = rhdev;
2800         mutex_unlock(&usb_port_peer_mutex);
2801
2802         switch (hcd->speed) {
2803         case HCD_USB11:
2804                 rhdev->speed = USB_SPEED_FULL;
2805                 break;
2806         case HCD_USB2:
2807                 rhdev->speed = USB_SPEED_HIGH;
2808                 break;
2809         case HCD_USB25:
2810                 rhdev->speed = USB_SPEED_WIRELESS;
2811                 break;
2812         case HCD_USB3:
2813                 rhdev->speed = USB_SPEED_SUPER;
2814                 break;
2815         case HCD_USB31:
2816                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2817                 break;
2818         default:
2819                 retval = -EINVAL;
2820                 goto err_set_rh_speed;
2821         }
2822
2823         /* wakeup flag init defaults to "everything works" for root hubs,
2824          * but drivers can override it in reset() if needed, along with
2825          * recording the overall controller's system wakeup capability.
2826          */
2827         device_set_wakeup_capable(&rhdev->dev, 1);
2828
2829         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2830          * registered.  But since the controller can die at any time,
2831          * let's initialize the flag before touching the hardware.
2832          */
2833         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2834
2835         /* "reset" is misnamed; its role is now one-time init. the controller
2836          * should already have been reset (and boot firmware kicked off etc).
2837          */
2838         if (hcd->driver->reset) {
2839                 retval = hcd->driver->reset(hcd);
2840                 if (retval < 0) {
2841                         dev_err(hcd->self.controller, "can't setup: %d\n",
2842                                         retval);
2843                         goto err_hcd_driver_setup;
2844                 }
2845         }
2846         hcd->rh_pollable = 1;
2847
2848         /* NOTE: root hub and controller capabilities may not be the same */
2849         if (device_can_wakeup(hcd->self.controller)
2850                         && device_can_wakeup(&hcd->self.root_hub->dev))
2851                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2852
2853         /* initialize tasklets */
2854         init_giveback_urb_bh(&hcd->high_prio_bh);
2855         init_giveback_urb_bh(&hcd->low_prio_bh);
2856
2857         /* enable irqs just before we start the controller,
2858          * if the BIOS provides legacy PCI irqs.
2859          */
2860         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2861                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2862                 if (retval)
2863                         goto err_request_irq;
2864         }
2865
2866         hcd->state = HC_STATE_RUNNING;
2867         retval = hcd->driver->start(hcd);
2868         if (retval < 0) {
2869                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2870                 goto err_hcd_driver_start;
2871         }
2872
2873         /* starting here, usbcore will pay attention to this root hub */
2874         retval = register_root_hub(hcd);
2875         if (retval != 0)
2876                 goto err_register_root_hub;
2877
2878         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2879         if (retval < 0) {
2880                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2881                        retval);
2882                 goto error_create_attr_group;
2883         }
2884         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2885                 usb_hcd_poll_rh_status(hcd);
2886
2887         return retval;
2888
2889 error_create_attr_group:
2890         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2891         if (HC_IS_RUNNING(hcd->state))
2892                 hcd->state = HC_STATE_QUIESCING;
2893         spin_lock_irq(&hcd_root_hub_lock);
2894         hcd->rh_registered = 0;
2895         spin_unlock_irq(&hcd_root_hub_lock);
2896
2897 #ifdef CONFIG_PM
2898         cancel_work_sync(&hcd->wakeup_work);
2899 #endif
2900         mutex_lock(&usb_bus_idr_lock);
2901         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2902         mutex_unlock(&usb_bus_idr_lock);
2903 err_register_root_hub:
2904         hcd->rh_pollable = 0;
2905         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2906         del_timer_sync(&hcd->rh_timer);
2907         hcd->driver->stop(hcd);
2908         hcd->state = HC_STATE_HALT;
2909         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2910         del_timer_sync(&hcd->rh_timer);
2911 err_hcd_driver_start:
2912         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2913                 free_irq(irqnum, hcd);
2914 err_request_irq:
2915 err_hcd_driver_setup:
2916 err_set_rh_speed:
2917         usb_put_invalidate_rhdev(hcd);
2918 err_allocate_root_hub:
2919         usb_deregister_bus(&hcd->self);
2920 err_register_bus:
2921         hcd_buffer_destroy(hcd);
2922 err_create_buf:
2923         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2924                 phy_power_off(hcd->phy);
2925                 phy_exit(hcd->phy);
2926                 phy_put(hcd->phy);
2927                 hcd->phy = NULL;
2928         }
2929 err_phy:
2930         if (hcd->remove_phy && hcd->usb_phy) {
2931                 usb_phy_shutdown(hcd->usb_phy);
2932                 usb_put_phy(hcd->usb_phy);
2933                 hcd->usb_phy = NULL;
2934         }
2935         return retval;
2936 }
2937 EXPORT_SYMBOL_GPL(usb_add_hcd);
2938
2939 /**
2940  * usb_remove_hcd - shutdown processing for generic HCDs
2941  * @hcd: the usb_hcd structure to remove
2942  * Context: !in_interrupt()
2943  *
2944  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2945  * invoking the HCD's stop() method.
2946  */
2947 void usb_remove_hcd(struct usb_hcd *hcd)
2948 {
2949         struct usb_device *rhdev = hcd->self.root_hub;
2950
2951         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2952
2953         usb_get_dev(rhdev);
2954         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2955
2956         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2957         if (HC_IS_RUNNING (hcd->state))
2958                 hcd->state = HC_STATE_QUIESCING;
2959
2960         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2961         spin_lock_irq (&hcd_root_hub_lock);
2962         hcd->rh_registered = 0;
2963         spin_unlock_irq (&hcd_root_hub_lock);
2964
2965 #ifdef CONFIG_PM
2966         cancel_work_sync(&hcd->wakeup_work);
2967 #endif
2968
2969         mutex_lock(&usb_bus_idr_lock);
2970         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2971         mutex_unlock(&usb_bus_idr_lock);
2972
2973         /*
2974          * tasklet_kill() isn't needed here because:
2975          * - driver's disconnect() called from usb_disconnect() should
2976          *   make sure its URBs are completed during the disconnect()
2977          *   callback
2978          *
2979          * - it is too late to run complete() here since driver may have
2980          *   been removed already now
2981          */
2982
2983         /* Prevent any more root-hub status calls from the timer.
2984          * The HCD might still restart the timer (if a port status change
2985          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2986          * the hub_status_data() callback.
2987          */
2988         hcd->rh_pollable = 0;
2989         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2990         del_timer_sync(&hcd->rh_timer);
2991
2992         hcd->driver->stop(hcd);
2993         hcd->state = HC_STATE_HALT;
2994
2995         /* In case the HCD restarted the timer, stop it again. */
2996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2997         del_timer_sync(&hcd->rh_timer);
2998
2999         if (usb_hcd_is_primary_hcd(hcd)) {
3000                 if (hcd->irq > 0)
3001                         free_irq(hcd->irq, hcd);
3002         }
3003
3004         usb_deregister_bus(&hcd->self);
3005         hcd_buffer_destroy(hcd);
3006
3007         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3008                 phy_power_off(hcd->phy);
3009                 phy_exit(hcd->phy);
3010                 phy_put(hcd->phy);
3011                 hcd->phy = NULL;
3012         }
3013         if (hcd->remove_phy && hcd->usb_phy) {
3014                 usb_phy_shutdown(hcd->usb_phy);
3015                 usb_put_phy(hcd->usb_phy);
3016                 hcd->usb_phy = NULL;
3017         }
3018
3019         usb_put_invalidate_rhdev(hcd);
3020         hcd->flags = 0;
3021 }
3022 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3023
3024 void
3025 usb_hcd_platform_shutdown(struct platform_device *dev)
3026 {
3027         struct usb_hcd *hcd = platform_get_drvdata(dev);
3028
3029         if (hcd->driver->shutdown)
3030                 hcd->driver->shutdown(hcd);
3031 }
3032 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3033
3034 /*-------------------------------------------------------------------------*/
3035
3036 #if IS_ENABLED(CONFIG_USB_MON)
3037
3038 const struct usb_mon_operations *mon_ops;
3039
3040 /*
3041  * The registration is unlocked.
3042  * We do it this way because we do not want to lock in hot paths.
3043  *
3044  * Notice that the code is minimally error-proof. Because usbmon needs
3045  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3046  */
3047
3048 int usb_mon_register(const struct usb_mon_operations *ops)
3049 {
3050
3051         if (mon_ops)
3052                 return -EBUSY;
3053
3054         mon_ops = ops;
3055         mb();
3056         return 0;
3057 }
3058 EXPORT_SYMBOL_GPL (usb_mon_register);
3059
3060 void usb_mon_deregister (void)
3061 {
3062
3063         if (mon_ops == NULL) {
3064                 printk(KERN_ERR "USB: monitor was not registered\n");
3065                 return;
3066         }
3067         mon_ops = NULL;
3068         mb();
3069 }
3070 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3071
3072 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */