]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/compression.c
PM / hibernate: Define pr_fmt() and use pr_*() instead of printk()
[karo-tx-linux.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46         /* number of bios pending for this compressed extent */
47         atomic_t pending_bios;
48
49         /* the pages with the compressed data on them */
50         struct page **compressed_pages;
51
52         /* inode that owns this data */
53         struct inode *inode;
54
55         /* starting offset in the inode for our pages */
56         u64 start;
57
58         /* number of bytes in the inode we're working on */
59         unsigned long len;
60
61         /* number of bytes on disk */
62         unsigned long compressed_len;
63
64         /* the compression algorithm for this bio */
65         int compress_type;
66
67         /* number of compressed pages in the array */
68         unsigned long nr_pages;
69
70         /* IO errors */
71         int errors;
72         int mirror_num;
73
74         /* for reads, this is the bio we are copying the data into */
75         struct bio *orig_bio;
76
77         /*
78          * the start of a variable length array of checksums only
79          * used by reads
80          */
81         u32 sums;
82 };
83
84 static int btrfs_decompress_bio(int type, struct page **pages_in,
85                                    u64 disk_start, struct bio *orig_bio,
86                                    size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
89                                       unsigned long disk_size)
90 {
91         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
92
93         return sizeof(struct compressed_bio) +
94                 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98                                         u64 first_byte, gfp_t gfp_flags)
99 {
100         return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct page *page;
109         unsigned long i;
110         char *kaddr;
111         u32 csum;
112         u32 *cb_sum = &cb->sums;
113
114         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
115                 return 0;
116
117         for (i = 0; i < cb->nr_pages; i++) {
118                 page = cb->compressed_pages[i];
119                 csum = ~(u32)0;
120
121                 kaddr = kmap_atomic(page);
122                 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123                 btrfs_csum_final(csum, (u8 *)&csum);
124                 kunmap_atomic(kaddr);
125
126                 if (csum != *cb_sum) {
127                         btrfs_info(BTRFS_I(inode)->root->fs_info,
128                            "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129                            btrfs_ino(inode), disk_start, csum, *cb_sum,
130                            cb->mirror_num);
131                         ret = -EIO;
132                         goto fail;
133                 }
134                 cb_sum++;
135
136         }
137         ret = 0;
138 fail:
139         return ret;
140 }
141
142 /* when we finish reading compressed pages from the disk, we
143  * decompress them and then run the bio end_io routines on the
144  * decompressed pages (in the inode address space).
145  *
146  * This allows the checksumming and other IO error handling routines
147  * to work normally
148  *
149  * The compressed pages are freed here, and it must be run
150  * in process context
151  */
152 static void end_compressed_bio_read(struct bio *bio)
153 {
154         struct compressed_bio *cb = bio->bi_private;
155         struct inode *inode;
156         struct page *page;
157         unsigned long index;
158         int ret;
159
160         if (bio->bi_error)
161                 cb->errors = 1;
162
163         /* if there are more bios still pending for this compressed
164          * extent, just exit
165          */
166         if (!atomic_dec_and_test(&cb->pending_bios))
167                 goto out;
168
169         inode = cb->inode;
170         ret = check_compressed_csum(inode, cb,
171                                     (u64)bio->bi_iter.bi_sector << 9);
172         if (ret)
173                 goto csum_failed;
174
175         /* ok, we're the last bio for this extent, lets start
176          * the decompression.
177          */
178         ret = btrfs_decompress_bio(cb->compress_type,
179                                       cb->compressed_pages,
180                                       cb->start,
181                                       cb->orig_bio,
182                                       cb->compressed_len);
183 csum_failed:
184         if (ret)
185                 cb->errors = 1;
186
187         /* release the compressed pages */
188         index = 0;
189         for (index = 0; index < cb->nr_pages; index++) {
190                 page = cb->compressed_pages[index];
191                 page->mapping = NULL;
192                 put_page(page);
193         }
194
195         /* do io completion on the original bio */
196         if (cb->errors) {
197                 bio_io_error(cb->orig_bio);
198         } else {
199                 int i;
200                 struct bio_vec *bvec;
201
202                 /*
203                  * we have verified the checksum already, set page
204                  * checked so the end_io handlers know about it
205                  */
206                 bio_for_each_segment_all(bvec, cb->orig_bio, i)
207                         SetPageChecked(bvec->bv_page);
208
209                 bio_endio(cb->orig_bio);
210         }
211
212         /* finally free the cb struct */
213         kfree(cb->compressed_pages);
214         kfree(cb);
215 out:
216         bio_put(bio);
217 }
218
219 /*
220  * Clear the writeback bits on all of the file
221  * pages for a compressed write
222  */
223 static noinline void end_compressed_writeback(struct inode *inode,
224                                               const struct compressed_bio *cb)
225 {
226         unsigned long index = cb->start >> PAGE_SHIFT;
227         unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
228         struct page *pages[16];
229         unsigned long nr_pages = end_index - index + 1;
230         int i;
231         int ret;
232
233         if (cb->errors)
234                 mapping_set_error(inode->i_mapping, -EIO);
235
236         while (nr_pages > 0) {
237                 ret = find_get_pages_contig(inode->i_mapping, index,
238                                      min_t(unsigned long,
239                                      nr_pages, ARRAY_SIZE(pages)), pages);
240                 if (ret == 0) {
241                         nr_pages -= 1;
242                         index += 1;
243                         continue;
244                 }
245                 for (i = 0; i < ret; i++) {
246                         if (cb->errors)
247                                 SetPageError(pages[i]);
248                         end_page_writeback(pages[i]);
249                         put_page(pages[i]);
250                 }
251                 nr_pages -= ret;
252                 index += ret;
253         }
254         /* the inode may be gone now */
255 }
256
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio)
266 {
267         struct extent_io_tree *tree;
268         struct compressed_bio *cb = bio->bi_private;
269         struct inode *inode;
270         struct page *page;
271         unsigned long index;
272
273         if (bio->bi_error)
274                 cb->errors = 1;
275
276         /* if there are more bios still pending for this compressed
277          * extent, just exit
278          */
279         if (!atomic_dec_and_test(&cb->pending_bios))
280                 goto out;
281
282         /* ok, we're the last bio for this extent, step one is to
283          * call back into the FS and do all the end_io operations
284          */
285         inode = cb->inode;
286         tree = &BTRFS_I(inode)->io_tree;
287         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289                                          cb->start,
290                                          cb->start + cb->len - 1,
291                                          NULL,
292                                          bio->bi_error ? 0 : 1);
293         cb->compressed_pages[0]->mapping = NULL;
294
295         end_compressed_writeback(inode, cb);
296         /* note, our inode could be gone now */
297
298         /*
299          * release the compressed pages, these came from alloc_page and
300          * are not attached to the inode at all
301          */
302         index = 0;
303         for (index = 0; index < cb->nr_pages; index++) {
304                 page = cb->compressed_pages[index];
305                 page->mapping = NULL;
306                 put_page(page);
307         }
308
309         /* finally free the cb struct */
310         kfree(cb->compressed_pages);
311         kfree(cb);
312 out:
313         bio_put(bio);
314 }
315
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326                                  unsigned long len, u64 disk_start,
327                                  unsigned long compressed_len,
328                                  struct page **compressed_pages,
329                                  unsigned long nr_pages)
330 {
331         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
332         struct bio *bio = NULL;
333         struct compressed_bio *cb;
334         unsigned long bytes_left;
335         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336         int pg_index = 0;
337         struct page *page;
338         u64 first_byte = disk_start;
339         struct block_device *bdev;
340         int ret;
341         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342
343         WARN_ON(start & ((u64)PAGE_SIZE - 1));
344         cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
345         if (!cb)
346                 return -ENOMEM;
347         atomic_set(&cb->pending_bios, 0);
348         cb->errors = 0;
349         cb->inode = inode;
350         cb->start = start;
351         cb->len = len;
352         cb->mirror_num = 0;
353         cb->compressed_pages = compressed_pages;
354         cb->compressed_len = compressed_len;
355         cb->orig_bio = NULL;
356         cb->nr_pages = nr_pages;
357
358         bdev = fs_info->fs_devices->latest_bdev;
359
360         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361         if (!bio) {
362                 kfree(cb);
363                 return -ENOMEM;
364         }
365         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
366         bio->bi_private = cb;
367         bio->bi_end_io = end_compressed_bio_write;
368         atomic_inc(&cb->pending_bios);
369
370         /* create and submit bios for the compressed pages */
371         bytes_left = compressed_len;
372         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373                 page = compressed_pages[pg_index];
374                 page->mapping = inode->i_mapping;
375                 if (bio->bi_iter.bi_size)
376                         ret = io_tree->ops->merge_bio_hook(page, 0,
377                                                            PAGE_SIZE,
378                                                            bio, 0);
379                 else
380                         ret = 0;
381
382                 page->mapping = NULL;
383                 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
384                     PAGE_SIZE) {
385                         bio_get(bio);
386
387                         /*
388                          * inc the count before we submit the bio so
389                          * we know the end IO handler won't happen before
390                          * we inc the count.  Otherwise, the cb might get
391                          * freed before we're done setting it up
392                          */
393                         atomic_inc(&cb->pending_bios);
394                         ret = btrfs_bio_wq_end_io(fs_info, bio,
395                                                   BTRFS_WQ_ENDIO_DATA);
396                         BUG_ON(ret); /* -ENOMEM */
397
398                         if (!skip_sum) {
399                                 ret = btrfs_csum_one_bio(inode, bio, start, 1);
400                                 BUG_ON(ret); /* -ENOMEM */
401                         }
402
403                         ret = btrfs_map_bio(fs_info, bio, 0, 1);
404                         if (ret) {
405                                 bio->bi_error = ret;
406                                 bio_endio(bio);
407                         }
408
409                         bio_put(bio);
410
411                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
412                         BUG_ON(!bio);
413                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
414                         bio->bi_private = cb;
415                         bio->bi_end_io = end_compressed_bio_write;
416                         bio_add_page(bio, page, PAGE_SIZE, 0);
417                 }
418                 if (bytes_left < PAGE_SIZE) {
419                         btrfs_info(fs_info,
420                                         "bytes left %lu compress len %lu nr %lu",
421                                bytes_left, cb->compressed_len, cb->nr_pages);
422                 }
423                 bytes_left -= PAGE_SIZE;
424                 first_byte += PAGE_SIZE;
425                 cond_resched();
426         }
427         bio_get(bio);
428
429         ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430         BUG_ON(ret); /* -ENOMEM */
431
432         if (!skip_sum) {
433                 ret = btrfs_csum_one_bio(inode, bio, start, 1);
434                 BUG_ON(ret); /* -ENOMEM */
435         }
436
437         ret = btrfs_map_bio(fs_info, bio, 0, 1);
438         if (ret) {
439                 bio->bi_error = ret;
440                 bio_endio(bio);
441         }
442
443         bio_put(bio);
444         return 0;
445 }
446
447 static u64 bio_end_offset(struct bio *bio)
448 {
449         struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
450
451         return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
452 }
453
454 static noinline int add_ra_bio_pages(struct inode *inode,
455                                      u64 compressed_end,
456                                      struct compressed_bio *cb)
457 {
458         unsigned long end_index;
459         unsigned long pg_index;
460         u64 last_offset;
461         u64 isize = i_size_read(inode);
462         int ret;
463         struct page *page;
464         unsigned long nr_pages = 0;
465         struct extent_map *em;
466         struct address_space *mapping = inode->i_mapping;
467         struct extent_map_tree *em_tree;
468         struct extent_io_tree *tree;
469         u64 end;
470         int misses = 0;
471
472         last_offset = bio_end_offset(cb->orig_bio);
473         em_tree = &BTRFS_I(inode)->extent_tree;
474         tree = &BTRFS_I(inode)->io_tree;
475
476         if (isize == 0)
477                 return 0;
478
479         end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
480
481         while (last_offset < compressed_end) {
482                 pg_index = last_offset >> PAGE_SHIFT;
483
484                 if (pg_index > end_index)
485                         break;
486
487                 rcu_read_lock();
488                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
489                 rcu_read_unlock();
490                 if (page && !radix_tree_exceptional_entry(page)) {
491                         misses++;
492                         if (misses > 4)
493                                 break;
494                         goto next;
495                 }
496
497                 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
498                                                                  ~__GFP_FS));
499                 if (!page)
500                         break;
501
502                 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
503                         put_page(page);
504                         goto next;
505                 }
506
507                 end = last_offset + PAGE_SIZE - 1;
508                 /*
509                  * at this point, we have a locked page in the page cache
510                  * for these bytes in the file.  But, we have to make
511                  * sure they map to this compressed extent on disk.
512                  */
513                 set_page_extent_mapped(page);
514                 lock_extent(tree, last_offset, end);
515                 read_lock(&em_tree->lock);
516                 em = lookup_extent_mapping(em_tree, last_offset,
517                                            PAGE_SIZE);
518                 read_unlock(&em_tree->lock);
519
520                 if (!em || last_offset < em->start ||
521                     (last_offset + PAGE_SIZE > extent_map_end(em)) ||
522                     (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
523                         free_extent_map(em);
524                         unlock_extent(tree, last_offset, end);
525                         unlock_page(page);
526                         put_page(page);
527                         break;
528                 }
529                 free_extent_map(em);
530
531                 if (page->index == end_index) {
532                         char *userpage;
533                         size_t zero_offset = isize & (PAGE_SIZE - 1);
534
535                         if (zero_offset) {
536                                 int zeros;
537                                 zeros = PAGE_SIZE - zero_offset;
538                                 userpage = kmap_atomic(page);
539                                 memset(userpage + zero_offset, 0, zeros);
540                                 flush_dcache_page(page);
541                                 kunmap_atomic(userpage);
542                         }
543                 }
544
545                 ret = bio_add_page(cb->orig_bio, page,
546                                    PAGE_SIZE, 0);
547
548                 if (ret == PAGE_SIZE) {
549                         nr_pages++;
550                         put_page(page);
551                 } else {
552                         unlock_extent(tree, last_offset, end);
553                         unlock_page(page);
554                         put_page(page);
555                         break;
556                 }
557 next:
558                 last_offset += PAGE_SIZE;
559         }
560         return 0;
561 }
562
563 /*
564  * for a compressed read, the bio we get passed has all the inode pages
565  * in it.  We don't actually do IO on those pages but allocate new ones
566  * to hold the compressed pages on disk.
567  *
568  * bio->bi_iter.bi_sector points to the compressed extent on disk
569  * bio->bi_io_vec points to all of the inode pages
570  *
571  * After the compressed pages are read, we copy the bytes into the
572  * bio we were passed and then call the bio end_io calls
573  */
574 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
575                                  int mirror_num, unsigned long bio_flags)
576 {
577         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
578         struct extent_io_tree *tree;
579         struct extent_map_tree *em_tree;
580         struct compressed_bio *cb;
581         unsigned long compressed_len;
582         unsigned long nr_pages;
583         unsigned long pg_index;
584         struct page *page;
585         struct block_device *bdev;
586         struct bio *comp_bio;
587         u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
588         u64 em_len;
589         u64 em_start;
590         struct extent_map *em;
591         int ret = -ENOMEM;
592         int faili = 0;
593         u32 *sums;
594
595         tree = &BTRFS_I(inode)->io_tree;
596         em_tree = &BTRFS_I(inode)->extent_tree;
597
598         /* we need the actual starting offset of this extent in the file */
599         read_lock(&em_tree->lock);
600         em = lookup_extent_mapping(em_tree,
601                                    page_offset(bio->bi_io_vec->bv_page),
602                                    PAGE_SIZE);
603         read_unlock(&em_tree->lock);
604         if (!em)
605                 return -EIO;
606
607         compressed_len = em->block_len;
608         cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
609         if (!cb)
610                 goto out;
611
612         atomic_set(&cb->pending_bios, 0);
613         cb->errors = 0;
614         cb->inode = inode;
615         cb->mirror_num = mirror_num;
616         sums = &cb->sums;
617
618         cb->start = em->orig_start;
619         em_len = em->len;
620         em_start = em->start;
621
622         free_extent_map(em);
623         em = NULL;
624
625         cb->len = bio->bi_iter.bi_size;
626         cb->compressed_len = compressed_len;
627         cb->compress_type = extent_compress_type(bio_flags);
628         cb->orig_bio = bio;
629
630         nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
631         cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
632                                        GFP_NOFS);
633         if (!cb->compressed_pages)
634                 goto fail1;
635
636         bdev = fs_info->fs_devices->latest_bdev;
637
638         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
639                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
640                                                               __GFP_HIGHMEM);
641                 if (!cb->compressed_pages[pg_index]) {
642                         faili = pg_index - 1;
643                         ret = -ENOMEM;
644                         goto fail2;
645                 }
646         }
647         faili = nr_pages - 1;
648         cb->nr_pages = nr_pages;
649
650         add_ra_bio_pages(inode, em_start + em_len, cb);
651
652         /* include any pages we added in add_ra-bio_pages */
653         cb->len = bio->bi_iter.bi_size;
654
655         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
656         if (!comp_bio)
657                 goto fail2;
658         bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
659         comp_bio->bi_private = cb;
660         comp_bio->bi_end_io = end_compressed_bio_read;
661         atomic_inc(&cb->pending_bios);
662
663         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
664                 page = cb->compressed_pages[pg_index];
665                 page->mapping = inode->i_mapping;
666                 page->index = em_start >> PAGE_SHIFT;
667
668                 if (comp_bio->bi_iter.bi_size)
669                         ret = tree->ops->merge_bio_hook(page, 0,
670                                                         PAGE_SIZE,
671                                                         comp_bio, 0);
672                 else
673                         ret = 0;
674
675                 page->mapping = NULL;
676                 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
677                     PAGE_SIZE) {
678                         bio_get(comp_bio);
679
680                         ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
681                                                   BTRFS_WQ_ENDIO_DATA);
682                         BUG_ON(ret); /* -ENOMEM */
683
684                         /*
685                          * inc the count before we submit the bio so
686                          * we know the end IO handler won't happen before
687                          * we inc the count.  Otherwise, the cb might get
688                          * freed before we're done setting it up
689                          */
690                         atomic_inc(&cb->pending_bios);
691
692                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
693                                 ret = btrfs_lookup_bio_sums(inode, comp_bio,
694                                                             sums);
695                                 BUG_ON(ret); /* -ENOMEM */
696                         }
697                         sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
698                                              fs_info->sectorsize);
699
700                         ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
701                         if (ret) {
702                                 comp_bio->bi_error = ret;
703                                 bio_endio(comp_bio);
704                         }
705
706                         bio_put(comp_bio);
707
708                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
709                                                         GFP_NOFS);
710                         BUG_ON(!comp_bio);
711                         bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
712                         comp_bio->bi_private = cb;
713                         comp_bio->bi_end_io = end_compressed_bio_read;
714
715                         bio_add_page(comp_bio, page, PAGE_SIZE, 0);
716                 }
717                 cur_disk_byte += PAGE_SIZE;
718         }
719         bio_get(comp_bio);
720
721         ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
722         BUG_ON(ret); /* -ENOMEM */
723
724         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
725                 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
726                 BUG_ON(ret); /* -ENOMEM */
727         }
728
729         ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
730         if (ret) {
731                 comp_bio->bi_error = ret;
732                 bio_endio(comp_bio);
733         }
734
735         bio_put(comp_bio);
736         return 0;
737
738 fail2:
739         while (faili >= 0) {
740                 __free_page(cb->compressed_pages[faili]);
741                 faili--;
742         }
743
744         kfree(cb->compressed_pages);
745 fail1:
746         kfree(cb);
747 out:
748         free_extent_map(em);
749         return ret;
750 }
751
752 static struct {
753         struct list_head idle_ws;
754         spinlock_t ws_lock;
755         /* Number of free workspaces */
756         int free_ws;
757         /* Total number of allocated workspaces */
758         atomic_t total_ws;
759         /* Waiters for a free workspace */
760         wait_queue_head_t ws_wait;
761 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
762
763 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
764         &btrfs_zlib_compress,
765         &btrfs_lzo_compress,
766 };
767
768 void __init btrfs_init_compress(void)
769 {
770         int i;
771
772         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
773                 struct list_head *workspace;
774
775                 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
776                 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
777                 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
778                 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
779
780                 /*
781                  * Preallocate one workspace for each compression type so
782                  * we can guarantee forward progress in the worst case
783                  */
784                 workspace = btrfs_compress_op[i]->alloc_workspace();
785                 if (IS_ERR(workspace)) {
786                         pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
787                 } else {
788                         atomic_set(&btrfs_comp_ws[i].total_ws, 1);
789                         btrfs_comp_ws[i].free_ws = 1;
790                         list_add(workspace, &btrfs_comp_ws[i].idle_ws);
791                 }
792         }
793 }
794
795 /*
796  * This finds an available workspace or allocates a new one.
797  * If it's not possible to allocate a new one, waits until there's one.
798  * Preallocation makes a forward progress guarantees and we do not return
799  * errors.
800  */
801 static struct list_head *find_workspace(int type)
802 {
803         struct list_head *workspace;
804         int cpus = num_online_cpus();
805         int idx = type - 1;
806
807         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
808         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
809         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
810         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
811         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
812 again:
813         spin_lock(ws_lock);
814         if (!list_empty(idle_ws)) {
815                 workspace = idle_ws->next;
816                 list_del(workspace);
817                 (*free_ws)--;
818                 spin_unlock(ws_lock);
819                 return workspace;
820
821         }
822         if (atomic_read(total_ws) > cpus) {
823                 DEFINE_WAIT(wait);
824
825                 spin_unlock(ws_lock);
826                 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
827                 if (atomic_read(total_ws) > cpus && !*free_ws)
828                         schedule();
829                 finish_wait(ws_wait, &wait);
830                 goto again;
831         }
832         atomic_inc(total_ws);
833         spin_unlock(ws_lock);
834
835         workspace = btrfs_compress_op[idx]->alloc_workspace();
836         if (IS_ERR(workspace)) {
837                 atomic_dec(total_ws);
838                 wake_up(ws_wait);
839
840                 /*
841                  * Do not return the error but go back to waiting. There's a
842                  * workspace preallocated for each type and the compression
843                  * time is bounded so we get to a workspace eventually. This
844                  * makes our caller's life easier.
845                  *
846                  * To prevent silent and low-probability deadlocks (when the
847                  * initial preallocation fails), check if there are any
848                  * workspaces at all.
849                  */
850                 if (atomic_read(total_ws) == 0) {
851                         static DEFINE_RATELIMIT_STATE(_rs,
852                                         /* once per minute */ 60 * HZ,
853                                         /* no burst */ 1);
854
855                         if (__ratelimit(&_rs)) {
856                                 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
857                         }
858                 }
859                 goto again;
860         }
861         return workspace;
862 }
863
864 /*
865  * put a workspace struct back on the list or free it if we have enough
866  * idle ones sitting around
867  */
868 static void free_workspace(int type, struct list_head *workspace)
869 {
870         int idx = type - 1;
871         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
872         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
873         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
874         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
875         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
876
877         spin_lock(ws_lock);
878         if (*free_ws < num_online_cpus()) {
879                 list_add(workspace, idle_ws);
880                 (*free_ws)++;
881                 spin_unlock(ws_lock);
882                 goto wake;
883         }
884         spin_unlock(ws_lock);
885
886         btrfs_compress_op[idx]->free_workspace(workspace);
887         atomic_dec(total_ws);
888 wake:
889         /*
890          * Make sure counter is updated before we wake up waiters.
891          */
892         smp_mb();
893         if (waitqueue_active(ws_wait))
894                 wake_up(ws_wait);
895 }
896
897 /*
898  * cleanup function for module exit
899  */
900 static void free_workspaces(void)
901 {
902         struct list_head *workspace;
903         int i;
904
905         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
906                 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
907                         workspace = btrfs_comp_ws[i].idle_ws.next;
908                         list_del(workspace);
909                         btrfs_compress_op[i]->free_workspace(workspace);
910                         atomic_dec(&btrfs_comp_ws[i].total_ws);
911                 }
912         }
913 }
914
915 /*
916  * given an address space and start/len, compress the bytes.
917  *
918  * pages are allocated to hold the compressed result and stored
919  * in 'pages'
920  *
921  * out_pages is used to return the number of pages allocated.  There
922  * may be pages allocated even if we return an error
923  *
924  * total_in is used to return the number of bytes actually read.  It
925  * may be smaller then len if we had to exit early because we
926  * ran out of room in the pages array or because we cross the
927  * max_out threshold.
928  *
929  * total_out is used to return the total number of compressed bytes
930  *
931  * max_out tells us the max number of bytes that we're allowed to
932  * stuff into pages
933  */
934 int btrfs_compress_pages(int type, struct address_space *mapping,
935                          u64 start, unsigned long len,
936                          struct page **pages,
937                          unsigned long nr_dest_pages,
938                          unsigned long *out_pages,
939                          unsigned long *total_in,
940                          unsigned long *total_out,
941                          unsigned long max_out)
942 {
943         struct list_head *workspace;
944         int ret;
945
946         workspace = find_workspace(type);
947
948         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
949                                                       start, len, pages,
950                                                       nr_dest_pages, out_pages,
951                                                       total_in, total_out,
952                                                       max_out);
953         free_workspace(type, workspace);
954         return ret;
955 }
956
957 /*
958  * pages_in is an array of pages with compressed data.
959  *
960  * disk_start is the starting logical offset of this array in the file
961  *
962  * orig_bio contains the pages from the file that we want to decompress into
963  *
964  * srclen is the number of bytes in pages_in
965  *
966  * The basic idea is that we have a bio that was created by readpages.
967  * The pages in the bio are for the uncompressed data, and they may not
968  * be contiguous.  They all correspond to the range of bytes covered by
969  * the compressed extent.
970  */
971 static int btrfs_decompress_bio(int type, struct page **pages_in,
972                                    u64 disk_start, struct bio *orig_bio,
973                                    size_t srclen)
974 {
975         struct list_head *workspace;
976         int ret;
977
978         workspace = find_workspace(type);
979
980         ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
981                                                          disk_start, orig_bio,
982                                                          srclen);
983         free_workspace(type, workspace);
984         return ret;
985 }
986
987 /*
988  * a less complex decompression routine.  Our compressed data fits in a
989  * single page, and we want to read a single page out of it.
990  * start_byte tells us the offset into the compressed data we're interested in
991  */
992 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
993                      unsigned long start_byte, size_t srclen, size_t destlen)
994 {
995         struct list_head *workspace;
996         int ret;
997
998         workspace = find_workspace(type);
999
1000         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1001                                                   dest_page, start_byte,
1002                                                   srclen, destlen);
1003
1004         free_workspace(type, workspace);
1005         return ret;
1006 }
1007
1008 void btrfs_exit_compress(void)
1009 {
1010         free_workspaces();
1011 }
1012
1013 /*
1014  * Copy uncompressed data from working buffer to pages.
1015  *
1016  * buf_start is the byte offset we're of the start of our workspace buffer.
1017  *
1018  * total_out is the last byte of the buffer
1019  */
1020 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1021                               unsigned long total_out, u64 disk_start,
1022                               struct bio *bio)
1023 {
1024         unsigned long buf_offset;
1025         unsigned long current_buf_start;
1026         unsigned long start_byte;
1027         unsigned long working_bytes = total_out - buf_start;
1028         unsigned long bytes;
1029         char *kaddr;
1030         struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1031
1032         /*
1033          * start byte is the first byte of the page we're currently
1034          * copying into relative to the start of the compressed data.
1035          */
1036         start_byte = page_offset(bvec.bv_page) - disk_start;
1037
1038         /* we haven't yet hit data corresponding to this page */
1039         if (total_out <= start_byte)
1040                 return 1;
1041
1042         /*
1043          * the start of the data we care about is offset into
1044          * the middle of our working buffer
1045          */
1046         if (total_out > start_byte && buf_start < start_byte) {
1047                 buf_offset = start_byte - buf_start;
1048                 working_bytes -= buf_offset;
1049         } else {
1050                 buf_offset = 0;
1051         }
1052         current_buf_start = buf_start;
1053
1054         /* copy bytes from the working buffer into the pages */
1055         while (working_bytes > 0) {
1056                 bytes = min_t(unsigned long, bvec.bv_len,
1057                                 PAGE_SIZE - buf_offset);
1058                 bytes = min(bytes, working_bytes);
1059
1060                 kaddr = kmap_atomic(bvec.bv_page);
1061                 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1062                 kunmap_atomic(kaddr);
1063                 flush_dcache_page(bvec.bv_page);
1064
1065                 buf_offset += bytes;
1066                 working_bytes -= bytes;
1067                 current_buf_start += bytes;
1068
1069                 /* check if we need to pick another page */
1070                 bio_advance(bio, bytes);
1071                 if (!bio->bi_iter.bi_size)
1072                         return 0;
1073                 bvec = bio_iter_iovec(bio, bio->bi_iter);
1074
1075                 start_byte = page_offset(bvec.bv_page) - disk_start;
1076
1077                 /*
1078                  * make sure our new page is covered by this
1079                  * working buffer
1080                  */
1081                 if (total_out <= start_byte)
1082                         return 1;
1083
1084                 /*
1085                  * the next page in the biovec might not be adjacent
1086                  * to the last page, but it might still be found
1087                  * inside this working buffer. bump our offset pointer
1088                  */
1089                 if (total_out > start_byte &&
1090                     current_buf_start < start_byte) {
1091                         buf_offset = start_byte - buf_start;
1092                         working_bytes = total_out - start_byte;
1093                         current_buf_start = buf_start + buf_offset;
1094                 }
1095         }
1096
1097         return 1;
1098 }