]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
xHCI: cancel command after command timeout
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret) {
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
110         } else
111                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
112                                 XHCI_MAX_HALT_USEC);
113         return ret;
114 }
115
116 /*
117  * Set the run bit and wait for the host to be running.
118  */
119 static int xhci_start(struct xhci_hcd *xhci)
120 {
121         u32 temp;
122         int ret;
123
124         temp = xhci_readl(xhci, &xhci->op_regs->command);
125         temp |= (CMD_RUN);
126         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
127                         temp);
128         xhci_writel(xhci, temp, &xhci->op_regs->command);
129
130         /*
131          * Wait for the HCHalted Status bit to be 0 to indicate the host is
132          * running.
133          */
134         ret = handshake(xhci, &xhci->op_regs->status,
135                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
136         if (ret == -ETIMEDOUT)
137                 xhci_err(xhci, "Host took too long to start, "
138                                 "waited %u microseconds.\n",
139                                 XHCI_MAX_HALT_USEC);
140         if (!ret)
141                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
142         return ret;
143 }
144
145 /*
146  * Reset a halted HC.
147  *
148  * This resets pipelines, timers, counters, state machines, etc.
149  * Transactions will be terminated immediately, and operational registers
150  * will be set to their defaults.
151  */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154         u32 command;
155         u32 state;
156         int ret, i;
157
158         state = xhci_readl(xhci, &xhci->op_regs->status);
159         if ((state & STS_HALT) == 0) {
160                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
161                 return 0;
162         }
163
164         xhci_dbg(xhci, "// Reset the HC\n");
165         command = xhci_readl(xhci, &xhci->op_regs->command);
166         command |= CMD_RESET;
167         xhci_writel(xhci, command, &xhci->op_regs->command);
168
169         ret = handshake(xhci, &xhci->op_regs->command,
170                         CMD_RESET, 0, 10 * 1000 * 1000);
171         if (ret)
172                 return ret;
173
174         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
175         /*
176          * xHCI cannot write to any doorbells or operational registers other
177          * than status until the "Controller Not Ready" flag is cleared.
178          */
179         ret = handshake(xhci, &xhci->op_regs->status,
180                         STS_CNR, 0, 10 * 1000 * 1000);
181
182         for (i = 0; i < 2; ++i) {
183                 xhci->bus_state[i].port_c_suspend = 0;
184                 xhci->bus_state[i].suspended_ports = 0;
185                 xhci->bus_state[i].resuming_ports = 0;
186         }
187
188         return ret;
189 }
190
191 #ifdef CONFIG_PCI
192 static int xhci_free_msi(struct xhci_hcd *xhci)
193 {
194         int i;
195
196         if (!xhci->msix_entries)
197                 return -EINVAL;
198
199         for (i = 0; i < xhci->msix_count; i++)
200                 if (xhci->msix_entries[i].vector)
201                         free_irq(xhci->msix_entries[i].vector,
202                                         xhci_to_hcd(xhci));
203         return 0;
204 }
205
206 /*
207  * Set up MSI
208  */
209 static int xhci_setup_msi(struct xhci_hcd *xhci)
210 {
211         int ret;
212         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
213
214         ret = pci_enable_msi(pdev);
215         if (ret) {
216                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
217                 return ret;
218         }
219
220         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
221                                 0, "xhci_hcd", xhci_to_hcd(xhci));
222         if (ret) {
223                 xhci_dbg(xhci, "disable MSI interrupt\n");
224                 pci_disable_msi(pdev);
225         }
226
227         return ret;
228 }
229
230 /*
231  * Free IRQs
232  * free all IRQs request
233  */
234 static void xhci_free_irq(struct xhci_hcd *xhci)
235 {
236         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
237         int ret;
238
239         /* return if using legacy interrupt */
240         if (xhci_to_hcd(xhci)->irq > 0)
241                 return;
242
243         ret = xhci_free_msi(xhci);
244         if (!ret)
245                 return;
246         if (pdev->irq > 0)
247                 free_irq(pdev->irq, xhci_to_hcd(xhci));
248
249         return;
250 }
251
252 /*
253  * Set up MSI-X
254  */
255 static int xhci_setup_msix(struct xhci_hcd *xhci)
256 {
257         int i, ret = 0;
258         struct usb_hcd *hcd = xhci_to_hcd(xhci);
259         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
260
261         /*
262          * calculate number of msi-x vectors supported.
263          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
264          *   with max number of interrupters based on the xhci HCSPARAMS1.
265          * - num_online_cpus: maximum msi-x vectors per CPUs core.
266          *   Add additional 1 vector to ensure always available interrupt.
267          */
268         xhci->msix_count = min(num_online_cpus() + 1,
269                                 HCS_MAX_INTRS(xhci->hcs_params1));
270
271         xhci->msix_entries =
272                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
273                                 GFP_KERNEL);
274         if (!xhci->msix_entries) {
275                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
276                 return -ENOMEM;
277         }
278
279         for (i = 0; i < xhci->msix_count; i++) {
280                 xhci->msix_entries[i].entry = i;
281                 xhci->msix_entries[i].vector = 0;
282         }
283
284         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
285         if (ret) {
286                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
287                 goto free_entries;
288         }
289
290         for (i = 0; i < xhci->msix_count; i++) {
291                 ret = request_irq(xhci->msix_entries[i].vector,
292                                 (irq_handler_t)xhci_msi_irq,
293                                 0, "xhci_hcd", xhci_to_hcd(xhci));
294                 if (ret)
295                         goto disable_msix;
296         }
297
298         hcd->msix_enabled = 1;
299         return ret;
300
301 disable_msix:
302         xhci_dbg(xhci, "disable MSI-X interrupt\n");
303         xhci_free_irq(xhci);
304         pci_disable_msix(pdev);
305 free_entries:
306         kfree(xhci->msix_entries);
307         xhci->msix_entries = NULL;
308         return ret;
309 }
310
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
313 {
314         struct usb_hcd *hcd = xhci_to_hcd(xhci);
315         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
316
317         xhci_free_irq(xhci);
318
319         if (xhci->msix_entries) {
320                 pci_disable_msix(pdev);
321                 kfree(xhci->msix_entries);
322                 xhci->msix_entries = NULL;
323         } else {
324                 pci_disable_msi(pdev);
325         }
326
327         hcd->msix_enabled = 0;
328         return;
329 }
330
331 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
332 {
333         int i;
334
335         if (xhci->msix_entries) {
336                 for (i = 0; i < xhci->msix_count; i++)
337                         synchronize_irq(xhci->msix_entries[i].vector);
338         }
339 }
340
341 static int xhci_try_enable_msi(struct usb_hcd *hcd)
342 {
343         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
344         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345         int ret;
346
347         /*
348          * Some Fresco Logic host controllers advertise MSI, but fail to
349          * generate interrupts.  Don't even try to enable MSI.
350          */
351         if (xhci->quirks & XHCI_BROKEN_MSI)
352                 return 0;
353
354         /* unregister the legacy interrupt */
355         if (hcd->irq)
356                 free_irq(hcd->irq, hcd);
357         hcd->irq = 0;
358
359         ret = xhci_setup_msix(xhci);
360         if (ret)
361                 /* fall back to msi*/
362                 ret = xhci_setup_msi(xhci);
363
364         if (!ret)
365                 /* hcd->irq is 0, we have MSI */
366                 return 0;
367
368         if (!pdev->irq) {
369                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
370                 return -EINVAL;
371         }
372
373         /* fall back to legacy interrupt*/
374         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
375                         hcd->irq_descr, hcd);
376         if (ret) {
377                 xhci_err(xhci, "request interrupt %d failed\n",
378                                 pdev->irq);
379                 return ret;
380         }
381         hcd->irq = pdev->irq;
382         return 0;
383 }
384
385 #else
386
387 static int xhci_try_enable_msi(struct usb_hcd *hcd)
388 {
389         return 0;
390 }
391
392 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
393 {
394 }
395
396 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 }
399
400 #endif
401
402 /*
403  * Initialize memory for HCD and xHC (one-time init).
404  *
405  * Program the PAGESIZE register, initialize the device context array, create
406  * device contexts (?), set up a command ring segment (or two?), create event
407  * ring (one for now).
408  */
409 int xhci_init(struct usb_hcd *hcd)
410 {
411         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412         int retval = 0;
413
414         xhci_dbg(xhci, "xhci_init\n");
415         spin_lock_init(&xhci->lock);
416         if (xhci->hci_version == 0x95 && link_quirk) {
417                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
418                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
419         } else {
420                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
421         }
422         retval = xhci_mem_init(xhci, GFP_KERNEL);
423         xhci_dbg(xhci, "Finished xhci_init\n");
424
425         return retval;
426 }
427
428 /*-------------------------------------------------------------------------*/
429
430
431 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
432 static void xhci_event_ring_work(unsigned long arg)
433 {
434         unsigned long flags;
435         int temp;
436         u64 temp_64;
437         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
438         int i, j;
439
440         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
441
442         spin_lock_irqsave(&xhci->lock, flags);
443         temp = xhci_readl(xhci, &xhci->op_regs->status);
444         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
445         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
446                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
447                 xhci_dbg(xhci, "HW died, polling stopped.\n");
448                 spin_unlock_irqrestore(&xhci->lock, flags);
449                 return;
450         }
451
452         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
453         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
454         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
455         xhci->error_bitmask = 0;
456         xhci_dbg(xhci, "Event ring:\n");
457         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
458         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
459         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
460         temp_64 &= ~ERST_PTR_MASK;
461         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
462         xhci_dbg(xhci, "Command ring:\n");
463         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
464         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
465         xhci_dbg_cmd_ptrs(xhci);
466         for (i = 0; i < MAX_HC_SLOTS; ++i) {
467                 if (!xhci->devs[i])
468                         continue;
469                 for (j = 0; j < 31; ++j) {
470                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
471                 }
472         }
473         spin_unlock_irqrestore(&xhci->lock, flags);
474
475         if (!xhci->zombie)
476                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
477         else
478                 xhci_dbg(xhci, "Quit polling the event ring.\n");
479 }
480 #endif
481
482 static int xhci_run_finished(struct xhci_hcd *xhci)
483 {
484         if (xhci_start(xhci)) {
485                 xhci_halt(xhci);
486                 return -ENODEV;
487         }
488         xhci->shared_hcd->state = HC_STATE_RUNNING;
489         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
490
491         if (xhci->quirks & XHCI_NEC_HOST)
492                 xhci_ring_cmd_db(xhci);
493
494         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
495         return 0;
496 }
497
498 /*
499  * Start the HC after it was halted.
500  *
501  * This function is called by the USB core when the HC driver is added.
502  * Its opposite is xhci_stop().
503  *
504  * xhci_init() must be called once before this function can be called.
505  * Reset the HC, enable device slot contexts, program DCBAAP, and
506  * set command ring pointer and event ring pointer.
507  *
508  * Setup MSI-X vectors and enable interrupts.
509  */
510 int xhci_run(struct usb_hcd *hcd)
511 {
512         u32 temp;
513         u64 temp_64;
514         int ret;
515         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
516
517         /* Start the xHCI host controller running only after the USB 2.0 roothub
518          * is setup.
519          */
520
521         hcd->uses_new_polling = 1;
522         if (!usb_hcd_is_primary_hcd(hcd))
523                 return xhci_run_finished(xhci);
524
525         xhci_dbg(xhci, "xhci_run\n");
526
527         ret = xhci_try_enable_msi(hcd);
528         if (ret)
529                 return ret;
530
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532         init_timer(&xhci->event_ring_timer);
533         xhci->event_ring_timer.data = (unsigned long) xhci;
534         xhci->event_ring_timer.function = xhci_event_ring_work;
535         /* Poll the event ring */
536         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
537         xhci->zombie = 0;
538         xhci_dbg(xhci, "Setting event ring polling timer\n");
539         add_timer(&xhci->event_ring_timer);
540 #endif
541
542         xhci_dbg(xhci, "Command ring memory map follows:\n");
543         xhci_debug_ring(xhci, xhci->cmd_ring);
544         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
545         xhci_dbg_cmd_ptrs(xhci);
546
547         xhci_dbg(xhci, "ERST memory map follows:\n");
548         xhci_dbg_erst(xhci, &xhci->erst);
549         xhci_dbg(xhci, "Event ring:\n");
550         xhci_debug_ring(xhci, xhci->event_ring);
551         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
552         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
553         temp_64 &= ~ERST_PTR_MASK;
554         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
555
556         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
557         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
558         temp &= ~ER_IRQ_INTERVAL_MASK;
559         temp |= (u32) 160;
560         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
561
562         /* Set the HCD state before we enable the irqs */
563         temp = xhci_readl(xhci, &xhci->op_regs->command);
564         temp |= (CMD_EIE);
565         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
566                         temp);
567         xhci_writel(xhci, temp, &xhci->op_regs->command);
568
569         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
570         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
571                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
572         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
573                         &xhci->ir_set->irq_pending);
574         xhci_print_ir_set(xhci, 0);
575
576         if (xhci->quirks & XHCI_NEC_HOST)
577                 xhci_queue_vendor_command(xhci, 0, 0, 0,
578                                 TRB_TYPE(TRB_NEC_GET_FW));
579
580         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
581         return 0;
582 }
583
584 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
585 {
586         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587
588         spin_lock_irq(&xhci->lock);
589         xhci_halt(xhci);
590
591         /* The shared_hcd is going to be deallocated shortly (the USB core only
592          * calls this function when allocation fails in usb_add_hcd(), or
593          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
594          */
595         xhci->shared_hcd = NULL;
596         spin_unlock_irq(&xhci->lock);
597 }
598
599 /*
600  * Stop xHCI driver.
601  *
602  * This function is called by the USB core when the HC driver is removed.
603  * Its opposite is xhci_run().
604  *
605  * Disable device contexts, disable IRQs, and quiesce the HC.
606  * Reset the HC, finish any completed transactions, and cleanup memory.
607  */
608 void xhci_stop(struct usb_hcd *hcd)
609 {
610         u32 temp;
611         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
612
613         if (!usb_hcd_is_primary_hcd(hcd)) {
614                 xhci_only_stop_hcd(xhci->shared_hcd);
615                 return;
616         }
617
618         spin_lock_irq(&xhci->lock);
619         /* Make sure the xHC is halted for a USB3 roothub
620          * (xhci_stop() could be called as part of failed init).
621          */
622         xhci_halt(xhci);
623         xhci_reset(xhci);
624         spin_unlock_irq(&xhci->lock);
625
626         xhci_cleanup_msix(xhci);
627
628 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
629         /* Tell the event ring poll function not to reschedule */
630         xhci->zombie = 1;
631         del_timer_sync(&xhci->event_ring_timer);
632 #endif
633
634         if (xhci->quirks & XHCI_AMD_PLL_FIX)
635                 usb_amd_dev_put();
636
637         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
638         temp = xhci_readl(xhci, &xhci->op_regs->status);
639         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
640         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
641         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
642                         &xhci->ir_set->irq_pending);
643         xhci_print_ir_set(xhci, 0);
644
645         xhci_dbg(xhci, "cleaning up memory\n");
646         xhci_mem_cleanup(xhci);
647         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
648                     xhci_readl(xhci, &xhci->op_regs->status));
649 }
650
651 /*
652  * Shutdown HC (not bus-specific)
653  *
654  * This is called when the machine is rebooting or halting.  We assume that the
655  * machine will be powered off, and the HC's internal state will be reset.
656  * Don't bother to free memory.
657  *
658  * This will only ever be called with the main usb_hcd (the USB3 roothub).
659  */
660 void xhci_shutdown(struct usb_hcd *hcd)
661 {
662         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
663
664         if (xhci->quirks && XHCI_SPURIOUS_REBOOT)
665                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
666
667         spin_lock_irq(&xhci->lock);
668         xhci_halt(xhci);
669         spin_unlock_irq(&xhci->lock);
670
671         xhci_cleanup_msix(xhci);
672
673         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
674                     xhci_readl(xhci, &xhci->op_regs->status));
675 }
676
677 #ifdef CONFIG_PM
678 static void xhci_save_registers(struct xhci_hcd *xhci)
679 {
680         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
681         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
682         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
683         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
684         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
685         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
686         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
687         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
688         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
689 }
690
691 static void xhci_restore_registers(struct xhci_hcd *xhci)
692 {
693         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
694         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
695         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
696         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
697         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
698         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
699         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
700         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
701         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
702 }
703
704 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
705 {
706         u64     val_64;
707
708         /* step 2: initialize command ring buffer */
709         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
710         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
711                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
712                                       xhci->cmd_ring->dequeue) &
713                  (u64) ~CMD_RING_RSVD_BITS) |
714                 xhci->cmd_ring->cycle_state;
715         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
716                         (long unsigned long) val_64);
717         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719
720 /*
721  * The whole command ring must be cleared to zero when we suspend the host.
722  *
723  * The host doesn't save the command ring pointer in the suspend well, so we
724  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
725  * aligned, because of the reserved bits in the command ring dequeue pointer
726  * register.  Therefore, we can't just set the dequeue pointer back in the
727  * middle of the ring (TRBs are 16-byte aligned).
728  */
729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731         struct xhci_ring *ring;
732         struct xhci_segment *seg;
733
734         ring = xhci->cmd_ring;
735         seg = ring->deq_seg;
736         do {
737                 memset(seg->trbs, 0,
738                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740                         cpu_to_le32(~TRB_CYCLE);
741                 seg = seg->next;
742         } while (seg != ring->deq_seg);
743
744         /* Reset the software enqueue and dequeue pointers */
745         ring->deq_seg = ring->first_seg;
746         ring->dequeue = ring->first_seg->trbs;
747         ring->enq_seg = ring->deq_seg;
748         ring->enqueue = ring->dequeue;
749
750         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751         /*
752          * Ring is now zeroed, so the HW should look for change of ownership
753          * when the cycle bit is set to 1.
754          */
755         ring->cycle_state = 1;
756
757         /*
758          * Reset the hardware dequeue pointer.
759          * Yes, this will need to be re-written after resume, but we're paranoid
760          * and want to make sure the hardware doesn't access bogus memory
761          * because, say, the BIOS or an SMI started the host without changing
762          * the command ring pointers.
763          */
764         xhci_set_cmd_ring_deq(xhci);
765 }
766
767 /*
768  * Stop HC (not bus-specific)
769  *
770  * This is called when the machine transition into S3/S4 mode.
771  *
772  */
773 int xhci_suspend(struct xhci_hcd *xhci)
774 {
775         int                     rc = 0;
776         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
777         u32                     command;
778
779         spin_lock_irq(&xhci->lock);
780         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
781         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
782         /* step 1: stop endpoint */
783         /* skipped assuming that port suspend has done */
784
785         /* step 2: clear Run/Stop bit */
786         command = xhci_readl(xhci, &xhci->op_regs->command);
787         command &= ~CMD_RUN;
788         xhci_writel(xhci, command, &xhci->op_regs->command);
789         if (handshake(xhci, &xhci->op_regs->status,
790                       STS_HALT, STS_HALT, 100*100)) {
791                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
792                 spin_unlock_irq(&xhci->lock);
793                 return -ETIMEDOUT;
794         }
795         xhci_clear_command_ring(xhci);
796
797         /* step 3: save registers */
798         xhci_save_registers(xhci);
799
800         /* step 4: set CSS flag */
801         command = xhci_readl(xhci, &xhci->op_regs->command);
802         command |= CMD_CSS;
803         xhci_writel(xhci, command, &xhci->op_regs->command);
804         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
805                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
806                 spin_unlock_irq(&xhci->lock);
807                 return -ETIMEDOUT;
808         }
809         spin_unlock_irq(&xhci->lock);
810
811         /* step 5: remove core well power */
812         /* synchronize irq when using MSI-X */
813         xhci_msix_sync_irqs(xhci);
814
815         return rc;
816 }
817
818 /*
819  * start xHC (not bus-specific)
820  *
821  * This is called when the machine transition from S3/S4 mode.
822  *
823  */
824 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
825 {
826         u32                     command, temp = 0;
827         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
828         struct usb_hcd          *secondary_hcd;
829         int                     retval = 0;
830
831         /* Wait a bit if either of the roothubs need to settle from the
832          * transition into bus suspend.
833          */
834         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
835                         time_before(jiffies,
836                                 xhci->bus_state[1].next_statechange))
837                 msleep(100);
838
839         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
840         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
841
842         spin_lock_irq(&xhci->lock);
843         if (xhci->quirks & XHCI_RESET_ON_RESUME)
844                 hibernated = true;
845
846         if (!hibernated) {
847                 /* step 1: restore register */
848                 xhci_restore_registers(xhci);
849                 /* step 2: initialize command ring buffer */
850                 xhci_set_cmd_ring_deq(xhci);
851                 /* step 3: restore state and start state*/
852                 /* step 3: set CRS flag */
853                 command = xhci_readl(xhci, &xhci->op_regs->command);
854                 command |= CMD_CRS;
855                 xhci_writel(xhci, command, &xhci->op_regs->command);
856                 if (handshake(xhci, &xhci->op_regs->status,
857                               STS_RESTORE, 0, 10 * 1000)) {
858                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
859                         spin_unlock_irq(&xhci->lock);
860                         return -ETIMEDOUT;
861                 }
862                 temp = xhci_readl(xhci, &xhci->op_regs->status);
863         }
864
865         /* If restore operation fails, re-initialize the HC during resume */
866         if ((temp & STS_SRE) || hibernated) {
867                 /* Let the USB core know _both_ roothubs lost power. */
868                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
869                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
870
871                 xhci_dbg(xhci, "Stop HCD\n");
872                 xhci_halt(xhci);
873                 xhci_reset(xhci);
874                 spin_unlock_irq(&xhci->lock);
875                 xhci_cleanup_msix(xhci);
876
877 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
878                 /* Tell the event ring poll function not to reschedule */
879                 xhci->zombie = 1;
880                 del_timer_sync(&xhci->event_ring_timer);
881 #endif
882
883                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
884                 temp = xhci_readl(xhci, &xhci->op_regs->status);
885                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
886                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
887                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
888                                 &xhci->ir_set->irq_pending);
889                 xhci_print_ir_set(xhci, 0);
890
891                 xhci_dbg(xhci, "cleaning up memory\n");
892                 xhci_mem_cleanup(xhci);
893                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
894                             xhci_readl(xhci, &xhci->op_regs->status));
895
896                 /* USB core calls the PCI reinit and start functions twice:
897                  * first with the primary HCD, and then with the secondary HCD.
898                  * If we don't do the same, the host will never be started.
899                  */
900                 if (!usb_hcd_is_primary_hcd(hcd))
901                         secondary_hcd = hcd;
902                 else
903                         secondary_hcd = xhci->shared_hcd;
904
905                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
906                 retval = xhci_init(hcd->primary_hcd);
907                 if (retval)
908                         return retval;
909                 xhci_dbg(xhci, "Start the primary HCD\n");
910                 retval = xhci_run(hcd->primary_hcd);
911                 if (!retval) {
912                         xhci_dbg(xhci, "Start the secondary HCD\n");
913                         retval = xhci_run(secondary_hcd);
914                 }
915                 hcd->state = HC_STATE_SUSPENDED;
916                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
917                 goto done;
918         }
919
920         /* step 4: set Run/Stop bit */
921         command = xhci_readl(xhci, &xhci->op_regs->command);
922         command |= CMD_RUN;
923         xhci_writel(xhci, command, &xhci->op_regs->command);
924         handshake(xhci, &xhci->op_regs->status, STS_HALT,
925                   0, 250 * 1000);
926
927         /* step 5: walk topology and initialize portsc,
928          * portpmsc and portli
929          */
930         /* this is done in bus_resume */
931
932         /* step 6: restart each of the previously
933          * Running endpoints by ringing their doorbells
934          */
935
936         spin_unlock_irq(&xhci->lock);
937
938  done:
939         if (retval == 0) {
940                 usb_hcd_resume_root_hub(hcd);
941                 usb_hcd_resume_root_hub(xhci->shared_hcd);
942         }
943         return retval;
944 }
945 #endif  /* CONFIG_PM */
946
947 /*-------------------------------------------------------------------------*/
948
949 /**
950  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
951  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
952  * value to right shift 1 for the bitmask.
953  *
954  * Index  = (epnum * 2) + direction - 1,
955  * where direction = 0 for OUT, 1 for IN.
956  * For control endpoints, the IN index is used (OUT index is unused), so
957  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
958  */
959 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
960 {
961         unsigned int index;
962         if (usb_endpoint_xfer_control(desc))
963                 index = (unsigned int) (usb_endpoint_num(desc)*2);
964         else
965                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
966                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
967         return index;
968 }
969
970 /* Find the flag for this endpoint (for use in the control context).  Use the
971  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
972  * bit 1, etc.
973  */
974 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
975 {
976         return 1 << (xhci_get_endpoint_index(desc) + 1);
977 }
978
979 /* Find the flag for this endpoint (for use in the control context).  Use the
980  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
981  * bit 1, etc.
982  */
983 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
984 {
985         return 1 << (ep_index + 1);
986 }
987
988 /* Compute the last valid endpoint context index.  Basically, this is the
989  * endpoint index plus one.  For slot contexts with more than valid endpoint,
990  * we find the most significant bit set in the added contexts flags.
991  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
992  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
993  */
994 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
995 {
996         return fls(added_ctxs) - 1;
997 }
998
999 /* Returns 1 if the arguments are OK;
1000  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1001  */
1002 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1003                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1004                 const char *func) {
1005         struct xhci_hcd *xhci;
1006         struct xhci_virt_device *virt_dev;
1007
1008         if (!hcd || (check_ep && !ep) || !udev) {
1009                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1010                                 func);
1011                 return -EINVAL;
1012         }
1013         if (!udev->parent) {
1014                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1015                                 func);
1016                 return 0;
1017         }
1018
1019         xhci = hcd_to_xhci(hcd);
1020         if (xhci->xhc_state & XHCI_STATE_HALTED)
1021                 return -ENODEV;
1022
1023         if (check_virt_dev) {
1024                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1025                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1026                                                 "device\n", func);
1027                         return -EINVAL;
1028                 }
1029
1030                 virt_dev = xhci->devs[udev->slot_id];
1031                 if (virt_dev->udev != udev) {
1032                         printk(KERN_DEBUG "xHCI %s called with udev and "
1033                                           "virt_dev does not match\n", func);
1034                         return -EINVAL;
1035                 }
1036         }
1037
1038         return 1;
1039 }
1040
1041 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1042                 struct usb_device *udev, struct xhci_command *command,
1043                 bool ctx_change, bool must_succeed);
1044
1045 /*
1046  * Full speed devices may have a max packet size greater than 8 bytes, but the
1047  * USB core doesn't know that until it reads the first 8 bytes of the
1048  * descriptor.  If the usb_device's max packet size changes after that point,
1049  * we need to issue an evaluate context command and wait on it.
1050  */
1051 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1052                 unsigned int ep_index, struct urb *urb)
1053 {
1054         struct xhci_container_ctx *in_ctx;
1055         struct xhci_container_ctx *out_ctx;
1056         struct xhci_input_control_ctx *ctrl_ctx;
1057         struct xhci_ep_ctx *ep_ctx;
1058         int max_packet_size;
1059         int hw_max_packet_size;
1060         int ret = 0;
1061
1062         out_ctx = xhci->devs[slot_id]->out_ctx;
1063         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1064         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1065         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1066         if (hw_max_packet_size != max_packet_size) {
1067                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1068                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1069                                 max_packet_size);
1070                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1071                                 hw_max_packet_size);
1072                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1073
1074                 /* Set up the modified control endpoint 0 */
1075                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1076                                 xhci->devs[slot_id]->out_ctx, ep_index);
1077                 in_ctx = xhci->devs[slot_id]->in_ctx;
1078                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1079                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1080                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1081
1082                 /* Set up the input context flags for the command */
1083                 /* FIXME: This won't work if a non-default control endpoint
1084                  * changes max packet sizes.
1085                  */
1086                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1087                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1088                 ctrl_ctx->drop_flags = 0;
1089
1090                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1091                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1092                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1093                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1094
1095                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1096                                 true, false);
1097
1098                 /* Clean up the input context for later use by bandwidth
1099                  * functions.
1100                  */
1101                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1102         }
1103         return ret;
1104 }
1105
1106 /*
1107  * non-error returns are a promise to giveback() the urb later
1108  * we drop ownership so next owner (or urb unlink) can get it
1109  */
1110 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1111 {
1112         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1113         struct xhci_td *buffer;
1114         unsigned long flags;
1115         int ret = 0;
1116         unsigned int slot_id, ep_index;
1117         struct urb_priv *urb_priv;
1118         int size, i;
1119
1120         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1121                                         true, true, __func__) <= 0)
1122                 return -EINVAL;
1123
1124         slot_id = urb->dev->slot_id;
1125         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1126
1127         if (!HCD_HW_ACCESSIBLE(hcd)) {
1128                 if (!in_interrupt())
1129                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1130                 ret = -ESHUTDOWN;
1131                 goto exit;
1132         }
1133
1134         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1135                 size = urb->number_of_packets;
1136         else
1137                 size = 1;
1138
1139         urb_priv = kzalloc(sizeof(struct urb_priv) +
1140                                   size * sizeof(struct xhci_td *), mem_flags);
1141         if (!urb_priv)
1142                 return -ENOMEM;
1143
1144         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1145         if (!buffer) {
1146                 kfree(urb_priv);
1147                 return -ENOMEM;
1148         }
1149
1150         for (i = 0; i < size; i++) {
1151                 urb_priv->td[i] = buffer;
1152                 buffer++;
1153         }
1154
1155         urb_priv->length = size;
1156         urb_priv->td_cnt = 0;
1157         urb->hcpriv = urb_priv;
1158
1159         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1160                 /* Check to see if the max packet size for the default control
1161                  * endpoint changed during FS device enumeration
1162                  */
1163                 if (urb->dev->speed == USB_SPEED_FULL) {
1164                         ret = xhci_check_maxpacket(xhci, slot_id,
1165                                         ep_index, urb);
1166                         if (ret < 0) {
1167                                 xhci_urb_free_priv(xhci, urb_priv);
1168                                 urb->hcpriv = NULL;
1169                                 return ret;
1170                         }
1171                 }
1172
1173                 /* We have a spinlock and interrupts disabled, so we must pass
1174                  * atomic context to this function, which may allocate memory.
1175                  */
1176                 spin_lock_irqsave(&xhci->lock, flags);
1177                 if (xhci->xhc_state & XHCI_STATE_DYING)
1178                         goto dying;
1179                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1180                                 slot_id, ep_index);
1181                 if (ret)
1182                         goto free_priv;
1183                 spin_unlock_irqrestore(&xhci->lock, flags);
1184         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1185                 spin_lock_irqsave(&xhci->lock, flags);
1186                 if (xhci->xhc_state & XHCI_STATE_DYING)
1187                         goto dying;
1188                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1189                                 EP_GETTING_STREAMS) {
1190                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1191                                         "is transitioning to using streams.\n");
1192                         ret = -EINVAL;
1193                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1194                                 EP_GETTING_NO_STREAMS) {
1195                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1196                                         "is transitioning to "
1197                                         "not having streams.\n");
1198                         ret = -EINVAL;
1199                 } else {
1200                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1201                                         slot_id, ep_index);
1202                 }
1203                 if (ret)
1204                         goto free_priv;
1205                 spin_unlock_irqrestore(&xhci->lock, flags);
1206         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1207                 spin_lock_irqsave(&xhci->lock, flags);
1208                 if (xhci->xhc_state & XHCI_STATE_DYING)
1209                         goto dying;
1210                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1211                                 slot_id, ep_index);
1212                 if (ret)
1213                         goto free_priv;
1214                 spin_unlock_irqrestore(&xhci->lock, flags);
1215         } else {
1216                 spin_lock_irqsave(&xhci->lock, flags);
1217                 if (xhci->xhc_state & XHCI_STATE_DYING)
1218                         goto dying;
1219                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1220                                 slot_id, ep_index);
1221                 if (ret)
1222                         goto free_priv;
1223                 spin_unlock_irqrestore(&xhci->lock, flags);
1224         }
1225 exit:
1226         return ret;
1227 dying:
1228         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1229                         "non-responsive xHCI host.\n",
1230                         urb->ep->desc.bEndpointAddress, urb);
1231         ret = -ESHUTDOWN;
1232 free_priv:
1233         xhci_urb_free_priv(xhci, urb_priv);
1234         urb->hcpriv = NULL;
1235         spin_unlock_irqrestore(&xhci->lock, flags);
1236         return ret;
1237 }
1238
1239 /* Get the right ring for the given URB.
1240  * If the endpoint supports streams, boundary check the URB's stream ID.
1241  * If the endpoint doesn't support streams, return the singular endpoint ring.
1242  */
1243 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1244                 struct urb *urb)
1245 {
1246         unsigned int slot_id;
1247         unsigned int ep_index;
1248         unsigned int stream_id;
1249         struct xhci_virt_ep *ep;
1250
1251         slot_id = urb->dev->slot_id;
1252         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1253         stream_id = urb->stream_id;
1254         ep = &xhci->devs[slot_id]->eps[ep_index];
1255         /* Common case: no streams */
1256         if (!(ep->ep_state & EP_HAS_STREAMS))
1257                 return ep->ring;
1258
1259         if (stream_id == 0) {
1260                 xhci_warn(xhci,
1261                                 "WARN: Slot ID %u, ep index %u has streams, "
1262                                 "but URB has no stream ID.\n",
1263                                 slot_id, ep_index);
1264                 return NULL;
1265         }
1266
1267         if (stream_id < ep->stream_info->num_streams)
1268                 return ep->stream_info->stream_rings[stream_id];
1269
1270         xhci_warn(xhci,
1271                         "WARN: Slot ID %u, ep index %u has "
1272                         "stream IDs 1 to %u allocated, "
1273                         "but stream ID %u is requested.\n",
1274                         slot_id, ep_index,
1275                         ep->stream_info->num_streams - 1,
1276                         stream_id);
1277         return NULL;
1278 }
1279
1280 /*
1281  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1282  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1283  * should pick up where it left off in the TD, unless a Set Transfer Ring
1284  * Dequeue Pointer is issued.
1285  *
1286  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1287  * the ring.  Since the ring is a contiguous structure, they can't be physically
1288  * removed.  Instead, there are two options:
1289  *
1290  *  1) If the HC is in the middle of processing the URB to be canceled, we
1291  *     simply move the ring's dequeue pointer past those TRBs using the Set
1292  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1293  *     when drivers timeout on the last submitted URB and attempt to cancel.
1294  *
1295  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1296  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1297  *     HC will need to invalidate the any TRBs it has cached after the stop
1298  *     endpoint command, as noted in the xHCI 0.95 errata.
1299  *
1300  *  3) The TD may have completed by the time the Stop Endpoint Command
1301  *     completes, so software needs to handle that case too.
1302  *
1303  * This function should protect against the TD enqueueing code ringing the
1304  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1305  * It also needs to account for multiple cancellations on happening at the same
1306  * time for the same endpoint.
1307  *
1308  * Note that this function can be called in any context, or so says
1309  * usb_hcd_unlink_urb()
1310  */
1311 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1312 {
1313         unsigned long flags;
1314         int ret, i;
1315         u32 temp;
1316         struct xhci_hcd *xhci;
1317         struct urb_priv *urb_priv;
1318         struct xhci_td *td;
1319         unsigned int ep_index;
1320         struct xhci_ring *ep_ring;
1321         struct xhci_virt_ep *ep;
1322
1323         xhci = hcd_to_xhci(hcd);
1324         spin_lock_irqsave(&xhci->lock, flags);
1325         /* Make sure the URB hasn't completed or been unlinked already */
1326         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1327         if (ret || !urb->hcpriv)
1328                 goto done;
1329         temp = xhci_readl(xhci, &xhci->op_regs->status);
1330         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1331                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1332                 urb_priv = urb->hcpriv;
1333                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1334                         td = urb_priv->td[i];
1335                         if (!list_empty(&td->td_list))
1336                                 list_del_init(&td->td_list);
1337                         if (!list_empty(&td->cancelled_td_list))
1338                                 list_del_init(&td->cancelled_td_list);
1339                 }
1340
1341                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1342                 spin_unlock_irqrestore(&xhci->lock, flags);
1343                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1344                 xhci_urb_free_priv(xhci, urb_priv);
1345                 return ret;
1346         }
1347         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1348                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1349                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1350                                 "non-responsive xHCI host.\n",
1351                                 urb->ep->desc.bEndpointAddress, urb);
1352                 /* Let the stop endpoint command watchdog timer (which set this
1353                  * state) finish cleaning up the endpoint TD lists.  We must
1354                  * have caught it in the middle of dropping a lock and giving
1355                  * back an URB.
1356                  */
1357                 goto done;
1358         }
1359
1360         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1361         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1362         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1363         if (!ep_ring) {
1364                 ret = -EINVAL;
1365                 goto done;
1366         }
1367
1368         urb_priv = urb->hcpriv;
1369         i = urb_priv->td_cnt;
1370         if (i < urb_priv->length)
1371                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1372                                 "starting at offset 0x%llx\n",
1373                                 urb, urb->dev->devpath,
1374                                 urb->ep->desc.bEndpointAddress,
1375                                 (unsigned long long) xhci_trb_virt_to_dma(
1376                                         urb_priv->td[i]->start_seg,
1377                                         urb_priv->td[i]->first_trb));
1378
1379         for (; i < urb_priv->length; i++) {
1380                 td = urb_priv->td[i];
1381                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1382         }
1383
1384         /* Queue a stop endpoint command, but only if this is
1385          * the first cancellation to be handled.
1386          */
1387         if (!(ep->ep_state & EP_HALT_PENDING)) {
1388                 ep->ep_state |= EP_HALT_PENDING;
1389                 ep->stop_cmds_pending++;
1390                 ep->stop_cmd_timer.expires = jiffies +
1391                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1392                 add_timer(&ep->stop_cmd_timer);
1393                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1394                 xhci_ring_cmd_db(xhci);
1395         }
1396 done:
1397         spin_unlock_irqrestore(&xhci->lock, flags);
1398         return ret;
1399 }
1400
1401 /* Drop an endpoint from a new bandwidth configuration for this device.
1402  * Only one call to this function is allowed per endpoint before
1403  * check_bandwidth() or reset_bandwidth() must be called.
1404  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1405  * add the endpoint to the schedule with possibly new parameters denoted by a
1406  * different endpoint descriptor in usb_host_endpoint.
1407  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1408  * not allowed.
1409  *
1410  * The USB core will not allow URBs to be queued to an endpoint that is being
1411  * disabled, so there's no need for mutual exclusion to protect
1412  * the xhci->devs[slot_id] structure.
1413  */
1414 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1415                 struct usb_host_endpoint *ep)
1416 {
1417         struct xhci_hcd *xhci;
1418         struct xhci_container_ctx *in_ctx, *out_ctx;
1419         struct xhci_input_control_ctx *ctrl_ctx;
1420         struct xhci_slot_ctx *slot_ctx;
1421         unsigned int last_ctx;
1422         unsigned int ep_index;
1423         struct xhci_ep_ctx *ep_ctx;
1424         u32 drop_flag;
1425         u32 new_add_flags, new_drop_flags, new_slot_info;
1426         int ret;
1427
1428         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1429         if (ret <= 0)
1430                 return ret;
1431         xhci = hcd_to_xhci(hcd);
1432         if (xhci->xhc_state & XHCI_STATE_DYING)
1433                 return -ENODEV;
1434
1435         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1436         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1437         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1438                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1439                                 __func__, drop_flag);
1440                 return 0;
1441         }
1442
1443         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1444         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1445         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1446         ep_index = xhci_get_endpoint_index(&ep->desc);
1447         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1448         /* If the HC already knows the endpoint is disabled,
1449          * or the HCD has noted it is disabled, ignore this request
1450          */
1451         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1452              cpu_to_le32(EP_STATE_DISABLED)) ||
1453             le32_to_cpu(ctrl_ctx->drop_flags) &
1454             xhci_get_endpoint_flag(&ep->desc)) {
1455                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1456                                 __func__, ep);
1457                 return 0;
1458         }
1459
1460         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1461         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1462
1463         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1464         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1465
1466         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1467         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1468         /* Update the last valid endpoint context, if we deleted the last one */
1469         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1470             LAST_CTX(last_ctx)) {
1471                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1472                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1473         }
1474         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1475
1476         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1477
1478         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1479                         (unsigned int) ep->desc.bEndpointAddress,
1480                         udev->slot_id,
1481                         (unsigned int) new_drop_flags,
1482                         (unsigned int) new_add_flags,
1483                         (unsigned int) new_slot_info);
1484         return 0;
1485 }
1486
1487 /* Add an endpoint to a new possible bandwidth configuration for this device.
1488  * Only one call to this function is allowed per endpoint before
1489  * check_bandwidth() or reset_bandwidth() must be called.
1490  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1491  * add the endpoint to the schedule with possibly new parameters denoted by a
1492  * different endpoint descriptor in usb_host_endpoint.
1493  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1494  * not allowed.
1495  *
1496  * The USB core will not allow URBs to be queued to an endpoint until the
1497  * configuration or alt setting is installed in the device, so there's no need
1498  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1499  */
1500 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1501                 struct usb_host_endpoint *ep)
1502 {
1503         struct xhci_hcd *xhci;
1504         struct xhci_container_ctx *in_ctx, *out_ctx;
1505         unsigned int ep_index;
1506         struct xhci_ep_ctx *ep_ctx;
1507         struct xhci_slot_ctx *slot_ctx;
1508         struct xhci_input_control_ctx *ctrl_ctx;
1509         u32 added_ctxs;
1510         unsigned int last_ctx;
1511         u32 new_add_flags, new_drop_flags, new_slot_info;
1512         struct xhci_virt_device *virt_dev;
1513         int ret = 0;
1514
1515         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1516         if (ret <= 0) {
1517                 /* So we won't queue a reset ep command for a root hub */
1518                 ep->hcpriv = NULL;
1519                 return ret;
1520         }
1521         xhci = hcd_to_xhci(hcd);
1522         if (xhci->xhc_state & XHCI_STATE_DYING)
1523                 return -ENODEV;
1524
1525         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1526         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1527         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1528                 /* FIXME when we have to issue an evaluate endpoint command to
1529                  * deal with ep0 max packet size changing once we get the
1530                  * descriptors
1531                  */
1532                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1533                                 __func__, added_ctxs);
1534                 return 0;
1535         }
1536
1537         virt_dev = xhci->devs[udev->slot_id];
1538         in_ctx = virt_dev->in_ctx;
1539         out_ctx = virt_dev->out_ctx;
1540         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1541         ep_index = xhci_get_endpoint_index(&ep->desc);
1542         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1543
1544         /* If this endpoint is already in use, and the upper layers are trying
1545          * to add it again without dropping it, reject the addition.
1546          */
1547         if (virt_dev->eps[ep_index].ring &&
1548                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1549                                 xhci_get_endpoint_flag(&ep->desc))) {
1550                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1551                                 "without dropping it.\n",
1552                                 (unsigned int) ep->desc.bEndpointAddress);
1553                 return -EINVAL;
1554         }
1555
1556         /* If the HCD has already noted the endpoint is enabled,
1557          * ignore this request.
1558          */
1559         if (le32_to_cpu(ctrl_ctx->add_flags) &
1560             xhci_get_endpoint_flag(&ep->desc)) {
1561                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1562                                 __func__, ep);
1563                 return 0;
1564         }
1565
1566         /*
1567          * Configuration and alternate setting changes must be done in
1568          * process context, not interrupt context (or so documenation
1569          * for usb_set_interface() and usb_set_configuration() claim).
1570          */
1571         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1572                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1573                                 __func__, ep->desc.bEndpointAddress);
1574                 return -ENOMEM;
1575         }
1576
1577         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1578         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1579
1580         /* If xhci_endpoint_disable() was called for this endpoint, but the
1581          * xHC hasn't been notified yet through the check_bandwidth() call,
1582          * this re-adds a new state for the endpoint from the new endpoint
1583          * descriptors.  We must drop and re-add this endpoint, so we leave the
1584          * drop flags alone.
1585          */
1586         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1587
1588         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1589         /* Update the last valid endpoint context, if we just added one past */
1590         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1591             LAST_CTX(last_ctx)) {
1592                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1593                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1594         }
1595         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1596
1597         /* Store the usb_device pointer for later use */
1598         ep->hcpriv = udev;
1599
1600         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1601                         (unsigned int) ep->desc.bEndpointAddress,
1602                         udev->slot_id,
1603                         (unsigned int) new_drop_flags,
1604                         (unsigned int) new_add_flags,
1605                         (unsigned int) new_slot_info);
1606         return 0;
1607 }
1608
1609 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1610 {
1611         struct xhci_input_control_ctx *ctrl_ctx;
1612         struct xhci_ep_ctx *ep_ctx;
1613         struct xhci_slot_ctx *slot_ctx;
1614         int i;
1615
1616         /* When a device's add flag and drop flag are zero, any subsequent
1617          * configure endpoint command will leave that endpoint's state
1618          * untouched.  Make sure we don't leave any old state in the input
1619          * endpoint contexts.
1620          */
1621         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1622         ctrl_ctx->drop_flags = 0;
1623         ctrl_ctx->add_flags = 0;
1624         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1625         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1626         /* Endpoint 0 is always valid */
1627         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1628         for (i = 1; i < 31; ++i) {
1629                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1630                 ep_ctx->ep_info = 0;
1631                 ep_ctx->ep_info2 = 0;
1632                 ep_ctx->deq = 0;
1633                 ep_ctx->tx_info = 0;
1634         }
1635 }
1636
1637 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1638                 struct usb_device *udev, u32 *cmd_status)
1639 {
1640         int ret;
1641
1642         switch (*cmd_status) {
1643         case COMP_ENOMEM:
1644                 dev_warn(&udev->dev, "Not enough host controller resources "
1645                                 "for new device state.\n");
1646                 ret = -ENOMEM;
1647                 /* FIXME: can we allocate more resources for the HC? */
1648                 break;
1649         case COMP_BW_ERR:
1650         case COMP_2ND_BW_ERR:
1651                 dev_warn(&udev->dev, "Not enough bandwidth "
1652                                 "for new device state.\n");
1653                 ret = -ENOSPC;
1654                 /* FIXME: can we go back to the old state? */
1655                 break;
1656         case COMP_TRB_ERR:
1657                 /* the HCD set up something wrong */
1658                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1659                                 "add flag = 1, "
1660                                 "and endpoint is not disabled.\n");
1661                 ret = -EINVAL;
1662                 break;
1663         case COMP_DEV_ERR:
1664                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1665                                 "configure command.\n");
1666                 ret = -ENODEV;
1667                 break;
1668         case COMP_SUCCESS:
1669                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1670                 ret = 0;
1671                 break;
1672         default:
1673                 xhci_err(xhci, "ERROR: unexpected command completion "
1674                                 "code 0x%x.\n", *cmd_status);
1675                 ret = -EINVAL;
1676                 break;
1677         }
1678         return ret;
1679 }
1680
1681 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1682                 struct usb_device *udev, u32 *cmd_status)
1683 {
1684         int ret;
1685         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1686
1687         switch (*cmd_status) {
1688         case COMP_EINVAL:
1689                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1690                                 "context command.\n");
1691                 ret = -EINVAL;
1692                 break;
1693         case COMP_EBADSLT:
1694                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1695                                 "evaluate context command.\n");
1696         case COMP_CTX_STATE:
1697                 dev_warn(&udev->dev, "WARN: invalid context state for "
1698                                 "evaluate context command.\n");
1699                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1700                 ret = -EINVAL;
1701                 break;
1702         case COMP_DEV_ERR:
1703                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1704                                 "context command.\n");
1705                 ret = -ENODEV;
1706                 break;
1707         case COMP_MEL_ERR:
1708                 /* Max Exit Latency too large error */
1709                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1710                 ret = -EINVAL;
1711                 break;
1712         case COMP_SUCCESS:
1713                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1714                 ret = 0;
1715                 break;
1716         default:
1717                 xhci_err(xhci, "ERROR: unexpected command completion "
1718                                 "code 0x%x.\n", *cmd_status);
1719                 ret = -EINVAL;
1720                 break;
1721         }
1722         return ret;
1723 }
1724
1725 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1726                 struct xhci_container_ctx *in_ctx)
1727 {
1728         struct xhci_input_control_ctx *ctrl_ctx;
1729         u32 valid_add_flags;
1730         u32 valid_drop_flags;
1731
1732         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1733         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1734          * (bit 1).  The default control endpoint is added during the Address
1735          * Device command and is never removed until the slot is disabled.
1736          */
1737         valid_add_flags = ctrl_ctx->add_flags >> 2;
1738         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1739
1740         /* Use hweight32 to count the number of ones in the add flags, or
1741          * number of endpoints added.  Don't count endpoints that are changed
1742          * (both added and dropped).
1743          */
1744         return hweight32(valid_add_flags) -
1745                 hweight32(valid_add_flags & valid_drop_flags);
1746 }
1747
1748 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1749                 struct xhci_container_ctx *in_ctx)
1750 {
1751         struct xhci_input_control_ctx *ctrl_ctx;
1752         u32 valid_add_flags;
1753         u32 valid_drop_flags;
1754
1755         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1756         valid_add_flags = ctrl_ctx->add_flags >> 2;
1757         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1758
1759         return hweight32(valid_drop_flags) -
1760                 hweight32(valid_add_flags & valid_drop_flags);
1761 }
1762
1763 /*
1764  * We need to reserve the new number of endpoints before the configure endpoint
1765  * command completes.  We can't subtract the dropped endpoints from the number
1766  * of active endpoints until the command completes because we can oversubscribe
1767  * the host in this case:
1768  *
1769  *  - the first configure endpoint command drops more endpoints than it adds
1770  *  - a second configure endpoint command that adds more endpoints is queued
1771  *  - the first configure endpoint command fails, so the config is unchanged
1772  *  - the second command may succeed, even though there isn't enough resources
1773  *
1774  * Must be called with xhci->lock held.
1775  */
1776 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1777                 struct xhci_container_ctx *in_ctx)
1778 {
1779         u32 added_eps;
1780
1781         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1782         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1783                 xhci_dbg(xhci, "Not enough ep ctxs: "
1784                                 "%u active, need to add %u, limit is %u.\n",
1785                                 xhci->num_active_eps, added_eps,
1786                                 xhci->limit_active_eps);
1787                 return -ENOMEM;
1788         }
1789         xhci->num_active_eps += added_eps;
1790         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1791                         xhci->num_active_eps);
1792         return 0;
1793 }
1794
1795 /*
1796  * The configure endpoint was failed by the xHC for some other reason, so we
1797  * need to revert the resources that failed configuration would have used.
1798  *
1799  * Must be called with xhci->lock held.
1800  */
1801 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1802                 struct xhci_container_ctx *in_ctx)
1803 {
1804         u32 num_failed_eps;
1805
1806         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1807         xhci->num_active_eps -= num_failed_eps;
1808         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1809                         num_failed_eps,
1810                         xhci->num_active_eps);
1811 }
1812
1813 /*
1814  * Now that the command has completed, clean up the active endpoint count by
1815  * subtracting out the endpoints that were dropped (but not changed).
1816  *
1817  * Must be called with xhci->lock held.
1818  */
1819 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1820                 struct xhci_container_ctx *in_ctx)
1821 {
1822         u32 num_dropped_eps;
1823
1824         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1825         xhci->num_active_eps -= num_dropped_eps;
1826         if (num_dropped_eps)
1827                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1828                                 num_dropped_eps,
1829                                 xhci->num_active_eps);
1830 }
1831
1832 unsigned int xhci_get_block_size(struct usb_device *udev)
1833 {
1834         switch (udev->speed) {
1835         case USB_SPEED_LOW:
1836         case USB_SPEED_FULL:
1837                 return FS_BLOCK;
1838         case USB_SPEED_HIGH:
1839                 return HS_BLOCK;
1840         case USB_SPEED_SUPER:
1841                 return SS_BLOCK;
1842         case USB_SPEED_UNKNOWN:
1843         case USB_SPEED_WIRELESS:
1844         default:
1845                 /* Should never happen */
1846                 return 1;
1847         }
1848 }
1849
1850 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1851 {
1852         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1853                 return LS_OVERHEAD;
1854         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1855                 return FS_OVERHEAD;
1856         return HS_OVERHEAD;
1857 }
1858
1859 /* If we are changing a LS/FS device under a HS hub,
1860  * make sure (if we are activating a new TT) that the HS bus has enough
1861  * bandwidth for this new TT.
1862  */
1863 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1864                 struct xhci_virt_device *virt_dev,
1865                 int old_active_eps)
1866 {
1867         struct xhci_interval_bw_table *bw_table;
1868         struct xhci_tt_bw_info *tt_info;
1869
1870         /* Find the bandwidth table for the root port this TT is attached to. */
1871         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1872         tt_info = virt_dev->tt_info;
1873         /* If this TT already had active endpoints, the bandwidth for this TT
1874          * has already been added.  Removing all periodic endpoints (and thus
1875          * making the TT enactive) will only decrease the bandwidth used.
1876          */
1877         if (old_active_eps)
1878                 return 0;
1879         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1880                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1881                         return -ENOMEM;
1882                 return 0;
1883         }
1884         /* Not sure why we would have no new active endpoints...
1885          *
1886          * Maybe because of an Evaluate Context change for a hub update or a
1887          * control endpoint 0 max packet size change?
1888          * FIXME: skip the bandwidth calculation in that case.
1889          */
1890         return 0;
1891 }
1892
1893 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1894                 struct xhci_virt_device *virt_dev)
1895 {
1896         unsigned int bw_reserved;
1897
1898         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1899         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1900                 return -ENOMEM;
1901
1902         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1903         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1904                 return -ENOMEM;
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * This algorithm is a very conservative estimate of the worst-case scheduling
1911  * scenario for any one interval.  The hardware dynamically schedules the
1912  * packets, so we can't tell which microframe could be the limiting factor in
1913  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1914  *
1915  * Obviously, we can't solve an NP complete problem to find the minimum worst
1916  * case scenario.  Instead, we come up with an estimate that is no less than
1917  * the worst case bandwidth used for any one microframe, but may be an
1918  * over-estimate.
1919  *
1920  * We walk the requirements for each endpoint by interval, starting with the
1921  * smallest interval, and place packets in the schedule where there is only one
1922  * possible way to schedule packets for that interval.  In order to simplify
1923  * this algorithm, we record the largest max packet size for each interval, and
1924  * assume all packets will be that size.
1925  *
1926  * For interval 0, we obviously must schedule all packets for each interval.
1927  * The bandwidth for interval 0 is just the amount of data to be transmitted
1928  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1929  * the number of packets).
1930  *
1931  * For interval 1, we have two possible microframes to schedule those packets
1932  * in.  For this algorithm, if we can schedule the same number of packets for
1933  * each possible scheduling opportunity (each microframe), we will do so.  The
1934  * remaining number of packets will be saved to be transmitted in the gaps in
1935  * the next interval's scheduling sequence.
1936  *
1937  * As we move those remaining packets to be scheduled with interval 2 packets,
1938  * we have to double the number of remaining packets to transmit.  This is
1939  * because the intervals are actually powers of 2, and we would be transmitting
1940  * the previous interval's packets twice in this interval.  We also have to be
1941  * sure that when we look at the largest max packet size for this interval, we
1942  * also look at the largest max packet size for the remaining packets and take
1943  * the greater of the two.
1944  *
1945  * The algorithm continues to evenly distribute packets in each scheduling
1946  * opportunity, and push the remaining packets out, until we get to the last
1947  * interval.  Then those packets and their associated overhead are just added
1948  * to the bandwidth used.
1949  */
1950 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1951                 struct xhci_virt_device *virt_dev,
1952                 int old_active_eps)
1953 {
1954         unsigned int bw_reserved;
1955         unsigned int max_bandwidth;
1956         unsigned int bw_used;
1957         unsigned int block_size;
1958         struct xhci_interval_bw_table *bw_table;
1959         unsigned int packet_size = 0;
1960         unsigned int overhead = 0;
1961         unsigned int packets_transmitted = 0;
1962         unsigned int packets_remaining = 0;
1963         unsigned int i;
1964
1965         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1966                 return xhci_check_ss_bw(xhci, virt_dev);
1967
1968         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1969                 max_bandwidth = HS_BW_LIMIT;
1970                 /* Convert percent of bus BW reserved to blocks reserved */
1971                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1972         } else {
1973                 max_bandwidth = FS_BW_LIMIT;
1974                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1975         }
1976
1977         bw_table = virt_dev->bw_table;
1978         /* We need to translate the max packet size and max ESIT payloads into
1979          * the units the hardware uses.
1980          */
1981         block_size = xhci_get_block_size(virt_dev->udev);
1982
1983         /* If we are manipulating a LS/FS device under a HS hub, double check
1984          * that the HS bus has enough bandwidth if we are activing a new TT.
1985          */
1986         if (virt_dev->tt_info) {
1987                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1988                                 virt_dev->real_port);
1989                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1990                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1991                                         "newly activated TT.\n");
1992                         return -ENOMEM;
1993                 }
1994                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1995                                 virt_dev->tt_info->slot_id,
1996                                 virt_dev->tt_info->ttport);
1997         } else {
1998                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1999                                 virt_dev->real_port);
2000         }
2001
2002         /* Add in how much bandwidth will be used for interval zero, or the
2003          * rounded max ESIT payload + number of packets * largest overhead.
2004          */
2005         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2006                 bw_table->interval_bw[0].num_packets *
2007                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2008
2009         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2010                 unsigned int bw_added;
2011                 unsigned int largest_mps;
2012                 unsigned int interval_overhead;
2013
2014                 /*
2015                  * How many packets could we transmit in this interval?
2016                  * If packets didn't fit in the previous interval, we will need
2017                  * to transmit that many packets twice within this interval.
2018                  */
2019                 packets_remaining = 2 * packets_remaining +
2020                         bw_table->interval_bw[i].num_packets;
2021
2022                 /* Find the largest max packet size of this or the previous
2023                  * interval.
2024                  */
2025                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2026                         largest_mps = 0;
2027                 else {
2028                         struct xhci_virt_ep *virt_ep;
2029                         struct list_head *ep_entry;
2030
2031                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2032                         virt_ep = list_entry(ep_entry,
2033                                         struct xhci_virt_ep, bw_endpoint_list);
2034                         /* Convert to blocks, rounding up */
2035                         largest_mps = DIV_ROUND_UP(
2036                                         virt_ep->bw_info.max_packet_size,
2037                                         block_size);
2038                 }
2039                 if (largest_mps > packet_size)
2040                         packet_size = largest_mps;
2041
2042                 /* Use the larger overhead of this or the previous interval. */
2043                 interval_overhead = xhci_get_largest_overhead(
2044                                 &bw_table->interval_bw[i]);
2045                 if (interval_overhead > overhead)
2046                         overhead = interval_overhead;
2047
2048                 /* How many packets can we evenly distribute across
2049                  * (1 << (i + 1)) possible scheduling opportunities?
2050                  */
2051                 packets_transmitted = packets_remaining >> (i + 1);
2052
2053                 /* Add in the bandwidth used for those scheduled packets */
2054                 bw_added = packets_transmitted * (overhead + packet_size);
2055
2056                 /* How many packets do we have remaining to transmit? */
2057                 packets_remaining = packets_remaining % (1 << (i + 1));
2058
2059                 /* What largest max packet size should those packets have? */
2060                 /* If we've transmitted all packets, don't carry over the
2061                  * largest packet size.
2062                  */
2063                 if (packets_remaining == 0) {
2064                         packet_size = 0;
2065                         overhead = 0;
2066                 } else if (packets_transmitted > 0) {
2067                         /* Otherwise if we do have remaining packets, and we've
2068                          * scheduled some packets in this interval, take the
2069                          * largest max packet size from endpoints with this
2070                          * interval.
2071                          */
2072                         packet_size = largest_mps;
2073                         overhead = interval_overhead;
2074                 }
2075                 /* Otherwise carry over packet_size and overhead from the last
2076                  * time we had a remainder.
2077                  */
2078                 bw_used += bw_added;
2079                 if (bw_used > max_bandwidth) {
2080                         xhci_warn(xhci, "Not enough bandwidth. "
2081                                         "Proposed: %u, Max: %u\n",
2082                                 bw_used, max_bandwidth);
2083                         return -ENOMEM;
2084                 }
2085         }
2086         /*
2087          * Ok, we know we have some packets left over after even-handedly
2088          * scheduling interval 15.  We don't know which microframes they will
2089          * fit into, so we over-schedule and say they will be scheduled every
2090          * microframe.
2091          */
2092         if (packets_remaining > 0)
2093                 bw_used += overhead + packet_size;
2094
2095         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2096                 unsigned int port_index = virt_dev->real_port - 1;
2097
2098                 /* OK, we're manipulating a HS device attached to a
2099                  * root port bandwidth domain.  Include the number of active TTs
2100                  * in the bandwidth used.
2101                  */
2102                 bw_used += TT_HS_OVERHEAD *
2103                         xhci->rh_bw[port_index].num_active_tts;
2104         }
2105
2106         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2107                 "Available: %u " "percent\n",
2108                 bw_used, max_bandwidth, bw_reserved,
2109                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2110                 max_bandwidth);
2111
2112         bw_used += bw_reserved;
2113         if (bw_used > max_bandwidth) {
2114                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2115                                 bw_used, max_bandwidth);
2116                 return -ENOMEM;
2117         }
2118
2119         bw_table->bw_used = bw_used;
2120         return 0;
2121 }
2122
2123 static bool xhci_is_async_ep(unsigned int ep_type)
2124 {
2125         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2126                                         ep_type != ISOC_IN_EP &&
2127                                         ep_type != INT_IN_EP);
2128 }
2129
2130 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2131 {
2132         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2133 }
2134
2135 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2136 {
2137         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2138
2139         if (ep_bw->ep_interval == 0)
2140                 return SS_OVERHEAD_BURST +
2141                         (ep_bw->mult * ep_bw->num_packets *
2142                                         (SS_OVERHEAD + mps));
2143         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2144                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2145                                 1 << ep_bw->ep_interval);
2146
2147 }
2148
2149 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2150                 struct xhci_bw_info *ep_bw,
2151                 struct xhci_interval_bw_table *bw_table,
2152                 struct usb_device *udev,
2153                 struct xhci_virt_ep *virt_ep,
2154                 struct xhci_tt_bw_info *tt_info)
2155 {
2156         struct xhci_interval_bw *interval_bw;
2157         int normalized_interval;
2158
2159         if (xhci_is_async_ep(ep_bw->type))
2160                 return;
2161
2162         if (udev->speed == USB_SPEED_SUPER) {
2163                 if (xhci_is_sync_in_ep(ep_bw->type))
2164                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2165                                 xhci_get_ss_bw_consumed(ep_bw);
2166                 else
2167                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2168                                 xhci_get_ss_bw_consumed(ep_bw);
2169                 return;
2170         }
2171
2172         /* SuperSpeed endpoints never get added to intervals in the table, so
2173          * this check is only valid for HS/FS/LS devices.
2174          */
2175         if (list_empty(&virt_ep->bw_endpoint_list))
2176                 return;
2177         /* For LS/FS devices, we need to translate the interval expressed in
2178          * microframes to frames.
2179          */
2180         if (udev->speed == USB_SPEED_HIGH)
2181                 normalized_interval = ep_bw->ep_interval;
2182         else
2183                 normalized_interval = ep_bw->ep_interval - 3;
2184
2185         if (normalized_interval == 0)
2186                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2187         interval_bw = &bw_table->interval_bw[normalized_interval];
2188         interval_bw->num_packets -= ep_bw->num_packets;
2189         switch (udev->speed) {
2190         case USB_SPEED_LOW:
2191                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2192                 break;
2193         case USB_SPEED_FULL:
2194                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2195                 break;
2196         case USB_SPEED_HIGH:
2197                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2198                 break;
2199         case USB_SPEED_SUPER:
2200         case USB_SPEED_UNKNOWN:
2201         case USB_SPEED_WIRELESS:
2202                 /* Should never happen because only LS/FS/HS endpoints will get
2203                  * added to the endpoint list.
2204                  */
2205                 return;
2206         }
2207         if (tt_info)
2208                 tt_info->active_eps -= 1;
2209         list_del_init(&virt_ep->bw_endpoint_list);
2210 }
2211
2212 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2213                 struct xhci_bw_info *ep_bw,
2214                 struct xhci_interval_bw_table *bw_table,
2215                 struct usb_device *udev,
2216                 struct xhci_virt_ep *virt_ep,
2217                 struct xhci_tt_bw_info *tt_info)
2218 {
2219         struct xhci_interval_bw *interval_bw;
2220         struct xhci_virt_ep *smaller_ep;
2221         int normalized_interval;
2222
2223         if (xhci_is_async_ep(ep_bw->type))
2224                 return;
2225
2226         if (udev->speed == USB_SPEED_SUPER) {
2227                 if (xhci_is_sync_in_ep(ep_bw->type))
2228                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2229                                 xhci_get_ss_bw_consumed(ep_bw);
2230                 else
2231                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2232                                 xhci_get_ss_bw_consumed(ep_bw);
2233                 return;
2234         }
2235
2236         /* For LS/FS devices, we need to translate the interval expressed in
2237          * microframes to frames.
2238          */
2239         if (udev->speed == USB_SPEED_HIGH)
2240                 normalized_interval = ep_bw->ep_interval;
2241         else
2242                 normalized_interval = ep_bw->ep_interval - 3;
2243
2244         if (normalized_interval == 0)
2245                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2246         interval_bw = &bw_table->interval_bw[normalized_interval];
2247         interval_bw->num_packets += ep_bw->num_packets;
2248         switch (udev->speed) {
2249         case USB_SPEED_LOW:
2250                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2251                 break;
2252         case USB_SPEED_FULL:
2253                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2254                 break;
2255         case USB_SPEED_HIGH:
2256                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2257                 break;
2258         case USB_SPEED_SUPER:
2259         case USB_SPEED_UNKNOWN:
2260         case USB_SPEED_WIRELESS:
2261                 /* Should never happen because only LS/FS/HS endpoints will get
2262                  * added to the endpoint list.
2263                  */
2264                 return;
2265         }
2266
2267         if (tt_info)
2268                 tt_info->active_eps += 1;
2269         /* Insert the endpoint into the list, largest max packet size first. */
2270         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2271                         bw_endpoint_list) {
2272                 if (ep_bw->max_packet_size >=
2273                                 smaller_ep->bw_info.max_packet_size) {
2274                         /* Add the new ep before the smaller endpoint */
2275                         list_add_tail(&virt_ep->bw_endpoint_list,
2276                                         &smaller_ep->bw_endpoint_list);
2277                         return;
2278                 }
2279         }
2280         /* Add the new endpoint at the end of the list. */
2281         list_add_tail(&virt_ep->bw_endpoint_list,
2282                         &interval_bw->endpoints);
2283 }
2284
2285 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2286                 struct xhci_virt_device *virt_dev,
2287                 int old_active_eps)
2288 {
2289         struct xhci_root_port_bw_info *rh_bw_info;
2290         if (!virt_dev->tt_info)
2291                 return;
2292
2293         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2294         if (old_active_eps == 0 &&
2295                                 virt_dev->tt_info->active_eps != 0) {
2296                 rh_bw_info->num_active_tts += 1;
2297                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2298         } else if (old_active_eps != 0 &&
2299                                 virt_dev->tt_info->active_eps == 0) {
2300                 rh_bw_info->num_active_tts -= 1;
2301                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2302         }
2303 }
2304
2305 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2306                 struct xhci_virt_device *virt_dev,
2307                 struct xhci_container_ctx *in_ctx)
2308 {
2309         struct xhci_bw_info ep_bw_info[31];
2310         int i;
2311         struct xhci_input_control_ctx *ctrl_ctx;
2312         int old_active_eps = 0;
2313
2314         if (virt_dev->tt_info)
2315                 old_active_eps = virt_dev->tt_info->active_eps;
2316
2317         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2318
2319         for (i = 0; i < 31; i++) {
2320                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2321                         continue;
2322
2323                 /* Make a copy of the BW info in case we need to revert this */
2324                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2325                                 sizeof(ep_bw_info[i]));
2326                 /* Drop the endpoint from the interval table if the endpoint is
2327                  * being dropped or changed.
2328                  */
2329                 if (EP_IS_DROPPED(ctrl_ctx, i))
2330                         xhci_drop_ep_from_interval_table(xhci,
2331                                         &virt_dev->eps[i].bw_info,
2332                                         virt_dev->bw_table,
2333                                         virt_dev->udev,
2334                                         &virt_dev->eps[i],
2335                                         virt_dev->tt_info);
2336         }
2337         /* Overwrite the information stored in the endpoints' bw_info */
2338         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2339         for (i = 0; i < 31; i++) {
2340                 /* Add any changed or added endpoints to the interval table */
2341                 if (EP_IS_ADDED(ctrl_ctx, i))
2342                         xhci_add_ep_to_interval_table(xhci,
2343                                         &virt_dev->eps[i].bw_info,
2344                                         virt_dev->bw_table,
2345                                         virt_dev->udev,
2346                                         &virt_dev->eps[i],
2347                                         virt_dev->tt_info);
2348         }
2349
2350         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2351                 /* Ok, this fits in the bandwidth we have.
2352                  * Update the number of active TTs.
2353                  */
2354                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2355                 return 0;
2356         }
2357
2358         /* We don't have enough bandwidth for this, revert the stored info. */
2359         for (i = 0; i < 31; i++) {
2360                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2361                         continue;
2362
2363                 /* Drop the new copies of any added or changed endpoints from
2364                  * the interval table.
2365                  */
2366                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2367                         xhci_drop_ep_from_interval_table(xhci,
2368                                         &virt_dev->eps[i].bw_info,
2369                                         virt_dev->bw_table,
2370                                         virt_dev->udev,
2371                                         &virt_dev->eps[i],
2372                                         virt_dev->tt_info);
2373                 }
2374                 /* Revert the endpoint back to its old information */
2375                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2376                                 sizeof(ep_bw_info[i]));
2377                 /* Add any changed or dropped endpoints back into the table */
2378                 if (EP_IS_DROPPED(ctrl_ctx, i))
2379                         xhci_add_ep_to_interval_table(xhci,
2380                                         &virt_dev->eps[i].bw_info,
2381                                         virt_dev->bw_table,
2382                                         virt_dev->udev,
2383                                         &virt_dev->eps[i],
2384                                         virt_dev->tt_info);
2385         }
2386         return -ENOMEM;
2387 }
2388
2389
2390 /* Issue a configure endpoint command or evaluate context command
2391  * and wait for it to finish.
2392  */
2393 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2394                 struct usb_device *udev,
2395                 struct xhci_command *command,
2396                 bool ctx_change, bool must_succeed)
2397 {
2398         int ret;
2399         int timeleft;
2400         unsigned long flags;
2401         struct xhci_container_ctx *in_ctx;
2402         struct completion *cmd_completion;
2403         u32 *cmd_status;
2404         struct xhci_virt_device *virt_dev;
2405         union xhci_trb *cmd_trb;
2406
2407         spin_lock_irqsave(&xhci->lock, flags);
2408         virt_dev = xhci->devs[udev->slot_id];
2409
2410         if (command)
2411                 in_ctx = command->in_ctx;
2412         else
2413                 in_ctx = virt_dev->in_ctx;
2414
2415         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2416                         xhci_reserve_host_resources(xhci, in_ctx)) {
2417                 spin_unlock_irqrestore(&xhci->lock, flags);
2418                 xhci_warn(xhci, "Not enough host resources, "
2419                                 "active endpoint contexts = %u\n",
2420                                 xhci->num_active_eps);
2421                 return -ENOMEM;
2422         }
2423         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2424                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2425                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2426                         xhci_free_host_resources(xhci, in_ctx);
2427                 spin_unlock_irqrestore(&xhci->lock, flags);
2428                 xhci_warn(xhci, "Not enough bandwidth\n");
2429                 return -ENOMEM;
2430         }
2431
2432         if (command) {
2433                 cmd_completion = command->completion;
2434                 cmd_status = &command->status;
2435                 command->command_trb = xhci->cmd_ring->enqueue;
2436
2437                 /* Enqueue pointer can be left pointing to the link TRB,
2438                  * we must handle that
2439                  */
2440                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2441                         command->command_trb =
2442                                 xhci->cmd_ring->enq_seg->next->trbs;
2443
2444                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2445         } else {
2446                 cmd_completion = &virt_dev->cmd_completion;
2447                 cmd_status = &virt_dev->cmd_status;
2448         }
2449         init_completion(cmd_completion);
2450
2451         cmd_trb = xhci->cmd_ring->dequeue;
2452         if (!ctx_change)
2453                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2454                                 udev->slot_id, must_succeed);
2455         else
2456                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2457                                 udev->slot_id, must_succeed);
2458         if (ret < 0) {
2459                 if (command)
2460                         list_del(&command->cmd_list);
2461                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2462                         xhci_free_host_resources(xhci, in_ctx);
2463                 spin_unlock_irqrestore(&xhci->lock, flags);
2464                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2465                 return -ENOMEM;
2466         }
2467         xhci_ring_cmd_db(xhci);
2468         spin_unlock_irqrestore(&xhci->lock, flags);
2469
2470         /* Wait for the configure endpoint command to complete */
2471         timeleft = wait_for_completion_interruptible_timeout(
2472                         cmd_completion,
2473                         XHCI_CMD_DEFAULT_TIMEOUT);
2474         if (timeleft <= 0) {
2475                 xhci_warn(xhci, "%s while waiting for %s command\n",
2476                                 timeleft == 0 ? "Timeout" : "Signal",
2477                                 ctx_change == 0 ?
2478                                         "configure endpoint" :
2479                                         "evaluate context");
2480                 /* cancel the configure endpoint command */
2481                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2482                 if (ret < 0)
2483                         return ret;
2484                 return -ETIME;
2485         }
2486
2487         if (!ctx_change)
2488                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2489         else
2490                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2491
2492         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2493                 spin_lock_irqsave(&xhci->lock, flags);
2494                 /* If the command failed, remove the reserved resources.
2495                  * Otherwise, clean up the estimate to include dropped eps.
2496                  */
2497                 if (ret)
2498                         xhci_free_host_resources(xhci, in_ctx);
2499                 else
2500                         xhci_finish_resource_reservation(xhci, in_ctx);
2501                 spin_unlock_irqrestore(&xhci->lock, flags);
2502         }
2503         return ret;
2504 }
2505
2506 /* Called after one or more calls to xhci_add_endpoint() or
2507  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2508  * to call xhci_reset_bandwidth().
2509  *
2510  * Since we are in the middle of changing either configuration or
2511  * installing a new alt setting, the USB core won't allow URBs to be
2512  * enqueued for any endpoint on the old config or interface.  Nothing
2513  * else should be touching the xhci->devs[slot_id] structure, so we
2514  * don't need to take the xhci->lock for manipulating that.
2515  */
2516 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2517 {
2518         int i;
2519         int ret = 0;
2520         struct xhci_hcd *xhci;
2521         struct xhci_virt_device *virt_dev;
2522         struct xhci_input_control_ctx *ctrl_ctx;
2523         struct xhci_slot_ctx *slot_ctx;
2524
2525         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2526         if (ret <= 0)
2527                 return ret;
2528         xhci = hcd_to_xhci(hcd);
2529         if (xhci->xhc_state & XHCI_STATE_DYING)
2530                 return -ENODEV;
2531
2532         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2533         virt_dev = xhci->devs[udev->slot_id];
2534
2535         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2536         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2537         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2538         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2539         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2540
2541         /* Don't issue the command if there's no endpoints to update. */
2542         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2543                         ctrl_ctx->drop_flags == 0)
2544                 return 0;
2545
2546         xhci_dbg(xhci, "New Input Control Context:\n");
2547         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2548         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2549                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2550
2551         ret = xhci_configure_endpoint(xhci, udev, NULL,
2552                         false, false);
2553         if (ret) {
2554                 /* Callee should call reset_bandwidth() */
2555                 return ret;
2556         }
2557
2558         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2559         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2560                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2561
2562         /* Free any rings that were dropped, but not changed. */
2563         for (i = 1; i < 31; ++i) {
2564                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2565                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2566                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2567         }
2568         xhci_zero_in_ctx(xhci, virt_dev);
2569         /*
2570          * Install any rings for completely new endpoints or changed endpoints,
2571          * and free or cache any old rings from changed endpoints.
2572          */
2573         for (i = 1; i < 31; ++i) {
2574                 if (!virt_dev->eps[i].new_ring)
2575                         continue;
2576                 /* Only cache or free the old ring if it exists.
2577                  * It may not if this is the first add of an endpoint.
2578                  */
2579                 if (virt_dev->eps[i].ring) {
2580                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2581                 }
2582                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2583                 virt_dev->eps[i].new_ring = NULL;
2584         }
2585
2586         return ret;
2587 }
2588
2589 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2590 {
2591         struct xhci_hcd *xhci;
2592         struct xhci_virt_device *virt_dev;
2593         int i, ret;
2594
2595         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2596         if (ret <= 0)
2597                 return;
2598         xhci = hcd_to_xhci(hcd);
2599
2600         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2601         virt_dev = xhci->devs[udev->slot_id];
2602         /* Free any rings allocated for added endpoints */
2603         for (i = 0; i < 31; ++i) {
2604                 if (virt_dev->eps[i].new_ring) {
2605                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2606                         virt_dev->eps[i].new_ring = NULL;
2607                 }
2608         }
2609         xhci_zero_in_ctx(xhci, virt_dev);
2610 }
2611
2612 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2613                 struct xhci_container_ctx *in_ctx,
2614                 struct xhci_container_ctx *out_ctx,
2615                 u32 add_flags, u32 drop_flags)
2616 {
2617         struct xhci_input_control_ctx *ctrl_ctx;
2618         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2619         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2620         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2621         xhci_slot_copy(xhci, in_ctx, out_ctx);
2622         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2623
2624         xhci_dbg(xhci, "Input Context:\n");
2625         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2626 }
2627
2628 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2629                 unsigned int slot_id, unsigned int ep_index,
2630                 struct xhci_dequeue_state *deq_state)
2631 {
2632         struct xhci_container_ctx *in_ctx;
2633         struct xhci_ep_ctx *ep_ctx;
2634         u32 added_ctxs;
2635         dma_addr_t addr;
2636
2637         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2638                         xhci->devs[slot_id]->out_ctx, ep_index);
2639         in_ctx = xhci->devs[slot_id]->in_ctx;
2640         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2641         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2642                         deq_state->new_deq_ptr);
2643         if (addr == 0) {
2644                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2645                                 "reset ep command\n");
2646                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2647                                 deq_state->new_deq_seg,
2648                                 deq_state->new_deq_ptr);
2649                 return;
2650         }
2651         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2652
2653         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2654         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2655                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2656 }
2657
2658 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2659                 struct usb_device *udev, unsigned int ep_index)
2660 {
2661         struct xhci_dequeue_state deq_state;
2662         struct xhci_virt_ep *ep;
2663
2664         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2665         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2666         /* We need to move the HW's dequeue pointer past this TD,
2667          * or it will attempt to resend it on the next doorbell ring.
2668          */
2669         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2670                         ep_index, ep->stopped_stream, ep->stopped_td,
2671                         &deq_state);
2672
2673         /* HW with the reset endpoint quirk will use the saved dequeue state to
2674          * issue a configure endpoint command later.
2675          */
2676         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2677                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2678                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2679                                 ep_index, ep->stopped_stream, &deq_state);
2680         } else {
2681                 /* Better hope no one uses the input context between now and the
2682                  * reset endpoint completion!
2683                  * XXX: No idea how this hardware will react when stream rings
2684                  * are enabled.
2685                  */
2686                 xhci_dbg(xhci, "Setting up input context for "
2687                                 "configure endpoint command\n");
2688                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2689                                 ep_index, &deq_state);
2690         }
2691 }
2692
2693 /* Deal with stalled endpoints.  The core should have sent the control message
2694  * to clear the halt condition.  However, we need to make the xHCI hardware
2695  * reset its sequence number, since a device will expect a sequence number of
2696  * zero after the halt condition is cleared.
2697  * Context: in_interrupt
2698  */
2699 void xhci_endpoint_reset(struct usb_hcd *hcd,
2700                 struct usb_host_endpoint *ep)
2701 {
2702         struct xhci_hcd *xhci;
2703         struct usb_device *udev;
2704         unsigned int ep_index;
2705         unsigned long flags;
2706         int ret;
2707         struct xhci_virt_ep *virt_ep;
2708
2709         xhci = hcd_to_xhci(hcd);
2710         udev = (struct usb_device *) ep->hcpriv;
2711         /* Called with a root hub endpoint (or an endpoint that wasn't added
2712          * with xhci_add_endpoint()
2713          */
2714         if (!ep->hcpriv)
2715                 return;
2716         ep_index = xhci_get_endpoint_index(&ep->desc);
2717         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2718         if (!virt_ep->stopped_td) {
2719                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2720                                 ep->desc.bEndpointAddress);
2721                 return;
2722         }
2723         if (usb_endpoint_xfer_control(&ep->desc)) {
2724                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2725                 return;
2726         }
2727
2728         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2729         spin_lock_irqsave(&xhci->lock, flags);
2730         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2731         /*
2732          * Can't change the ring dequeue pointer until it's transitioned to the
2733          * stopped state, which is only upon a successful reset endpoint
2734          * command.  Better hope that last command worked!
2735          */
2736         if (!ret) {
2737                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2738                 kfree(virt_ep->stopped_td);
2739                 xhci_ring_cmd_db(xhci);
2740         }
2741         virt_ep->stopped_td = NULL;
2742         virt_ep->stopped_trb = NULL;
2743         virt_ep->stopped_stream = 0;
2744         spin_unlock_irqrestore(&xhci->lock, flags);
2745
2746         if (ret)
2747                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2748 }
2749
2750 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2751                 struct usb_device *udev, struct usb_host_endpoint *ep,
2752                 unsigned int slot_id)
2753 {
2754         int ret;
2755         unsigned int ep_index;
2756         unsigned int ep_state;
2757
2758         if (!ep)
2759                 return -EINVAL;
2760         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2761         if (ret <= 0)
2762                 return -EINVAL;
2763         if (ep->ss_ep_comp.bmAttributes == 0) {
2764                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2765                                 " descriptor for ep 0x%x does not support streams\n",
2766                                 ep->desc.bEndpointAddress);
2767                 return -EINVAL;
2768         }
2769
2770         ep_index = xhci_get_endpoint_index(&ep->desc);
2771         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2772         if (ep_state & EP_HAS_STREAMS ||
2773                         ep_state & EP_GETTING_STREAMS) {
2774                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2775                                 "already has streams set up.\n",
2776                                 ep->desc.bEndpointAddress);
2777                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2778                                 "dynamic stream context array reallocation.\n");
2779                 return -EINVAL;
2780         }
2781         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2782                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2783                                 "endpoint 0x%x; URBs are pending.\n",
2784                                 ep->desc.bEndpointAddress);
2785                 return -EINVAL;
2786         }
2787         return 0;
2788 }
2789
2790 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2791                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2792 {
2793         unsigned int max_streams;
2794
2795         /* The stream context array size must be a power of two */
2796         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2797         /*
2798          * Find out how many primary stream array entries the host controller
2799          * supports.  Later we may use secondary stream arrays (similar to 2nd
2800          * level page entries), but that's an optional feature for xHCI host
2801          * controllers. xHCs must support at least 4 stream IDs.
2802          */
2803         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2804         if (*num_stream_ctxs > max_streams) {
2805                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2806                                 max_streams);
2807                 *num_stream_ctxs = max_streams;
2808                 *num_streams = max_streams;
2809         }
2810 }
2811
2812 /* Returns an error code if one of the endpoint already has streams.
2813  * This does not change any data structures, it only checks and gathers
2814  * information.
2815  */
2816 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2817                 struct usb_device *udev,
2818                 struct usb_host_endpoint **eps, unsigned int num_eps,
2819                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2820 {
2821         unsigned int max_streams;
2822         unsigned int endpoint_flag;
2823         int i;
2824         int ret;
2825
2826         for (i = 0; i < num_eps; i++) {
2827                 ret = xhci_check_streams_endpoint(xhci, udev,
2828                                 eps[i], udev->slot_id);
2829                 if (ret < 0)
2830                         return ret;
2831
2832                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2833                 if (max_streams < (*num_streams - 1)) {
2834                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2835                                         eps[i]->desc.bEndpointAddress,
2836                                         max_streams);
2837                         *num_streams = max_streams+1;
2838                 }
2839
2840                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2841                 if (*changed_ep_bitmask & endpoint_flag)
2842                         return -EINVAL;
2843                 *changed_ep_bitmask |= endpoint_flag;
2844         }
2845         return 0;
2846 }
2847
2848 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2849                 struct usb_device *udev,
2850                 struct usb_host_endpoint **eps, unsigned int num_eps)
2851 {
2852         u32 changed_ep_bitmask = 0;
2853         unsigned int slot_id;
2854         unsigned int ep_index;
2855         unsigned int ep_state;
2856         int i;
2857
2858         slot_id = udev->slot_id;
2859         if (!xhci->devs[slot_id])
2860                 return 0;
2861
2862         for (i = 0; i < num_eps; i++) {
2863                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2864                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2865                 /* Are streams already being freed for the endpoint? */
2866                 if (ep_state & EP_GETTING_NO_STREAMS) {
2867                         xhci_warn(xhci, "WARN Can't disable streams for "
2868                                         "endpoint 0x%x\n, "
2869                                         "streams are being disabled already.",
2870                                         eps[i]->desc.bEndpointAddress);
2871                         return 0;
2872                 }
2873                 /* Are there actually any streams to free? */
2874                 if (!(ep_state & EP_HAS_STREAMS) &&
2875                                 !(ep_state & EP_GETTING_STREAMS)) {
2876                         xhci_warn(xhci, "WARN Can't disable streams for "
2877                                         "endpoint 0x%x\n, "
2878                                         "streams are already disabled!",
2879                                         eps[i]->desc.bEndpointAddress);
2880                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2881                                         "with non-streams endpoint\n");
2882                         return 0;
2883                 }
2884                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2885         }
2886         return changed_ep_bitmask;
2887 }
2888
2889 /*
2890  * The USB device drivers use this function (though the HCD interface in USB
2891  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2892  * coordinate mass storage command queueing across multiple endpoints (basically
2893  * a stream ID == a task ID).
2894  *
2895  * Setting up streams involves allocating the same size stream context array
2896  * for each endpoint and issuing a configure endpoint command for all endpoints.
2897  *
2898  * Don't allow the call to succeed if one endpoint only supports one stream
2899  * (which means it doesn't support streams at all).
2900  *
2901  * Drivers may get less stream IDs than they asked for, if the host controller
2902  * hardware or endpoints claim they can't support the number of requested
2903  * stream IDs.
2904  */
2905 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2906                 struct usb_host_endpoint **eps, unsigned int num_eps,
2907                 unsigned int num_streams, gfp_t mem_flags)
2908 {
2909         int i, ret;
2910         struct xhci_hcd *xhci;
2911         struct xhci_virt_device *vdev;
2912         struct xhci_command *config_cmd;
2913         unsigned int ep_index;
2914         unsigned int num_stream_ctxs;
2915         unsigned long flags;
2916         u32 changed_ep_bitmask = 0;
2917
2918         if (!eps)
2919                 return -EINVAL;
2920
2921         /* Add one to the number of streams requested to account for
2922          * stream 0 that is reserved for xHCI usage.
2923          */
2924         num_streams += 1;
2925         xhci = hcd_to_xhci(hcd);
2926         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2927                         num_streams);
2928
2929         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2930         if (!config_cmd) {
2931                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2932                 return -ENOMEM;
2933         }
2934
2935         /* Check to make sure all endpoints are not already configured for
2936          * streams.  While we're at it, find the maximum number of streams that
2937          * all the endpoints will support and check for duplicate endpoints.
2938          */
2939         spin_lock_irqsave(&xhci->lock, flags);
2940         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2941                         num_eps, &num_streams, &changed_ep_bitmask);
2942         if (ret < 0) {
2943                 xhci_free_command(xhci, config_cmd);
2944                 spin_unlock_irqrestore(&xhci->lock, flags);
2945                 return ret;
2946         }
2947         if (num_streams <= 1) {
2948                 xhci_warn(xhci, "WARN: endpoints can't handle "
2949                                 "more than one stream.\n");
2950                 xhci_free_command(xhci, config_cmd);
2951                 spin_unlock_irqrestore(&xhci->lock, flags);
2952                 return -EINVAL;
2953         }
2954         vdev = xhci->devs[udev->slot_id];
2955         /* Mark each endpoint as being in transition, so
2956          * xhci_urb_enqueue() will reject all URBs.
2957          */
2958         for (i = 0; i < num_eps; i++) {
2959                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2960                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2961         }
2962         spin_unlock_irqrestore(&xhci->lock, flags);
2963
2964         /* Setup internal data structures and allocate HW data structures for
2965          * streams (but don't install the HW structures in the input context
2966          * until we're sure all memory allocation succeeded).
2967          */
2968         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2969         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2970                         num_stream_ctxs, num_streams);
2971
2972         for (i = 0; i < num_eps; i++) {
2973                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2974                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2975                                 num_stream_ctxs,
2976                                 num_streams, mem_flags);
2977                 if (!vdev->eps[ep_index].stream_info)
2978                         goto cleanup;
2979                 /* Set maxPstreams in endpoint context and update deq ptr to
2980                  * point to stream context array. FIXME
2981                  */
2982         }
2983
2984         /* Set up the input context for a configure endpoint command. */
2985         for (i = 0; i < num_eps; i++) {
2986                 struct xhci_ep_ctx *ep_ctx;
2987
2988                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2989                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2990
2991                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2992                                 vdev->out_ctx, ep_index);
2993                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2994                                 vdev->eps[ep_index].stream_info);
2995         }
2996         /* Tell the HW to drop its old copy of the endpoint context info
2997          * and add the updated copy from the input context.
2998          */
2999         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3000                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3001
3002         /* Issue and wait for the configure endpoint command */
3003         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3004                         false, false);
3005
3006         /* xHC rejected the configure endpoint command for some reason, so we
3007          * leave the old ring intact and free our internal streams data
3008          * structure.
3009          */
3010         if (ret < 0)
3011                 goto cleanup;
3012
3013         spin_lock_irqsave(&xhci->lock, flags);
3014         for (i = 0; i < num_eps; i++) {
3015                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3016                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3017                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3018                          udev->slot_id, ep_index);
3019                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3020         }
3021         xhci_free_command(xhci, config_cmd);
3022         spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024         /* Subtract 1 for stream 0, which drivers can't use */
3025         return num_streams - 1;
3026
3027 cleanup:
3028         /* If it didn't work, free the streams! */
3029         for (i = 0; i < num_eps; i++) {
3030                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3031                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3032                 vdev->eps[ep_index].stream_info = NULL;
3033                 /* FIXME Unset maxPstreams in endpoint context and
3034                  * update deq ptr to point to normal string ring.
3035                  */
3036                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3037                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3038                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3039         }
3040         xhci_free_command(xhci, config_cmd);
3041         return -ENOMEM;
3042 }
3043
3044 /* Transition the endpoint from using streams to being a "normal" endpoint
3045  * without streams.
3046  *
3047  * Modify the endpoint context state, submit a configure endpoint command,
3048  * and free all endpoint rings for streams if that completes successfully.
3049  */
3050 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3051                 struct usb_host_endpoint **eps, unsigned int num_eps,
3052                 gfp_t mem_flags)
3053 {
3054         int i, ret;
3055         struct xhci_hcd *xhci;
3056         struct xhci_virt_device *vdev;
3057         struct xhci_command *command;
3058         unsigned int ep_index;
3059         unsigned long flags;
3060         u32 changed_ep_bitmask;
3061
3062         xhci = hcd_to_xhci(hcd);
3063         vdev = xhci->devs[udev->slot_id];
3064
3065         /* Set up a configure endpoint command to remove the streams rings */
3066         spin_lock_irqsave(&xhci->lock, flags);
3067         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3068                         udev, eps, num_eps);
3069         if (changed_ep_bitmask == 0) {
3070                 spin_unlock_irqrestore(&xhci->lock, flags);
3071                 return -EINVAL;
3072         }
3073
3074         /* Use the xhci_command structure from the first endpoint.  We may have
3075          * allocated too many, but the driver may call xhci_free_streams() for
3076          * each endpoint it grouped into one call to xhci_alloc_streams().
3077          */
3078         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3079         command = vdev->eps[ep_index].stream_info->free_streams_command;
3080         for (i = 0; i < num_eps; i++) {
3081                 struct xhci_ep_ctx *ep_ctx;
3082
3083                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3084                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3085                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3086                         EP_GETTING_NO_STREAMS;
3087
3088                 xhci_endpoint_copy(xhci, command->in_ctx,
3089                                 vdev->out_ctx, ep_index);
3090                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3091                                 &vdev->eps[ep_index]);
3092         }
3093         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3094                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3095         spin_unlock_irqrestore(&xhci->lock, flags);
3096
3097         /* Issue and wait for the configure endpoint command,
3098          * which must succeed.
3099          */
3100         ret = xhci_configure_endpoint(xhci, udev, command,
3101                         false, true);
3102
3103         /* xHC rejected the configure endpoint command for some reason, so we
3104          * leave the streams rings intact.
3105          */
3106         if (ret < 0)
3107                 return ret;
3108
3109         spin_lock_irqsave(&xhci->lock, flags);
3110         for (i = 0; i < num_eps; i++) {
3111                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3113                 vdev->eps[ep_index].stream_info = NULL;
3114                 /* FIXME Unset maxPstreams in endpoint context and
3115                  * update deq ptr to point to normal string ring.
3116                  */
3117                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3118                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3119         }
3120         spin_unlock_irqrestore(&xhci->lock, flags);
3121
3122         return 0;
3123 }
3124
3125 /*
3126  * Deletes endpoint resources for endpoints that were active before a Reset
3127  * Device command, or a Disable Slot command.  The Reset Device command leaves
3128  * the control endpoint intact, whereas the Disable Slot command deletes it.
3129  *
3130  * Must be called with xhci->lock held.
3131  */
3132 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3133         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3134 {
3135         int i;
3136         unsigned int num_dropped_eps = 0;
3137         unsigned int drop_flags = 0;
3138
3139         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3140                 if (virt_dev->eps[i].ring) {
3141                         drop_flags |= 1 << i;
3142                         num_dropped_eps++;
3143                 }
3144         }
3145         xhci->num_active_eps -= num_dropped_eps;
3146         if (num_dropped_eps)
3147                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3148                                 "%u now active.\n",
3149                                 num_dropped_eps, drop_flags,
3150                                 xhci->num_active_eps);
3151 }
3152
3153 /*
3154  * This submits a Reset Device Command, which will set the device state to 0,
3155  * set the device address to 0, and disable all the endpoints except the default
3156  * control endpoint.  The USB core should come back and call
3157  * xhci_address_device(), and then re-set up the configuration.  If this is
3158  * called because of a usb_reset_and_verify_device(), then the old alternate
3159  * settings will be re-installed through the normal bandwidth allocation
3160  * functions.
3161  *
3162  * Wait for the Reset Device command to finish.  Remove all structures
3163  * associated with the endpoints that were disabled.  Clear the input device
3164  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3165  *
3166  * If the virt_dev to be reset does not exist or does not match the udev,
3167  * it means the device is lost, possibly due to the xHC restore error and
3168  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3169  * re-allocate the device.
3170  */
3171 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3172 {
3173         int ret, i;
3174         unsigned long flags;
3175         struct xhci_hcd *xhci;
3176         unsigned int slot_id;
3177         struct xhci_virt_device *virt_dev;
3178         struct xhci_command *reset_device_cmd;
3179         int timeleft;
3180         int last_freed_endpoint;
3181         struct xhci_slot_ctx *slot_ctx;
3182         int old_active_eps = 0;
3183
3184         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3185         if (ret <= 0)
3186                 return ret;
3187         xhci = hcd_to_xhci(hcd);
3188         slot_id = udev->slot_id;
3189         virt_dev = xhci->devs[slot_id];
3190         if (!virt_dev) {
3191                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3192                                 "not exist. Re-allocate the device\n", slot_id);
3193                 ret = xhci_alloc_dev(hcd, udev);
3194                 if (ret == 1)
3195                         return 0;
3196                 else
3197                         return -EINVAL;
3198         }
3199
3200         if (virt_dev->udev != udev) {
3201                 /* If the virt_dev and the udev does not match, this virt_dev
3202                  * may belong to another udev.
3203                  * Re-allocate the device.
3204                  */
3205                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3206                                 "not match the udev. Re-allocate the device\n",
3207                                 slot_id);
3208                 ret = xhci_alloc_dev(hcd, udev);
3209                 if (ret == 1)
3210                         return 0;
3211                 else
3212                         return -EINVAL;
3213         }
3214
3215         /* If device is not setup, there is no point in resetting it */
3216         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3217         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3218                                                 SLOT_STATE_DISABLED)
3219                 return 0;
3220
3221         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3222         /* Allocate the command structure that holds the struct completion.
3223          * Assume we're in process context, since the normal device reset
3224          * process has to wait for the device anyway.  Storage devices are
3225          * reset as part of error handling, so use GFP_NOIO instead of
3226          * GFP_KERNEL.
3227          */
3228         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3229         if (!reset_device_cmd) {
3230                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3231                 return -ENOMEM;
3232         }
3233
3234         /* Attempt to submit the Reset Device command to the command ring */
3235         spin_lock_irqsave(&xhci->lock, flags);
3236         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3237
3238         /* Enqueue pointer can be left pointing to the link TRB,
3239          * we must handle that
3240          */
3241         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3242                 reset_device_cmd->command_trb =
3243                         xhci->cmd_ring->enq_seg->next->trbs;
3244
3245         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3246         ret = xhci_queue_reset_device(xhci, slot_id);
3247         if (ret) {
3248                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3249                 list_del(&reset_device_cmd->cmd_list);
3250                 spin_unlock_irqrestore(&xhci->lock, flags);
3251                 goto command_cleanup;
3252         }
3253         xhci_ring_cmd_db(xhci);
3254         spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256         /* Wait for the Reset Device command to finish */
3257         timeleft = wait_for_completion_interruptible_timeout(
3258                         reset_device_cmd->completion,
3259                         USB_CTRL_SET_TIMEOUT);
3260         if (timeleft <= 0) {
3261                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3262                                 timeleft == 0 ? "Timeout" : "Signal");
3263                 spin_lock_irqsave(&xhci->lock, flags);
3264                 /* The timeout might have raced with the event ring handler, so
3265                  * only delete from the list if the item isn't poisoned.
3266                  */
3267                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3268                         list_del(&reset_device_cmd->cmd_list);
3269                 spin_unlock_irqrestore(&xhci->lock, flags);
3270                 ret = -ETIME;
3271                 goto command_cleanup;
3272         }
3273
3274         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3275          * unless we tried to reset a slot ID that wasn't enabled,
3276          * or the device wasn't in the addressed or configured state.
3277          */
3278         ret = reset_device_cmd->status;
3279         switch (ret) {
3280         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3281         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3282                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3283                                 slot_id,
3284                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3285                 xhci_info(xhci, "Not freeing device rings.\n");
3286                 /* Don't treat this as an error.  May change my mind later. */
3287                 ret = 0;
3288                 goto command_cleanup;
3289         case COMP_SUCCESS:
3290                 xhci_dbg(xhci, "Successful reset device command.\n");
3291                 break;
3292         default:
3293                 if (xhci_is_vendor_info_code(xhci, ret))
3294                         break;
3295                 xhci_warn(xhci, "Unknown completion code %u for "
3296                                 "reset device command.\n", ret);
3297                 ret = -EINVAL;
3298                 goto command_cleanup;
3299         }
3300
3301         /* Free up host controller endpoint resources */
3302         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3303                 spin_lock_irqsave(&xhci->lock, flags);
3304                 /* Don't delete the default control endpoint resources */
3305                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3306                 spin_unlock_irqrestore(&xhci->lock, flags);
3307         }
3308
3309         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3310         last_freed_endpoint = 1;
3311         for (i = 1; i < 31; ++i) {
3312                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3313
3314                 if (ep->ep_state & EP_HAS_STREAMS) {
3315                         xhci_free_stream_info(xhci, ep->stream_info);
3316                         ep->stream_info = NULL;
3317                         ep->ep_state &= ~EP_HAS_STREAMS;
3318                 }
3319
3320                 if (ep->ring) {
3321                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3322                         last_freed_endpoint = i;
3323                 }
3324                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3325                         xhci_drop_ep_from_interval_table(xhci,
3326                                         &virt_dev->eps[i].bw_info,
3327                                         virt_dev->bw_table,
3328                                         udev,
3329                                         &virt_dev->eps[i],
3330                                         virt_dev->tt_info);
3331                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3332         }
3333         /* If necessary, update the number of active TTs on this root port */
3334         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3335
3336         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3337         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3338         ret = 0;
3339
3340 command_cleanup:
3341         xhci_free_command(xhci, reset_device_cmd);
3342         return ret;
3343 }
3344
3345 /*
3346  * At this point, the struct usb_device is about to go away, the device has
3347  * disconnected, and all traffic has been stopped and the endpoints have been
3348  * disabled.  Free any HC data structures associated with that device.
3349  */
3350 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3351 {
3352         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3353         struct xhci_virt_device *virt_dev;
3354         unsigned long flags;
3355         u32 state;
3356         int i, ret;
3357
3358         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3359         /* If the host is halted due to driver unload, we still need to free the
3360          * device.
3361          */
3362         if (ret <= 0 && ret != -ENODEV)
3363                 return;
3364
3365         virt_dev = xhci->devs[udev->slot_id];
3366
3367         /* Stop any wayward timer functions (which may grab the lock) */
3368         for (i = 0; i < 31; ++i) {
3369                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3370                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3371         }
3372
3373         if (udev->usb2_hw_lpm_enabled) {
3374                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3375                 udev->usb2_hw_lpm_enabled = 0;
3376         }
3377
3378         spin_lock_irqsave(&xhci->lock, flags);
3379         /* Don't disable the slot if the host controller is dead. */
3380         state = xhci_readl(xhci, &xhci->op_regs->status);
3381         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3382                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3383                 xhci_free_virt_device(xhci, udev->slot_id);
3384                 spin_unlock_irqrestore(&xhci->lock, flags);
3385                 return;
3386         }
3387
3388         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3389                 spin_unlock_irqrestore(&xhci->lock, flags);
3390                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3391                 return;
3392         }
3393         xhci_ring_cmd_db(xhci);
3394         spin_unlock_irqrestore(&xhci->lock, flags);
3395         /*
3396          * Event command completion handler will free any data structures
3397          * associated with the slot.  XXX Can free sleep?
3398          */
3399 }
3400
3401 /*
3402  * Checks if we have enough host controller resources for the default control
3403  * endpoint.
3404  *
3405  * Must be called with xhci->lock held.
3406  */
3407 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3408 {
3409         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3410                 xhci_dbg(xhci, "Not enough ep ctxs: "
3411                                 "%u active, need to add 1, limit is %u.\n",
3412                                 xhci->num_active_eps, xhci->limit_active_eps);
3413                 return -ENOMEM;
3414         }
3415         xhci->num_active_eps += 1;
3416         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3417                         xhci->num_active_eps);
3418         return 0;
3419 }
3420
3421
3422 /*
3423  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3424  * timed out, or allocating memory failed.  Returns 1 on success.
3425  */
3426 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3427 {
3428         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3429         unsigned long flags;
3430         int timeleft;
3431         int ret;
3432         union xhci_trb *cmd_trb;
3433
3434         spin_lock_irqsave(&xhci->lock, flags);
3435         cmd_trb = xhci->cmd_ring->dequeue;
3436         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3437         if (ret) {
3438                 spin_unlock_irqrestore(&xhci->lock, flags);
3439                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3440                 return 0;
3441         }
3442         xhci_ring_cmd_db(xhci);
3443         spin_unlock_irqrestore(&xhci->lock, flags);
3444
3445         /* XXX: how much time for xHC slot assignment? */
3446         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3447                         XHCI_CMD_DEFAULT_TIMEOUT);
3448         if (timeleft <= 0) {
3449                 xhci_warn(xhci, "%s while waiting for a slot\n",
3450                                 timeleft == 0 ? "Timeout" : "Signal");
3451                 /* cancel the enable slot request */
3452                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3453         }
3454
3455         if (!xhci->slot_id) {
3456                 xhci_err(xhci, "Error while assigning device slot ID\n");
3457                 return 0;
3458         }
3459
3460         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3461                 spin_lock_irqsave(&xhci->lock, flags);
3462                 ret = xhci_reserve_host_control_ep_resources(xhci);
3463                 if (ret) {
3464                         spin_unlock_irqrestore(&xhci->lock, flags);
3465                         xhci_warn(xhci, "Not enough host resources, "
3466                                         "active endpoint contexts = %u\n",
3467                                         xhci->num_active_eps);
3468                         goto disable_slot;
3469                 }
3470                 spin_unlock_irqrestore(&xhci->lock, flags);
3471         }
3472         /* Use GFP_NOIO, since this function can be called from
3473          * xhci_discover_or_reset_device(), which may be called as part of
3474          * mass storage driver error handling.
3475          */
3476         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3477                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3478                 goto disable_slot;
3479         }
3480         udev->slot_id = xhci->slot_id;
3481         /* Is this a LS or FS device under a HS hub? */
3482         /* Hub or peripherial? */
3483         return 1;
3484
3485 disable_slot:
3486         /* Disable slot, if we can do it without mem alloc */
3487         spin_lock_irqsave(&xhci->lock, flags);
3488         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3489                 xhci_ring_cmd_db(xhci);
3490         spin_unlock_irqrestore(&xhci->lock, flags);
3491         return 0;
3492 }
3493
3494 /*
3495  * Issue an Address Device command (which will issue a SetAddress request to
3496  * the device).
3497  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3498  * we should only issue and wait on one address command at the same time.
3499  *
3500  * We add one to the device address issued by the hardware because the USB core
3501  * uses address 1 for the root hubs (even though they're not really devices).
3502  */
3503 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3504 {
3505         unsigned long flags;
3506         int timeleft;
3507         struct xhci_virt_device *virt_dev;
3508         int ret = 0;
3509         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3510         struct xhci_slot_ctx *slot_ctx;
3511         struct xhci_input_control_ctx *ctrl_ctx;
3512         u64 temp_64;
3513         union xhci_trb *cmd_trb;
3514
3515         if (!udev->slot_id) {
3516                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3517                 return -EINVAL;
3518         }
3519
3520         virt_dev = xhci->devs[udev->slot_id];
3521
3522         if (WARN_ON(!virt_dev)) {
3523                 /*
3524                  * In plug/unplug torture test with an NEC controller,
3525                  * a zero-dereference was observed once due to virt_dev = 0.
3526                  * Print useful debug rather than crash if it is observed again!
3527                  */
3528                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3529                         udev->slot_id);
3530                 return -EINVAL;
3531         }
3532
3533         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3534         /*
3535          * If this is the first Set Address since device plug-in or
3536          * virt_device realloaction after a resume with an xHCI power loss,
3537          * then set up the slot context.
3538          */
3539         if (!slot_ctx->dev_info)
3540                 xhci_setup_addressable_virt_dev(xhci, udev);
3541         /* Otherwise, update the control endpoint ring enqueue pointer. */
3542         else
3543                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3544         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3545         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3546         ctrl_ctx->drop_flags = 0;
3547
3548         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3549         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3550
3551         spin_lock_irqsave(&xhci->lock, flags);
3552         cmd_trb = xhci->cmd_ring->dequeue;
3553         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3554                                         udev->slot_id);
3555         if (ret) {
3556                 spin_unlock_irqrestore(&xhci->lock, flags);
3557                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3558                 return ret;
3559         }
3560         xhci_ring_cmd_db(xhci);
3561         spin_unlock_irqrestore(&xhci->lock, flags);
3562
3563         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3564         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3565                         XHCI_CMD_DEFAULT_TIMEOUT);
3566         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3567          * the SetAddress() "recovery interval" required by USB and aborting the
3568          * command on a timeout.
3569          */
3570         if (timeleft <= 0) {
3571                 xhci_warn(xhci, "%s while waiting for address device command\n",
3572                                 timeleft == 0 ? "Timeout" : "Signal");
3573                 /* cancel the address device command */
3574                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3575                 if (ret < 0)
3576                         return ret;
3577                 return -ETIME;
3578         }
3579
3580         switch (virt_dev->cmd_status) {
3581         case COMP_CTX_STATE:
3582         case COMP_EBADSLT:
3583                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3584                                 udev->slot_id);
3585                 ret = -EINVAL;
3586                 break;
3587         case COMP_TX_ERR:
3588                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3589                 ret = -EPROTO;
3590                 break;
3591         case COMP_DEV_ERR:
3592                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3593                                 "device command.\n");
3594                 ret = -ENODEV;
3595                 break;
3596         case COMP_SUCCESS:
3597                 xhci_dbg(xhci, "Successful Address Device command\n");
3598                 break;
3599         default:
3600                 xhci_err(xhci, "ERROR: unexpected command completion "
3601                                 "code 0x%x.\n", virt_dev->cmd_status);
3602                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3603                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3604                 ret = -EINVAL;
3605                 break;
3606         }
3607         if (ret) {
3608                 return ret;
3609         }
3610         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3611         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3612         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3613                  udev->slot_id,
3614                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3615                  (unsigned long long)
3616                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3617         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3618                         (unsigned long long)virt_dev->out_ctx->dma);
3619         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3620         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3621         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3622         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3623         /*
3624          * USB core uses address 1 for the roothubs, so we add one to the
3625          * address given back to us by the HC.
3626          */
3627         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3628         /* Use kernel assigned address for devices; store xHC assigned
3629          * address locally. */
3630         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3631                 + 1;
3632         /* Zero the input context control for later use */
3633         ctrl_ctx->add_flags = 0;
3634         ctrl_ctx->drop_flags = 0;
3635
3636         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3637
3638         return 0;
3639 }
3640
3641 #ifdef CONFIG_USB_SUSPEND
3642
3643 /* BESL to HIRD Encoding array for USB2 LPM */
3644 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3645         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3646
3647 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3648 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3649                                         struct usb_device *udev)
3650 {
3651         int u2del, besl, besl_host;
3652         int besl_device = 0;
3653         u32 field;
3654
3655         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3656         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3657
3658         if (field & USB_BESL_SUPPORT) {
3659                 for (besl_host = 0; besl_host < 16; besl_host++) {
3660                         if (xhci_besl_encoding[besl_host] >= u2del)
3661                                 break;
3662                 }
3663                 /* Use baseline BESL value as default */
3664                 if (field & USB_BESL_BASELINE_VALID)
3665                         besl_device = USB_GET_BESL_BASELINE(field);
3666                 else if (field & USB_BESL_DEEP_VALID)
3667                         besl_device = USB_GET_BESL_DEEP(field);
3668         } else {
3669                 if (u2del <= 50)
3670                         besl_host = 0;
3671                 else
3672                         besl_host = (u2del - 51) / 75 + 1;
3673         }
3674
3675         besl = besl_host + besl_device;
3676         if (besl > 15)
3677                 besl = 15;
3678
3679         return besl;
3680 }
3681
3682 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3683                                         struct usb_device *udev)
3684 {
3685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686         struct dev_info *dev_info;
3687         __le32 __iomem  **port_array;
3688         __le32 __iomem  *addr, *pm_addr;
3689         u32             temp, dev_id;
3690         unsigned int    port_num;
3691         unsigned long   flags;
3692         int             hird;
3693         int             ret;
3694
3695         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3696                         !udev->lpm_capable)
3697                 return -EINVAL;
3698
3699         /* we only support lpm for non-hub device connected to root hub yet */
3700         if (!udev->parent || udev->parent->parent ||
3701                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3702                 return -EINVAL;
3703
3704         spin_lock_irqsave(&xhci->lock, flags);
3705
3706         /* Look for devices in lpm_failed_devs list */
3707         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3708                         le16_to_cpu(udev->descriptor.idProduct);
3709         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3710                 if (dev_info->dev_id == dev_id) {
3711                         ret = -EINVAL;
3712                         goto finish;
3713                 }
3714         }
3715
3716         port_array = xhci->usb2_ports;
3717         port_num = udev->portnum - 1;
3718
3719         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3720                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3721                 ret = -EINVAL;
3722                 goto finish;
3723         }
3724
3725         /*
3726          * Test USB 2.0 software LPM.
3727          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3728          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3729          * in the June 2011 errata release.
3730          */
3731         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3732         /*
3733          * Set L1 Device Slot and HIRD/BESL.
3734          * Check device's USB 2.0 extension descriptor to determine whether
3735          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3736          */
3737         pm_addr = port_array[port_num] + 1;
3738         hird = xhci_calculate_hird_besl(xhci, udev);
3739         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3740         xhci_writel(xhci, temp, pm_addr);
3741
3742         /* Set port link state to U2(L1) */
3743         addr = port_array[port_num];
3744         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3745
3746         /* wait for ACK */
3747         spin_unlock_irqrestore(&xhci->lock, flags);
3748         msleep(10);
3749         spin_lock_irqsave(&xhci->lock, flags);
3750
3751         /* Check L1 Status */
3752         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3753         if (ret != -ETIMEDOUT) {
3754                 /* enter L1 successfully */
3755                 temp = xhci_readl(xhci, addr);
3756                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3757                                 port_num, temp);
3758                 ret = 0;
3759         } else {
3760                 temp = xhci_readl(xhci, pm_addr);
3761                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3762                                 port_num, temp & PORT_L1S_MASK);
3763                 ret = -EINVAL;
3764         }
3765
3766         /* Resume the port */
3767         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3768
3769         spin_unlock_irqrestore(&xhci->lock, flags);
3770         msleep(10);
3771         spin_lock_irqsave(&xhci->lock, flags);
3772
3773         /* Clear PLC */
3774         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3775
3776         /* Check PORTSC to make sure the device is in the right state */
3777         if (!ret) {
3778                 temp = xhci_readl(xhci, addr);
3779                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3780                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3781                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3782                         xhci_dbg(xhci, "port L1 resume fail\n");
3783                         ret = -EINVAL;
3784                 }
3785         }
3786
3787         if (ret) {
3788                 /* Insert dev to lpm_failed_devs list */
3789                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3790                                 "re-enumerate\n");
3791                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3792                 if (!dev_info) {
3793                         ret = -ENOMEM;
3794                         goto finish;
3795                 }
3796                 dev_info->dev_id = dev_id;
3797                 INIT_LIST_HEAD(&dev_info->list);
3798                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3799         } else {
3800                 xhci_ring_device(xhci, udev->slot_id);
3801         }
3802
3803 finish:
3804         spin_unlock_irqrestore(&xhci->lock, flags);
3805         return ret;
3806 }
3807
3808 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3809                         struct usb_device *udev, int enable)
3810 {
3811         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3812         __le32 __iomem  **port_array;
3813         __le32 __iomem  *pm_addr;
3814         u32             temp;
3815         unsigned int    port_num;
3816         unsigned long   flags;
3817         int             hird;
3818
3819         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3820                         !udev->lpm_capable)
3821                 return -EPERM;
3822
3823         if (!udev->parent || udev->parent->parent ||
3824                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825                 return -EPERM;
3826
3827         if (udev->usb2_hw_lpm_capable != 1)
3828                 return -EPERM;
3829
3830         spin_lock_irqsave(&xhci->lock, flags);
3831
3832         port_array = xhci->usb2_ports;
3833         port_num = udev->portnum - 1;
3834         pm_addr = port_array[port_num] + 1;
3835         temp = xhci_readl(xhci, pm_addr);
3836
3837         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3838                         enable ? "enable" : "disable", port_num);
3839
3840         hird = xhci_calculate_hird_besl(xhci, udev);
3841
3842         if (enable) {
3843                 temp &= ~PORT_HIRD_MASK;
3844                 temp |= PORT_HIRD(hird) | PORT_RWE;
3845                 xhci_writel(xhci, temp, pm_addr);
3846                 temp = xhci_readl(xhci, pm_addr);
3847                 temp |= PORT_HLE;
3848                 xhci_writel(xhci, temp, pm_addr);
3849         } else {
3850                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3851                 xhci_writel(xhci, temp, pm_addr);
3852         }
3853
3854         spin_unlock_irqrestore(&xhci->lock, flags);
3855         return 0;
3856 }
3857
3858 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3859 {
3860         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3861         int             ret;
3862
3863         ret = xhci_usb2_software_lpm_test(hcd, udev);
3864         if (!ret) {
3865                 xhci_dbg(xhci, "software LPM test succeed\n");
3866                 if (xhci->hw_lpm_support == 1) {
3867                         udev->usb2_hw_lpm_capable = 1;
3868                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3869                         if (!ret)
3870                                 udev->usb2_hw_lpm_enabled = 1;
3871                 }
3872         }
3873
3874         return 0;
3875 }
3876
3877 #else
3878
3879 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3880                                 struct usb_device *udev, int enable)
3881 {
3882         return 0;
3883 }
3884
3885 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3886 {
3887         return 0;
3888 }
3889
3890 #endif /* CONFIG_USB_SUSPEND */
3891
3892 /*---------------------- USB 3.0 Link PM functions ------------------------*/
3893
3894 #ifdef CONFIG_PM
3895 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
3896 static unsigned long long xhci_service_interval_to_ns(
3897                 struct usb_endpoint_descriptor *desc)
3898 {
3899         return (1 << (desc->bInterval - 1)) * 125 * 1000;
3900 }
3901
3902 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
3903                 enum usb3_link_state state)
3904 {
3905         unsigned long long sel;
3906         unsigned long long pel;
3907         unsigned int max_sel_pel;
3908         char *state_name;
3909
3910         switch (state) {
3911         case USB3_LPM_U1:
3912                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
3913                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
3914                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
3915                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
3916                 state_name = "U1";
3917                 break;
3918         case USB3_LPM_U2:
3919                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
3920                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
3921                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
3922                 state_name = "U2";
3923                 break;
3924         default:
3925                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
3926                                 __func__);
3927                 return USB3_LPM_DISABLED;
3928         }
3929
3930         if (sel <= max_sel_pel && pel <= max_sel_pel)
3931                 return USB3_LPM_DEVICE_INITIATED;
3932
3933         if (sel > max_sel_pel)
3934                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
3935                                 "due to long SEL %llu ms\n",
3936                                 state_name, sel);
3937         else
3938                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
3939                                 "due to long PEL %llu\n ms",
3940                                 state_name, pel);
3941         return USB3_LPM_DISABLED;
3942 }
3943
3944 /* Returns the hub-encoded U1 timeout value.
3945  * The U1 timeout should be the maximum of the following values:
3946  *  - For control endpoints, U1 system exit latency (SEL) * 3
3947  *  - For bulk endpoints, U1 SEL * 5
3948  *  - For interrupt endpoints:
3949  *    - Notification EPs, U1 SEL * 3
3950  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
3951  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
3952  */
3953 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
3954                 struct usb_endpoint_descriptor *desc)
3955 {
3956         unsigned long long timeout_ns;
3957         int ep_type;
3958         int intr_type;
3959
3960         ep_type = usb_endpoint_type(desc);
3961         switch (ep_type) {
3962         case USB_ENDPOINT_XFER_CONTROL:
3963                 timeout_ns = udev->u1_params.sel * 3;
3964                 break;
3965         case USB_ENDPOINT_XFER_BULK:
3966                 timeout_ns = udev->u1_params.sel * 5;
3967                 break;
3968         case USB_ENDPOINT_XFER_INT:
3969                 intr_type = usb_endpoint_interrupt_type(desc);
3970                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
3971                         timeout_ns = udev->u1_params.sel * 3;
3972                         break;
3973                 }
3974                 /* Otherwise the calculation is the same as isoc eps */
3975         case USB_ENDPOINT_XFER_ISOC:
3976                 timeout_ns = xhci_service_interval_to_ns(desc);
3977                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
3978                 if (timeout_ns < udev->u1_params.sel * 2)
3979                         timeout_ns = udev->u1_params.sel * 2;
3980                 break;
3981         default:
3982                 return 0;
3983         }
3984
3985         /* The U1 timeout is encoded in 1us intervals. */
3986         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
3987         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
3988         if (timeout_ns == USB3_LPM_DISABLED)
3989                 timeout_ns++;
3990
3991         /* If the necessary timeout value is bigger than what we can set in the
3992          * USB 3.0 hub, we have to disable hub-initiated U1.
3993          */
3994         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
3995                 return timeout_ns;
3996         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
3997                         "due to long timeout %llu ms\n", timeout_ns);
3998         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
3999 }
4000
4001 /* Returns the hub-encoded U2 timeout value.
4002  * The U2 timeout should be the maximum of:
4003  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4004  *  - largest bInterval of any active periodic endpoint (to avoid going
4005  *    into lower power link states between intervals).
4006  *  - the U2 Exit Latency of the device
4007  */
4008 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4009                 struct usb_endpoint_descriptor *desc)
4010 {
4011         unsigned long long timeout_ns;
4012         unsigned long long u2_del_ns;
4013
4014         timeout_ns = 10 * 1000 * 1000;
4015
4016         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4017                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4018                 timeout_ns = xhci_service_interval_to_ns(desc);
4019
4020         u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4021         if (u2_del_ns > timeout_ns)
4022                 timeout_ns = u2_del_ns;
4023
4024         /* The U2 timeout is encoded in 256us intervals */
4025         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4026         /* If the necessary timeout value is bigger than what we can set in the
4027          * USB 3.0 hub, we have to disable hub-initiated U2.
4028          */
4029         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4030                 return timeout_ns;
4031         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4032                         "due to long timeout %llu ms\n", timeout_ns);
4033         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4034 }
4035
4036 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4037                 struct usb_device *udev,
4038                 struct usb_endpoint_descriptor *desc,
4039                 enum usb3_link_state state,
4040                 u16 *timeout)
4041 {
4042         if (state == USB3_LPM_U1) {
4043                 if (xhci->quirks & XHCI_INTEL_HOST)
4044                         return xhci_calculate_intel_u1_timeout(udev, desc);
4045         } else {
4046                 if (xhci->quirks & XHCI_INTEL_HOST)
4047                         return xhci_calculate_intel_u2_timeout(udev, desc);
4048         }
4049
4050         return USB3_LPM_DISABLED;
4051 }
4052
4053 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4054                 struct usb_device *udev,
4055                 struct usb_endpoint_descriptor *desc,
4056                 enum usb3_link_state state,
4057                 u16 *timeout)
4058 {
4059         u16 alt_timeout;
4060
4061         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4062                 desc, state, timeout);
4063
4064         /* If we found we can't enable hub-initiated LPM, or
4065          * the U1 or U2 exit latency was too high to allow
4066          * device-initiated LPM as well, just stop searching.
4067          */
4068         if (alt_timeout == USB3_LPM_DISABLED ||
4069                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4070                 *timeout = alt_timeout;
4071                 return -E2BIG;
4072         }
4073         if (alt_timeout > *timeout)
4074                 *timeout = alt_timeout;
4075         return 0;
4076 }
4077
4078 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4079                 struct usb_device *udev,
4080                 struct usb_host_interface *alt,
4081                 enum usb3_link_state state,
4082                 u16 *timeout)
4083 {
4084         int j;
4085
4086         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4087                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4088                                         &alt->endpoint[j].desc, state, timeout))
4089                         return -E2BIG;
4090                 continue;
4091         }
4092         return 0;
4093 }
4094
4095 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4096                 enum usb3_link_state state)
4097 {
4098         struct usb_device *parent;
4099         unsigned int num_hubs;
4100
4101         if (state == USB3_LPM_U2)
4102                 return 0;
4103
4104         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4105         for (parent = udev->parent, num_hubs = 0; parent->parent;
4106                         parent = parent->parent)
4107                 num_hubs++;
4108
4109         if (num_hubs < 2)
4110                 return 0;
4111
4112         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4113                         " below second-tier hub.\n");
4114         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4115                         "to decrease power consumption.\n");
4116         return -E2BIG;
4117 }
4118
4119 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4120                 struct usb_device *udev,
4121                 enum usb3_link_state state)
4122 {
4123         if (xhci->quirks & XHCI_INTEL_HOST)
4124                 return xhci_check_intel_tier_policy(udev, state);
4125         return -EINVAL;
4126 }
4127
4128 /* Returns the U1 or U2 timeout that should be enabled.
4129  * If the tier check or timeout setting functions return with a non-zero exit
4130  * code, that means the timeout value has been finalized and we shouldn't look
4131  * at any more endpoints.
4132  */
4133 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4134                         struct usb_device *udev, enum usb3_link_state state)
4135 {
4136         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4137         struct usb_host_config *config;
4138         char *state_name;
4139         int i;
4140         u16 timeout = USB3_LPM_DISABLED;
4141
4142         if (state == USB3_LPM_U1)
4143                 state_name = "U1";
4144         else if (state == USB3_LPM_U2)
4145                 state_name = "U2";
4146         else {
4147                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4148                                 state);
4149                 return timeout;
4150         }
4151
4152         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4153                 return timeout;
4154
4155         /* Gather some information about the currently installed configuration
4156          * and alternate interface settings.
4157          */
4158         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4159                         state, &timeout))
4160                 return timeout;
4161
4162         config = udev->actconfig;
4163         if (!config)
4164                 return timeout;
4165
4166         for (i = 0; i < USB_MAXINTERFACES; i++) {
4167                 struct usb_driver *driver;
4168                 struct usb_interface *intf = config->interface[i];
4169
4170                 if (!intf)
4171                         continue;
4172
4173                 /* Check if any currently bound drivers want hub-initiated LPM
4174                  * disabled.
4175                  */
4176                 if (intf->dev.driver) {
4177                         driver = to_usb_driver(intf->dev.driver);
4178                         if (driver && driver->disable_hub_initiated_lpm) {
4179                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4180                                                 "at request of driver %s\n",
4181                                                 state_name, driver->name);
4182                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4183                         }
4184                 }
4185
4186                 /* Not sure how this could happen... */
4187                 if (!intf->cur_altsetting)
4188                         continue;
4189
4190                 if (xhci_update_timeout_for_interface(xhci, udev,
4191                                         intf->cur_altsetting,
4192                                         state, &timeout))
4193                         return timeout;
4194         }
4195         return timeout;
4196 }
4197
4198 /*
4199  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4200  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4201  */
4202 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4203                         struct usb_device *udev, u16 max_exit_latency)
4204 {
4205         struct xhci_virt_device *virt_dev;
4206         struct xhci_command *command;
4207         struct xhci_input_control_ctx *ctrl_ctx;
4208         struct xhci_slot_ctx *slot_ctx;
4209         unsigned long flags;
4210         int ret;
4211
4212         spin_lock_irqsave(&xhci->lock, flags);
4213         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4214                 spin_unlock_irqrestore(&xhci->lock, flags);
4215                 return 0;
4216         }
4217
4218         /* Attempt to issue an Evaluate Context command to change the MEL. */
4219         virt_dev = xhci->devs[udev->slot_id];
4220         command = xhci->lpm_command;
4221         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4222         spin_unlock_irqrestore(&xhci->lock, flags);
4223
4224         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4225         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4226         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4227         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4228         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4229
4230         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4231         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4232         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4233
4234         /* Issue and wait for the evaluate context command. */
4235         ret = xhci_configure_endpoint(xhci, udev, command,
4236                         true, true);
4237         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4238         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4239
4240         if (!ret) {
4241                 spin_lock_irqsave(&xhci->lock, flags);
4242                 virt_dev->current_mel = max_exit_latency;
4243                 spin_unlock_irqrestore(&xhci->lock, flags);
4244         }
4245         return ret;
4246 }
4247
4248 static int calculate_max_exit_latency(struct usb_device *udev,
4249                 enum usb3_link_state state_changed,
4250                 u16 hub_encoded_timeout)
4251 {
4252         unsigned long long u1_mel_us = 0;
4253         unsigned long long u2_mel_us = 0;
4254         unsigned long long mel_us = 0;
4255         bool disabling_u1;
4256         bool disabling_u2;
4257         bool enabling_u1;
4258         bool enabling_u2;
4259
4260         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4261                         hub_encoded_timeout == USB3_LPM_DISABLED);
4262         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4263                         hub_encoded_timeout == USB3_LPM_DISABLED);
4264
4265         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4266                         hub_encoded_timeout != USB3_LPM_DISABLED);
4267         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4268                         hub_encoded_timeout != USB3_LPM_DISABLED);
4269
4270         /* If U1 was already enabled and we're not disabling it,
4271          * or we're going to enable U1, account for the U1 max exit latency.
4272          */
4273         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4274                         enabling_u1)
4275                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4276         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4277                         enabling_u2)
4278                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4279
4280         if (u1_mel_us > u2_mel_us)
4281                 mel_us = u1_mel_us;
4282         else
4283                 mel_us = u2_mel_us;
4284         /* xHCI host controller max exit latency field is only 16 bits wide. */
4285         if (mel_us > MAX_EXIT) {
4286                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4287                                 "is too big.\n", mel_us);
4288                 return -E2BIG;
4289         }
4290         return mel_us;
4291 }
4292
4293 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4294 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4295                         struct usb_device *udev, enum usb3_link_state state)
4296 {
4297         struct xhci_hcd *xhci;
4298         u16 hub_encoded_timeout;
4299         int mel;
4300         int ret;
4301
4302         xhci = hcd_to_xhci(hcd);
4303         /* The LPM timeout values are pretty host-controller specific, so don't
4304          * enable hub-initiated timeouts unless the vendor has provided
4305          * information about their timeout algorithm.
4306          */
4307         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4308                         !xhci->devs[udev->slot_id])
4309                 return USB3_LPM_DISABLED;
4310
4311         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4312         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4313         if (mel < 0) {
4314                 /* Max Exit Latency is too big, disable LPM. */
4315                 hub_encoded_timeout = USB3_LPM_DISABLED;
4316                 mel = 0;
4317         }
4318
4319         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4320         if (ret)
4321                 return ret;
4322         return hub_encoded_timeout;
4323 }
4324
4325 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4326                         struct usb_device *udev, enum usb3_link_state state)
4327 {
4328         struct xhci_hcd *xhci;
4329         u16 mel;
4330         int ret;
4331
4332         xhci = hcd_to_xhci(hcd);
4333         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4334                         !xhci->devs[udev->slot_id])
4335                 return 0;
4336
4337         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4338         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4339         if (ret)
4340                 return ret;
4341         return 0;
4342 }
4343 #else /* CONFIG_PM */
4344
4345 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4346                         struct usb_device *udev, enum usb3_link_state state)
4347 {
4348         return USB3_LPM_DISABLED;
4349 }
4350
4351 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4352                         struct usb_device *udev, enum usb3_link_state state)
4353 {
4354         return 0;
4355 }
4356 #endif  /* CONFIG_PM */
4357
4358 /*-------------------------------------------------------------------------*/
4359
4360 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4361  * internal data structures for the device.
4362  */
4363 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4364                         struct usb_tt *tt, gfp_t mem_flags)
4365 {
4366         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4367         struct xhci_virt_device *vdev;
4368         struct xhci_command *config_cmd;
4369         struct xhci_input_control_ctx *ctrl_ctx;
4370         struct xhci_slot_ctx *slot_ctx;
4371         unsigned long flags;
4372         unsigned think_time;
4373         int ret;
4374
4375         /* Ignore root hubs */
4376         if (!hdev->parent)
4377                 return 0;
4378
4379         vdev = xhci->devs[hdev->slot_id];
4380         if (!vdev) {
4381                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4382                 return -EINVAL;
4383         }
4384         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4385         if (!config_cmd) {
4386                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4387                 return -ENOMEM;
4388         }
4389
4390         spin_lock_irqsave(&xhci->lock, flags);
4391         if (hdev->speed == USB_SPEED_HIGH &&
4392                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4393                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4394                 xhci_free_command(xhci, config_cmd);
4395                 spin_unlock_irqrestore(&xhci->lock, flags);
4396                 return -ENOMEM;
4397         }
4398
4399         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4400         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4401         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4402         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4403         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4404         if (tt->multi)
4405                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4406         if (xhci->hci_version > 0x95) {
4407                 xhci_dbg(xhci, "xHCI version %x needs hub "
4408                                 "TT think time and number of ports\n",
4409                                 (unsigned int) xhci->hci_version);
4410                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4411                 /* Set TT think time - convert from ns to FS bit times.
4412                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4413                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4414                  *
4415                  * xHCI 1.0: this field shall be 0 if the device is not a
4416                  * High-spped hub.
4417                  */
4418                 think_time = tt->think_time;
4419                 if (think_time != 0)
4420                         think_time = (think_time / 666) - 1;
4421                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4422                         slot_ctx->tt_info |=
4423                                 cpu_to_le32(TT_THINK_TIME(think_time));
4424         } else {
4425                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4426                                 "TT think time or number of ports\n",
4427                                 (unsigned int) xhci->hci_version);
4428         }
4429         slot_ctx->dev_state = 0;
4430         spin_unlock_irqrestore(&xhci->lock, flags);
4431
4432         xhci_dbg(xhci, "Set up %s for hub device.\n",
4433                         (xhci->hci_version > 0x95) ?
4434                         "configure endpoint" : "evaluate context");
4435         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4436         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4437
4438         /* Issue and wait for the configure endpoint or
4439          * evaluate context command.
4440          */
4441         if (xhci->hci_version > 0x95)
4442                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4443                                 false, false);
4444         else
4445                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4446                                 true, false);
4447
4448         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4449         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4450
4451         xhci_free_command(xhci, config_cmd);
4452         return ret;
4453 }
4454
4455 int xhci_get_frame(struct usb_hcd *hcd)
4456 {
4457         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4458         /* EHCI mods by the periodic size.  Why? */
4459         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4460 }
4461
4462 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4463 {
4464         struct xhci_hcd         *xhci;
4465         struct device           *dev = hcd->self.controller;
4466         int                     retval;
4467         u32                     temp;
4468
4469         /* Accept arbitrarily long scatter-gather lists */
4470         hcd->self.sg_tablesize = ~0;
4471         /* XHCI controllers don't stop the ep queue on short packets :| */
4472         hcd->self.no_stop_on_short = 1;
4473
4474         if (usb_hcd_is_primary_hcd(hcd)) {
4475                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4476                 if (!xhci)
4477                         return -ENOMEM;
4478                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4479                 xhci->main_hcd = hcd;
4480                 /* Mark the first roothub as being USB 2.0.
4481                  * The xHCI driver will register the USB 3.0 roothub.
4482                  */
4483                 hcd->speed = HCD_USB2;
4484                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4485                 /*
4486                  * USB 2.0 roothub under xHCI has an integrated TT,
4487                  * (rate matching hub) as opposed to having an OHCI/UHCI
4488                  * companion controller.
4489                  */
4490                 hcd->has_tt = 1;
4491         } else {
4492                 /* xHCI private pointer was set in xhci_pci_probe for the second
4493                  * registered roothub.
4494                  */
4495                 xhci = hcd_to_xhci(hcd);
4496                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4497                 if (HCC_64BIT_ADDR(temp)) {
4498                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4499                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4500                 } else {
4501                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4502                 }
4503                 return 0;
4504         }
4505
4506         xhci->cap_regs = hcd->regs;
4507         xhci->op_regs = hcd->regs +
4508                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4509         xhci->run_regs = hcd->regs +
4510                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4511         /* Cache read-only capability registers */
4512         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4513         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4514         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4515         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4516         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4517         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4518         xhci_print_registers(xhci);
4519
4520         get_quirks(dev, xhci);
4521
4522         /* Make sure the HC is halted. */
4523         retval = xhci_halt(xhci);
4524         if (retval)
4525                 goto error;
4526
4527         xhci_dbg(xhci, "Resetting HCD\n");
4528         /* Reset the internal HC memory state and registers. */
4529         retval = xhci_reset(xhci);
4530         if (retval)
4531                 goto error;
4532         xhci_dbg(xhci, "Reset complete\n");
4533
4534         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4535         if (HCC_64BIT_ADDR(temp)) {
4536                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4537                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4538         } else {
4539                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4540         }
4541
4542         xhci_dbg(xhci, "Calling HCD init\n");
4543         /* Initialize HCD and host controller data structures. */
4544         retval = xhci_init(hcd);
4545         if (retval)
4546                 goto error;
4547         xhci_dbg(xhci, "Called HCD init\n");
4548         return 0;
4549 error:
4550         kfree(xhci);
4551         return retval;
4552 }
4553
4554 MODULE_DESCRIPTION(DRIVER_DESC);
4555 MODULE_AUTHOR(DRIVER_AUTHOR);
4556 MODULE_LICENSE("GPL");
4557
4558 static int __init xhci_hcd_init(void)
4559 {
4560         int retval;
4561
4562         retval = xhci_register_pci();
4563         if (retval < 0) {
4564                 printk(KERN_DEBUG "Problem registering PCI driver.");
4565                 return retval;
4566         }
4567         retval = xhci_register_plat();
4568         if (retval < 0) {
4569                 printk(KERN_DEBUG "Problem registering platform driver.");
4570                 goto unreg_pci;
4571         }
4572         /*
4573          * Check the compiler generated sizes of structures that must be laid
4574          * out in specific ways for hardware access.
4575          */
4576         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4577         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4578         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4579         /* xhci_device_control has eight fields, and also
4580          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4581          */
4582         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4583         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4584         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4585         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4586         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4587         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4588         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4589         return 0;
4590 unreg_pci:
4591         xhci_unregister_pci();
4592         return retval;
4593 }
4594 module_init(xhci_hcd_init);
4595
4596 static void __exit xhci_hcd_cleanup(void)
4597 {
4598         xhci_unregister_pci();
4599         xhci_unregister_plat();
4600 }
4601 module_exit(xhci_hcd_cleanup);