]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/compression.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46         /* number of bios pending for this compressed extent */
47         atomic_t pending_bios;
48
49         /* the pages with the compressed data on them */
50         struct page **compressed_pages;
51
52         /* inode that owns this data */
53         struct inode *inode;
54
55         /* starting offset in the inode for our pages */
56         u64 start;
57
58         /* number of bytes in the inode we're working on */
59         unsigned long len;
60
61         /* number of bytes on disk */
62         unsigned long compressed_len;
63
64         /* the compression algorithm for this bio */
65         int compress_type;
66
67         /* number of compressed pages in the array */
68         unsigned long nr_pages;
69
70         /* IO errors */
71         int errors;
72         int mirror_num;
73
74         /* for reads, this is the bio we are copying the data into */
75         struct bio *orig_bio;
76
77         /*
78          * the start of a variable length array of checksums only
79          * used by reads
80          */
81         u32 sums;
82 };
83
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85                                    u64 disk_start, struct bio_vec *bvec,
86                                    int vcnt, size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_root *root,
89                                       unsigned long disk_size)
90 {
91         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93         return sizeof(struct compressed_bio) +
94                 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98                                         u64 first_byte, gfp_t gfp_flags)
99 {
100         return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct page *page;
109         unsigned long i;
110         char *kaddr;
111         u32 csum;
112         u32 *cb_sum = &cb->sums;
113
114         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
115                 return 0;
116
117         for (i = 0; i < cb->nr_pages; i++) {
118                 page = cb->compressed_pages[i];
119                 csum = ~(u32)0;
120
121                 kaddr = kmap_atomic(page);
122                 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123                 btrfs_csum_final(csum, (char *)&csum);
124                 kunmap_atomic(kaddr);
125
126                 if (csum != *cb_sum) {
127                         btrfs_info(BTRFS_I(inode)->root->fs_info,
128                            "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129                            btrfs_ino(inode), disk_start, csum, *cb_sum,
130                            cb->mirror_num);
131                         ret = -EIO;
132                         goto fail;
133                 }
134                 cb_sum++;
135
136         }
137         ret = 0;
138 fail:
139         return ret;
140 }
141
142 /* when we finish reading compressed pages from the disk, we
143  * decompress them and then run the bio end_io routines on the
144  * decompressed pages (in the inode address space).
145  *
146  * This allows the checksumming and other IO error handling routines
147  * to work normally
148  *
149  * The compressed pages are freed here, and it must be run
150  * in process context
151  */
152 static void end_compressed_bio_read(struct bio *bio)
153 {
154         struct compressed_bio *cb = bio->bi_private;
155         struct inode *inode;
156         struct page *page;
157         unsigned long index;
158         int ret;
159
160         if (bio->bi_error)
161                 cb->errors = 1;
162
163         /* if there are more bios still pending for this compressed
164          * extent, just exit
165          */
166         if (!atomic_dec_and_test(&cb->pending_bios))
167                 goto out;
168
169         inode = cb->inode;
170         ret = check_compressed_csum(inode, cb,
171                                     (u64)bio->bi_iter.bi_sector << 9);
172         if (ret)
173                 goto csum_failed;
174
175         /* ok, we're the last bio for this extent, lets start
176          * the decompression.
177          */
178         ret = btrfs_decompress_biovec(cb->compress_type,
179                                       cb->compressed_pages,
180                                       cb->start,
181                                       cb->orig_bio->bi_io_vec,
182                                       cb->orig_bio->bi_vcnt,
183                                       cb->compressed_len);
184 csum_failed:
185         if (ret)
186                 cb->errors = 1;
187
188         /* release the compressed pages */
189         index = 0;
190         for (index = 0; index < cb->nr_pages; index++) {
191                 page = cb->compressed_pages[index];
192                 page->mapping = NULL;
193                 put_page(page);
194         }
195
196         /* do io completion on the original bio */
197         if (cb->errors) {
198                 bio_io_error(cb->orig_bio);
199         } else {
200                 int i;
201                 struct bio_vec *bvec;
202
203                 /*
204                  * we have verified the checksum already, set page
205                  * checked so the end_io handlers know about it
206                  */
207                 bio_for_each_segment_all(bvec, cb->orig_bio, i)
208                         SetPageChecked(bvec->bv_page);
209
210                 bio_endio(cb->orig_bio);
211         }
212
213         /* finally free the cb struct */
214         kfree(cb->compressed_pages);
215         kfree(cb);
216 out:
217         bio_put(bio);
218 }
219
220 /*
221  * Clear the writeback bits on all of the file
222  * pages for a compressed write
223  */
224 static noinline void end_compressed_writeback(struct inode *inode,
225                                               const struct compressed_bio *cb)
226 {
227         unsigned long index = cb->start >> PAGE_SHIFT;
228         unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
229         struct page *pages[16];
230         unsigned long nr_pages = end_index - index + 1;
231         int i;
232         int ret;
233
234         if (cb->errors)
235                 mapping_set_error(inode->i_mapping, -EIO);
236
237         while (nr_pages > 0) {
238                 ret = find_get_pages_contig(inode->i_mapping, index,
239                                      min_t(unsigned long,
240                                      nr_pages, ARRAY_SIZE(pages)), pages);
241                 if (ret == 0) {
242                         nr_pages -= 1;
243                         index += 1;
244                         continue;
245                 }
246                 for (i = 0; i < ret; i++) {
247                         if (cb->errors)
248                                 SetPageError(pages[i]);
249                         end_page_writeback(pages[i]);
250                         put_page(pages[i]);
251                 }
252                 nr_pages -= ret;
253                 index += ret;
254         }
255         /* the inode may be gone now */
256 }
257
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio)
267 {
268         struct extent_io_tree *tree;
269         struct compressed_bio *cb = bio->bi_private;
270         struct inode *inode;
271         struct page *page;
272         unsigned long index;
273
274         if (bio->bi_error)
275                 cb->errors = 1;
276
277         /* if there are more bios still pending for this compressed
278          * extent, just exit
279          */
280         if (!atomic_dec_and_test(&cb->pending_bios))
281                 goto out;
282
283         /* ok, we're the last bio for this extent, step one is to
284          * call back into the FS and do all the end_io operations
285          */
286         inode = cb->inode;
287         tree = &BTRFS_I(inode)->io_tree;
288         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290                                          cb->start,
291                                          cb->start + cb->len - 1,
292                                          NULL,
293                                          bio->bi_error ? 0 : 1);
294         cb->compressed_pages[0]->mapping = NULL;
295
296         end_compressed_writeback(inode, cb);
297         /* note, our inode could be gone now */
298
299         /*
300          * release the compressed pages, these came from alloc_page and
301          * are not attached to the inode at all
302          */
303         index = 0;
304         for (index = 0; index < cb->nr_pages; index++) {
305                 page = cb->compressed_pages[index];
306                 page->mapping = NULL;
307                 put_page(page);
308         }
309
310         /* finally free the cb struct */
311         kfree(cb->compressed_pages);
312         kfree(cb);
313 out:
314         bio_put(bio);
315 }
316
317 /*
318  * worker function to build and submit bios for previously compressed pages.
319  * The corresponding pages in the inode should be marked for writeback
320  * and the compressed pages should have a reference on them for dropping
321  * when the IO is complete.
322  *
323  * This also checksums the file bytes and gets things ready for
324  * the end io hooks.
325  */
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327                                  unsigned long len, u64 disk_start,
328                                  unsigned long compressed_len,
329                                  struct page **compressed_pages,
330                                  unsigned long nr_pages)
331 {
332         struct bio *bio = NULL;
333         struct btrfs_root *root = BTRFS_I(inode)->root;
334         struct compressed_bio *cb;
335         unsigned long bytes_left;
336         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337         int pg_index = 0;
338         struct page *page;
339         u64 first_byte = disk_start;
340         struct block_device *bdev;
341         int ret;
342         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343
344         WARN_ON(start & ((u64)PAGE_SIZE - 1));
345         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346         if (!cb)
347                 return -ENOMEM;
348         atomic_set(&cb->pending_bios, 0);
349         cb->errors = 0;
350         cb->inode = inode;
351         cb->start = start;
352         cb->len = len;
353         cb->mirror_num = 0;
354         cb->compressed_pages = compressed_pages;
355         cb->compressed_len = compressed_len;
356         cb->orig_bio = NULL;
357         cb->nr_pages = nr_pages;
358
359         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360
361         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362         if (!bio) {
363                 kfree(cb);
364                 return -ENOMEM;
365         }
366         bio->bi_private = cb;
367         bio->bi_end_io = end_compressed_bio_write;
368         atomic_inc(&cb->pending_bios);
369
370         /* create and submit bios for the compressed pages */
371         bytes_left = compressed_len;
372         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373                 page = compressed_pages[pg_index];
374                 page->mapping = inode->i_mapping;
375                 if (bio->bi_iter.bi_size)
376                         ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
377                                                            PAGE_SIZE,
378                                                            bio, 0);
379                 else
380                         ret = 0;
381
382                 page->mapping = NULL;
383                 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
384                     PAGE_SIZE) {
385                         bio_get(bio);
386
387                         /*
388                          * inc the count before we submit the bio so
389                          * we know the end IO handler won't happen before
390                          * we inc the count.  Otherwise, the cb might get
391                          * freed before we're done setting it up
392                          */
393                         atomic_inc(&cb->pending_bios);
394                         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
395                                         BTRFS_WQ_ENDIO_DATA);
396                         BUG_ON(ret); /* -ENOMEM */
397
398                         if (!skip_sum) {
399                                 ret = btrfs_csum_one_bio(root, inode, bio,
400                                                          start, 1);
401                                 BUG_ON(ret); /* -ENOMEM */
402                         }
403
404                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405                         BUG_ON(ret); /* -ENOMEM */
406
407                         bio_put(bio);
408
409                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410                         BUG_ON(!bio);
411                         bio->bi_private = cb;
412                         bio->bi_end_io = end_compressed_bio_write;
413                         bio_add_page(bio, page, PAGE_SIZE, 0);
414                 }
415                 if (bytes_left < PAGE_SIZE) {
416                         btrfs_info(BTRFS_I(inode)->root->fs_info,
417                                         "bytes left %lu compress len %lu nr %lu",
418                                bytes_left, cb->compressed_len, cb->nr_pages);
419                 }
420                 bytes_left -= PAGE_SIZE;
421                 first_byte += PAGE_SIZE;
422                 cond_resched();
423         }
424         bio_get(bio);
425
426         ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
427         BUG_ON(ret); /* -ENOMEM */
428
429         if (!skip_sum) {
430                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
431                 BUG_ON(ret); /* -ENOMEM */
432         }
433
434         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
435         BUG_ON(ret); /* -ENOMEM */
436
437         bio_put(bio);
438         return 0;
439 }
440
441 static noinline int add_ra_bio_pages(struct inode *inode,
442                                      u64 compressed_end,
443                                      struct compressed_bio *cb)
444 {
445         unsigned long end_index;
446         unsigned long pg_index;
447         u64 last_offset;
448         u64 isize = i_size_read(inode);
449         int ret;
450         struct page *page;
451         unsigned long nr_pages = 0;
452         struct extent_map *em;
453         struct address_space *mapping = inode->i_mapping;
454         struct extent_map_tree *em_tree;
455         struct extent_io_tree *tree;
456         u64 end;
457         int misses = 0;
458
459         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
460         last_offset = (page_offset(page) + PAGE_SIZE);
461         em_tree = &BTRFS_I(inode)->extent_tree;
462         tree = &BTRFS_I(inode)->io_tree;
463
464         if (isize == 0)
465                 return 0;
466
467         end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
468
469         while (last_offset < compressed_end) {
470                 pg_index = last_offset >> PAGE_SHIFT;
471
472                 if (pg_index > end_index)
473                         break;
474
475                 rcu_read_lock();
476                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
477                 rcu_read_unlock();
478                 if (page && !radix_tree_exceptional_entry(page)) {
479                         misses++;
480                         if (misses > 4)
481                                 break;
482                         goto next;
483                 }
484
485                 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
486                                                                  ~__GFP_FS));
487                 if (!page)
488                         break;
489
490                 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
491                         put_page(page);
492                         goto next;
493                 }
494
495                 end = last_offset + PAGE_SIZE - 1;
496                 /*
497                  * at this point, we have a locked page in the page cache
498                  * for these bytes in the file.  But, we have to make
499                  * sure they map to this compressed extent on disk.
500                  */
501                 set_page_extent_mapped(page);
502                 lock_extent(tree, last_offset, end);
503                 read_lock(&em_tree->lock);
504                 em = lookup_extent_mapping(em_tree, last_offset,
505                                            PAGE_SIZE);
506                 read_unlock(&em_tree->lock);
507
508                 if (!em || last_offset < em->start ||
509                     (last_offset + PAGE_SIZE > extent_map_end(em)) ||
510                     (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
511                         free_extent_map(em);
512                         unlock_extent(tree, last_offset, end);
513                         unlock_page(page);
514                         put_page(page);
515                         break;
516                 }
517                 free_extent_map(em);
518
519                 if (page->index == end_index) {
520                         char *userpage;
521                         size_t zero_offset = isize & (PAGE_SIZE - 1);
522
523                         if (zero_offset) {
524                                 int zeros;
525                                 zeros = PAGE_SIZE - zero_offset;
526                                 userpage = kmap_atomic(page);
527                                 memset(userpage + zero_offset, 0, zeros);
528                                 flush_dcache_page(page);
529                                 kunmap_atomic(userpage);
530                         }
531                 }
532
533                 ret = bio_add_page(cb->orig_bio, page,
534                                    PAGE_SIZE, 0);
535
536                 if (ret == PAGE_SIZE) {
537                         nr_pages++;
538                         put_page(page);
539                 } else {
540                         unlock_extent(tree, last_offset, end);
541                         unlock_page(page);
542                         put_page(page);
543                         break;
544                 }
545 next:
546                 last_offset += PAGE_SIZE;
547         }
548         return 0;
549 }
550
551 /*
552  * for a compressed read, the bio we get passed has all the inode pages
553  * in it.  We don't actually do IO on those pages but allocate new ones
554  * to hold the compressed pages on disk.
555  *
556  * bio->bi_iter.bi_sector points to the compressed extent on disk
557  * bio->bi_io_vec points to all of the inode pages
558  * bio->bi_vcnt is a count of pages
559  *
560  * After the compressed pages are read, we copy the bytes into the
561  * bio we were passed and then call the bio end_io calls
562  */
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564                                  int mirror_num, unsigned long bio_flags)
565 {
566         struct extent_io_tree *tree;
567         struct extent_map_tree *em_tree;
568         struct compressed_bio *cb;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
571         unsigned long compressed_len;
572         unsigned long nr_pages;
573         unsigned long pg_index;
574         struct page *page;
575         struct block_device *bdev;
576         struct bio *comp_bio;
577         u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
578         u64 em_len;
579         u64 em_start;
580         struct extent_map *em;
581         int ret = -ENOMEM;
582         int faili = 0;
583         u32 *sums;
584
585         tree = &BTRFS_I(inode)->io_tree;
586         em_tree = &BTRFS_I(inode)->extent_tree;
587
588         /* we need the actual starting offset of this extent in the file */
589         read_lock(&em_tree->lock);
590         em = lookup_extent_mapping(em_tree,
591                                    page_offset(bio->bi_io_vec->bv_page),
592                                    PAGE_SIZE);
593         read_unlock(&em_tree->lock);
594         if (!em)
595                 return -EIO;
596
597         compressed_len = em->block_len;
598         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
599         if (!cb)
600                 goto out;
601
602         atomic_set(&cb->pending_bios, 0);
603         cb->errors = 0;
604         cb->inode = inode;
605         cb->mirror_num = mirror_num;
606         sums = &cb->sums;
607
608         cb->start = em->orig_start;
609         em_len = em->len;
610         em_start = em->start;
611
612         free_extent_map(em);
613         em = NULL;
614
615         cb->len = uncompressed_len;
616         cb->compressed_len = compressed_len;
617         cb->compress_type = extent_compress_type(bio_flags);
618         cb->orig_bio = bio;
619
620         nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
621         cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
622                                        GFP_NOFS);
623         if (!cb->compressed_pages)
624                 goto fail1;
625
626         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
627
628         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
629                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
630                                                               __GFP_HIGHMEM);
631                 if (!cb->compressed_pages[pg_index]) {
632                         faili = pg_index - 1;
633                         ret = -ENOMEM;
634                         goto fail2;
635                 }
636         }
637         faili = nr_pages - 1;
638         cb->nr_pages = nr_pages;
639
640         add_ra_bio_pages(inode, em_start + em_len, cb);
641
642         /* include any pages we added in add_ra-bio_pages */
643         uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
644         cb->len = uncompressed_len;
645
646         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
647         if (!comp_bio)
648                 goto fail2;
649         comp_bio->bi_private = cb;
650         comp_bio->bi_end_io = end_compressed_bio_read;
651         atomic_inc(&cb->pending_bios);
652
653         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
654                 page = cb->compressed_pages[pg_index];
655                 page->mapping = inode->i_mapping;
656                 page->index = em_start >> PAGE_SHIFT;
657
658                 if (comp_bio->bi_iter.bi_size)
659                         ret = tree->ops->merge_bio_hook(READ, page, 0,
660                                                         PAGE_SIZE,
661                                                         comp_bio, 0);
662                 else
663                         ret = 0;
664
665                 page->mapping = NULL;
666                 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
667                     PAGE_SIZE) {
668                         bio_get(comp_bio);
669
670                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
671                                         BTRFS_WQ_ENDIO_DATA);
672                         BUG_ON(ret); /* -ENOMEM */
673
674                         /*
675                          * inc the count before we submit the bio so
676                          * we know the end IO handler won't happen before
677                          * we inc the count.  Otherwise, the cb might get
678                          * freed before we're done setting it up
679                          */
680                         atomic_inc(&cb->pending_bios);
681
682                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
683                                 ret = btrfs_lookup_bio_sums(root, inode,
684                                                         comp_bio, sums);
685                                 BUG_ON(ret); /* -ENOMEM */
686                         }
687                         sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
688                                              root->sectorsize);
689
690                         ret = btrfs_map_bio(root, READ, comp_bio,
691                                             mirror_num, 0);
692                         if (ret) {
693                                 bio->bi_error = ret;
694                                 bio_endio(comp_bio);
695                         }
696
697                         bio_put(comp_bio);
698
699                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
700                                                         GFP_NOFS);
701                         BUG_ON(!comp_bio);
702                         comp_bio->bi_private = cb;
703                         comp_bio->bi_end_io = end_compressed_bio_read;
704
705                         bio_add_page(comp_bio, page, PAGE_SIZE, 0);
706                 }
707                 cur_disk_byte += PAGE_SIZE;
708         }
709         bio_get(comp_bio);
710
711         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
712                         BTRFS_WQ_ENDIO_DATA);
713         BUG_ON(ret); /* -ENOMEM */
714
715         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717                 BUG_ON(ret); /* -ENOMEM */
718         }
719
720         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721         if (ret) {
722                 bio->bi_error = ret;
723                 bio_endio(comp_bio);
724         }
725
726         bio_put(comp_bio);
727         return 0;
728
729 fail2:
730         while (faili >= 0) {
731                 __free_page(cb->compressed_pages[faili]);
732                 faili--;
733         }
734
735         kfree(cb->compressed_pages);
736 fail1:
737         kfree(cb);
738 out:
739         free_extent_map(em);
740         return ret;
741 }
742
743 static struct {
744         struct list_head idle_ws;
745         spinlock_t ws_lock;
746         /* Number of free workspaces */
747         int free_ws;
748         /* Total number of allocated workspaces */
749         atomic_t total_ws;
750         /* Waiters for a free workspace */
751         wait_queue_head_t ws_wait;
752 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
753
754 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
755         &btrfs_zlib_compress,
756         &btrfs_lzo_compress,
757 };
758
759 void __init btrfs_init_compress(void)
760 {
761         int i;
762
763         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
764                 struct list_head *workspace;
765
766                 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
767                 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
768                 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
769                 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
770
771                 /*
772                  * Preallocate one workspace for each compression type so
773                  * we can guarantee forward progress in the worst case
774                  */
775                 workspace = btrfs_compress_op[i]->alloc_workspace();
776                 if (IS_ERR(workspace)) {
777                         printk(KERN_WARNING
778         "BTRFS: cannot preallocate compression workspace, will try later");
779                 } else {
780                         atomic_set(&btrfs_comp_ws[i].total_ws, 1);
781                         btrfs_comp_ws[i].free_ws = 1;
782                         list_add(workspace, &btrfs_comp_ws[i].idle_ws);
783                 }
784         }
785 }
786
787 /*
788  * This finds an available workspace or allocates a new one.
789  * If it's not possible to allocate a new one, waits until there's one.
790  * Preallocation makes a forward progress guarantees and we do not return
791  * errors.
792  */
793 static struct list_head *find_workspace(int type)
794 {
795         struct list_head *workspace;
796         int cpus = num_online_cpus();
797         int idx = type - 1;
798
799         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
800         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
801         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
802         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
803         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
804 again:
805         spin_lock(ws_lock);
806         if (!list_empty(idle_ws)) {
807                 workspace = idle_ws->next;
808                 list_del(workspace);
809                 (*free_ws)--;
810                 spin_unlock(ws_lock);
811                 return workspace;
812
813         }
814         if (atomic_read(total_ws) > cpus) {
815                 DEFINE_WAIT(wait);
816
817                 spin_unlock(ws_lock);
818                 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
819                 if (atomic_read(total_ws) > cpus && !*free_ws)
820                         schedule();
821                 finish_wait(ws_wait, &wait);
822                 goto again;
823         }
824         atomic_inc(total_ws);
825         spin_unlock(ws_lock);
826
827         workspace = btrfs_compress_op[idx]->alloc_workspace();
828         if (IS_ERR(workspace)) {
829                 atomic_dec(total_ws);
830                 wake_up(ws_wait);
831
832                 /*
833                  * Do not return the error but go back to waiting. There's a
834                  * workspace preallocated for each type and the compression
835                  * time is bounded so we get to a workspace eventually. This
836                  * makes our caller's life easier.
837                  *
838                  * To prevent silent and low-probability deadlocks (when the
839                  * initial preallocation fails), check if there are any
840                  * workspaces at all.
841                  */
842                 if (atomic_read(total_ws) == 0) {
843                         static DEFINE_RATELIMIT_STATE(_rs,
844                                         /* once per minute */ 60 * HZ,
845                                         /* no burst */ 1);
846
847                         if (__ratelimit(&_rs)) {
848                                 printk(KERN_WARNING
849                             "no compression workspaces, low memory, retrying");
850                         }
851                 }
852                 goto again;
853         }
854         return workspace;
855 }
856
857 /*
858  * put a workspace struct back on the list or free it if we have enough
859  * idle ones sitting around
860  */
861 static void free_workspace(int type, struct list_head *workspace)
862 {
863         int idx = type - 1;
864         struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
865         spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
866         atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
867         wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
868         int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
869
870         spin_lock(ws_lock);
871         if (*free_ws < num_online_cpus()) {
872                 list_add(workspace, idle_ws);
873                 (*free_ws)++;
874                 spin_unlock(ws_lock);
875                 goto wake;
876         }
877         spin_unlock(ws_lock);
878
879         btrfs_compress_op[idx]->free_workspace(workspace);
880         atomic_dec(total_ws);
881 wake:
882         /*
883          * Make sure counter is updated before we wake up waiters.
884          */
885         smp_mb();
886         if (waitqueue_active(ws_wait))
887                 wake_up(ws_wait);
888 }
889
890 /*
891  * cleanup function for module exit
892  */
893 static void free_workspaces(void)
894 {
895         struct list_head *workspace;
896         int i;
897
898         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
899                 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
900                         workspace = btrfs_comp_ws[i].idle_ws.next;
901                         list_del(workspace);
902                         btrfs_compress_op[i]->free_workspace(workspace);
903                         atomic_dec(&btrfs_comp_ws[i].total_ws);
904                 }
905         }
906 }
907
908 /*
909  * given an address space and start/len, compress the bytes.
910  *
911  * pages are allocated to hold the compressed result and stored
912  * in 'pages'
913  *
914  * out_pages is used to return the number of pages allocated.  There
915  * may be pages allocated even if we return an error
916  *
917  * total_in is used to return the number of bytes actually read.  It
918  * may be smaller then len if we had to exit early because we
919  * ran out of room in the pages array or because we cross the
920  * max_out threshold.
921  *
922  * total_out is used to return the total number of compressed bytes
923  *
924  * max_out tells us the max number of bytes that we're allowed to
925  * stuff into pages
926  */
927 int btrfs_compress_pages(int type, struct address_space *mapping,
928                          u64 start, unsigned long len,
929                          struct page **pages,
930                          unsigned long nr_dest_pages,
931                          unsigned long *out_pages,
932                          unsigned long *total_in,
933                          unsigned long *total_out,
934                          unsigned long max_out)
935 {
936         struct list_head *workspace;
937         int ret;
938
939         workspace = find_workspace(type);
940
941         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
942                                                       start, len, pages,
943                                                       nr_dest_pages, out_pages,
944                                                       total_in, total_out,
945                                                       max_out);
946         free_workspace(type, workspace);
947         return ret;
948 }
949
950 /*
951  * pages_in is an array of pages with compressed data.
952  *
953  * disk_start is the starting logical offset of this array in the file
954  *
955  * bvec is a bio_vec of pages from the file that we want to decompress into
956  *
957  * vcnt is the count of pages in the biovec
958  *
959  * srclen is the number of bytes in pages_in
960  *
961  * The basic idea is that we have a bio that was created by readpages.
962  * The pages in the bio are for the uncompressed data, and they may not
963  * be contiguous.  They all correspond to the range of bytes covered by
964  * the compressed extent.
965  */
966 static int btrfs_decompress_biovec(int type, struct page **pages_in,
967                                    u64 disk_start, struct bio_vec *bvec,
968                                    int vcnt, size_t srclen)
969 {
970         struct list_head *workspace;
971         int ret;
972
973         workspace = find_workspace(type);
974
975         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
976                                                          disk_start,
977                                                          bvec, vcnt, srclen);
978         free_workspace(type, workspace);
979         return ret;
980 }
981
982 /*
983  * a less complex decompression routine.  Our compressed data fits in a
984  * single page, and we want to read a single page out of it.
985  * start_byte tells us the offset into the compressed data we're interested in
986  */
987 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
988                      unsigned long start_byte, size_t srclen, size_t destlen)
989 {
990         struct list_head *workspace;
991         int ret;
992
993         workspace = find_workspace(type);
994
995         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
996                                                   dest_page, start_byte,
997                                                   srclen, destlen);
998
999         free_workspace(type, workspace);
1000         return ret;
1001 }
1002
1003 void btrfs_exit_compress(void)
1004 {
1005         free_workspaces();
1006 }
1007
1008 /*
1009  * Copy uncompressed data from working buffer to pages.
1010  *
1011  * buf_start is the byte offset we're of the start of our workspace buffer.
1012  *
1013  * total_out is the last byte of the buffer
1014  */
1015 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1016                               unsigned long total_out, u64 disk_start,
1017                               struct bio_vec *bvec, int vcnt,
1018                               unsigned long *pg_index,
1019                               unsigned long *pg_offset)
1020 {
1021         unsigned long buf_offset;
1022         unsigned long current_buf_start;
1023         unsigned long start_byte;
1024         unsigned long working_bytes = total_out - buf_start;
1025         unsigned long bytes;
1026         char *kaddr;
1027         struct page *page_out = bvec[*pg_index].bv_page;
1028
1029         /*
1030          * start byte is the first byte of the page we're currently
1031          * copying into relative to the start of the compressed data.
1032          */
1033         start_byte = page_offset(page_out) - disk_start;
1034
1035         /* we haven't yet hit data corresponding to this page */
1036         if (total_out <= start_byte)
1037                 return 1;
1038
1039         /*
1040          * the start of the data we care about is offset into
1041          * the middle of our working buffer
1042          */
1043         if (total_out > start_byte && buf_start < start_byte) {
1044                 buf_offset = start_byte - buf_start;
1045                 working_bytes -= buf_offset;
1046         } else {
1047                 buf_offset = 0;
1048         }
1049         current_buf_start = buf_start;
1050
1051         /* copy bytes from the working buffer into the pages */
1052         while (working_bytes > 0) {
1053                 bytes = min(PAGE_SIZE - *pg_offset,
1054                             PAGE_SIZE - buf_offset);
1055                 bytes = min(bytes, working_bytes);
1056                 kaddr = kmap_atomic(page_out);
1057                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1058                 kunmap_atomic(kaddr);
1059                 flush_dcache_page(page_out);
1060
1061                 *pg_offset += bytes;
1062                 buf_offset += bytes;
1063                 working_bytes -= bytes;
1064                 current_buf_start += bytes;
1065
1066                 /* check if we need to pick another page */
1067                 if (*pg_offset == PAGE_SIZE) {
1068                         (*pg_index)++;
1069                         if (*pg_index >= vcnt)
1070                                 return 0;
1071
1072                         page_out = bvec[*pg_index].bv_page;
1073                         *pg_offset = 0;
1074                         start_byte = page_offset(page_out) - disk_start;
1075
1076                         /*
1077                          * make sure our new page is covered by this
1078                          * working buffer
1079                          */
1080                         if (total_out <= start_byte)
1081                                 return 1;
1082
1083                         /*
1084                          * the next page in the biovec might not be adjacent
1085                          * to the last page, but it might still be found
1086                          * inside this working buffer. bump our offset pointer
1087                          */
1088                         if (total_out > start_byte &&
1089                             current_buf_start < start_byte) {
1090                                 buf_offset = start_byte - buf_start;
1091                                 working_bytes = total_out - start_byte;
1092                                 current_buf_start = buf_start + buf_offset;
1093                         }
1094                 }
1095         }
1096
1097         return 1;
1098 }
1099
1100 /*
1101  * When uncompressing data, we need to make sure and zero any parts of
1102  * the biovec that were not filled in by the decompression code.  pg_index
1103  * and pg_offset indicate the last page and the last offset of that page
1104  * that have been filled in.  This will zero everything remaining in the
1105  * biovec.
1106  */
1107 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1108                                    unsigned long pg_index,
1109                                    unsigned long pg_offset)
1110 {
1111         while (pg_index < vcnt) {
1112                 struct page *page = bvec[pg_index].bv_page;
1113                 unsigned long off = bvec[pg_index].bv_offset;
1114                 unsigned long len = bvec[pg_index].bv_len;
1115
1116                 if (pg_offset < off)
1117                         pg_offset = off;
1118                 if (pg_offset < off + len) {
1119                         unsigned long bytes = off + len - pg_offset;
1120                         char *kaddr;
1121
1122                         kaddr = kmap_atomic(page);
1123                         memset(kaddr + pg_offset, 0, bytes);
1124                         kunmap_atomic(kaddr);
1125                 }
1126                 pg_index++;
1127                 pg_offset = 0;
1128         }
1129 }