]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/extent_io.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135                                  struct extent_changeset *changeset,
136                                  int set)
137 {
138         int ret;
139
140         if (!changeset)
141                 return;
142         if (set && (state->state & bits) == bits)
143                 return;
144         if (!set && (state->state & bits) == 0)
145                 return;
146         changeset->bytes_changed += state->end - state->start + 1;
147         ret = ulist_add(changeset->range_changed, state->start, state->end,
148                         GFP_ATOMIC);
149         /* ENOMEM */
150         BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157         if (!tree->mapping)
158                 return NULL;
159         return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164         extent_state_cache = kmem_cache_create("btrfs_extent_state",
165                         sizeof(struct extent_state), 0,
166                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167         if (!extent_state_cache)
168                 return -ENOMEM;
169
170         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171                         sizeof(struct extent_buffer), 0,
172                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173         if (!extent_buffer_cache)
174                 goto free_state_cache;
175
176         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177                                      offsetof(struct btrfs_io_bio, bio));
178         if (!btrfs_bioset)
179                 goto free_buffer_cache;
180
181         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182                 goto free_bioset;
183
184         return 0;
185
186 free_bioset:
187         bioset_free(btrfs_bioset);
188         btrfs_bioset = NULL;
189
190 free_buffer_cache:
191         kmem_cache_destroy(extent_buffer_cache);
192         extent_buffer_cache = NULL;
193
194 free_state_cache:
195         kmem_cache_destroy(extent_state_cache);
196         extent_state_cache = NULL;
197         return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202         btrfs_leak_debug_check();
203
204         /*
205          * Make sure all delayed rcu free are flushed before we
206          * destroy caches.
207          */
208         rcu_barrier();
209         kmem_cache_destroy(extent_state_cache);
210         kmem_cache_destroy(extent_buffer_cache);
211         if (btrfs_bioset)
212                 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216                          struct address_space *mapping)
217 {
218         tree->state = RB_ROOT;
219         tree->ops = NULL;
220         tree->dirty_bytes = 0;
221         spin_lock_init(&tree->lock);
222         tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227         struct extent_state *state;
228
229         state = kmem_cache_alloc(extent_state_cache, mask);
230         if (!state)
231                 return state;
232         state->state = 0;
233         state->failrec = NULL;
234         RB_CLEAR_NODE(&state->rb_node);
235         btrfs_leak_debug_add(&state->leak_list, &states);
236         atomic_set(&state->refs, 1);
237         init_waitqueue_head(&state->wq);
238         trace_alloc_extent_state(state, mask, _RET_IP_);
239         return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244         if (!state)
245                 return;
246         if (atomic_dec_and_test(&state->refs)) {
247                 WARN_ON(extent_state_in_tree(state));
248                 btrfs_leak_debug_del(&state->leak_list);
249                 trace_free_extent_state(state, _RET_IP_);
250                 kmem_cache_free(extent_state_cache, state);
251         }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255                                    struct rb_node *search_start,
256                                    u64 offset,
257                                    struct rb_node *node,
258                                    struct rb_node ***p_in,
259                                    struct rb_node **parent_in)
260 {
261         struct rb_node **p;
262         struct rb_node *parent = NULL;
263         struct tree_entry *entry;
264
265         if (p_in && parent_in) {
266                 p = *p_in;
267                 parent = *parent_in;
268                 goto do_insert;
269         }
270
271         p = search_start ? &search_start : &root->rb_node;
272         while (*p) {
273                 parent = *p;
274                 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276                 if (offset < entry->start)
277                         p = &(*p)->rb_left;
278                 else if (offset > entry->end)
279                         p = &(*p)->rb_right;
280                 else
281                         return parent;
282         }
283
284 do_insert:
285         rb_link_node(node, parent, p);
286         rb_insert_color(node, root);
287         return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291                                       struct rb_node **prev_ret,
292                                       struct rb_node **next_ret,
293                                       struct rb_node ***p_ret,
294                                       struct rb_node **parent_ret)
295 {
296         struct rb_root *root = &tree->state;
297         struct rb_node **n = &root->rb_node;
298         struct rb_node *prev = NULL;
299         struct rb_node *orig_prev = NULL;
300         struct tree_entry *entry;
301         struct tree_entry *prev_entry = NULL;
302
303         while (*n) {
304                 prev = *n;
305                 entry = rb_entry(prev, struct tree_entry, rb_node);
306                 prev_entry = entry;
307
308                 if (offset < entry->start)
309                         n = &(*n)->rb_left;
310                 else if (offset > entry->end)
311                         n = &(*n)->rb_right;
312                 else
313                         return *n;
314         }
315
316         if (p_ret)
317                 *p_ret = n;
318         if (parent_ret)
319                 *parent_ret = prev;
320
321         if (prev_ret) {
322                 orig_prev = prev;
323                 while (prev && offset > prev_entry->end) {
324                         prev = rb_next(prev);
325                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 }
327                 *prev_ret = prev;
328                 prev = orig_prev;
329         }
330
331         if (next_ret) {
332                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333                 while (prev && offset < prev_entry->start) {
334                         prev = rb_prev(prev);
335                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336                 }
337                 *next_ret = prev;
338         }
339         return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344                        u64 offset,
345                        struct rb_node ***p_ret,
346                        struct rb_node **parent_ret)
347 {
348         struct rb_node *prev = NULL;
349         struct rb_node *ret;
350
351         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352         if (!ret)
353                 return prev;
354         return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358                                           u64 offset)
359 {
360         return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364                      struct extent_state *other)
365 {
366         if (tree->ops && tree->ops->merge_extent_hook)
367                 tree->ops->merge_extent_hook(tree->mapping->host, new,
368                                              other);
369 }
370
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381                         struct extent_state *state)
382 {
383         struct extent_state *other;
384         struct rb_node *other_node;
385
386         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387                 return;
388
389         other_node = rb_prev(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->end == state->start - 1 &&
393                     other->state == state->state) {
394                         merge_cb(tree, state, other);
395                         state->start = other->start;
396                         rb_erase(&other->rb_node, &tree->state);
397                         RB_CLEAR_NODE(&other->rb_node);
398                         free_extent_state(other);
399                 }
400         }
401         other_node = rb_next(&state->rb_node);
402         if (other_node) {
403                 other = rb_entry(other_node, struct extent_state, rb_node);
404                 if (other->start == state->end + 1 &&
405                     other->state == state->state) {
406                         merge_cb(tree, state, other);
407                         state->end = other->end;
408                         rb_erase(&other->rb_node, &tree->state);
409                         RB_CLEAR_NODE(&other->rb_node);
410                         free_extent_state(other);
411                 }
412         }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416                          struct extent_state *state, unsigned *bits)
417 {
418         if (tree->ops && tree->ops->set_bit_hook)
419                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423                            struct extent_state *state, unsigned *bits)
424 {
425         if (tree->ops && tree->ops->clear_bit_hook)
426                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430                            struct extent_state *state, unsigned *bits,
431                            struct extent_changeset *changeset);
432
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444                         struct extent_state *state, u64 start, u64 end,
445                         struct rb_node ***p,
446                         struct rb_node **parent,
447                         unsigned *bits, struct extent_changeset *changeset)
448 {
449         struct rb_node *node;
450
451         if (end < start)
452                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453                        end, start);
454         state->start = start;
455         state->end = end;
456
457         set_state_bits(tree, state, bits, changeset);
458
459         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460         if (node) {
461                 struct extent_state *found;
462                 found = rb_entry(node, struct extent_state, rb_node);
463                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464                        "%llu %llu\n",
465                        found->start, found->end, start, end);
466                 return -EEXIST;
467         }
468         merge_state(tree, state);
469         return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473                      u64 split)
474 {
475         if (tree->ops && tree->ops->split_extent_hook)
476                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494                        struct extent_state *prealloc, u64 split)
495 {
496         struct rb_node *node;
497
498         split_cb(tree, orig, split);
499
500         prealloc->start = orig->start;
501         prealloc->end = split - 1;
502         prealloc->state = orig->state;
503         orig->start = split;
504
505         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506                            &prealloc->rb_node, NULL, NULL);
507         if (node) {
508                 free_extent_state(prealloc);
509                 return -EEXIST;
510         }
511         return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516         struct rb_node *next = rb_next(&state->rb_node);
517         if (next)
518                 return rb_entry(next, struct extent_state, rb_node);
519         else
520                 return NULL;
521 }
522
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531                                             struct extent_state *state,
532                                             unsigned *bits, int wake,
533                                             struct extent_changeset *changeset)
534 {
535         struct extent_state *next;
536         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539                 u64 range = state->end - state->start + 1;
540                 WARN_ON(range > tree->dirty_bytes);
541                 tree->dirty_bytes -= range;
542         }
543         clear_state_cb(tree, state, bits);
544         add_extent_changeset(state, bits_to_clear, changeset, 0);
545         state->state &= ~bits_to_clear;
546         if (wake)
547                 wake_up(&state->wq);
548         if (state->state == 0) {
549                 next = next_state(state);
550                 if (extent_state_in_tree(state)) {
551                         rb_erase(&state->rb_node, &tree->state);
552                         RB_CLEAR_NODE(&state->rb_node);
553                         free_extent_state(state);
554                 } else {
555                         WARN_ON(1);
556                 }
557         } else {
558                 merge_state(tree, state);
559                 next = next_state(state);
560         }
561         return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567         if (!prealloc)
568                 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570         return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576                     "Extent tree was modified by another "
577                     "thread while locked.");
578 }
579
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593                               unsigned bits, int wake, int delete,
594                               struct extent_state **cached_state,
595                               gfp_t mask, struct extent_changeset *changeset)
596 {
597         struct extent_state *state;
598         struct extent_state *cached;
599         struct extent_state *prealloc = NULL;
600         struct rb_node *node;
601         u64 last_end;
602         int err;
603         int clear = 0;
604
605         btrfs_debug_check_extent_io_range(tree, start, end);
606
607         if (bits & EXTENT_DELALLOC)
608                 bits |= EXTENT_NORESERVE;
609
610         if (delete)
611                 bits |= ~EXTENT_CTLBITS;
612         bits |= EXTENT_FIRST_DELALLOC;
613
614         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615                 clear = 1;
616 again:
617         if (!prealloc && gfpflags_allow_blocking(mask)) {
618                 /*
619                  * Don't care for allocation failure here because we might end
620                  * up not needing the pre-allocated extent state at all, which
621                  * is the case if we only have in the tree extent states that
622                  * cover our input range and don't cover too any other range.
623                  * If we end up needing a new extent state we allocate it later.
624                  */
625                 prealloc = alloc_extent_state(mask);
626         }
627
628         spin_lock(&tree->lock);
629         if (cached_state) {
630                 cached = *cached_state;
631
632                 if (clear) {
633                         *cached_state = NULL;
634                         cached_state = NULL;
635                 }
636
637                 if (cached && extent_state_in_tree(cached) &&
638                     cached->start <= start && cached->end > start) {
639                         if (clear)
640                                 atomic_dec(&cached->refs);
641                         state = cached;
642                         goto hit_next;
643                 }
644                 if (clear)
645                         free_extent_state(cached);
646         }
647         /*
648          * this search will find the extents that end after
649          * our range starts
650          */
651         node = tree_search(tree, start);
652         if (!node)
653                 goto out;
654         state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656         if (state->start > end)
657                 goto out;
658         WARN_ON(state->end < start);
659         last_end = state->end;
660
661         /* the state doesn't have the wanted bits, go ahead */
662         if (!(state->state & bits)) {
663                 state = next_state(state);
664                 goto next;
665         }
666
667         /*
668          *     | ---- desired range ---- |
669          *  | state | or
670          *  | ------------- state -------------- |
671          *
672          * We need to split the extent we found, and may flip
673          * bits on second half.
674          *
675          * If the extent we found extends past our range, we
676          * just split and search again.  It'll get split again
677          * the next time though.
678          *
679          * If the extent we found is inside our range, we clear
680          * the desired bit on it.
681          */
682
683         if (state->start < start) {
684                 prealloc = alloc_extent_state_atomic(prealloc);
685                 BUG_ON(!prealloc);
686                 err = split_state(tree, state, prealloc, start);
687                 if (err)
688                         extent_io_tree_panic(tree, err);
689
690                 prealloc = NULL;
691                 if (err)
692                         goto out;
693                 if (state->end <= end) {
694                         state = clear_state_bit(tree, state, &bits, wake,
695                                                 changeset);
696                         goto next;
697                 }
698                 goto search_again;
699         }
700         /*
701          * | ---- desired range ---- |
702          *                        | state |
703          * We need to split the extent, and clear the bit
704          * on the first half
705          */
706         if (state->start <= end && state->end > end) {
707                 prealloc = alloc_extent_state_atomic(prealloc);
708                 BUG_ON(!prealloc);
709                 err = split_state(tree, state, prealloc, end + 1);
710                 if (err)
711                         extent_io_tree_panic(tree, err);
712
713                 if (wake)
714                         wake_up(&state->wq);
715
716                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718                 prealloc = NULL;
719                 goto out;
720         }
721
722         state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724         if (last_end == (u64)-1)
725                 goto out;
726         start = last_end + 1;
727         if (start <= end && state && !need_resched())
728                 goto hit_next;
729
730 search_again:
731         if (start > end)
732                 goto out;
733         spin_unlock(&tree->lock);
734         if (gfpflags_allow_blocking(mask))
735                 cond_resched();
736         goto again;
737
738 out:
739         spin_unlock(&tree->lock);
740         if (prealloc)
741                 free_extent_state(prealloc);
742
743         return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748                           struct extent_state *state)
749                 __releases(tree->lock)
750                 __acquires(tree->lock)
751 {
752         DEFINE_WAIT(wait);
753         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754         spin_unlock(&tree->lock);
755         schedule();
756         spin_lock(&tree->lock);
757         finish_wait(&state->wq, &wait);
758 }
759
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766                             unsigned long bits)
767 {
768         struct extent_state *state;
769         struct rb_node *node;
770
771         btrfs_debug_check_extent_io_range(tree, start, end);
772
773         spin_lock(&tree->lock);
774 again:
775         while (1) {
776                 /*
777                  * this search will find all the extents that end after
778                  * our range starts
779                  */
780                 node = tree_search(tree, start);
781 process_node:
782                 if (!node)
783                         break;
784
785                 state = rb_entry(node, struct extent_state, rb_node);
786
787                 if (state->start > end)
788                         goto out;
789
790                 if (state->state & bits) {
791                         start = state->start;
792                         atomic_inc(&state->refs);
793                         wait_on_state(tree, state);
794                         free_extent_state(state);
795                         goto again;
796                 }
797                 start = state->end + 1;
798
799                 if (start > end)
800                         break;
801
802                 if (!cond_resched_lock(&tree->lock)) {
803                         node = rb_next(node);
804                         goto process_node;
805                 }
806         }
807 out:
808         spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812                            struct extent_state *state,
813                            unsigned *bits, struct extent_changeset *changeset)
814 {
815         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817         set_state_cb(tree, state, bits);
818         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819                 u64 range = state->end - state->start + 1;
820                 tree->dirty_bytes += range;
821         }
822         add_extent_changeset(state, bits_to_set, changeset, 1);
823         state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827                                  struct extent_state **cached_ptr,
828                                  unsigned flags)
829 {
830         if (cached_ptr && !(*cached_ptr)) {
831                 if (!flags || (state->state & flags)) {
832                         *cached_ptr = state;
833                         atomic_inc(&state->refs);
834                 }
835         }
836 }
837
838 static void cache_state(struct extent_state *state,
839                         struct extent_state **cached_ptr)
840 {
841         return cache_state_if_flags(state, cached_ptr,
842                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858                  unsigned bits, unsigned exclusive_bits,
859                  u64 *failed_start, struct extent_state **cached_state,
860                  gfp_t mask, struct extent_changeset *changeset)
861 {
862         struct extent_state *state;
863         struct extent_state *prealloc = NULL;
864         struct rb_node *node;
865         struct rb_node **p;
866         struct rb_node *parent;
867         int err = 0;
868         u64 last_start;
869         u64 last_end;
870
871         btrfs_debug_check_extent_io_range(tree, start, end);
872
873         bits |= EXTENT_FIRST_DELALLOC;
874 again:
875         if (!prealloc && gfpflags_allow_blocking(mask)) {
876                 /*
877                  * Don't care for allocation failure here because we might end
878                  * up not needing the pre-allocated extent state at all, which
879                  * is the case if we only have in the tree extent states that
880                  * cover our input range and don't cover too any other range.
881                  * If we end up needing a new extent state we allocate it later.
882                  */
883                 prealloc = alloc_extent_state(mask);
884         }
885
886         spin_lock(&tree->lock);
887         if (cached_state && *cached_state) {
888                 state = *cached_state;
889                 if (state->start <= start && state->end > start &&
890                     extent_state_in_tree(state)) {
891                         node = &state->rb_node;
892                         goto hit_next;
893                 }
894         }
895         /*
896          * this search will find all the extents that end after
897          * our range starts.
898          */
899         node = tree_search_for_insert(tree, start, &p, &parent);
900         if (!node) {
901                 prealloc = alloc_extent_state_atomic(prealloc);
902                 BUG_ON(!prealloc);
903                 err = insert_state(tree, prealloc, start, end,
904                                    &p, &parent, &bits, changeset);
905                 if (err)
906                         extent_io_tree_panic(tree, err);
907
908                 cache_state(prealloc, cached_state);
909                 prealloc = NULL;
910                 goto out;
911         }
912         state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914         last_start = state->start;
915         last_end = state->end;
916
917         /*
918          * | ---- desired range ---- |
919          * | state |
920          *
921          * Just lock what we found and keep going
922          */
923         if (state->start == start && state->end <= end) {
924                 if (state->state & exclusive_bits) {
925                         *failed_start = state->start;
926                         err = -EEXIST;
927                         goto out;
928                 }
929
930                 set_state_bits(tree, state, &bits, changeset);
931                 cache_state(state, cached_state);
932                 merge_state(tree, state);
933                 if (last_end == (u64)-1)
934                         goto out;
935                 start = last_end + 1;
936                 state = next_state(state);
937                 if (start < end && state && state->start == start &&
938                     !need_resched())
939                         goto hit_next;
940                 goto search_again;
941         }
942
943         /*
944          *     | ---- desired range ---- |
945          * | state |
946          *   or
947          * | ------------- state -------------- |
948          *
949          * We need to split the extent we found, and may flip bits on
950          * second half.
951          *
952          * If the extent we found extends past our
953          * range, we just split and search again.  It'll get split
954          * again the next time though.
955          *
956          * If the extent we found is inside our range, we set the
957          * desired bit on it.
958          */
959         if (state->start < start) {
960                 if (state->state & exclusive_bits) {
961                         *failed_start = start;
962                         err = -EEXIST;
963                         goto out;
964                 }
965
966                 prealloc = alloc_extent_state_atomic(prealloc);
967                 BUG_ON(!prealloc);
968                 err = split_state(tree, state, prealloc, start);
969                 if (err)
970                         extent_io_tree_panic(tree, err);
971
972                 prealloc = NULL;
973                 if (err)
974                         goto out;
975                 if (state->end <= end) {
976                         set_state_bits(tree, state, &bits, changeset);
977                         cache_state(state, cached_state);
978                         merge_state(tree, state);
979                         if (last_end == (u64)-1)
980                                 goto out;
981                         start = last_end + 1;
982                         state = next_state(state);
983                         if (start < end && state && state->start == start &&
984                             !need_resched())
985                                 goto hit_next;
986                 }
987                 goto search_again;
988         }
989         /*
990          * | ---- desired range ---- |
991          *     | state | or               | state |
992          *
993          * There's a hole, we need to insert something in it and
994          * ignore the extent we found.
995          */
996         if (state->start > start) {
997                 u64 this_end;
998                 if (end < last_start)
999                         this_end = end;
1000                 else
1001                         this_end = last_start - 1;
1002
1003                 prealloc = alloc_extent_state_atomic(prealloc);
1004                 BUG_ON(!prealloc);
1005
1006                 /*
1007                  * Avoid to free 'prealloc' if it can be merged with
1008                  * the later extent.
1009                  */
1010                 err = insert_state(tree, prealloc, start, this_end,
1011                                    NULL, NULL, &bits, changeset);
1012                 if (err)
1013                         extent_io_tree_panic(tree, err);
1014
1015                 cache_state(prealloc, cached_state);
1016                 prealloc = NULL;
1017                 start = this_end + 1;
1018                 goto search_again;
1019         }
1020         /*
1021          * | ---- desired range ---- |
1022          *                        | state |
1023          * We need to split the extent, and set the bit
1024          * on the first half
1025          */
1026         if (state->start <= end && state->end > end) {
1027                 if (state->state & exclusive_bits) {
1028                         *failed_start = start;
1029                         err = -EEXIST;
1030                         goto out;
1031                 }
1032
1033                 prealloc = alloc_extent_state_atomic(prealloc);
1034                 BUG_ON(!prealloc);
1035                 err = split_state(tree, state, prealloc, end + 1);
1036                 if (err)
1037                         extent_io_tree_panic(tree, err);
1038
1039                 set_state_bits(tree, prealloc, &bits, changeset);
1040                 cache_state(prealloc, cached_state);
1041                 merge_state(tree, prealloc);
1042                 prealloc = NULL;
1043                 goto out;
1044         }
1045
1046 search_again:
1047         if (start > end)
1048                 goto out;
1049         spin_unlock(&tree->lock);
1050         if (gfpflags_allow_blocking(mask))
1051                 cond_resched();
1052         goto again;
1053
1054 out:
1055         spin_unlock(&tree->lock);
1056         if (prealloc)
1057                 free_extent_state(prealloc);
1058
1059         return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064                    unsigned bits, u64 * failed_start,
1065                    struct extent_state **cached_state, gfp_t mask)
1066 {
1067         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068                                 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073  * convert_extent_bit - convert all bits in a given range from one bit to
1074  *                      another
1075  * @tree:       the io tree to search
1076  * @start:      the start offset in bytes
1077  * @end:        the end offset in bytes (inclusive)
1078  * @bits:       the bits to set in this range
1079  * @clear_bits: the bits to clear in this range
1080  * @cached_state:       state that we're going to cache
1081  *
1082  * This will go through and set bits for the given range.  If any states exist
1083  * already in this range they are set with the given bit and cleared of the
1084  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1085  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1086  * boundary bits like LOCK.
1087  *
1088  * All allocations are done with GFP_NOFS.
1089  */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091                        unsigned bits, unsigned clear_bits,
1092                        struct extent_state **cached_state)
1093 {
1094         struct extent_state *state;
1095         struct extent_state *prealloc = NULL;
1096         struct rb_node *node;
1097         struct rb_node **p;
1098         struct rb_node *parent;
1099         int err = 0;
1100         u64 last_start;
1101         u64 last_end;
1102         bool first_iteration = true;
1103
1104         btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107         if (!prealloc) {
1108                 /*
1109                  * Best effort, don't worry if extent state allocation fails
1110                  * here for the first iteration. We might have a cached state
1111                  * that matches exactly the target range, in which case no
1112                  * extent state allocations are needed. We'll only know this
1113                  * after locking the tree.
1114                  */
1115                 prealloc = alloc_extent_state(GFP_NOFS);
1116                 if (!prealloc && !first_iteration)
1117                         return -ENOMEM;
1118         }
1119
1120         spin_lock(&tree->lock);
1121         if (cached_state && *cached_state) {
1122                 state = *cached_state;
1123                 if (state->start <= start && state->end > start &&
1124                     extent_state_in_tree(state)) {
1125                         node = &state->rb_node;
1126                         goto hit_next;
1127                 }
1128         }
1129
1130         /*
1131          * this search will find all the extents that end after
1132          * our range starts.
1133          */
1134         node = tree_search_for_insert(tree, start, &p, &parent);
1135         if (!node) {
1136                 prealloc = alloc_extent_state_atomic(prealloc);
1137                 if (!prealloc) {
1138                         err = -ENOMEM;
1139                         goto out;
1140                 }
1141                 err = insert_state(tree, prealloc, start, end,
1142                                    &p, &parent, &bits, NULL);
1143                 if (err)
1144                         extent_io_tree_panic(tree, err);
1145                 cache_state(prealloc, cached_state);
1146                 prealloc = NULL;
1147                 goto out;
1148         }
1149         state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151         last_start = state->start;
1152         last_end = state->end;
1153
1154         /*
1155          * | ---- desired range ---- |
1156          * | state |
1157          *
1158          * Just lock what we found and keep going
1159          */
1160         if (state->start == start && state->end <= end) {
1161                 set_state_bits(tree, state, &bits, NULL);
1162                 cache_state(state, cached_state);
1163                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164                 if (last_end == (u64)-1)
1165                         goto out;
1166                 start = last_end + 1;
1167                 if (start < end && state && state->start == start &&
1168                     !need_resched())
1169                         goto hit_next;
1170                 goto search_again;
1171         }
1172
1173         /*
1174          *     | ---- desired range ---- |
1175          * | state |
1176          *   or
1177          * | ------------- state -------------- |
1178          *
1179          * We need to split the extent we found, and may flip bits on
1180          * second half.
1181          *
1182          * If the extent we found extends past our
1183          * range, we just split and search again.  It'll get split
1184          * again the next time though.
1185          *
1186          * If the extent we found is inside our range, we set the
1187          * desired bit on it.
1188          */
1189         if (state->start < start) {
1190                 prealloc = alloc_extent_state_atomic(prealloc);
1191                 if (!prealloc) {
1192                         err = -ENOMEM;
1193                         goto out;
1194                 }
1195                 err = split_state(tree, state, prealloc, start);
1196                 if (err)
1197                         extent_io_tree_panic(tree, err);
1198                 prealloc = NULL;
1199                 if (err)
1200                         goto out;
1201                 if (state->end <= end) {
1202                         set_state_bits(tree, state, &bits, NULL);
1203                         cache_state(state, cached_state);
1204                         state = clear_state_bit(tree, state, &clear_bits, 0,
1205                                                 NULL);
1206                         if (last_end == (u64)-1)
1207                                 goto out;
1208                         start = last_end + 1;
1209                         if (start < end && state && state->start == start &&
1210                             !need_resched())
1211                                 goto hit_next;
1212                 }
1213                 goto search_again;
1214         }
1215         /*
1216          * | ---- desired range ---- |
1217          *     | state | or               | state |
1218          *
1219          * There's a hole, we need to insert something in it and
1220          * ignore the extent we found.
1221          */
1222         if (state->start > start) {
1223                 u64 this_end;
1224                 if (end < last_start)
1225                         this_end = end;
1226                 else
1227                         this_end = last_start - 1;
1228
1229                 prealloc = alloc_extent_state_atomic(prealloc);
1230                 if (!prealloc) {
1231                         err = -ENOMEM;
1232                         goto out;
1233                 }
1234
1235                 /*
1236                  * Avoid to free 'prealloc' if it can be merged with
1237                  * the later extent.
1238                  */
1239                 err = insert_state(tree, prealloc, start, this_end,
1240                                    NULL, NULL, &bits, NULL);
1241                 if (err)
1242                         extent_io_tree_panic(tree, err);
1243                 cache_state(prealloc, cached_state);
1244                 prealloc = NULL;
1245                 start = this_end + 1;
1246                 goto search_again;
1247         }
1248         /*
1249          * | ---- desired range ---- |
1250          *                        | state |
1251          * We need to split the extent, and set the bit
1252          * on the first half
1253          */
1254         if (state->start <= end && state->end > end) {
1255                 prealloc = alloc_extent_state_atomic(prealloc);
1256                 if (!prealloc) {
1257                         err = -ENOMEM;
1258                         goto out;
1259                 }
1260
1261                 err = split_state(tree, state, prealloc, end + 1);
1262                 if (err)
1263                         extent_io_tree_panic(tree, err);
1264
1265                 set_state_bits(tree, prealloc, &bits, NULL);
1266                 cache_state(prealloc, cached_state);
1267                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268                 prealloc = NULL;
1269                 goto out;
1270         }
1271
1272 search_again:
1273         if (start > end)
1274                 goto out;
1275         spin_unlock(&tree->lock);
1276         cond_resched();
1277         first_iteration = false;
1278         goto again;
1279
1280 out:
1281         spin_unlock(&tree->lock);
1282         if (prealloc)
1283                 free_extent_state(prealloc);
1284
1285         return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290                            unsigned bits, struct extent_changeset *changeset)
1291 {
1292         /*
1293          * We don't support EXTENT_LOCKED yet, as current changeset will
1294          * record any bits changed, so for EXTENT_LOCKED case, it will
1295          * either fail with -EEXIST or changeset will record the whole
1296          * range.
1297          */
1298         BUG_ON(bits & EXTENT_LOCKED);
1299
1300         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301                                 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305                      unsigned bits, int wake, int delete,
1306                      struct extent_state **cached, gfp_t mask)
1307 {
1308         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309                                   cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313                 unsigned bits, struct extent_changeset *changeset)
1314 {
1315         /*
1316          * Don't support EXTENT_LOCKED case, same reason as
1317          * set_record_extent_bits().
1318          */
1319         BUG_ON(bits & EXTENT_LOCKED);
1320
1321         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322                                   changeset);
1323 }
1324
1325 /*
1326  * either insert or lock state struct between start and end use mask to tell
1327  * us if waiting is desired.
1328  */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330                      struct extent_state **cached_state)
1331 {
1332         int err;
1333         u64 failed_start;
1334
1335         while (1) {
1336                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337                                        EXTENT_LOCKED, &failed_start,
1338                                        cached_state, GFP_NOFS, NULL);
1339                 if (err == -EEXIST) {
1340                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341                         start = failed_start;
1342                 } else
1343                         break;
1344                 WARN_ON(start > end);
1345         }
1346         return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351         int err;
1352         u64 failed_start;
1353
1354         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355                                &failed_start, NULL, GFP_NOFS, NULL);
1356         if (err == -EEXIST) {
1357                 if (failed_start > start)
1358                         clear_extent_bit(tree, start, failed_start - 1,
1359                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360                 return 0;
1361         }
1362         return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367         unsigned long index = start >> PAGE_SHIFT;
1368         unsigned long end_index = end >> PAGE_SHIFT;
1369         struct page *page;
1370
1371         while (index <= end_index) {
1372                 page = find_get_page(inode->i_mapping, index);
1373                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374                 clear_page_dirty_for_io(page);
1375                 put_page(page);
1376                 index++;
1377         }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382         unsigned long index = start >> PAGE_SHIFT;
1383         unsigned long end_index = end >> PAGE_SHIFT;
1384         struct page *page;
1385
1386         while (index <= end_index) {
1387                 page = find_get_page(inode->i_mapping, index);
1388                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389                 __set_page_dirty_nobuffers(page);
1390                 account_page_redirty(page);
1391                 put_page(page);
1392                 index++;
1393         }
1394 }
1395
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401         unsigned long index = start >> PAGE_SHIFT;
1402         unsigned long end_index = end >> PAGE_SHIFT;
1403         struct page *page;
1404
1405         while (index <= end_index) {
1406                 page = find_get_page(tree->mapping, index);
1407                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408                 set_page_writeback(page);
1409                 put_page(page);
1410                 index++;
1411         }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415  * return it.  tree->lock must be held.  NULL will returned if
1416  * nothing was found after 'start'
1417  */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420                             u64 start, unsigned bits)
1421 {
1422         struct rb_node *node;
1423         struct extent_state *state;
1424
1425         /*
1426          * this search will find all the extents that end after
1427          * our range starts.
1428          */
1429         node = tree_search(tree, start);
1430         if (!node)
1431                 goto out;
1432
1433         while (1) {
1434                 state = rb_entry(node, struct extent_state, rb_node);
1435                 if (state->end >= start && (state->state & bits))
1436                         return state;
1437
1438                 node = rb_next(node);
1439                 if (!node)
1440                         break;
1441         }
1442 out:
1443         return NULL;
1444 }
1445
1446 /*
1447  * find the first offset in the io tree with 'bits' set. zero is
1448  * returned if we find something, and *start_ret and *end_ret are
1449  * set to reflect the state struct that was found.
1450  *
1451  * If nothing was found, 1 is returned. If found something, return 0.
1452  */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454                           u64 *start_ret, u64 *end_ret, unsigned bits,
1455                           struct extent_state **cached_state)
1456 {
1457         struct extent_state *state;
1458         struct rb_node *n;
1459         int ret = 1;
1460
1461         spin_lock(&tree->lock);
1462         if (cached_state && *cached_state) {
1463                 state = *cached_state;
1464                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465                         n = rb_next(&state->rb_node);
1466                         while (n) {
1467                                 state = rb_entry(n, struct extent_state,
1468                                                  rb_node);
1469                                 if (state->state & bits)
1470                                         goto got_it;
1471                                 n = rb_next(n);
1472                         }
1473                         free_extent_state(*cached_state);
1474                         *cached_state = NULL;
1475                         goto out;
1476                 }
1477                 free_extent_state(*cached_state);
1478                 *cached_state = NULL;
1479         }
1480
1481         state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483         if (state) {
1484                 cache_state_if_flags(state, cached_state, 0);
1485                 *start_ret = state->start;
1486                 *end_ret = state->end;
1487                 ret = 0;
1488         }
1489 out:
1490         spin_unlock(&tree->lock);
1491         return ret;
1492 }
1493
1494 /*
1495  * find a contiguous range of bytes in the file marked as delalloc, not
1496  * more than 'max_bytes'.  start and end are used to return the range,
1497  *
1498  * 1 is returned if we find something, 0 if nothing was in the tree
1499  */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501                                         u64 *start, u64 *end, u64 max_bytes,
1502                                         struct extent_state **cached_state)
1503 {
1504         struct rb_node *node;
1505         struct extent_state *state;
1506         u64 cur_start = *start;
1507         u64 found = 0;
1508         u64 total_bytes = 0;
1509
1510         spin_lock(&tree->lock);
1511
1512         /*
1513          * this search will find all the extents that end after
1514          * our range starts.
1515          */
1516         node = tree_search(tree, cur_start);
1517         if (!node) {
1518                 if (!found)
1519                         *end = (u64)-1;
1520                 goto out;
1521         }
1522
1523         while (1) {
1524                 state = rb_entry(node, struct extent_state, rb_node);
1525                 if (found && (state->start != cur_start ||
1526                               (state->state & EXTENT_BOUNDARY))) {
1527                         goto out;
1528                 }
1529                 if (!(state->state & EXTENT_DELALLOC)) {
1530                         if (!found)
1531                                 *end = state->end;
1532                         goto out;
1533                 }
1534                 if (!found) {
1535                         *start = state->start;
1536                         *cached_state = state;
1537                         atomic_inc(&state->refs);
1538                 }
1539                 found++;
1540                 *end = state->end;
1541                 cur_start = state->end + 1;
1542                 node = rb_next(node);
1543                 total_bytes += state->end - state->start + 1;
1544                 if (total_bytes >= max_bytes)
1545                         break;
1546                 if (!node)
1547                         break;
1548         }
1549 out:
1550         spin_unlock(&tree->lock);
1551         return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555                                            struct page *locked_page,
1556                                            u64 start, u64 end)
1557 {
1558         int ret;
1559         struct page *pages[16];
1560         unsigned long index = start >> PAGE_SHIFT;
1561         unsigned long end_index = end >> PAGE_SHIFT;
1562         unsigned long nr_pages = end_index - index + 1;
1563         int i;
1564
1565         if (index == locked_page->index && end_index == index)
1566                 return;
1567
1568         while (nr_pages > 0) {
1569                 ret = find_get_pages_contig(inode->i_mapping, index,
1570                                      min_t(unsigned long, nr_pages,
1571                                      ARRAY_SIZE(pages)), pages);
1572                 for (i = 0; i < ret; i++) {
1573                         if (pages[i] != locked_page)
1574                                 unlock_page(pages[i]);
1575                         put_page(pages[i]);
1576                 }
1577                 nr_pages -= ret;
1578                 index += ret;
1579                 cond_resched();
1580         }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584                                         struct page *locked_page,
1585                                         u64 delalloc_start,
1586                                         u64 delalloc_end)
1587 {
1588         unsigned long index = delalloc_start >> PAGE_SHIFT;
1589         unsigned long start_index = index;
1590         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591         unsigned long pages_locked = 0;
1592         struct page *pages[16];
1593         unsigned long nrpages;
1594         int ret;
1595         int i;
1596
1597         /* the caller is responsible for locking the start index */
1598         if (index == locked_page->index && index == end_index)
1599                 return 0;
1600
1601         /* skip the page at the start index */
1602         nrpages = end_index - index + 1;
1603         while (nrpages > 0) {
1604                 ret = find_get_pages_contig(inode->i_mapping, index,
1605                                      min_t(unsigned long,
1606                                      nrpages, ARRAY_SIZE(pages)), pages);
1607                 if (ret == 0) {
1608                         ret = -EAGAIN;
1609                         goto done;
1610                 }
1611                 /* now we have an array of pages, lock them all */
1612                 for (i = 0; i < ret; i++) {
1613                         /*
1614                          * the caller is taking responsibility for
1615                          * locked_page
1616                          */
1617                         if (pages[i] != locked_page) {
1618                                 lock_page(pages[i]);
1619                                 if (!PageDirty(pages[i]) ||
1620                                     pages[i]->mapping != inode->i_mapping) {
1621                                         ret = -EAGAIN;
1622                                         unlock_page(pages[i]);
1623                                         put_page(pages[i]);
1624                                         goto done;
1625                                 }
1626                         }
1627                         put_page(pages[i]);
1628                         pages_locked++;
1629                 }
1630                 nrpages -= ret;
1631                 index += ret;
1632                 cond_resched();
1633         }
1634         ret = 0;
1635 done:
1636         if (ret && pages_locked) {
1637                 __unlock_for_delalloc(inode, locked_page,
1638                               delalloc_start,
1639                               ((u64)(start_index + pages_locked - 1)) <<
1640                               PAGE_SHIFT);
1641         }
1642         return ret;
1643 }
1644
1645 /*
1646  * find a contiguous range of bytes in the file marked as delalloc, not
1647  * more than 'max_bytes'.  start and end are used to return the range,
1648  *
1649  * 1 is returned if we find something, 0 if nothing was in the tree
1650  */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652                                     struct extent_io_tree *tree,
1653                                     struct page *locked_page, u64 *start,
1654                                     u64 *end, u64 max_bytes)
1655 {
1656         u64 delalloc_start;
1657         u64 delalloc_end;
1658         u64 found;
1659         struct extent_state *cached_state = NULL;
1660         int ret;
1661         int loops = 0;
1662
1663 again:
1664         /* step one, find a bunch of delalloc bytes starting at start */
1665         delalloc_start = *start;
1666         delalloc_end = 0;
1667         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668                                     max_bytes, &cached_state);
1669         if (!found || delalloc_end <= *start) {
1670                 *start = delalloc_start;
1671                 *end = delalloc_end;
1672                 free_extent_state(cached_state);
1673                 return 0;
1674         }
1675
1676         /*
1677          * start comes from the offset of locked_page.  We have to lock
1678          * pages in order, so we can't process delalloc bytes before
1679          * locked_page
1680          */
1681         if (delalloc_start < *start)
1682                 delalloc_start = *start;
1683
1684         /*
1685          * make sure to limit the number of pages we try to lock down
1686          */
1687         if (delalloc_end + 1 - delalloc_start > max_bytes)
1688                 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690         /* step two, lock all the pages after the page that has start */
1691         ret = lock_delalloc_pages(inode, locked_page,
1692                                   delalloc_start, delalloc_end);
1693         if (ret == -EAGAIN) {
1694                 /* some of the pages are gone, lets avoid looping by
1695                  * shortening the size of the delalloc range we're searching
1696                  */
1697                 free_extent_state(cached_state);
1698                 cached_state = NULL;
1699                 if (!loops) {
1700                         max_bytes = PAGE_SIZE;
1701                         loops = 1;
1702                         goto again;
1703                 } else {
1704                         found = 0;
1705                         goto out_failed;
1706                 }
1707         }
1708         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710         /* step three, lock the state bits for the whole range */
1711         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713         /* then test to make sure it is all still delalloc */
1714         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715                              EXTENT_DELALLOC, 1, cached_state);
1716         if (!ret) {
1717                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718                                      &cached_state, GFP_NOFS);
1719                 __unlock_for_delalloc(inode, locked_page,
1720                               delalloc_start, delalloc_end);
1721                 cond_resched();
1722                 goto again;
1723         }
1724         free_extent_state(cached_state);
1725         *start = delalloc_start;
1726         *end = delalloc_end;
1727 out_failed:
1728         return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732                                  struct page *locked_page,
1733                                  unsigned clear_bits,
1734                                  unsigned long page_ops)
1735 {
1736         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737         int ret;
1738         struct page *pages[16];
1739         unsigned long index = start >> PAGE_SHIFT;
1740         unsigned long end_index = end >> PAGE_SHIFT;
1741         unsigned long nr_pages = end_index - index + 1;
1742         int i;
1743
1744         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745         if (page_ops == 0)
1746                 return;
1747
1748         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749                 mapping_set_error(inode->i_mapping, -EIO);
1750
1751         while (nr_pages > 0) {
1752                 ret = find_get_pages_contig(inode->i_mapping, index,
1753                                      min_t(unsigned long,
1754                                      nr_pages, ARRAY_SIZE(pages)), pages);
1755                 for (i = 0; i < ret; i++) {
1756
1757                         if (page_ops & PAGE_SET_PRIVATE2)
1758                                 SetPagePrivate2(pages[i]);
1759
1760                         if (pages[i] == locked_page) {
1761                                 put_page(pages[i]);
1762                                 continue;
1763                         }
1764                         if (page_ops & PAGE_CLEAR_DIRTY)
1765                                 clear_page_dirty_for_io(pages[i]);
1766                         if (page_ops & PAGE_SET_WRITEBACK)
1767                                 set_page_writeback(pages[i]);
1768                         if (page_ops & PAGE_SET_ERROR)
1769                                 SetPageError(pages[i]);
1770                         if (page_ops & PAGE_END_WRITEBACK)
1771                                 end_page_writeback(pages[i]);
1772                         if (page_ops & PAGE_UNLOCK)
1773                                 unlock_page(pages[i]);
1774                         put_page(pages[i]);
1775                 }
1776                 nr_pages -= ret;
1777                 index += ret;
1778                 cond_resched();
1779         }
1780 }
1781
1782 /*
1783  * count the number of bytes in the tree that have a given bit(s)
1784  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1785  * cached.  The total number found is returned.
1786  */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788                      u64 *start, u64 search_end, u64 max_bytes,
1789                      unsigned bits, int contig)
1790 {
1791         struct rb_node *node;
1792         struct extent_state *state;
1793         u64 cur_start = *start;
1794         u64 total_bytes = 0;
1795         u64 last = 0;
1796         int found = 0;
1797
1798         if (WARN_ON(search_end <= cur_start))
1799                 return 0;
1800
1801         spin_lock(&tree->lock);
1802         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803                 total_bytes = tree->dirty_bytes;
1804                 goto out;
1805         }
1806         /*
1807          * this search will find all the extents that end after
1808          * our range starts.
1809          */
1810         node = tree_search(tree, cur_start);
1811         if (!node)
1812                 goto out;
1813
1814         while (1) {
1815                 state = rb_entry(node, struct extent_state, rb_node);
1816                 if (state->start > search_end)
1817                         break;
1818                 if (contig && found && state->start > last + 1)
1819                         break;
1820                 if (state->end >= cur_start && (state->state & bits) == bits) {
1821                         total_bytes += min(search_end, state->end) + 1 -
1822                                        max(cur_start, state->start);
1823                         if (total_bytes >= max_bytes)
1824                                 break;
1825                         if (!found) {
1826                                 *start = max(cur_start, state->start);
1827                                 found = 1;
1828                         }
1829                         last = state->end;
1830                 } else if (contig && found) {
1831                         break;
1832                 }
1833                 node = rb_next(node);
1834                 if (!node)
1835                         break;
1836         }
1837 out:
1838         spin_unlock(&tree->lock);
1839         return total_bytes;
1840 }
1841
1842 /*
1843  * set the private field for a given byte offset in the tree.  If there isn't
1844  * an extent_state there already, this does nothing.
1845  */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847                 struct io_failure_record *failrec)
1848 {
1849         struct rb_node *node;
1850         struct extent_state *state;
1851         int ret = 0;
1852
1853         spin_lock(&tree->lock);
1854         /*
1855          * this search will find all the extents that end after
1856          * our range starts.
1857          */
1858         node = tree_search(tree, start);
1859         if (!node) {
1860                 ret = -ENOENT;
1861                 goto out;
1862         }
1863         state = rb_entry(node, struct extent_state, rb_node);
1864         if (state->start != start) {
1865                 ret = -ENOENT;
1866                 goto out;
1867         }
1868         state->failrec = failrec;
1869 out:
1870         spin_unlock(&tree->lock);
1871         return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875                 struct io_failure_record **failrec)
1876 {
1877         struct rb_node *node;
1878         struct extent_state *state;
1879         int ret = 0;
1880
1881         spin_lock(&tree->lock);
1882         /*
1883          * this search will find all the extents that end after
1884          * our range starts.
1885          */
1886         node = tree_search(tree, start);
1887         if (!node) {
1888                 ret = -ENOENT;
1889                 goto out;
1890         }
1891         state = rb_entry(node, struct extent_state, rb_node);
1892         if (state->start != start) {
1893                 ret = -ENOENT;
1894                 goto out;
1895         }
1896         *failrec = state->failrec;
1897 out:
1898         spin_unlock(&tree->lock);
1899         return ret;
1900 }
1901
1902 /*
1903  * searches a range in the state tree for a given mask.
1904  * If 'filled' == 1, this returns 1 only if every extent in the tree
1905  * has the bits set.  Otherwise, 1 is returned if any bit in the
1906  * range is found set.
1907  */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909                    unsigned bits, int filled, struct extent_state *cached)
1910 {
1911         struct extent_state *state = NULL;
1912         struct rb_node *node;
1913         int bitset = 0;
1914
1915         spin_lock(&tree->lock);
1916         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917             cached->end > start)
1918                 node = &cached->rb_node;
1919         else
1920                 node = tree_search(tree, start);
1921         while (node && start <= end) {
1922                 state = rb_entry(node, struct extent_state, rb_node);
1923
1924                 if (filled && state->start > start) {
1925                         bitset = 0;
1926                         break;
1927                 }
1928
1929                 if (state->start > end)
1930                         break;
1931
1932                 if (state->state & bits) {
1933                         bitset = 1;
1934                         if (!filled)
1935                                 break;
1936                 } else if (filled) {
1937                         bitset = 0;
1938                         break;
1939                 }
1940
1941                 if (state->end == (u64)-1)
1942                         break;
1943
1944                 start = state->end + 1;
1945                 if (start > end)
1946                         break;
1947                 node = rb_next(node);
1948                 if (!node) {
1949                         if (filled)
1950                                 bitset = 0;
1951                         break;
1952                 }
1953         }
1954         spin_unlock(&tree->lock);
1955         return bitset;
1956 }
1957
1958 /*
1959  * helper function to set a given page up to date if all the
1960  * extents in the tree for that page are up to date
1961  */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964         u64 start = page_offset(page);
1965         u64 end = start + PAGE_SIZE - 1;
1966         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967                 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972         int ret;
1973         int err = 0;
1974         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976         set_state_failrec(failure_tree, rec->start, NULL);
1977         ret = clear_extent_bits(failure_tree, rec->start,
1978                                 rec->start + rec->len - 1,
1979                                 EXTENT_LOCKED | EXTENT_DIRTY);
1980         if (ret)
1981                 err = ret;
1982
1983         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984                                 rec->start + rec->len - 1,
1985                                 EXTENT_DAMAGED);
1986         if (ret && !err)
1987                 err = ret;
1988
1989         kfree(rec);
1990         return err;
1991 }
1992
1993 /*
1994  * this bypasses the standard btrfs submit functions deliberately, as
1995  * the standard behavior is to write all copies in a raid setup. here we only
1996  * want to write the one bad copy. so we do the mapping for ourselves and issue
1997  * submit_bio directly.
1998  * to avoid any synchronization issues, wait for the data after writing, which
1999  * actually prevents the read that triggered the error from finishing.
2000  * currently, there can be no more than two copies of every data bit. thus,
2001  * exactly one rewrite is required.
2002  */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004                       struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007         struct bio *bio;
2008         struct btrfs_device *dev;
2009         u64 map_length = 0;
2010         u64 sector;
2011         struct btrfs_bio *bbio = NULL;
2012         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013         int ret;
2014
2015         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016         BUG_ON(!mirror_num);
2017
2018         /* we can't repair anything in raid56 yet */
2019         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020                 return 0;
2021
2022         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023         if (!bio)
2024                 return -EIO;
2025         bio->bi_iter.bi_size = 0;
2026         map_length = length;
2027
2028         /*
2029          * Avoid races with device replace and make sure our bbio has devices
2030          * associated to its stripes that don't go away while we are doing the
2031          * read repair operation.
2032          */
2033         btrfs_bio_counter_inc_blocked(fs_info);
2034         ret = btrfs_map_block(fs_info, WRITE, logical,
2035                               &map_length, &bbio, mirror_num);
2036         if (ret) {
2037                 btrfs_bio_counter_dec(fs_info);
2038                 bio_put(bio);
2039                 return -EIO;
2040         }
2041         BUG_ON(mirror_num != bbio->mirror_num);
2042         sector = bbio->stripes[mirror_num-1].physical >> 9;
2043         bio->bi_iter.bi_sector = sector;
2044         dev = bbio->stripes[mirror_num-1].dev;
2045         btrfs_put_bbio(bbio);
2046         if (!dev || !dev->bdev || !dev->writeable) {
2047                 btrfs_bio_counter_dec(fs_info);
2048                 bio_put(bio);
2049                 return -EIO;
2050         }
2051         bio->bi_bdev = dev->bdev;
2052         bio->bi_rw = WRITE_SYNC;
2053         bio_add_page(bio, page, length, pg_offset);
2054
2055         if (btrfsic_submit_bio_wait(bio)) {
2056                 /* try to remap that extent elsewhere? */
2057                 btrfs_bio_counter_dec(fs_info);
2058                 bio_put(bio);
2059                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2060                 return -EIO;
2061         }
2062
2063         btrfs_info_rl_in_rcu(fs_info,
2064                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2065                                   btrfs_ino(inode), start,
2066                                   rcu_str_deref(dev->name), sector);
2067         btrfs_bio_counter_dec(fs_info);
2068         bio_put(bio);
2069         return 0;
2070 }
2071
2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073                          int mirror_num)
2074 {
2075         u64 start = eb->start;
2076         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2077         int ret = 0;
2078
2079         if (root->fs_info->sb->s_flags & MS_RDONLY)
2080                 return -EROFS;
2081
2082         for (i = 0; i < num_pages; i++) {
2083                 struct page *p = eb->pages[i];
2084
2085                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2086                                         PAGE_SIZE, start, p,
2087                                         start - page_offset(p), mirror_num);
2088                 if (ret)
2089                         break;
2090                 start += PAGE_SIZE;
2091         }
2092
2093         return ret;
2094 }
2095
2096 /*
2097  * each time an IO finishes, we do a fast check in the IO failure tree
2098  * to see if we need to process or clean up an io_failure_record
2099  */
2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101                      unsigned int pg_offset)
2102 {
2103         u64 private;
2104         struct io_failure_record *failrec;
2105         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106         struct extent_state *state;
2107         int num_copies;
2108         int ret;
2109
2110         private = 0;
2111         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2113         if (!ret)
2114                 return 0;
2115
2116         ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117                         &failrec);
2118         if (ret)
2119                 return 0;
2120
2121         BUG_ON(!failrec->this_mirror);
2122
2123         if (failrec->in_validation) {
2124                 /* there was no real error, just free the record */
2125                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126                          failrec->start);
2127                 goto out;
2128         }
2129         if (fs_info->sb->s_flags & MS_RDONLY)
2130                 goto out;
2131
2132         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134                                             failrec->start,
2135                                             EXTENT_LOCKED);
2136         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138         if (state && state->start <= failrec->start &&
2139             state->end >= failrec->start + failrec->len - 1) {
2140                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141                                               failrec->len);
2142                 if (num_copies > 1)  {
2143                         repair_io_failure(inode, start, failrec->len,
2144                                           failrec->logical, page,
2145                                           pg_offset, failrec->failed_mirror);
2146                 }
2147         }
2148
2149 out:
2150         free_io_failure(inode, failrec);
2151
2152         return 0;
2153 }
2154
2155 /*
2156  * Can be called when
2157  * - hold extent lock
2158  * - under ordered extent
2159  * - the inode is freeing
2160  */
2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162 {
2163         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164         struct io_failure_record *failrec;
2165         struct extent_state *state, *next;
2166
2167         if (RB_EMPTY_ROOT(&failure_tree->state))
2168                 return;
2169
2170         spin_lock(&failure_tree->lock);
2171         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172         while (state) {
2173                 if (state->start > end)
2174                         break;
2175
2176                 ASSERT(state->end <= end);
2177
2178                 next = next_state(state);
2179
2180                 failrec = state->failrec;
2181                 free_extent_state(state);
2182                 kfree(failrec);
2183
2184                 state = next;
2185         }
2186         spin_unlock(&failure_tree->lock);
2187 }
2188
2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2190                 struct io_failure_record **failrec_ret)
2191 {
2192         struct io_failure_record *failrec;
2193         struct extent_map *em;
2194         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197         int ret;
2198         u64 logical;
2199
2200         ret = get_state_failrec(failure_tree, start, &failrec);
2201         if (ret) {
2202                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203                 if (!failrec)
2204                         return -ENOMEM;
2205
2206                 failrec->start = start;
2207                 failrec->len = end - start + 1;
2208                 failrec->this_mirror = 0;
2209                 failrec->bio_flags = 0;
2210                 failrec->in_validation = 0;
2211
2212                 read_lock(&em_tree->lock);
2213                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214                 if (!em) {
2215                         read_unlock(&em_tree->lock);
2216                         kfree(failrec);
2217                         return -EIO;
2218                 }
2219
2220                 if (em->start > start || em->start + em->len <= start) {
2221                         free_extent_map(em);
2222                         em = NULL;
2223                 }
2224                 read_unlock(&em_tree->lock);
2225                 if (!em) {
2226                         kfree(failrec);
2227                         return -EIO;
2228                 }
2229
2230                 logical = start - em->start;
2231                 logical = em->block_start + logical;
2232                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233                         logical = em->block_start;
2234                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235                         extent_set_compress_type(&failrec->bio_flags,
2236                                                  em->compress_type);
2237                 }
2238
2239                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240                          logical, start, failrec->len);
2241
2242                 failrec->logical = logical;
2243                 free_extent_map(em);
2244
2245                 /* set the bits in the private failure tree */
2246                 ret = set_extent_bits(failure_tree, start, end,
2247                                         EXTENT_LOCKED | EXTENT_DIRTY);
2248                 if (ret >= 0)
2249                         ret = set_state_failrec(failure_tree, start, failrec);
2250                 /* set the bits in the inode's tree */
2251                 if (ret >= 0)
2252                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2253                 if (ret < 0) {
2254                         kfree(failrec);
2255                         return ret;
2256                 }
2257         } else {
2258                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2259                          failrec->logical, failrec->start, failrec->len,
2260                          failrec->in_validation);
2261                 /*
2262                  * when data can be on disk more than twice, add to failrec here
2263                  * (e.g. with a list for failed_mirror) to make
2264                  * clean_io_failure() clean all those errors at once.
2265                  */
2266         }
2267
2268         *failrec_ret = failrec;
2269
2270         return 0;
2271 }
2272
2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274                            struct io_failure_record *failrec, int failed_mirror)
2275 {
2276         int num_copies;
2277
2278         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279                                       failrec->logical, failrec->len);
2280         if (num_copies == 1) {
2281                 /*
2282                  * we only have a single copy of the data, so don't bother with
2283                  * all the retry and error correction code that follows. no
2284                  * matter what the error is, it is very likely to persist.
2285                  */
2286                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287                          num_copies, failrec->this_mirror, failed_mirror);
2288                 return 0;
2289         }
2290
2291         /*
2292          * there are two premises:
2293          *      a) deliver good data to the caller
2294          *      b) correct the bad sectors on disk
2295          */
2296         if (failed_bio->bi_vcnt > 1) {
2297                 /*
2298                  * to fulfill b), we need to know the exact failing sectors, as
2299                  * we don't want to rewrite any more than the failed ones. thus,
2300                  * we need separate read requests for the failed bio
2301                  *
2302                  * if the following BUG_ON triggers, our validation request got
2303                  * merged. we need separate requests for our algorithm to work.
2304                  */
2305                 BUG_ON(failrec->in_validation);
2306                 failrec->in_validation = 1;
2307                 failrec->this_mirror = failed_mirror;
2308         } else {
2309                 /*
2310                  * we're ready to fulfill a) and b) alongside. get a good copy
2311                  * of the failed sector and if we succeed, we have setup
2312                  * everything for repair_io_failure to do the rest for us.
2313                  */
2314                 if (failrec->in_validation) {
2315                         BUG_ON(failrec->this_mirror != failed_mirror);
2316                         failrec->in_validation = 0;
2317                         failrec->this_mirror = 0;
2318                 }
2319                 failrec->failed_mirror = failed_mirror;
2320                 failrec->this_mirror++;
2321                 if (failrec->this_mirror == failed_mirror)
2322                         failrec->this_mirror++;
2323         }
2324
2325         if (failrec->this_mirror > num_copies) {
2326                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2327                          num_copies, failrec->this_mirror, failed_mirror);
2328                 return 0;
2329         }
2330
2331         return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336                                     struct io_failure_record *failrec,
2337                                     struct page *page, int pg_offset, int icsum,
2338                                     bio_end_io_t *endio_func, void *data)
2339 {
2340         struct bio *bio;
2341         struct btrfs_io_bio *btrfs_failed_bio;
2342         struct btrfs_io_bio *btrfs_bio;
2343
2344         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2345         if (!bio)
2346                 return NULL;
2347
2348         bio->bi_end_io = endio_func;
2349         bio->bi_iter.bi_sector = failrec->logical >> 9;
2350         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2351         bio->bi_iter.bi_size = 0;
2352         bio->bi_private = data;
2353
2354         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355         if (btrfs_failed_bio->csum) {
2356                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359                 btrfs_bio = btrfs_io_bio(bio);
2360                 btrfs_bio->csum = btrfs_bio->csum_inline;
2361                 icsum *= csum_size;
2362                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363                        csum_size);
2364         }
2365
2366         bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368         return bio;
2369 }
2370
2371 /*
2372  * this is a generic handler for readpage errors (default
2373  * readpage_io_failed_hook). if other copies exist, read those and write back
2374  * good data to the failed position. does not investigate in remapping the
2375  * failed extent elsewhere, hoping the device will be smart enough to do this as
2376  * needed
2377  */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380                               struct page *page, u64 start, u64 end,
2381                               int failed_mirror)
2382 {
2383         struct io_failure_record *failrec;
2384         struct inode *inode = page->mapping->host;
2385         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386         struct bio *bio;
2387         int read_mode;
2388         int ret;
2389
2390         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393         if (ret)
2394                 return ret;
2395
2396         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397         if (!ret) {
2398                 free_io_failure(inode, failrec);
2399                 return -EIO;
2400         }
2401
2402         if (failed_bio->bi_vcnt > 1)
2403                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404         else
2405                 read_mode = READ_SYNC;
2406
2407         phy_offset >>= inode->i_sb->s_blocksize_bits;
2408         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409                                       start - page_offset(page),
2410                                       (int)phy_offset, failed_bio->bi_end_io,
2411                                       NULL);
2412         if (!bio) {
2413                 free_io_failure(inode, failrec);
2414                 return -EIO;
2415         }
2416         bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2417
2418         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419                  read_mode, failrec->this_mirror, failrec->in_validation);
2420
2421         ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422                                          failrec->bio_flags, 0);
2423         if (ret) {
2424                 free_io_failure(inode, failrec);
2425                 bio_put(bio);
2426         }
2427
2428         return ret;
2429 }
2430
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2432
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 {
2435         int uptodate = (err == 0);
2436         struct extent_io_tree *tree;
2437         int ret = 0;
2438
2439         tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441         if (tree->ops && tree->ops->writepage_end_io_hook) {
2442                 ret = tree->ops->writepage_end_io_hook(page, start,
2443                                                end, NULL, uptodate);
2444                 if (ret)
2445                         uptodate = 0;
2446         }
2447
2448         if (!uptodate) {
2449                 ClearPageUptodate(page);
2450                 SetPageError(page);
2451                 ret = ret < 0 ? ret : -EIO;
2452                 mapping_set_error(page->mapping, ret);
2453         }
2454 }
2455
2456 /*
2457  * after a writepage IO is done, we need to:
2458  * clear the uptodate bits on error
2459  * clear the writeback bits in the extent tree for this IO
2460  * end_page_writeback if the page has no more pending IO
2461  *
2462  * Scheduling is not allowed, so the extent state tree is expected
2463  * to have one and only one object corresponding to this IO.
2464  */
2465 static void end_bio_extent_writepage(struct bio *bio)
2466 {
2467         struct bio_vec *bvec;
2468         u64 start;
2469         u64 end;
2470         int i;
2471
2472         bio_for_each_segment_all(bvec, bio, i) {
2473                 struct page *page = bvec->bv_page;
2474
2475                 /* We always issue full-page reads, but if some block
2476                  * in a page fails to read, blk_update_request() will
2477                  * advance bv_offset and adjust bv_len to compensate.
2478                  * Print a warning for nonzero offsets, and an error
2479                  * if they don't add up to a full page.  */
2480                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2482                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483                                    "partial page write in btrfs with offset %u and length %u",
2484                                         bvec->bv_offset, bvec->bv_len);
2485                         else
2486                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487                                    "incomplete page write in btrfs with offset %u and "
2488                                    "length %u",
2489                                         bvec->bv_offset, bvec->bv_len);
2490                 }
2491
2492                 start = page_offset(page);
2493                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494
2495                 end_extent_writepage(page, bio->bi_error, start, end);
2496                 end_page_writeback(page);
2497         }
2498
2499         bio_put(bio);
2500 }
2501
2502 static void
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504                               int uptodate)
2505 {
2506         struct extent_state *cached = NULL;
2507         u64 end = start + len - 1;
2508
2509         if (uptodate && tree->track_uptodate)
2510                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 }
2513
2514 /*
2515  * after a readpage IO is done, we need to:
2516  * clear the uptodate bits on error
2517  * set the uptodate bits if things worked
2518  * set the page up to date if all extents in the tree are uptodate
2519  * clear the lock bit in the extent tree
2520  * unlock the page if there are no other extents locked for it
2521  *
2522  * Scheduling is not allowed, so the extent state tree is expected
2523  * to have one and only one object corresponding to this IO.
2524  */
2525 static void end_bio_extent_readpage(struct bio *bio)
2526 {
2527         struct bio_vec *bvec;
2528         int uptodate = !bio->bi_error;
2529         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530         struct extent_io_tree *tree;
2531         u64 offset = 0;
2532         u64 start;
2533         u64 end;
2534         u64 len;
2535         u64 extent_start = 0;
2536         u64 extent_len = 0;
2537         int mirror;
2538         int ret;
2539         int i;
2540
2541         bio_for_each_segment_all(bvec, bio, i) {
2542                 struct page *page = bvec->bv_page;
2543                 struct inode *inode = page->mapping->host;
2544
2545                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2546                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547                          bio->bi_error, io_bio->mirror_num);
2548                 tree = &BTRFS_I(inode)->io_tree;
2549
2550                 /* We always issue full-page reads, but if some block
2551                  * in a page fails to read, blk_update_request() will
2552                  * advance bv_offset and adjust bv_len to compensate.
2553                  * Print a warning for nonzero offsets, and an error
2554                  * if they don't add up to a full page.  */
2555                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558                                    "partial page read in btrfs with offset %u and length %u",
2559                                         bvec->bv_offset, bvec->bv_len);
2560                         else
2561                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562                                    "incomplete page read in btrfs with offset %u and "
2563                                    "length %u",
2564                                         bvec->bv_offset, bvec->bv_len);
2565                 }
2566
2567                 start = page_offset(page);
2568                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2569                 len = bvec->bv_len;
2570
2571                 mirror = io_bio->mirror_num;
2572                 if (likely(uptodate && tree->ops &&
2573                            tree->ops->readpage_end_io_hook)) {
2574                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575                                                               page, start, end,
2576                                                               mirror);
2577                         if (ret)
2578                                 uptodate = 0;
2579                         else
2580                                 clean_io_failure(inode, start, page, 0);
2581                 }
2582
2583                 if (likely(uptodate))
2584                         goto readpage_ok;
2585
2586                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2587                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2588                         if (!ret && !bio->bi_error)
2589                                 uptodate = 1;
2590                 } else {
2591                         /*
2592                          * The generic bio_readpage_error handles errors the
2593                          * following way: If possible, new read requests are
2594                          * created and submitted and will end up in
2595                          * end_bio_extent_readpage as well (if we're lucky, not
2596                          * in the !uptodate case). In that case it returns 0 and
2597                          * we just go on with the next page in our bio. If it
2598                          * can't handle the error it will return -EIO and we
2599                          * remain responsible for that page.
2600                          */
2601                         ret = bio_readpage_error(bio, offset, page, start, end,
2602                                                  mirror);
2603                         if (ret == 0) {
2604                                 uptodate = !bio->bi_error;
2605                                 offset += len;
2606                                 continue;
2607                         }
2608                 }
2609 readpage_ok:
2610                 if (likely(uptodate)) {
2611                         loff_t i_size = i_size_read(inode);
2612                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2613                         unsigned off;
2614
2615                         /* Zero out the end if this page straddles i_size */
2616                         off = i_size & (PAGE_SIZE-1);
2617                         if (page->index == end_index && off)
2618                                 zero_user_segment(page, off, PAGE_SIZE);
2619                         SetPageUptodate(page);
2620                 } else {
2621                         ClearPageUptodate(page);
2622                         SetPageError(page);
2623                 }
2624                 unlock_page(page);
2625                 offset += len;
2626
2627                 if (unlikely(!uptodate)) {
2628                         if (extent_len) {
2629                                 endio_readpage_release_extent(tree,
2630                                                               extent_start,
2631                                                               extent_len, 1);
2632                                 extent_start = 0;
2633                                 extent_len = 0;
2634                         }
2635                         endio_readpage_release_extent(tree, start,
2636                                                       end - start + 1, 0);
2637                 } else if (!extent_len) {
2638                         extent_start = start;
2639                         extent_len = end + 1 - start;
2640                 } else if (extent_start + extent_len == start) {
2641                         extent_len += end + 1 - start;
2642                 } else {
2643                         endio_readpage_release_extent(tree, extent_start,
2644                                                       extent_len, uptodate);
2645                         extent_start = start;
2646                         extent_len = end + 1 - start;
2647                 }
2648         }
2649
2650         if (extent_len)
2651                 endio_readpage_release_extent(tree, extent_start, extent_len,
2652                                               uptodate);
2653         if (io_bio->end_io)
2654                 io_bio->end_io(io_bio, bio->bi_error);
2655         bio_put(bio);
2656 }
2657
2658 /*
2659  * this allocates from the btrfs_bioset.  We're returning a bio right now
2660  * but you can call btrfs_io_bio for the appropriate container_of magic
2661  */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664                 gfp_t gfp_flags)
2665 {
2666         struct btrfs_io_bio *btrfs_bio;
2667         struct bio *bio;
2668
2669         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670
2671         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672                 while (!bio && (nr_vecs /= 2)) {
2673                         bio = bio_alloc_bioset(gfp_flags,
2674                                                nr_vecs, btrfs_bioset);
2675                 }
2676         }
2677
2678         if (bio) {
2679                 bio->bi_bdev = bdev;
2680                 bio->bi_iter.bi_sector = first_sector;
2681                 btrfs_bio = btrfs_io_bio(bio);
2682                 btrfs_bio->csum = NULL;
2683                 btrfs_bio->csum_allocated = NULL;
2684                 btrfs_bio->end_io = NULL;
2685         }
2686         return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691         struct btrfs_io_bio *btrfs_bio;
2692         struct bio *new;
2693
2694         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695         if (new) {
2696                 btrfs_bio = btrfs_io_bio(new);
2697                 btrfs_bio->csum = NULL;
2698                 btrfs_bio->csum_allocated = NULL;
2699                 btrfs_bio->end_io = NULL;
2700
2701 #ifdef CONFIG_BLK_CGROUP
2702                 /* FIXME, put this into bio_clone_bioset */
2703                 if (bio->bi_css)
2704                         bio_associate_blkcg(new, bio->bi_css);
2705 #endif
2706         }
2707         return new;
2708 }
2709
2710 /* this also allocates from the btrfs_bioset */
2711 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2712 {
2713         struct btrfs_io_bio *btrfs_bio;
2714         struct bio *bio;
2715
2716         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2717         if (bio) {
2718                 btrfs_bio = btrfs_io_bio(bio);
2719                 btrfs_bio->csum = NULL;
2720                 btrfs_bio->csum_allocated = NULL;
2721                 btrfs_bio->end_io = NULL;
2722         }
2723         return bio;
2724 }
2725
2726
2727 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2728                                        unsigned long bio_flags)
2729 {
2730         int ret = 0;
2731         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732         struct page *page = bvec->bv_page;
2733         struct extent_io_tree *tree = bio->bi_private;
2734         u64 start;
2735
2736         start = page_offset(page) + bvec->bv_offset;
2737
2738         bio->bi_private = NULL;
2739         bio_get(bio);
2740
2741         if (tree->ops && tree->ops->submit_bio_hook)
2742                 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2743                                            mirror_num, bio_flags, start);
2744         else
2745                 btrfsic_submit_bio(bio);
2746
2747         bio_put(bio);
2748         return ret;
2749 }
2750
2751 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2752                      unsigned long offset, size_t size, struct bio *bio,
2753                      unsigned long bio_flags)
2754 {
2755         int ret = 0;
2756         if (tree->ops && tree->ops->merge_bio_hook)
2757                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2758                                                 bio_flags);
2759         BUG_ON(ret < 0);
2760         return ret;
2761
2762 }
2763
2764 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2765                               struct writeback_control *wbc,
2766                               struct page *page, sector_t sector,
2767                               size_t size, unsigned long offset,
2768                               struct block_device *bdev,
2769                               struct bio **bio_ret,
2770                               unsigned long max_pages,
2771                               bio_end_io_t end_io_func,
2772                               int mirror_num,
2773                               unsigned long prev_bio_flags,
2774                               unsigned long bio_flags,
2775                               bool force_bio_submit)
2776 {
2777         int ret = 0;
2778         struct bio *bio;
2779         int contig = 0;
2780         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2781         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782
2783         if (bio_ret && *bio_ret) {
2784                 bio = *bio_ret;
2785                 if (old_compressed)
2786                         contig = bio->bi_iter.bi_sector == sector;
2787                 else
2788                         contig = bio_end_sector(bio) == sector;
2789
2790                 if (prev_bio_flags != bio_flags || !contig ||
2791                     force_bio_submit ||
2792                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2793                     bio_add_page(bio, page, page_size, offset) < page_size) {
2794                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2795                         if (ret < 0) {
2796                                 *bio_ret = NULL;
2797                                 return ret;
2798                         }
2799                         bio = NULL;
2800                 } else {
2801                         if (wbc)
2802                                 wbc_account_io(wbc, page, page_size);
2803                         return 0;
2804                 }
2805         }
2806
2807         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2808                         GFP_NOFS | __GFP_HIGH);
2809         if (!bio)
2810                 return -ENOMEM;
2811
2812         bio_add_page(bio, page, page_size, offset);
2813         bio->bi_end_io = end_io_func;
2814         bio->bi_private = tree;
2815         bio_set_op_attrs(bio, op, op_flags);
2816         if (wbc) {
2817                 wbc_init_bio(wbc, bio);
2818                 wbc_account_io(wbc, page, page_size);
2819         }
2820
2821         if (bio_ret)
2822                 *bio_ret = bio;
2823         else
2824                 ret = submit_one_bio(bio, mirror_num, bio_flags);
2825
2826         return ret;
2827 }
2828
2829 static void attach_extent_buffer_page(struct extent_buffer *eb,
2830                                       struct page *page)
2831 {
2832         if (!PagePrivate(page)) {
2833                 SetPagePrivate(page);
2834                 get_page(page);
2835                 set_page_private(page, (unsigned long)eb);
2836         } else {
2837                 WARN_ON(page->private != (unsigned long)eb);
2838         }
2839 }
2840
2841 void set_page_extent_mapped(struct page *page)
2842 {
2843         if (!PagePrivate(page)) {
2844                 SetPagePrivate(page);
2845                 get_page(page);
2846                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2847         }
2848 }
2849
2850 static struct extent_map *
2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852                  u64 start, u64 len, get_extent_t *get_extent,
2853                  struct extent_map **em_cached)
2854 {
2855         struct extent_map *em;
2856
2857         if (em_cached && *em_cached) {
2858                 em = *em_cached;
2859                 if (extent_map_in_tree(em) && start >= em->start &&
2860                     start < extent_map_end(em)) {
2861                         atomic_inc(&em->refs);
2862                         return em;
2863                 }
2864
2865                 free_extent_map(em);
2866                 *em_cached = NULL;
2867         }
2868
2869         em = get_extent(inode, page, pg_offset, start, len, 0);
2870         if (em_cached && !IS_ERR_OR_NULL(em)) {
2871                 BUG_ON(*em_cached);
2872                 atomic_inc(&em->refs);
2873                 *em_cached = em;
2874         }
2875         return em;
2876 }
2877 /*
2878  * basic readpage implementation.  Locked extent state structs are inserted
2879  * into the tree that are removed when the IO is done (by the end_io
2880  * handlers)
2881  * XXX JDM: This needs looking at to ensure proper page locking
2882  */
2883 static int __do_readpage(struct extent_io_tree *tree,
2884                          struct page *page,
2885                          get_extent_t *get_extent,
2886                          struct extent_map **em_cached,
2887                          struct bio **bio, int mirror_num,
2888                          unsigned long *bio_flags, int read_flags,
2889                          u64 *prev_em_start)
2890 {
2891         struct inode *inode = page->mapping->host;
2892         u64 start = page_offset(page);
2893         u64 page_end = start + PAGE_SIZE - 1;
2894         u64 end;
2895         u64 cur = start;
2896         u64 extent_offset;
2897         u64 last_byte = i_size_read(inode);
2898         u64 block_start;
2899         u64 cur_end;
2900         sector_t sector;
2901         struct extent_map *em;
2902         struct block_device *bdev;
2903         int ret;
2904         int nr = 0;
2905         size_t pg_offset = 0;
2906         size_t iosize;
2907         size_t disk_io_size;
2908         size_t blocksize = inode->i_sb->s_blocksize;
2909         unsigned long this_bio_flag = 0;
2910
2911         set_page_extent_mapped(page);
2912
2913         end = page_end;
2914         if (!PageUptodate(page)) {
2915                 if (cleancache_get_page(page) == 0) {
2916                         BUG_ON(blocksize != PAGE_SIZE);
2917                         unlock_extent(tree, start, end);
2918                         goto out;
2919                 }
2920         }
2921
2922         if (page->index == last_byte >> PAGE_SHIFT) {
2923                 char *userpage;
2924                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2925
2926                 if (zero_offset) {
2927                         iosize = PAGE_SIZE - zero_offset;
2928                         userpage = kmap_atomic(page);
2929                         memset(userpage + zero_offset, 0, iosize);
2930                         flush_dcache_page(page);
2931                         kunmap_atomic(userpage);
2932                 }
2933         }
2934         while (cur <= end) {
2935                 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936                 bool force_bio_submit = false;
2937
2938                 if (cur >= last_byte) {
2939                         char *userpage;
2940                         struct extent_state *cached = NULL;
2941
2942                         iosize = PAGE_SIZE - pg_offset;
2943                         userpage = kmap_atomic(page);
2944                         memset(userpage + pg_offset, 0, iosize);
2945                         flush_dcache_page(page);
2946                         kunmap_atomic(userpage);
2947                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2948                                             &cached, GFP_NOFS);
2949                         unlock_extent_cached(tree, cur,
2950                                              cur + iosize - 1,
2951                                              &cached, GFP_NOFS);
2952                         break;
2953                 }
2954                 em = __get_extent_map(inode, page, pg_offset, cur,
2955                                       end - cur + 1, get_extent, em_cached);
2956                 if (IS_ERR_OR_NULL(em)) {
2957                         SetPageError(page);
2958                         unlock_extent(tree, cur, end);
2959                         break;
2960                 }
2961                 extent_offset = cur - em->start;
2962                 BUG_ON(extent_map_end(em) <= cur);
2963                 BUG_ON(end < cur);
2964
2965                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967                         extent_set_compress_type(&this_bio_flag,
2968                                                  em->compress_type);
2969                 }
2970
2971                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972                 cur_end = min(extent_map_end(em) - 1, end);
2973                 iosize = ALIGN(iosize, blocksize);
2974                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975                         disk_io_size = em->block_len;
2976                         sector = em->block_start >> 9;
2977                 } else {
2978                         sector = (em->block_start + extent_offset) >> 9;
2979                         disk_io_size = iosize;
2980                 }
2981                 bdev = em->bdev;
2982                 block_start = em->block_start;
2983                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984                         block_start = EXTENT_MAP_HOLE;
2985
2986                 /*
2987                  * If we have a file range that points to a compressed extent
2988                  * and it's followed by a consecutive file range that points to
2989                  * to the same compressed extent (possibly with a different
2990                  * offset and/or length, so it either points to the whole extent
2991                  * or only part of it), we must make sure we do not submit a
2992                  * single bio to populate the pages for the 2 ranges because
2993                  * this makes the compressed extent read zero out the pages
2994                  * belonging to the 2nd range. Imagine the following scenario:
2995                  *
2996                  *  File layout
2997                  *  [0 - 8K]                     [8K - 24K]
2998                  *    |                               |
2999                  *    |                               |
3000                  * points to extent X,         points to extent X,
3001                  * offset 4K, length of 8K     offset 0, length 16K
3002                  *
3003                  * [extent X, compressed length = 4K uncompressed length = 16K]
3004                  *
3005                  * If the bio to read the compressed extent covers both ranges,
3006                  * it will decompress extent X into the pages belonging to the
3007                  * first range and then it will stop, zeroing out the remaining
3008                  * pages that belong to the other range that points to extent X.
3009                  * So here we make sure we submit 2 bios, one for the first
3010                  * range and another one for the third range. Both will target
3011                  * the same physical extent from disk, but we can't currently
3012                  * make the compressed bio endio callback populate the pages
3013                  * for both ranges because each compressed bio is tightly
3014                  * coupled with a single extent map, and each range can have
3015                  * an extent map with a different offset value relative to the
3016                  * uncompressed data of our extent and different lengths. This
3017                  * is a corner case so we prioritize correctness over
3018                  * non-optimal behavior (submitting 2 bios for the same extent).
3019                  */
3020                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021                     prev_em_start && *prev_em_start != (u64)-1 &&
3022                     *prev_em_start != em->orig_start)
3023                         force_bio_submit = true;
3024
3025                 if (prev_em_start)
3026                         *prev_em_start = em->orig_start;
3027
3028                 free_extent_map(em);
3029                 em = NULL;
3030
3031                 /* we've found a hole, just zero and go on */
3032                 if (block_start == EXTENT_MAP_HOLE) {
3033                         char *userpage;
3034                         struct extent_state *cached = NULL;
3035
3036                         userpage = kmap_atomic(page);
3037                         memset(userpage + pg_offset, 0, iosize);
3038                         flush_dcache_page(page);
3039                         kunmap_atomic(userpage);
3040
3041                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3042                                             &cached, GFP_NOFS);
3043                         unlock_extent_cached(tree, cur,
3044                                              cur + iosize - 1,
3045                                              &cached, GFP_NOFS);
3046                         cur = cur + iosize;
3047                         pg_offset += iosize;
3048                         continue;
3049                 }
3050                 /* the get_extent function already copied into the page */
3051                 if (test_range_bit(tree, cur, cur_end,
3052                                    EXTENT_UPTODATE, 1, NULL)) {
3053                         check_page_uptodate(tree, page);
3054                         unlock_extent(tree, cur, cur + iosize - 1);
3055                         cur = cur + iosize;
3056                         pg_offset += iosize;
3057                         continue;
3058                 }
3059                 /* we have an inline extent but it didn't get marked up
3060                  * to date.  Error out
3061                  */
3062                 if (block_start == EXTENT_MAP_INLINE) {
3063                         SetPageError(page);
3064                         unlock_extent(tree, cur, cur + iosize - 1);
3065                         cur = cur + iosize;
3066                         pg_offset += iosize;
3067                         continue;
3068                 }
3069
3070                 pnr -= page->index;
3071                 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3072                                          page, sector, disk_io_size, pg_offset,
3073                                          bdev, bio, pnr,
3074                                          end_bio_extent_readpage, mirror_num,
3075                                          *bio_flags,
3076                                          this_bio_flag,
3077                                          force_bio_submit);
3078                 if (!ret) {
3079                         nr++;
3080                         *bio_flags = this_bio_flag;
3081                 } else {
3082                         SetPageError(page);
3083                         unlock_extent(tree, cur, cur + iosize - 1);
3084                 }
3085                 cur = cur + iosize;
3086                 pg_offset += iosize;
3087         }
3088 out:
3089         if (!nr) {
3090                 if (!PageError(page))
3091                         SetPageUptodate(page);
3092                 unlock_page(page);
3093         }
3094         return 0;
3095 }
3096
3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098                                              struct page *pages[], int nr_pages,
3099                                              u64 start, u64 end,
3100                                              get_extent_t *get_extent,
3101                                              struct extent_map **em_cached,
3102                                              struct bio **bio, int mirror_num,
3103                                              unsigned long *bio_flags,
3104                                              u64 *prev_em_start)
3105 {
3106         struct inode *inode;
3107         struct btrfs_ordered_extent *ordered;
3108         int index;
3109
3110         inode = pages[0]->mapping->host;
3111         while (1) {
3112                 lock_extent(tree, start, end);
3113                 ordered = btrfs_lookup_ordered_range(inode, start,
3114                                                      end - start + 1);
3115                 if (!ordered)
3116                         break;
3117                 unlock_extent(tree, start, end);
3118                 btrfs_start_ordered_extent(inode, ordered, 1);
3119                 btrfs_put_ordered_extent(ordered);
3120         }
3121
3122         for (index = 0; index < nr_pages; index++) {
3123                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124                               mirror_num, bio_flags, 0, prev_em_start);
3125                 put_page(pages[index]);
3126         }
3127 }
3128
3129 static void __extent_readpages(struct extent_io_tree *tree,
3130                                struct page *pages[],
3131                                int nr_pages, get_extent_t *get_extent,
3132                                struct extent_map **em_cached,
3133                                struct bio **bio, int mirror_num,
3134                                unsigned long *bio_flags,
3135                                u64 *prev_em_start)
3136 {
3137         u64 start = 0;
3138         u64 end = 0;
3139         u64 page_start;
3140         int index;
3141         int first_index = 0;
3142
3143         for (index = 0; index < nr_pages; index++) {
3144                 page_start = page_offset(pages[index]);
3145                 if (!end) {
3146                         start = page_start;
3147                         end = start + PAGE_SIZE - 1;
3148                         first_index = index;
3149                 } else if (end + 1 == page_start) {
3150                         end += PAGE_SIZE;
3151                 } else {
3152                         __do_contiguous_readpages(tree, &pages[first_index],
3153                                                   index - first_index, start,
3154                                                   end, get_extent, em_cached,
3155                                                   bio, mirror_num, bio_flags,
3156                                                   prev_em_start);
3157                         start = page_start;
3158                         end = start + PAGE_SIZE - 1;
3159                         first_index = index;
3160                 }
3161         }
3162
3163         if (end)
3164                 __do_contiguous_readpages(tree, &pages[first_index],
3165                                           index - first_index, start,
3166                                           end, get_extent, em_cached, bio,
3167                                           mirror_num, bio_flags,
3168                                           prev_em_start);
3169 }
3170
3171 static int __extent_read_full_page(struct extent_io_tree *tree,
3172                                    struct page *page,
3173                                    get_extent_t *get_extent,
3174                                    struct bio **bio, int mirror_num,
3175                                    unsigned long *bio_flags, int read_flags)
3176 {
3177         struct inode *inode = page->mapping->host;
3178         struct btrfs_ordered_extent *ordered;
3179         u64 start = page_offset(page);
3180         u64 end = start + PAGE_SIZE - 1;
3181         int ret;
3182
3183         while (1) {
3184                 lock_extent(tree, start, end);
3185                 ordered = btrfs_lookup_ordered_range(inode, start,
3186                                                 PAGE_SIZE);
3187                 if (!ordered)
3188                         break;
3189                 unlock_extent(tree, start, end);
3190                 btrfs_start_ordered_extent(inode, ordered, 1);
3191                 btrfs_put_ordered_extent(ordered);
3192         }
3193
3194         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195                             bio_flags, read_flags, NULL);
3196         return ret;
3197 }
3198
3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200                             get_extent_t *get_extent, int mirror_num)
3201 {
3202         struct bio *bio = NULL;
3203         unsigned long bio_flags = 0;
3204         int ret;
3205
3206         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207                                       &bio_flags, 0);
3208         if (bio)
3209                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210         return ret;
3211 }
3212
3213 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214                               unsigned long nr_written)
3215 {
3216         wbc->nr_to_write -= nr_written;
3217 }
3218
3219 /*
3220  * helper for __extent_writepage, doing all of the delayed allocation setup.
3221  *
3222  * This returns 1 if our fill_delalloc function did all the work required
3223  * to write the page (copy into inline extent).  In this case the IO has
3224  * been started and the page is already unlocked.
3225  *
3226  * This returns 0 if all went well (page still locked)
3227  * This returns < 0 if there were errors (page still locked)
3228  */
3229 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230                               struct page *page, struct writeback_control *wbc,
3231                               struct extent_page_data *epd,
3232                               u64 delalloc_start,
3233                               unsigned long *nr_written)
3234 {
3235         struct extent_io_tree *tree = epd->tree;
3236         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237         u64 nr_delalloc;
3238         u64 delalloc_to_write = 0;
3239         u64 delalloc_end = 0;
3240         int ret;
3241         int page_started = 0;
3242
3243         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244                 return 0;
3245
3246         while (delalloc_end < page_end) {
3247                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248                                                page,
3249                                                &delalloc_start,
3250                                                &delalloc_end,
3251                                                BTRFS_MAX_EXTENT_SIZE);
3252                 if (nr_delalloc == 0) {
3253                         delalloc_start = delalloc_end + 1;
3254                         continue;
3255                 }
3256                 ret = tree->ops->fill_delalloc(inode, page,
3257                                                delalloc_start,
3258                                                delalloc_end,
3259                                                &page_started,
3260                                                nr_written);
3261                 /* File system has been set read-only */
3262                 if (ret) {
3263                         SetPageError(page);
3264                         /* fill_delalloc should be return < 0 for error
3265                          * but just in case, we use > 0 here meaning the
3266                          * IO is started, so we don't want to return > 0
3267                          * unless things are going well.
3268                          */
3269                         ret = ret < 0 ? ret : -EIO;
3270                         goto done;
3271                 }
3272                 /*
3273                  * delalloc_end is already one less than the total length, so
3274                  * we don't subtract one from PAGE_SIZE
3275                  */
3276                 delalloc_to_write += (delalloc_end - delalloc_start +
3277                                       PAGE_SIZE) >> PAGE_SHIFT;
3278                 delalloc_start = delalloc_end + 1;
3279         }
3280         if (wbc->nr_to_write < delalloc_to_write) {
3281                 int thresh = 8192;
3282
3283                 if (delalloc_to_write < thresh * 2)
3284                         thresh = delalloc_to_write;
3285                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286                                          thresh);
3287         }
3288
3289         /* did the fill delalloc function already unlock and start
3290          * the IO?
3291          */
3292         if (page_started) {
3293                 /*
3294                  * we've unlocked the page, so we can't update
3295                  * the mapping's writeback index, just update
3296                  * nr_to_write.
3297                  */
3298                 wbc->nr_to_write -= *nr_written;
3299                 return 1;
3300         }
3301
3302         ret = 0;
3303
3304 done:
3305         return ret;
3306 }
3307
3308 /*
3309  * helper for __extent_writepage.  This calls the writepage start hooks,
3310  * and does the loop to map the page into extents and bios.
3311  *
3312  * We return 1 if the IO is started and the page is unlocked,
3313  * 0 if all went well (page still locked)
3314  * < 0 if there were errors (page still locked)
3315  */
3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317                                  struct page *page,
3318                                  struct writeback_control *wbc,
3319                                  struct extent_page_data *epd,
3320                                  loff_t i_size,
3321                                  unsigned long nr_written,
3322                                  int write_flags, int *nr_ret)
3323 {
3324         struct extent_io_tree *tree = epd->tree;
3325         u64 start = page_offset(page);
3326         u64 page_end = start + PAGE_SIZE - 1;
3327         u64 end;
3328         u64 cur = start;
3329         u64 extent_offset;
3330         u64 block_start;
3331         u64 iosize;
3332         sector_t sector;
3333         struct extent_state *cached_state = NULL;
3334         struct extent_map *em;
3335         struct block_device *bdev;
3336         size_t pg_offset = 0;
3337         size_t blocksize;
3338         int ret = 0;
3339         int nr = 0;
3340         bool compressed;
3341
3342         if (tree->ops && tree->ops->writepage_start_hook) {
3343                 ret = tree->ops->writepage_start_hook(page, start,
3344                                                       page_end);
3345                 if (ret) {
3346                         /* Fixup worker will requeue */
3347                         if (ret == -EBUSY)
3348                                 wbc->pages_skipped++;
3349                         else
3350                                 redirty_page_for_writepage(wbc, page);
3351
3352                         update_nr_written(page, wbc, nr_written);
3353                         unlock_page(page);
3354                         ret = 1;
3355                         goto done_unlocked;
3356                 }
3357         }
3358
3359         /*
3360          * we don't want to touch the inode after unlocking the page,
3361          * so we update the mapping writeback index now
3362          */
3363         update_nr_written(page, wbc, nr_written + 1);
3364
3365         end = page_end;
3366         if (i_size <= start) {
3367                 if (tree->ops && tree->ops->writepage_end_io_hook)
3368                         tree->ops->writepage_end_io_hook(page, start,
3369                                                          page_end, NULL, 1);
3370                 goto done;
3371         }
3372
3373         blocksize = inode->i_sb->s_blocksize;
3374
3375         while (cur <= end) {
3376                 u64 em_end;
3377                 unsigned long max_nr;
3378
3379                 if (cur >= i_size) {
3380                         if (tree->ops && tree->ops->writepage_end_io_hook)
3381                                 tree->ops->writepage_end_io_hook(page, cur,
3382                                                          page_end, NULL, 1);
3383                         break;
3384                 }
3385                 em = epd->get_extent(inode, page, pg_offset, cur,
3386                                      end - cur + 1, 1);
3387                 if (IS_ERR_OR_NULL(em)) {
3388                         SetPageError(page);
3389                         ret = PTR_ERR_OR_ZERO(em);
3390                         break;
3391                 }
3392
3393                 extent_offset = cur - em->start;
3394                 em_end = extent_map_end(em);
3395                 BUG_ON(em_end <= cur);
3396                 BUG_ON(end < cur);
3397                 iosize = min(em_end - cur, end - cur + 1);
3398                 iosize = ALIGN(iosize, blocksize);
3399                 sector = (em->block_start + extent_offset) >> 9;
3400                 bdev = em->bdev;
3401                 block_start = em->block_start;
3402                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403                 free_extent_map(em);
3404                 em = NULL;
3405
3406                 /*
3407                  * compressed and inline extents are written through other
3408                  * paths in the FS
3409                  */
3410                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411                     block_start == EXTENT_MAP_INLINE) {
3412                         /*
3413                          * end_io notification does not happen here for
3414                          * compressed extents
3415                          */
3416                         if (!compressed && tree->ops &&
3417                             tree->ops->writepage_end_io_hook)
3418                                 tree->ops->writepage_end_io_hook(page, cur,
3419                                                          cur + iosize - 1,
3420                                                          NULL, 1);
3421                         else if (compressed) {
3422                                 /* we don't want to end_page_writeback on
3423                                  * a compressed extent.  this happens
3424                                  * elsewhere
3425                                  */
3426                                 nr++;
3427                         }
3428
3429                         cur += iosize;
3430                         pg_offset += iosize;
3431                         continue;
3432                 }
3433
3434                 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436                 set_range_writeback(tree, cur, cur + iosize - 1);
3437                 if (!PageWriteback(page)) {
3438                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3439                                    "page %lu not writeback, cur %llu end %llu",
3440                                page->index, cur, end);
3441                 }
3442
3443                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444                                          page, sector, iosize, pg_offset,
3445                                          bdev, &epd->bio, max_nr,
3446                                          end_bio_extent_writepage,
3447                                          0, 0, 0, false);
3448                 if (ret)
3449                         SetPageError(page);
3450
3451                 cur = cur + iosize;
3452                 pg_offset += iosize;
3453                 nr++;
3454         }
3455 done:
3456         *nr_ret = nr;
3457
3458 done_unlocked:
3459
3460         /* drop our reference on any cached states */
3461         free_extent_state(cached_state);
3462         return ret;
3463 }
3464
3465 /*
3466  * the writepage semantics are similar to regular writepage.  extent
3467  * records are inserted to lock ranges in the tree, and as dirty areas
3468  * are found, they are marked writeback.  Then the lock bits are removed
3469  * and the end_io handler clears the writeback ranges
3470  */
3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472                               void *data)
3473 {
3474         struct inode *inode = page->mapping->host;
3475         struct extent_page_data *epd = data;
3476         u64 start = page_offset(page);
3477         u64 page_end = start + PAGE_SIZE - 1;
3478         int ret;
3479         int nr = 0;
3480         size_t pg_offset = 0;
3481         loff_t i_size = i_size_read(inode);
3482         unsigned long end_index = i_size >> PAGE_SHIFT;
3483         int write_flags = 0;
3484         unsigned long nr_written = 0;
3485
3486         if (wbc->sync_mode == WB_SYNC_ALL)
3487                 write_flags = WRITE_SYNC;
3488
3489         trace___extent_writepage(page, inode, wbc);
3490
3491         WARN_ON(!PageLocked(page));
3492
3493         ClearPageError(page);
3494
3495         pg_offset = i_size & (PAGE_SIZE - 1);
3496         if (page->index > end_index ||
3497            (page->index == end_index && !pg_offset)) {
3498                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499                 unlock_page(page);
3500                 return 0;
3501         }
3502
3503         if (page->index == end_index) {
3504                 char *userpage;
3505
3506                 userpage = kmap_atomic(page);
3507                 memset(userpage + pg_offset, 0,
3508                        PAGE_SIZE - pg_offset);
3509                 kunmap_atomic(userpage);
3510                 flush_dcache_page(page);
3511         }
3512
3513         pg_offset = 0;
3514
3515         set_page_extent_mapped(page);
3516
3517         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518         if (ret == 1)
3519                 goto done_unlocked;
3520         if (ret)
3521                 goto done;
3522
3523         ret = __extent_writepage_io(inode, page, wbc, epd,
3524                                     i_size, nr_written, write_flags, &nr);
3525         if (ret == 1)
3526                 goto done_unlocked;
3527
3528 done:
3529         if (nr == 0) {
3530                 /* make sure the mapping tag for page dirty gets cleared */
3531                 set_page_writeback(page);
3532                 end_page_writeback(page);
3533         }
3534         if (PageError(page)) {
3535                 ret = ret < 0 ? ret : -EIO;
3536                 end_extent_writepage(page, ret, start, page_end);
3537         }
3538         unlock_page(page);
3539         return ret;
3540
3541 done_unlocked:
3542         return 0;
3543 }
3544
3545 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546 {
3547         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548                        TASK_UNINTERRUPTIBLE);
3549 }
3550
3551 static noinline_for_stack int
3552 lock_extent_buffer_for_io(struct extent_buffer *eb,
3553                           struct btrfs_fs_info *fs_info,
3554                           struct extent_page_data *epd)
3555 {
3556         unsigned long i, num_pages;
3557         int flush = 0;
3558         int ret = 0;
3559
3560         if (!btrfs_try_tree_write_lock(eb)) {
3561                 flush = 1;
3562                 flush_write_bio(epd);
3563                 btrfs_tree_lock(eb);
3564         }
3565
3566         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567                 btrfs_tree_unlock(eb);
3568                 if (!epd->sync_io)
3569                         return 0;
3570                 if (!flush) {
3571                         flush_write_bio(epd);
3572                         flush = 1;
3573                 }
3574                 while (1) {
3575                         wait_on_extent_buffer_writeback(eb);
3576                         btrfs_tree_lock(eb);
3577                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578                                 break;
3579                         btrfs_tree_unlock(eb);
3580                 }
3581         }
3582
3583         /*
3584          * We need to do this to prevent races in people who check if the eb is
3585          * under IO since we can end up having no IO bits set for a short period
3586          * of time.
3587          */
3588         spin_lock(&eb->refs_lock);
3589         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591                 spin_unlock(&eb->refs_lock);
3592                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594                                      -eb->len,
3595                                      fs_info->dirty_metadata_batch);
3596                 ret = 1;
3597         } else {
3598                 spin_unlock(&eb->refs_lock);
3599         }
3600
3601         btrfs_tree_unlock(eb);
3602
3603         if (!ret)
3604                 return ret;
3605
3606         num_pages = num_extent_pages(eb->start, eb->len);
3607         for (i = 0; i < num_pages; i++) {
3608                 struct page *p = eb->pages[i];
3609
3610                 if (!trylock_page(p)) {
3611                         if (!flush) {
3612                                 flush_write_bio(epd);
3613                                 flush = 1;
3614                         }
3615                         lock_page(p);
3616                 }
3617         }
3618
3619         return ret;
3620 }
3621
3622 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623 {
3624         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625         smp_mb__after_atomic();
3626         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627 }
3628
3629 static void set_btree_ioerr(struct page *page)
3630 {
3631         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3633
3634         SetPageError(page);
3635         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3636                 return;
3637
3638         /*
3639          * If writeback for a btree extent that doesn't belong to a log tree
3640          * failed, increment the counter transaction->eb_write_errors.
3641          * We do this because while the transaction is running and before it's
3642          * committing (when we call filemap_fdata[write|wait]_range against
3643          * the btree inode), we might have
3644          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3645          * returns an error or an error happens during writeback, when we're
3646          * committing the transaction we wouldn't know about it, since the pages
3647          * can be no longer dirty nor marked anymore for writeback (if a
3648          * subsequent modification to the extent buffer didn't happen before the
3649          * transaction commit), which makes filemap_fdata[write|wait]_range not
3650          * able to find the pages tagged with SetPageError at transaction
3651          * commit time. So if this happens we must abort the transaction,
3652          * otherwise we commit a super block with btree roots that point to
3653          * btree nodes/leafs whose content on disk is invalid - either garbage
3654          * or the content of some node/leaf from a past generation that got
3655          * cowed or deleted and is no longer valid.
3656          *
3657          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3658          * not be enough - we need to distinguish between log tree extents vs
3659          * non-log tree extents, and the next filemap_fdatawait_range() call
3660          * will catch and clear such errors in the mapping - and that call might
3661          * be from a log sync and not from a transaction commit. Also, checking
3662          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3663          * not done and would not be reliable - the eb might have been released
3664          * from memory and reading it back again means that flag would not be
3665          * set (since it's a runtime flag, not persisted on disk).
3666          *
3667          * Using the flags below in the btree inode also makes us achieve the
3668          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3669          * writeback for all dirty pages and before filemap_fdatawait_range()
3670          * is called, the writeback for all dirty pages had already finished
3671          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3672          * filemap_fdatawait_range() would return success, as it could not know
3673          * that writeback errors happened (the pages were no longer tagged for
3674          * writeback).
3675          */
3676         switch (eb->log_index) {
3677         case -1:
3678                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3679                 break;
3680         case 0:
3681                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3682                 break;
3683         case 1:
3684                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3685                 break;
3686         default:
3687                 BUG(); /* unexpected, logic error */
3688         }
3689 }
3690
3691 static void end_bio_extent_buffer_writepage(struct bio *bio)
3692 {
3693         struct bio_vec *bvec;
3694         struct extent_buffer *eb;
3695         int i, done;
3696
3697         bio_for_each_segment_all(bvec, bio, i) {
3698                 struct page *page = bvec->bv_page;
3699
3700                 eb = (struct extent_buffer *)page->private;
3701                 BUG_ON(!eb);
3702                 done = atomic_dec_and_test(&eb->io_pages);
3703
3704                 if (bio->bi_error ||
3705                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3706                         ClearPageUptodate(page);
3707                         set_btree_ioerr(page);
3708                 }
3709
3710                 end_page_writeback(page);
3711
3712                 if (!done)
3713                         continue;
3714
3715                 end_extent_buffer_writeback(eb);
3716         }
3717
3718         bio_put(bio);
3719 }
3720
3721 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3722                         struct btrfs_fs_info *fs_info,
3723                         struct writeback_control *wbc,
3724                         struct extent_page_data *epd)
3725 {
3726         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3727         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3728         u64 offset = eb->start;
3729         unsigned long i, num_pages;
3730         unsigned long bio_flags = 0;
3731         int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3732         int ret = 0;
3733
3734         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3735         num_pages = num_extent_pages(eb->start, eb->len);
3736         atomic_set(&eb->io_pages, num_pages);
3737         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3738                 bio_flags = EXTENT_BIO_TREE_LOG;
3739
3740         for (i = 0; i < num_pages; i++) {
3741                 struct page *p = eb->pages[i];
3742
3743                 clear_page_dirty_for_io(p);
3744                 set_page_writeback(p);
3745                 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746                                          p, offset >> 9, PAGE_SIZE, 0, bdev,
3747                                          &epd->bio, -1,
3748                                          end_bio_extent_buffer_writepage,
3749                                          0, epd->bio_flags, bio_flags, false);
3750                 epd->bio_flags = bio_flags;
3751                 if (ret) {
3752                         set_btree_ioerr(p);
3753                         end_page_writeback(p);
3754                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755                                 end_extent_buffer_writeback(eb);
3756                         ret = -EIO;
3757                         break;
3758                 }
3759                 offset += PAGE_SIZE;
3760                 update_nr_written(p, wbc, 1);
3761                 unlock_page(p);
3762         }
3763
3764         if (unlikely(ret)) {
3765                 for (; i < num_pages; i++) {
3766                         struct page *p = eb->pages[i];
3767                         clear_page_dirty_for_io(p);
3768                         unlock_page(p);
3769                 }
3770         }
3771
3772         return ret;
3773 }
3774
3775 int btree_write_cache_pages(struct address_space *mapping,
3776                                    struct writeback_control *wbc)
3777 {
3778         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780         struct extent_buffer *eb, *prev_eb = NULL;
3781         struct extent_page_data epd = {
3782                 .bio = NULL,
3783                 .tree = tree,
3784                 .extent_locked = 0,
3785                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786                 .bio_flags = 0,
3787         };
3788         int ret = 0;
3789         int done = 0;
3790         int nr_to_write_done = 0;
3791         struct pagevec pvec;
3792         int nr_pages;
3793         pgoff_t index;
3794         pgoff_t end;            /* Inclusive */
3795         int scanned = 0;
3796         int tag;
3797
3798         pagevec_init(&pvec, 0);
3799         if (wbc->range_cyclic) {
3800                 index = mapping->writeback_index; /* Start from prev offset */
3801                 end = -1;
3802         } else {
3803                 index = wbc->range_start >> PAGE_SHIFT;
3804                 end = wbc->range_end >> PAGE_SHIFT;
3805                 scanned = 1;
3806         }
3807         if (wbc->sync_mode == WB_SYNC_ALL)
3808                 tag = PAGECACHE_TAG_TOWRITE;
3809         else
3810                 tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812         if (wbc->sync_mode == WB_SYNC_ALL)
3813                 tag_pages_for_writeback(mapping, index, end);
3814         while (!done && !nr_to_write_done && (index <= end) &&
3815                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817                 unsigned i;
3818
3819                 scanned = 1;
3820                 for (i = 0; i < nr_pages; i++) {
3821                         struct page *page = pvec.pages[i];
3822
3823                         if (!PagePrivate(page))
3824                                 continue;
3825
3826                         if (!wbc->range_cyclic && page->index > end) {
3827                                 done = 1;
3828                                 break;
3829                         }
3830
3831                         spin_lock(&mapping->private_lock);
3832                         if (!PagePrivate(page)) {
3833                                 spin_unlock(&mapping->private_lock);
3834                                 continue;
3835                         }
3836
3837                         eb = (struct extent_buffer *)page->private;
3838
3839                         /*
3840                          * Shouldn't happen and normally this would be a BUG_ON
3841                          * but no sense in crashing the users box for something
3842                          * we can survive anyway.
3843                          */
3844                         if (WARN_ON(!eb)) {
3845                                 spin_unlock(&mapping->private_lock);
3846                                 continue;
3847                         }
3848
3849                         if (eb == prev_eb) {
3850                                 spin_unlock(&mapping->private_lock);
3851                                 continue;
3852                         }
3853
3854                         ret = atomic_inc_not_zero(&eb->refs);
3855                         spin_unlock(&mapping->private_lock);
3856                         if (!ret)
3857                                 continue;
3858
3859                         prev_eb = eb;
3860                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861                         if (!ret) {
3862                                 free_extent_buffer(eb);
3863                                 continue;
3864                         }
3865
3866                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3867                         if (ret) {
3868                                 done = 1;
3869                                 free_extent_buffer(eb);
3870                                 break;
3871                         }
3872                         free_extent_buffer(eb);
3873
3874                         /*
3875                          * the filesystem may choose to bump up nr_to_write.
3876                          * We have to make sure to honor the new nr_to_write
3877                          * at any time
3878                          */
3879                         nr_to_write_done = wbc->nr_to_write <= 0;
3880                 }
3881                 pagevec_release(&pvec);
3882                 cond_resched();
3883         }
3884         if (!scanned && !done) {
3885                 /*
3886                  * We hit the last page and there is more work to be done: wrap
3887                  * back to the start of the file
3888                  */
3889                 scanned = 1;
3890                 index = 0;
3891                 goto retry;
3892         }
3893         flush_write_bio(&epd);
3894         return ret;
3895 }
3896
3897 /**
3898  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3899  * @mapping: address space structure to write
3900  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901  * @writepage: function called for each page
3902  * @data: data passed to writepage function
3903  *
3904  * If a page is already under I/O, write_cache_pages() skips it, even
3905  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3906  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3907  * and msync() need to guarantee that all the data which was dirty at the time
3908  * the call was made get new I/O started against them.  If wbc->sync_mode is
3909  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910  * existing IO to complete.
3911  */
3912 static int extent_write_cache_pages(struct extent_io_tree *tree,
3913                              struct address_space *mapping,
3914                              struct writeback_control *wbc,
3915                              writepage_t writepage, void *data,
3916                              void (*flush_fn)(void *))
3917 {
3918         struct inode *inode = mapping->host;
3919         int ret = 0;
3920         int done = 0;
3921         int nr_to_write_done = 0;
3922         struct pagevec pvec;
3923         int nr_pages;
3924         pgoff_t index;
3925         pgoff_t end;            /* Inclusive */
3926         pgoff_t done_index;
3927         int range_whole = 0;
3928         int scanned = 0;
3929         int tag;
3930
3931         /*
3932          * We have to hold onto the inode so that ordered extents can do their
3933          * work when the IO finishes.  The alternative to this is failing to add
3934          * an ordered extent if the igrab() fails there and that is a huge pain
3935          * to deal with, so instead just hold onto the inode throughout the
3936          * writepages operation.  If it fails here we are freeing up the inode
3937          * anyway and we'd rather not waste our time writing out stuff that is
3938          * going to be truncated anyway.
3939          */
3940         if (!igrab(inode))
3941                 return 0;
3942
3943         pagevec_init(&pvec, 0);
3944         if (wbc->range_cyclic) {
3945                 index = mapping->writeback_index; /* Start from prev offset */
3946                 end = -1;
3947         } else {
3948                 index = wbc->range_start >> PAGE_SHIFT;
3949                 end = wbc->range_end >> PAGE_SHIFT;
3950                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951                         range_whole = 1;
3952                 scanned = 1;
3953         }
3954         if (wbc->sync_mode == WB_SYNC_ALL)
3955                 tag = PAGECACHE_TAG_TOWRITE;
3956         else
3957                 tag = PAGECACHE_TAG_DIRTY;
3958 retry:
3959         if (wbc->sync_mode == WB_SYNC_ALL)
3960                 tag_pages_for_writeback(mapping, index, end);
3961         done_index = index;
3962         while (!done && !nr_to_write_done && (index <= end) &&
3963                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3965                 unsigned i;
3966
3967                 scanned = 1;
3968                 for (i = 0; i < nr_pages; i++) {
3969                         struct page *page = pvec.pages[i];
3970
3971                         done_index = page->index;
3972                         /*
3973                          * At this point we hold neither mapping->tree_lock nor
3974                          * lock on the page itself: the page may be truncated or
3975                          * invalidated (changing page->mapping to NULL), or even
3976                          * swizzled back from swapper_space to tmpfs file
3977                          * mapping
3978                          */
3979                         if (!trylock_page(page)) {
3980                                 flush_fn(data);
3981                                 lock_page(page);
3982                         }
3983
3984                         if (unlikely(page->mapping != mapping)) {
3985                                 unlock_page(page);
3986                                 continue;
3987                         }
3988
3989                         if (!wbc->range_cyclic && page->index > end) {
3990                                 done = 1;
3991                                 unlock_page(page);
3992                                 continue;
3993                         }
3994
3995                         if (wbc->sync_mode != WB_SYNC_NONE) {
3996                                 if (PageWriteback(page))
3997                                         flush_fn(data);
3998                                 wait_on_page_writeback(page);
3999                         }
4000
4001                         if (PageWriteback(page) ||
4002                             !clear_page_dirty_for_io(page)) {
4003                                 unlock_page(page);
4004                                 continue;
4005                         }
4006
4007                         ret = (*writepage)(page, wbc, data);
4008
4009                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010                                 unlock_page(page);
4011                                 ret = 0;
4012                         }
4013                         if (ret < 0) {
4014                                 /*
4015                                  * done_index is set past this page,
4016                                  * so media errors will not choke
4017                                  * background writeout for the entire
4018                                  * file. This has consequences for
4019                                  * range_cyclic semantics (ie. it may
4020                                  * not be suitable for data integrity
4021                                  * writeout).
4022                                  */
4023                                 done_index = page->index + 1;
4024                                 done = 1;
4025                                 break;
4026                         }
4027
4028                         /*
4029                          * the filesystem may choose to bump up nr_to_write.
4030                          * We have to make sure to honor the new nr_to_write
4031                          * at any time
4032                          */
4033                         nr_to_write_done = wbc->nr_to_write <= 0;
4034                 }
4035                 pagevec_release(&pvec);
4036                 cond_resched();
4037         }
4038         if (!scanned && !done) {
4039                 /*
4040                  * We hit the last page and there is more work to be done: wrap
4041                  * back to the start of the file
4042                  */
4043                 scanned = 1;
4044                 index = 0;
4045                 goto retry;
4046         }
4047
4048         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049                 mapping->writeback_index = done_index;
4050
4051         btrfs_add_delayed_iput(inode);
4052         return ret;
4053 }
4054
4055 static void flush_epd_write_bio(struct extent_page_data *epd)
4056 {
4057         if (epd->bio) {
4058                 int ret;
4059
4060                 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061                                  epd->sync_io ? WRITE_SYNC : 0);
4062
4063                 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4064                 BUG_ON(ret < 0); /* -ENOMEM */
4065                 epd->bio = NULL;
4066         }
4067 }
4068
4069 static noinline void flush_write_bio(void *data)
4070 {
4071         struct extent_page_data *epd = data;
4072         flush_epd_write_bio(epd);
4073 }
4074
4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076                           get_extent_t *get_extent,
4077                           struct writeback_control *wbc)
4078 {
4079         int ret;
4080         struct extent_page_data epd = {
4081                 .bio = NULL,
4082                 .tree = tree,
4083                 .get_extent = get_extent,
4084                 .extent_locked = 0,
4085                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086                 .bio_flags = 0,
4087         };
4088
4089         ret = __extent_writepage(page, wbc, &epd);
4090
4091         flush_epd_write_bio(&epd);
4092         return ret;
4093 }
4094
4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096                               u64 start, u64 end, get_extent_t *get_extent,
4097                               int mode)
4098 {
4099         int ret = 0;
4100         struct address_space *mapping = inode->i_mapping;
4101         struct page *page;
4102         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103                 PAGE_SHIFT;
4104
4105         struct extent_page_data epd = {
4106                 .bio = NULL,
4107                 .tree = tree,
4108                 .get_extent = get_extent,
4109                 .extent_locked = 1,
4110                 .sync_io = mode == WB_SYNC_ALL,
4111                 .bio_flags = 0,
4112         };
4113         struct writeback_control wbc_writepages = {
4114                 .sync_mode      = mode,
4115                 .nr_to_write    = nr_pages * 2,
4116                 .range_start    = start,
4117                 .range_end      = end + 1,
4118         };
4119
4120         while (start <= end) {
4121                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4122                 if (clear_page_dirty_for_io(page))
4123                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4124                 else {
4125                         if (tree->ops && tree->ops->writepage_end_io_hook)
4126                                 tree->ops->writepage_end_io_hook(page, start,
4127                                                  start + PAGE_SIZE - 1,
4128                                                  NULL, 1);
4129                         unlock_page(page);
4130                 }
4131                 put_page(page);
4132                 start += PAGE_SIZE;
4133         }
4134
4135         flush_epd_write_bio(&epd);
4136         return ret;
4137 }
4138
4139 int extent_writepages(struct extent_io_tree *tree,
4140                       struct address_space *mapping,
4141                       get_extent_t *get_extent,
4142                       struct writeback_control *wbc)
4143 {
4144         int ret = 0;
4145         struct extent_page_data epd = {
4146                 .bio = NULL,
4147                 .tree = tree,
4148                 .get_extent = get_extent,
4149                 .extent_locked = 0,
4150                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4151                 .bio_flags = 0,
4152         };
4153
4154         ret = extent_write_cache_pages(tree, mapping, wbc,
4155                                        __extent_writepage, &epd,
4156                                        flush_write_bio);
4157         flush_epd_write_bio(&epd);
4158         return ret;
4159 }
4160
4161 int extent_readpages(struct extent_io_tree *tree,
4162                      struct address_space *mapping,
4163                      struct list_head *pages, unsigned nr_pages,
4164                      get_extent_t get_extent)
4165 {
4166         struct bio *bio = NULL;
4167         unsigned page_idx;
4168         unsigned long bio_flags = 0;
4169         struct page *pagepool[16];
4170         struct page *page;
4171         struct extent_map *em_cached = NULL;
4172         int nr = 0;
4173         u64 prev_em_start = (u64)-1;
4174
4175         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4176                 page = list_entry(pages->prev, struct page, lru);
4177
4178                 prefetchw(&page->flags);
4179                 list_del(&page->lru);
4180                 if (add_to_page_cache_lru(page, mapping,
4181                                         page->index, GFP_NOFS)) {
4182                         put_page(page);
4183                         continue;
4184                 }
4185
4186                 pagepool[nr++] = page;
4187                 if (nr < ARRAY_SIZE(pagepool))
4188                         continue;
4189                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4190                                    &bio, 0, &bio_flags, &prev_em_start);
4191                 nr = 0;
4192         }
4193         if (nr)
4194                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4195                                    &bio, 0, &bio_flags, &prev_em_start);
4196
4197         if (em_cached)
4198                 free_extent_map(em_cached);
4199
4200         BUG_ON(!list_empty(pages));
4201         if (bio)
4202                 return submit_one_bio(bio, 0, bio_flags);
4203         return 0;
4204 }
4205
4206 /*
4207  * basic invalidatepage code, this waits on any locked or writeback
4208  * ranges corresponding to the page, and then deletes any extent state
4209  * records from the tree
4210  */
4211 int extent_invalidatepage(struct extent_io_tree *tree,
4212                           struct page *page, unsigned long offset)
4213 {
4214         struct extent_state *cached_state = NULL;
4215         u64 start = page_offset(page);
4216         u64 end = start + PAGE_SIZE - 1;
4217         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218
4219         start += ALIGN(offset, blocksize);
4220         if (start > end)
4221                 return 0;
4222
4223         lock_extent_bits(tree, start, end, &cached_state);
4224         wait_on_page_writeback(page);
4225         clear_extent_bit(tree, start, end,
4226                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227                          EXTENT_DO_ACCOUNTING,
4228                          1, 1, &cached_state, GFP_NOFS);
4229         return 0;
4230 }
4231
4232 /*
4233  * a helper for releasepage, this tests for areas of the page that
4234  * are locked or under IO and drops the related state bits if it is safe
4235  * to drop the page.
4236  */
4237 static int try_release_extent_state(struct extent_map_tree *map,
4238                                     struct extent_io_tree *tree,
4239                                     struct page *page, gfp_t mask)
4240 {
4241         u64 start = page_offset(page);
4242         u64 end = start + PAGE_SIZE - 1;
4243         int ret = 1;
4244
4245         if (test_range_bit(tree, start, end,
4246                            EXTENT_IOBITS, 0, NULL))
4247                 ret = 0;
4248         else {
4249                 if ((mask & GFP_NOFS) == GFP_NOFS)
4250                         mask = GFP_NOFS;
4251                 /*
4252                  * at this point we can safely clear everything except the
4253                  * locked bit and the nodatasum bit
4254                  */
4255                 ret = clear_extent_bit(tree, start, end,
4256                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4257                                  0, 0, NULL, mask);
4258
4259                 /* if clear_extent_bit failed for enomem reasons,
4260                  * we can't allow the release to continue.
4261                  */
4262                 if (ret < 0)
4263                         ret = 0;
4264                 else
4265                         ret = 1;
4266         }
4267         return ret;
4268 }
4269
4270 /*
4271  * a helper for releasepage.  As long as there are no locked extents
4272  * in the range corresponding to the page, both state records and extent
4273  * map records are removed
4274  */
4275 int try_release_extent_mapping(struct extent_map_tree *map,
4276                                struct extent_io_tree *tree, struct page *page,
4277                                gfp_t mask)
4278 {
4279         struct extent_map *em;
4280         u64 start = page_offset(page);
4281         u64 end = start + PAGE_SIZE - 1;
4282
4283         if (gfpflags_allow_blocking(mask) &&
4284             page->mapping->host->i_size > SZ_16M) {
4285                 u64 len;
4286                 while (start <= end) {
4287                         len = end - start + 1;
4288                         write_lock(&map->lock);
4289                         em = lookup_extent_mapping(map, start, len);
4290                         if (!em) {
4291                                 write_unlock(&map->lock);
4292                                 break;
4293                         }
4294                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4295                             em->start != start) {
4296                                 write_unlock(&map->lock);
4297                                 free_extent_map(em);
4298                                 break;
4299                         }
4300                         if (!test_range_bit(tree, em->start,
4301                                             extent_map_end(em) - 1,
4302                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4303                                             0, NULL)) {
4304                                 remove_extent_mapping(map, em);
4305                                 /* once for the rb tree */
4306                                 free_extent_map(em);
4307                         }
4308                         start = extent_map_end(em);
4309                         write_unlock(&map->lock);
4310
4311                         /* once for us */
4312                         free_extent_map(em);
4313                 }
4314         }
4315         return try_release_extent_state(map, tree, page, mask);
4316 }
4317
4318 /*
4319  * helper function for fiemap, which doesn't want to see any holes.
4320  * This maps until we find something past 'last'
4321  */
4322 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4323                                                 u64 offset,
4324                                                 u64 last,
4325                                                 get_extent_t *get_extent)
4326 {
4327         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4328         struct extent_map *em;
4329         u64 len;
4330
4331         if (offset >= last)
4332                 return NULL;
4333
4334         while (1) {
4335                 len = last - offset;
4336                 if (len == 0)
4337                         break;
4338                 len = ALIGN(len, sectorsize);
4339                 em = get_extent(inode, NULL, 0, offset, len, 0);
4340                 if (IS_ERR_OR_NULL(em))
4341                         return em;
4342
4343                 /* if this isn't a hole return it */
4344                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4345                     em->block_start != EXTENT_MAP_HOLE) {
4346                         return em;
4347                 }
4348
4349                 /* this is a hole, advance to the next extent */
4350                 offset = extent_map_end(em);
4351                 free_extent_map(em);
4352                 if (offset >= last)
4353                         break;
4354         }
4355         return NULL;
4356 }
4357
4358 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4359                 __u64 start, __u64 len, get_extent_t *get_extent)
4360 {
4361         int ret = 0;
4362         u64 off = start;
4363         u64 max = start + len;
4364         u32 flags = 0;
4365         u32 found_type;
4366         u64 last;
4367         u64 last_for_get_extent = 0;
4368         u64 disko = 0;
4369         u64 isize = i_size_read(inode);
4370         struct btrfs_key found_key;
4371         struct extent_map *em = NULL;
4372         struct extent_state *cached_state = NULL;
4373         struct btrfs_path *path;
4374         struct btrfs_root *root = BTRFS_I(inode)->root;
4375         int end = 0;
4376         u64 em_start = 0;
4377         u64 em_len = 0;
4378         u64 em_end = 0;
4379
4380         if (len == 0)
4381                 return -EINVAL;
4382
4383         path = btrfs_alloc_path();
4384         if (!path)
4385                 return -ENOMEM;
4386         path->leave_spinning = 1;
4387
4388         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4389         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4390
4391         /*
4392          * lookup the last file extent.  We're not using i_size here
4393          * because there might be preallocation past i_size
4394          */
4395         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4396                                        0);
4397         if (ret < 0) {
4398                 btrfs_free_path(path);
4399                 return ret;
4400         } else {
4401                 WARN_ON(!ret);
4402                 if (ret == 1)
4403                         ret = 0;
4404         }
4405
4406         path->slots[0]--;
4407         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4408         found_type = found_key.type;
4409
4410         /* No extents, but there might be delalloc bits */
4411         if (found_key.objectid != btrfs_ino(inode) ||
4412             found_type != BTRFS_EXTENT_DATA_KEY) {
4413                 /* have to trust i_size as the end */
4414                 last = (u64)-1;
4415                 last_for_get_extent = isize;
4416         } else {
4417                 /*
4418                  * remember the start of the last extent.  There are a
4419                  * bunch of different factors that go into the length of the
4420                  * extent, so its much less complex to remember where it started
4421                  */
4422                 last = found_key.offset;
4423                 last_for_get_extent = last + 1;
4424         }
4425         btrfs_release_path(path);
4426
4427         /*
4428          * we might have some extents allocated but more delalloc past those
4429          * extents.  so, we trust isize unless the start of the last extent is
4430          * beyond isize
4431          */
4432         if (last < isize) {
4433                 last = (u64)-1;
4434                 last_for_get_extent = isize;
4435         }
4436
4437         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4438                          &cached_state);
4439
4440         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4441                                    get_extent);
4442         if (!em)
4443                 goto out;
4444         if (IS_ERR(em)) {
4445                 ret = PTR_ERR(em);
4446                 goto out;
4447         }
4448
4449         while (!end) {
4450                 u64 offset_in_extent = 0;
4451
4452                 /* break if the extent we found is outside the range */
4453                 if (em->start >= max || extent_map_end(em) < off)
4454                         break;
4455
4456                 /*
4457                  * get_extent may return an extent that starts before our
4458                  * requested range.  We have to make sure the ranges
4459                  * we return to fiemap always move forward and don't
4460                  * overlap, so adjust the offsets here
4461                  */
4462                 em_start = max(em->start, off);
4463
4464                 /*
4465                  * record the offset from the start of the extent
4466                  * for adjusting the disk offset below.  Only do this if the
4467                  * extent isn't compressed since our in ram offset may be past
4468                  * what we have actually allocated on disk.
4469                  */
4470                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4471                         offset_in_extent = em_start - em->start;
4472                 em_end = extent_map_end(em);
4473                 em_len = em_end - em_start;
4474                 disko = 0;
4475                 flags = 0;
4476
4477                 /*
4478                  * bump off for our next call to get_extent
4479                  */
4480                 off = extent_map_end(em);
4481                 if (off >= max)
4482                         end = 1;
4483
4484                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4485                         end = 1;
4486                         flags |= FIEMAP_EXTENT_LAST;
4487                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4488                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4489                                   FIEMAP_EXTENT_NOT_ALIGNED);
4490                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4491                         flags |= (FIEMAP_EXTENT_DELALLOC |
4492                                   FIEMAP_EXTENT_UNKNOWN);
4493                 } else if (fieinfo->fi_extents_max) {
4494                         u64 bytenr = em->block_start -
4495                                 (em->start - em->orig_start);
4496
4497                         disko = em->block_start + offset_in_extent;
4498
4499                         /*
4500                          * As btrfs supports shared space, this information
4501                          * can be exported to userspace tools via
4502                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4503                          * then we're just getting a count and we can skip the
4504                          * lookup stuff.
4505                          */
4506                         ret = btrfs_check_shared(NULL, root->fs_info,
4507                                                  root->objectid,
4508                                                  btrfs_ino(inode), bytenr);
4509                         if (ret < 0)
4510                                 goto out_free;
4511                         if (ret)
4512                                 flags |= FIEMAP_EXTENT_SHARED;
4513                         ret = 0;
4514                 }
4515                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4516                         flags |= FIEMAP_EXTENT_ENCODED;
4517                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4518                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4519
4520                 free_extent_map(em);
4521                 em = NULL;
4522                 if ((em_start >= last) || em_len == (u64)-1 ||
4523                    (last == (u64)-1 && isize <= em_end)) {
4524                         flags |= FIEMAP_EXTENT_LAST;
4525                         end = 1;
4526                 }
4527
4528                 /* now scan forward to see if this is really the last extent. */
4529                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4530                                            get_extent);
4531                 if (IS_ERR(em)) {
4532                         ret = PTR_ERR(em);
4533                         goto out;
4534                 }
4535                 if (!em) {
4536                         flags |= FIEMAP_EXTENT_LAST;
4537                         end = 1;
4538                 }
4539                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4540                                               em_len, flags);
4541                 if (ret) {
4542                         if (ret == 1)
4543                                 ret = 0;
4544                         goto out_free;
4545                 }
4546         }
4547 out_free:
4548         free_extent_map(em);
4549 out:
4550         btrfs_free_path(path);
4551         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4552                              &cached_state, GFP_NOFS);
4553         return ret;
4554 }
4555
4556 static void __free_extent_buffer(struct extent_buffer *eb)
4557 {
4558         btrfs_leak_debug_del(&eb->leak_list);
4559         kmem_cache_free(extent_buffer_cache, eb);
4560 }
4561
4562 int extent_buffer_under_io(struct extent_buffer *eb)
4563 {
4564         return (atomic_read(&eb->io_pages) ||
4565                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4566                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4567 }
4568
4569 /*
4570  * Helper for releasing extent buffer page.
4571  */
4572 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4573 {
4574         unsigned long index;
4575         struct page *page;
4576         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4577
4578         BUG_ON(extent_buffer_under_io(eb));
4579
4580         index = num_extent_pages(eb->start, eb->len);
4581         if (index == 0)
4582                 return;
4583
4584         do {
4585                 index--;
4586                 page = eb->pages[index];
4587                 if (!page)
4588                         continue;
4589                 if (mapped)
4590                         spin_lock(&page->mapping->private_lock);
4591                 /*
4592                  * We do this since we'll remove the pages after we've
4593                  * removed the eb from the radix tree, so we could race
4594                  * and have this page now attached to the new eb.  So
4595                  * only clear page_private if it's still connected to
4596                  * this eb.
4597                  */
4598                 if (PagePrivate(page) &&
4599                     page->private == (unsigned long)eb) {
4600                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4601                         BUG_ON(PageDirty(page));
4602                         BUG_ON(PageWriteback(page));
4603                         /*
4604                          * We need to make sure we haven't be attached
4605                          * to a new eb.
4606                          */
4607                         ClearPagePrivate(page);
4608                         set_page_private(page, 0);
4609                         /* One for the page private */
4610                         put_page(page);
4611                 }
4612
4613                 if (mapped)
4614                         spin_unlock(&page->mapping->private_lock);
4615
4616                 /* One for when we allocated the page */
4617                 put_page(page);
4618         } while (index != 0);
4619 }
4620
4621 /*
4622  * Helper for releasing the extent buffer.
4623  */
4624 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4625 {
4626         btrfs_release_extent_buffer_page(eb);
4627         __free_extent_buffer(eb);
4628 }
4629
4630 static struct extent_buffer *
4631 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4632                       unsigned long len)
4633 {
4634         struct extent_buffer *eb = NULL;
4635
4636         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4637         eb->start = start;
4638         eb->len = len;
4639         eb->fs_info = fs_info;
4640         eb->bflags = 0;
4641         rwlock_init(&eb->lock);
4642         atomic_set(&eb->write_locks, 0);
4643         atomic_set(&eb->read_locks, 0);
4644         atomic_set(&eb->blocking_readers, 0);
4645         atomic_set(&eb->blocking_writers, 0);
4646         atomic_set(&eb->spinning_readers, 0);
4647         atomic_set(&eb->spinning_writers, 0);
4648         eb->lock_nested = 0;
4649         init_waitqueue_head(&eb->write_lock_wq);
4650         init_waitqueue_head(&eb->read_lock_wq);
4651
4652         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4653
4654         spin_lock_init(&eb->refs_lock);
4655         atomic_set(&eb->refs, 1);
4656         atomic_set(&eb->io_pages, 0);
4657
4658         /*
4659          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4660          */
4661         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4662                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4663         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4664
4665         return eb;
4666 }
4667
4668 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4669 {
4670         unsigned long i;
4671         struct page *p;
4672         struct extent_buffer *new;
4673         unsigned long num_pages = num_extent_pages(src->start, src->len);
4674
4675         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4676         if (new == NULL)
4677                 return NULL;
4678
4679         for (i = 0; i < num_pages; i++) {
4680                 p = alloc_page(GFP_NOFS);
4681                 if (!p) {
4682                         btrfs_release_extent_buffer(new);
4683                         return NULL;
4684                 }
4685                 attach_extent_buffer_page(new, p);
4686                 WARN_ON(PageDirty(p));
4687                 SetPageUptodate(p);
4688                 new->pages[i] = p;
4689         }
4690
4691         copy_extent_buffer(new, src, 0, 0, src->len);
4692         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4693         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4694
4695         return new;
4696 }
4697
4698 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4699                                                   u64 start, unsigned long len)
4700 {
4701         struct extent_buffer *eb;
4702         unsigned long num_pages;
4703         unsigned long i;
4704
4705         num_pages = num_extent_pages(start, len);
4706
4707         eb = __alloc_extent_buffer(fs_info, start, len);
4708         if (!eb)
4709                 return NULL;
4710
4711         for (i = 0; i < num_pages; i++) {
4712                 eb->pages[i] = alloc_page(GFP_NOFS);
4713                 if (!eb->pages[i])
4714                         goto err;
4715         }
4716         set_extent_buffer_uptodate(eb);
4717         btrfs_set_header_nritems(eb, 0);
4718         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4719
4720         return eb;
4721 err:
4722         for (; i > 0; i--)
4723                 __free_page(eb->pages[i - 1]);
4724         __free_extent_buffer(eb);
4725         return NULL;
4726 }
4727
4728 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4729                                                 u64 start, u32 nodesize)
4730 {
4731         unsigned long len;
4732
4733         if (!fs_info) {
4734                 /*
4735                  * Called only from tests that don't always have a fs_info
4736                  * available
4737                  */
4738                 len = nodesize;
4739         } else {
4740                 len = fs_info->tree_root->nodesize;
4741         }
4742
4743         return __alloc_dummy_extent_buffer(fs_info, start, len);
4744 }
4745
4746 static void check_buffer_tree_ref(struct extent_buffer *eb)
4747 {
4748         int refs;
4749         /* the ref bit is tricky.  We have to make sure it is set
4750          * if we have the buffer dirty.   Otherwise the
4751          * code to free a buffer can end up dropping a dirty
4752          * page
4753          *
4754          * Once the ref bit is set, it won't go away while the
4755          * buffer is dirty or in writeback, and it also won't
4756          * go away while we have the reference count on the
4757          * eb bumped.
4758          *
4759          * We can't just set the ref bit without bumping the
4760          * ref on the eb because free_extent_buffer might
4761          * see the ref bit and try to clear it.  If this happens
4762          * free_extent_buffer might end up dropping our original
4763          * ref by mistake and freeing the page before we are able
4764          * to add one more ref.
4765          *
4766          * So bump the ref count first, then set the bit.  If someone
4767          * beat us to it, drop the ref we added.
4768          */
4769         refs = atomic_read(&eb->refs);
4770         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4771                 return;
4772
4773         spin_lock(&eb->refs_lock);
4774         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4775                 atomic_inc(&eb->refs);
4776         spin_unlock(&eb->refs_lock);
4777 }
4778
4779 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4780                 struct page *accessed)
4781 {
4782         unsigned long num_pages, i;
4783
4784         check_buffer_tree_ref(eb);
4785
4786         num_pages = num_extent_pages(eb->start, eb->len);
4787         for (i = 0; i < num_pages; i++) {
4788                 struct page *p = eb->pages[i];
4789
4790                 if (p != accessed)
4791                         mark_page_accessed(p);
4792         }
4793 }
4794
4795 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4796                                          u64 start)
4797 {
4798         struct extent_buffer *eb;
4799
4800         rcu_read_lock();
4801         eb = radix_tree_lookup(&fs_info->buffer_radix,
4802                                start >> PAGE_SHIFT);
4803         if (eb && atomic_inc_not_zero(&eb->refs)) {
4804                 rcu_read_unlock();
4805                 /*
4806                  * Lock our eb's refs_lock to avoid races with
4807                  * free_extent_buffer. When we get our eb it might be flagged
4808                  * with EXTENT_BUFFER_STALE and another task running
4809                  * free_extent_buffer might have seen that flag set,
4810                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4811                  * writeback flags not set) and it's still in the tree (flag
4812                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4813                  * of decrementing the extent buffer's reference count twice.
4814                  * So here we could race and increment the eb's reference count,
4815                  * clear its stale flag, mark it as dirty and drop our reference
4816                  * before the other task finishes executing free_extent_buffer,
4817                  * which would later result in an attempt to free an extent
4818                  * buffer that is dirty.
4819                  */
4820                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4821                         spin_lock(&eb->refs_lock);
4822                         spin_unlock(&eb->refs_lock);
4823                 }
4824                 mark_extent_buffer_accessed(eb, NULL);
4825                 return eb;
4826         }
4827         rcu_read_unlock();
4828
4829         return NULL;
4830 }
4831
4832 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4833 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4834                                         u64 start, u32 nodesize)
4835 {
4836         struct extent_buffer *eb, *exists = NULL;
4837         int ret;
4838
4839         eb = find_extent_buffer(fs_info, start);
4840         if (eb)
4841                 return eb;
4842         eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4843         if (!eb)
4844                 return NULL;
4845         eb->fs_info = fs_info;
4846 again:
4847         ret = radix_tree_preload(GFP_NOFS);
4848         if (ret)
4849                 goto free_eb;
4850         spin_lock(&fs_info->buffer_lock);
4851         ret = radix_tree_insert(&fs_info->buffer_radix,
4852                                 start >> PAGE_SHIFT, eb);
4853         spin_unlock(&fs_info->buffer_lock);
4854         radix_tree_preload_end();
4855         if (ret == -EEXIST) {
4856                 exists = find_extent_buffer(fs_info, start);
4857                 if (exists)
4858                         goto free_eb;
4859                 else
4860                         goto again;
4861         }
4862         check_buffer_tree_ref(eb);
4863         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4864
4865         /*
4866          * We will free dummy extent buffer's if they come into
4867          * free_extent_buffer with a ref count of 2, but if we are using this we
4868          * want the buffers to stay in memory until we're done with them, so
4869          * bump the ref count again.
4870          */
4871         atomic_inc(&eb->refs);
4872         return eb;
4873 free_eb:
4874         btrfs_release_extent_buffer(eb);
4875         return exists;
4876 }
4877 #endif
4878
4879 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4880                                           u64 start)
4881 {
4882         unsigned long len = fs_info->tree_root->nodesize;
4883         unsigned long num_pages = num_extent_pages(start, len);
4884         unsigned long i;
4885         unsigned long index = start >> PAGE_SHIFT;
4886         struct extent_buffer *eb;
4887         struct extent_buffer *exists = NULL;
4888         struct page *p;
4889         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4890         int uptodate = 1;
4891         int ret;
4892
4893         if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4894                 btrfs_err(fs_info, "bad tree block start %llu", start);
4895                 return ERR_PTR(-EINVAL);
4896         }
4897
4898         eb = find_extent_buffer(fs_info, start);
4899         if (eb)
4900                 return eb;
4901
4902         eb = __alloc_extent_buffer(fs_info, start, len);
4903         if (!eb)
4904                 return ERR_PTR(-ENOMEM);
4905
4906         for (i = 0; i < num_pages; i++, index++) {
4907                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4908                 if (!p) {
4909                         exists = ERR_PTR(-ENOMEM);
4910                         goto free_eb;
4911                 }
4912
4913                 spin_lock(&mapping->private_lock);
4914                 if (PagePrivate(p)) {
4915                         /*
4916                          * We could have already allocated an eb for this page
4917                          * and attached one so lets see if we can get a ref on
4918                          * the existing eb, and if we can we know it's good and
4919                          * we can just return that one, else we know we can just
4920                          * overwrite page->private.
4921                          */
4922                         exists = (struct extent_buffer *)p->private;
4923                         if (atomic_inc_not_zero(&exists->refs)) {
4924                                 spin_unlock(&mapping->private_lock);
4925                                 unlock_page(p);
4926                                 put_page(p);
4927                                 mark_extent_buffer_accessed(exists, p);
4928                                 goto free_eb;
4929                         }
4930                         exists = NULL;
4931
4932                         /*
4933                          * Do this so attach doesn't complain and we need to
4934                          * drop the ref the old guy had.
4935                          */
4936                         ClearPagePrivate(p);
4937                         WARN_ON(PageDirty(p));
4938                         put_page(p);
4939                 }
4940                 attach_extent_buffer_page(eb, p);
4941                 spin_unlock(&mapping->private_lock);
4942                 WARN_ON(PageDirty(p));
4943                 eb->pages[i] = p;
4944                 if (!PageUptodate(p))
4945                         uptodate = 0;
4946
4947                 /*
4948                  * see below about how we avoid a nasty race with release page
4949                  * and why we unlock later
4950                  */
4951         }
4952         if (uptodate)
4953                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4954 again:
4955         ret = radix_tree_preload(GFP_NOFS);
4956         if (ret) {
4957                 exists = ERR_PTR(ret);
4958                 goto free_eb;
4959         }
4960
4961         spin_lock(&fs_info->buffer_lock);
4962         ret = radix_tree_insert(&fs_info->buffer_radix,
4963                                 start >> PAGE_SHIFT, eb);
4964         spin_unlock(&fs_info->buffer_lock);
4965         radix_tree_preload_end();
4966         if (ret == -EEXIST) {
4967                 exists = find_extent_buffer(fs_info, start);
4968                 if (exists)
4969                         goto free_eb;
4970                 else
4971                         goto again;
4972         }
4973         /* add one reference for the tree */
4974         check_buffer_tree_ref(eb);
4975         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4976
4977         /*
4978          * there is a race where release page may have
4979          * tried to find this extent buffer in the radix
4980          * but failed.  It will tell the VM it is safe to
4981          * reclaim the, and it will clear the page private bit.
4982          * We must make sure to set the page private bit properly
4983          * after the extent buffer is in the radix tree so
4984          * it doesn't get lost
4985          */
4986         SetPageChecked(eb->pages[0]);
4987         for (i = 1; i < num_pages; i++) {
4988                 p = eb->pages[i];
4989                 ClearPageChecked(p);
4990                 unlock_page(p);
4991         }
4992         unlock_page(eb->pages[0]);
4993         return eb;
4994
4995 free_eb:
4996         WARN_ON(!atomic_dec_and_test(&eb->refs));
4997         for (i = 0; i < num_pages; i++) {
4998                 if (eb->pages[i])
4999                         unlock_page(eb->pages[i]);
5000         }
5001
5002         btrfs_release_extent_buffer(eb);
5003         return exists;
5004 }
5005
5006 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5007 {
5008         struct extent_buffer *eb =
5009                         container_of(head, struct extent_buffer, rcu_head);
5010
5011         __free_extent_buffer(eb);
5012 }
5013
5014 /* Expects to have eb->eb_lock already held */
5015 static int release_extent_buffer(struct extent_buffer *eb)
5016 {
5017         WARN_ON(atomic_read(&eb->refs) == 0);
5018         if (atomic_dec_and_test(&eb->refs)) {
5019                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5020                         struct btrfs_fs_info *fs_info = eb->fs_info;
5021
5022                         spin_unlock(&eb->refs_lock);
5023
5024                         spin_lock(&fs_info->buffer_lock);
5025                         radix_tree_delete(&fs_info->buffer_radix,
5026                                           eb->start >> PAGE_SHIFT);
5027                         spin_unlock(&fs_info->buffer_lock);
5028                 } else {
5029                         spin_unlock(&eb->refs_lock);
5030                 }
5031
5032                 /* Should be safe to release our pages at this point */
5033                 btrfs_release_extent_buffer_page(eb);
5034 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5035                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5036                         __free_extent_buffer(eb);
5037                         return 1;
5038                 }
5039 #endif
5040                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5041                 return 1;
5042         }
5043         spin_unlock(&eb->refs_lock);
5044
5045         return 0;
5046 }
5047
5048 void free_extent_buffer(struct extent_buffer *eb)
5049 {
5050         int refs;
5051         int old;
5052         if (!eb)
5053                 return;
5054
5055         while (1) {
5056                 refs = atomic_read(&eb->refs);
5057                 if (refs <= 3)
5058                         break;
5059                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5060                 if (old == refs)
5061                         return;
5062         }
5063
5064         spin_lock(&eb->refs_lock);
5065         if (atomic_read(&eb->refs) == 2 &&
5066             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5067                 atomic_dec(&eb->refs);
5068
5069         if (atomic_read(&eb->refs) == 2 &&
5070             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5071             !extent_buffer_under_io(eb) &&
5072             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5073                 atomic_dec(&eb->refs);
5074
5075         /*
5076          * I know this is terrible, but it's temporary until we stop tracking
5077          * the uptodate bits and such for the extent buffers.
5078          */
5079         release_extent_buffer(eb);
5080 }
5081
5082 void free_extent_buffer_stale(struct extent_buffer *eb)
5083 {
5084         if (!eb)
5085                 return;
5086
5087         spin_lock(&eb->refs_lock);
5088         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5089
5090         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5091             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5092                 atomic_dec(&eb->refs);
5093         release_extent_buffer(eb);
5094 }
5095
5096 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5097 {
5098         unsigned long i;
5099         unsigned long num_pages;
5100         struct page *page;
5101
5102         num_pages = num_extent_pages(eb->start, eb->len);
5103
5104         for (i = 0; i < num_pages; i++) {
5105                 page = eb->pages[i];
5106                 if (!PageDirty(page))
5107                         continue;
5108
5109                 lock_page(page);
5110                 WARN_ON(!PagePrivate(page));
5111
5112                 clear_page_dirty_for_io(page);
5113                 spin_lock_irq(&page->mapping->tree_lock);
5114                 if (!PageDirty(page)) {
5115                         radix_tree_tag_clear(&page->mapping->page_tree,
5116                                                 page_index(page),
5117                                                 PAGECACHE_TAG_DIRTY);
5118                 }
5119                 spin_unlock_irq(&page->mapping->tree_lock);
5120                 ClearPageError(page);
5121                 unlock_page(page);
5122         }
5123         WARN_ON(atomic_read(&eb->refs) == 0);
5124 }
5125
5126 int set_extent_buffer_dirty(struct extent_buffer *eb)
5127 {
5128         unsigned long i;
5129         unsigned long num_pages;
5130         int was_dirty = 0;
5131
5132         check_buffer_tree_ref(eb);
5133
5134         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5135
5136         num_pages = num_extent_pages(eb->start, eb->len);
5137         WARN_ON(atomic_read(&eb->refs) == 0);
5138         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5139
5140         for (i = 0; i < num_pages; i++)
5141                 set_page_dirty(eb->pages[i]);
5142         return was_dirty;
5143 }
5144
5145 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5146 {
5147         unsigned long i;
5148         struct page *page;
5149         unsigned long num_pages;
5150
5151         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5152         num_pages = num_extent_pages(eb->start, eb->len);
5153         for (i = 0; i < num_pages; i++) {
5154                 page = eb->pages[i];
5155                 if (page)
5156                         ClearPageUptodate(page);
5157         }
5158 }
5159
5160 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5161 {
5162         unsigned long i;
5163         struct page *page;
5164         unsigned long num_pages;
5165
5166         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5167         num_pages = num_extent_pages(eb->start, eb->len);
5168         for (i = 0; i < num_pages; i++) {
5169                 page = eb->pages[i];
5170                 SetPageUptodate(page);
5171         }
5172 }
5173
5174 int extent_buffer_uptodate(struct extent_buffer *eb)
5175 {
5176         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5177 }
5178
5179 int read_extent_buffer_pages(struct extent_io_tree *tree,
5180                              struct extent_buffer *eb, u64 start, int wait,
5181                              get_extent_t *get_extent, int mirror_num)
5182 {
5183         unsigned long i;
5184         unsigned long start_i;
5185         struct page *page;
5186         int err;
5187         int ret = 0;
5188         int locked_pages = 0;
5189         int all_uptodate = 1;
5190         unsigned long num_pages;
5191         unsigned long num_reads = 0;
5192         struct bio *bio = NULL;
5193         unsigned long bio_flags = 0;
5194
5195         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5196                 return 0;
5197
5198         if (start) {
5199                 WARN_ON(start < eb->start);
5200                 start_i = (start >> PAGE_SHIFT) -
5201                         (eb->start >> PAGE_SHIFT);
5202         } else {
5203                 start_i = 0;
5204         }
5205
5206         num_pages = num_extent_pages(eb->start, eb->len);
5207         for (i = start_i; i < num_pages; i++) {
5208                 page = eb->pages[i];
5209                 if (wait == WAIT_NONE) {
5210                         if (!trylock_page(page))
5211                                 goto unlock_exit;
5212                 } else {
5213                         lock_page(page);
5214                 }
5215                 locked_pages++;
5216                 if (!PageUptodate(page)) {
5217                         num_reads++;
5218                         all_uptodate = 0;
5219                 }
5220         }
5221         if (all_uptodate) {
5222                 if (start_i == 0)
5223                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5224                 goto unlock_exit;
5225         }
5226
5227         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5228         eb->read_mirror = 0;
5229         atomic_set(&eb->io_pages, num_reads);
5230         for (i = start_i; i < num_pages; i++) {
5231                 page = eb->pages[i];
5232                 if (!PageUptodate(page)) {
5233                         ClearPageError(page);
5234                         err = __extent_read_full_page(tree, page,
5235                                                       get_extent, &bio,
5236                                                       mirror_num, &bio_flags,
5237                                                       REQ_META);
5238                         if (err)
5239                                 ret = err;
5240                 } else {
5241                         unlock_page(page);
5242                 }
5243         }
5244
5245         if (bio) {
5246                 err = submit_one_bio(bio, mirror_num, bio_flags);
5247                 if (err)
5248                         return err;
5249         }
5250
5251         if (ret || wait != WAIT_COMPLETE)
5252                 return ret;
5253
5254         for (i = start_i; i < num_pages; i++) {
5255                 page = eb->pages[i];
5256                 wait_on_page_locked(page);
5257                 if (!PageUptodate(page))
5258                         ret = -EIO;
5259         }
5260
5261         return ret;
5262
5263 unlock_exit:
5264         i = start_i;
5265         while (locked_pages > 0) {
5266                 page = eb->pages[i];
5267                 i++;
5268                 unlock_page(page);
5269                 locked_pages--;
5270         }
5271         return ret;
5272 }
5273
5274 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5275                         unsigned long start,
5276                         unsigned long len)
5277 {
5278         size_t cur;
5279         size_t offset;
5280         struct page *page;
5281         char *kaddr;
5282         char *dst = (char *)dstv;
5283         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5284         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5285
5286         WARN_ON(start > eb->len);
5287         WARN_ON(start + len > eb->start + eb->len);
5288
5289         offset = (start_offset + start) & (PAGE_SIZE - 1);
5290
5291         while (len > 0) {
5292                 page = eb->pages[i];
5293
5294                 cur = min(len, (PAGE_SIZE - offset));
5295                 kaddr = page_address(page);
5296                 memcpy(dst, kaddr + offset, cur);
5297
5298                 dst += cur;
5299                 len -= cur;
5300                 offset = 0;
5301                 i++;
5302         }
5303 }
5304
5305 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5306                         unsigned long start,
5307                         unsigned long len)
5308 {
5309         size_t cur;
5310         size_t offset;
5311         struct page *page;
5312         char *kaddr;
5313         char __user *dst = (char __user *)dstv;
5314         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5315         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5316         int ret = 0;
5317
5318         WARN_ON(start > eb->len);
5319         WARN_ON(start + len > eb->start + eb->len);
5320
5321         offset = (start_offset + start) & (PAGE_SIZE - 1);
5322
5323         while (len > 0) {
5324                 page = eb->pages[i];
5325
5326                 cur = min(len, (PAGE_SIZE - offset));
5327                 kaddr = page_address(page);
5328                 if (copy_to_user(dst, kaddr + offset, cur)) {
5329                         ret = -EFAULT;
5330                         break;
5331                 }
5332
5333                 dst += cur;
5334                 len -= cur;
5335                 offset = 0;
5336                 i++;
5337         }
5338
5339         return ret;
5340 }
5341
5342 /*
5343  * return 0 if the item is found within a page.
5344  * return 1 if the item spans two pages.
5345  * return -EINVAL otherwise.
5346  */
5347 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5348                                unsigned long min_len, char **map,
5349                                unsigned long *map_start,
5350                                unsigned long *map_len)
5351 {
5352         size_t offset = start & (PAGE_SIZE - 1);
5353         char *kaddr;
5354         struct page *p;
5355         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357         unsigned long end_i = (start_offset + start + min_len - 1) >>
5358                 PAGE_SHIFT;
5359
5360         if (i != end_i)
5361                 return 1;
5362
5363         if (i == 0) {
5364                 offset = start_offset;
5365                 *map_start = 0;
5366         } else {
5367                 offset = 0;
5368                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5369         }
5370
5371         if (start + min_len > eb->len) {
5372                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5373                        "wanted %lu %lu\n",
5374                        eb->start, eb->len, start, min_len);
5375                 return -EINVAL;
5376         }
5377
5378         p = eb->pages[i];
5379         kaddr = page_address(p);
5380         *map = kaddr + offset;
5381         *map_len = PAGE_SIZE - offset;
5382         return 0;
5383 }
5384
5385 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5386                           unsigned long start,
5387                           unsigned long len)
5388 {
5389         size_t cur;
5390         size_t offset;
5391         struct page *page;
5392         char *kaddr;
5393         char *ptr = (char *)ptrv;
5394         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396         int ret = 0;
5397
5398         WARN_ON(start > eb->len);
5399         WARN_ON(start + len > eb->start + eb->len);
5400
5401         offset = (start_offset + start) & (PAGE_SIZE - 1);
5402
5403         while (len > 0) {
5404                 page = eb->pages[i];
5405
5406                 cur = min(len, (PAGE_SIZE - offset));
5407
5408                 kaddr = page_address(page);
5409                 ret = memcmp(ptr, kaddr + offset, cur);
5410                 if (ret)
5411                         break;
5412
5413                 ptr += cur;
5414                 len -= cur;
5415                 offset = 0;
5416                 i++;
5417         }
5418         return ret;
5419 }
5420
5421 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5422                          unsigned long start, unsigned long len)
5423 {
5424         size_t cur;
5425         size_t offset;
5426         struct page *page;
5427         char *kaddr;
5428         char *src = (char *)srcv;
5429         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5430         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5431
5432         WARN_ON(start > eb->len);
5433         WARN_ON(start + len > eb->start + eb->len);
5434
5435         offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437         while (len > 0) {
5438                 page = eb->pages[i];
5439                 WARN_ON(!PageUptodate(page));
5440
5441                 cur = min(len, PAGE_SIZE - offset);
5442                 kaddr = page_address(page);
5443                 memcpy(kaddr + offset, src, cur);
5444
5445                 src += cur;
5446                 len -= cur;
5447                 offset = 0;
5448                 i++;
5449         }
5450 }
5451
5452 void memset_extent_buffer(struct extent_buffer *eb, char c,
5453                           unsigned long start, unsigned long len)
5454 {
5455         size_t cur;
5456         size_t offset;
5457         struct page *page;
5458         char *kaddr;
5459         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5460         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5461
5462         WARN_ON(start > eb->len);
5463         WARN_ON(start + len > eb->start + eb->len);
5464
5465         offset = (start_offset + start) & (PAGE_SIZE - 1);
5466
5467         while (len > 0) {
5468                 page = eb->pages[i];
5469                 WARN_ON(!PageUptodate(page));
5470
5471                 cur = min(len, PAGE_SIZE - offset);
5472                 kaddr = page_address(page);
5473                 memset(kaddr + offset, c, cur);
5474
5475                 len -= cur;
5476                 offset = 0;
5477                 i++;
5478         }
5479 }
5480
5481 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5482                         unsigned long dst_offset, unsigned long src_offset,
5483                         unsigned long len)
5484 {
5485         u64 dst_len = dst->len;
5486         size_t cur;
5487         size_t offset;
5488         struct page *page;
5489         char *kaddr;
5490         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5491         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5492
5493         WARN_ON(src->len != dst_len);
5494
5495         offset = (start_offset + dst_offset) &
5496                 (PAGE_SIZE - 1);
5497
5498         while (len > 0) {
5499                 page = dst->pages[i];
5500                 WARN_ON(!PageUptodate(page));
5501
5502                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5503
5504                 kaddr = page_address(page);
5505                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5506
5507                 src_offset += cur;
5508                 len -= cur;
5509                 offset = 0;
5510                 i++;
5511         }
5512 }
5513
5514 /*
5515  * The extent buffer bitmap operations are done with byte granularity because
5516  * bitmap items are not guaranteed to be aligned to a word and therefore a
5517  * single word in a bitmap may straddle two pages in the extent buffer.
5518  */
5519 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5520 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5521 #define BITMAP_FIRST_BYTE_MASK(start) \
5522         ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5523 #define BITMAP_LAST_BYTE_MASK(nbits) \
5524         (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5525
5526 /*
5527  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5528  * given bit number
5529  * @eb: the extent buffer
5530  * @start: offset of the bitmap item in the extent buffer
5531  * @nr: bit number
5532  * @page_index: return index of the page in the extent buffer that contains the
5533  * given bit number
5534  * @page_offset: return offset into the page given by page_index
5535  *
5536  * This helper hides the ugliness of finding the byte in an extent buffer which
5537  * contains a given bit.
5538  */
5539 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5540                                     unsigned long start, unsigned long nr,
5541                                     unsigned long *page_index,
5542                                     size_t *page_offset)
5543 {
5544         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5545         size_t byte_offset = BIT_BYTE(nr);
5546         size_t offset;
5547
5548         /*
5549          * The byte we want is the offset of the extent buffer + the offset of
5550          * the bitmap item in the extent buffer + the offset of the byte in the
5551          * bitmap item.
5552          */
5553         offset = start_offset + start + byte_offset;
5554
5555         *page_index = offset >> PAGE_SHIFT;
5556         *page_offset = offset & (PAGE_SIZE - 1);
5557 }
5558
5559 /**
5560  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5561  * @eb: the extent buffer
5562  * @start: offset of the bitmap item in the extent buffer
5563  * @nr: bit number to test
5564  */
5565 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5566                            unsigned long nr)
5567 {
5568         char *kaddr;
5569         struct page *page;
5570         unsigned long i;
5571         size_t offset;
5572
5573         eb_bitmap_offset(eb, start, nr, &i, &offset);
5574         page = eb->pages[i];
5575         WARN_ON(!PageUptodate(page));
5576         kaddr = page_address(page);
5577         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5578 }
5579
5580 /**
5581  * extent_buffer_bitmap_set - set an area of a bitmap
5582  * @eb: the extent buffer
5583  * @start: offset of the bitmap item in the extent buffer
5584  * @pos: bit number of the first bit
5585  * @len: number of bits to set
5586  */
5587 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5588                               unsigned long pos, unsigned long len)
5589 {
5590         char *kaddr;
5591         struct page *page;
5592         unsigned long i;
5593         size_t offset;
5594         const unsigned int size = pos + len;
5595         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5596         unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5597
5598         eb_bitmap_offset(eb, start, pos, &i, &offset);
5599         page = eb->pages[i];
5600         WARN_ON(!PageUptodate(page));
5601         kaddr = page_address(page);
5602
5603         while (len >= bits_to_set) {
5604                 kaddr[offset] |= mask_to_set;
5605                 len -= bits_to_set;
5606                 bits_to_set = BITS_PER_BYTE;
5607                 mask_to_set = ~0U;
5608                 if (++offset >= PAGE_SIZE && len > 0) {
5609                         offset = 0;
5610                         page = eb->pages[++i];
5611                         WARN_ON(!PageUptodate(page));
5612                         kaddr = page_address(page);
5613                 }
5614         }
5615         if (len) {
5616                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5617                 kaddr[offset] |= mask_to_set;
5618         }
5619 }
5620
5621
5622 /**
5623  * extent_buffer_bitmap_clear - clear an area of a bitmap
5624  * @eb: the extent buffer
5625  * @start: offset of the bitmap item in the extent buffer
5626  * @pos: bit number of the first bit
5627  * @len: number of bits to clear
5628  */
5629 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5630                                 unsigned long pos, unsigned long len)
5631 {
5632         char *kaddr;
5633         struct page *page;
5634         unsigned long i;
5635         size_t offset;
5636         const unsigned int size = pos + len;
5637         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5638         unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5639
5640         eb_bitmap_offset(eb, start, pos, &i, &offset);
5641         page = eb->pages[i];
5642         WARN_ON(!PageUptodate(page));
5643         kaddr = page_address(page);
5644
5645         while (len >= bits_to_clear) {
5646                 kaddr[offset] &= ~mask_to_clear;
5647                 len -= bits_to_clear;
5648                 bits_to_clear = BITS_PER_BYTE;
5649                 mask_to_clear = ~0U;
5650                 if (++offset >= PAGE_SIZE && len > 0) {
5651                         offset = 0;
5652                         page = eb->pages[++i];
5653                         WARN_ON(!PageUptodate(page));
5654                         kaddr = page_address(page);
5655                 }
5656         }
5657         if (len) {
5658                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659                 kaddr[offset] &= ~mask_to_clear;
5660         }
5661 }
5662
5663 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5664 {
5665         unsigned long distance = (src > dst) ? src - dst : dst - src;
5666         return distance < len;
5667 }
5668
5669 static void copy_pages(struct page *dst_page, struct page *src_page,
5670                        unsigned long dst_off, unsigned long src_off,
5671                        unsigned long len)
5672 {
5673         char *dst_kaddr = page_address(dst_page);
5674         char *src_kaddr;
5675         int must_memmove = 0;
5676
5677         if (dst_page != src_page) {
5678                 src_kaddr = page_address(src_page);
5679         } else {
5680                 src_kaddr = dst_kaddr;
5681                 if (areas_overlap(src_off, dst_off, len))
5682                         must_memmove = 1;
5683         }
5684
5685         if (must_memmove)
5686                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5687         else
5688                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5689 }
5690
5691 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5692                            unsigned long src_offset, unsigned long len)
5693 {
5694         size_t cur;
5695         size_t dst_off_in_page;
5696         size_t src_off_in_page;
5697         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5698         unsigned long dst_i;
5699         unsigned long src_i;
5700
5701         if (src_offset + len > dst->len) {
5702                 btrfs_err(dst->fs_info,
5703                         "memmove bogus src_offset %lu move "
5704                        "len %lu dst len %lu", src_offset, len, dst->len);
5705                 BUG_ON(1);
5706         }
5707         if (dst_offset + len > dst->len) {
5708                 btrfs_err(dst->fs_info,
5709                         "memmove bogus dst_offset %lu move "
5710                        "len %lu dst len %lu", dst_offset, len, dst->len);
5711                 BUG_ON(1);
5712         }
5713
5714         while (len > 0) {
5715                 dst_off_in_page = (start_offset + dst_offset) &
5716                         (PAGE_SIZE - 1);
5717                 src_off_in_page = (start_offset + src_offset) &
5718                         (PAGE_SIZE - 1);
5719
5720                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5721                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5722
5723                 cur = min(len, (unsigned long)(PAGE_SIZE -
5724                                                src_off_in_page));
5725                 cur = min_t(unsigned long, cur,
5726                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5727
5728                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5729                            dst_off_in_page, src_off_in_page, cur);
5730
5731                 src_offset += cur;
5732                 dst_offset += cur;
5733                 len -= cur;
5734         }
5735 }
5736
5737 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5738                            unsigned long src_offset, unsigned long len)
5739 {
5740         size_t cur;
5741         size_t dst_off_in_page;
5742         size_t src_off_in_page;
5743         unsigned long dst_end = dst_offset + len - 1;
5744         unsigned long src_end = src_offset + len - 1;
5745         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5746         unsigned long dst_i;
5747         unsigned long src_i;
5748
5749         if (src_offset + len > dst->len) {
5750                 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5751                        "len %lu len %lu", src_offset, len, dst->len);
5752                 BUG_ON(1);
5753         }
5754         if (dst_offset + len > dst->len) {
5755                 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5756                        "len %lu len %lu", dst_offset, len, dst->len);
5757                 BUG_ON(1);
5758         }
5759         if (dst_offset < src_offset) {
5760                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5761                 return;
5762         }
5763         while (len > 0) {
5764                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5765                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5766
5767                 dst_off_in_page = (start_offset + dst_end) &
5768                         (PAGE_SIZE - 1);
5769                 src_off_in_page = (start_offset + src_end) &
5770                         (PAGE_SIZE - 1);
5771
5772                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5773                 cur = min(cur, dst_off_in_page + 1);
5774                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5775                            dst_off_in_page - cur + 1,
5776                            src_off_in_page - cur + 1, cur);
5777
5778                 dst_end -= cur;
5779                 src_end -= cur;
5780                 len -= cur;
5781         }
5782 }
5783
5784 int try_release_extent_buffer(struct page *page)
5785 {
5786         struct extent_buffer *eb;
5787
5788         /*
5789          * We need to make sure nobody is attaching this page to an eb right
5790          * now.
5791          */
5792         spin_lock(&page->mapping->private_lock);
5793         if (!PagePrivate(page)) {
5794                 spin_unlock(&page->mapping->private_lock);
5795                 return 1;
5796         }
5797
5798         eb = (struct extent_buffer *)page->private;
5799         BUG_ON(!eb);
5800
5801         /*
5802          * This is a little awful but should be ok, we need to make sure that
5803          * the eb doesn't disappear out from under us while we're looking at
5804          * this page.
5805          */
5806         spin_lock(&eb->refs_lock);
5807         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5808                 spin_unlock(&eb->refs_lock);
5809                 spin_unlock(&page->mapping->private_lock);
5810                 return 0;
5811         }
5812         spin_unlock(&page->mapping->private_lock);
5813
5814         /*
5815          * If tree ref isn't set then we know the ref on this eb is a real ref,
5816          * so just return, this page will likely be freed soon anyway.
5817          */
5818         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5819                 spin_unlock(&eb->refs_lock);
5820                 return 0;
5821         }
5822
5823         return release_extent_buffer(eb);
5824 }