]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/buffer.c
NFC: Close a race condition in llcp_sock_getname()
[karo-tx-linux.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
46
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49                          unsigned long bio_flags,
50                          struct writeback_control *wbc);
51
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55 {
56         bh->b_end_io = handler;
57         bh->b_private = private;
58 }
59 EXPORT_SYMBOL(init_buffer);
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the page has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the PageDirty information is stale. If
85  * any of the pages are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct page *page,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!PageLocked(page));
95
96         if (!page_has_buffers(page))
97                 return;
98
99         if (PageWriteback(page))
100                 *writeback = true;
101
102         head = page_buffers(page);
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void
128 __clear_page_buffers(struct page *page)
129 {
130         ClearPagePrivate(page);
131         set_page_private(page, 0);
132         page_cache_release(page);
133 }
134
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 {
137         if (!test_bit(BH_Quiet, &bh->b_state))
138                 printk_ratelimited(KERN_ERR
139                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
140                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141 }
142
143 /*
144  * End-of-IO handler helper function which does not touch the bh after
145  * unlocking it.
146  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147  * a race there is benign: unlock_buffer() only use the bh's address for
148  * hashing after unlocking the buffer, so it doesn't actually touch the bh
149  * itself.
150  */
151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 {
153         if (uptodate) {
154                 set_buffer_uptodate(bh);
155         } else {
156                 /* This happens, due to failed READA attempts. */
157                 clear_buffer_uptodate(bh);
158         }
159         unlock_buffer(bh);
160 }
161
162 /*
163  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
164  * unlock the buffer. This is what ll_rw_block uses too.
165  */
166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 {
168         __end_buffer_read_notouch(bh, uptodate);
169         put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_read_sync);
172
173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 {
175         if (uptodate) {
176                 set_buffer_uptodate(bh);
177         } else {
178                 buffer_io_error(bh, ", lost sync page write");
179                 set_buffer_write_io_error(bh);
180                 clear_buffer_uptodate(bh);
181         }
182         unlock_buffer(bh);
183         put_bh(bh);
184 }
185 EXPORT_SYMBOL(end_buffer_write_sync);
186
187 /*
188  * Various filesystems appear to want __find_get_block to be non-blocking.
189  * But it's the page lock which protects the buffers.  To get around this,
190  * we get exclusion from try_to_free_buffers with the blockdev mapping's
191  * private_lock.
192  *
193  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194  * may be quite high.  This code could TryLock the page, and if that
195  * succeeds, there is no need to take private_lock. (But if
196  * private_lock is contended then so is mapping->tree_lock).
197  */
198 static struct buffer_head *
199 __find_get_block_slow(struct block_device *bdev, sector_t block)
200 {
201         struct inode *bd_inode = bdev->bd_inode;
202         struct address_space *bd_mapping = bd_inode->i_mapping;
203         struct buffer_head *ret = NULL;
204         pgoff_t index;
205         struct buffer_head *bh;
206         struct buffer_head *head;
207         struct page *page;
208         int all_mapped = 1;
209
210         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
211         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212         if (!page)
213                 goto out;
214
215         spin_lock(&bd_mapping->private_lock);
216         if (!page_has_buffers(page))
217                 goto out_unlock;
218         head = page_buffers(page);
219         bh = head;
220         do {
221                 if (!buffer_mapped(bh))
222                         all_mapped = 0;
223                 else if (bh->b_blocknr == block) {
224                         ret = bh;
225                         get_bh(bh);
226                         goto out_unlock;
227                 }
228                 bh = bh->b_this_page;
229         } while (bh != head);
230
231         /* we might be here because some of the buffers on this page are
232          * not mapped.  This is due to various races between
233          * file io on the block device and getblk.  It gets dealt with
234          * elsewhere, don't buffer_error if we had some unmapped buffers
235          */
236         if (all_mapped) {
237                 printk("__find_get_block_slow() failed. "
238                         "block=%llu, b_blocknr=%llu\n",
239                         (unsigned long long)block,
240                         (unsigned long long)bh->b_blocknr);
241                 printk("b_state=0x%08lx, b_size=%zu\n",
242                         bh->b_state, bh->b_size);
243                 printk("device %pg blocksize: %d\n", bdev,
244                         1 << bd_inode->i_blkbits);
245         }
246 out_unlock:
247         spin_unlock(&bd_mapping->private_lock);
248         page_cache_release(page);
249 out:
250         return ret;
251 }
252
253 /*
254  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255  */
256 static void free_more_memory(void)
257 {
258         struct zone *zone;
259         int nid;
260
261         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262         yield();
263
264         for_each_online_node(nid) {
265                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266                                                 gfp_zone(GFP_NOFS), NULL,
267                                                 &zone);
268                 if (zone)
269                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270                                                 GFP_NOFS, NULL);
271         }
272 }
273
274 /*
275  * I/O completion handler for block_read_full_page() - pages
276  * which come unlocked at the end of I/O.
277  */
278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279 {
280         unsigned long flags;
281         struct buffer_head *first;
282         struct buffer_head *tmp;
283         struct page *page;
284         int page_uptodate = 1;
285
286         BUG_ON(!buffer_async_read(bh));
287
288         page = bh->b_page;
289         if (uptodate) {
290                 set_buffer_uptodate(bh);
291         } else {
292                 clear_buffer_uptodate(bh);
293                 buffer_io_error(bh, ", async page read");
294                 SetPageError(page);
295         }
296
297         /*
298          * Be _very_ careful from here on. Bad things can happen if
299          * two buffer heads end IO at almost the same time and both
300          * decide that the page is now completely done.
301          */
302         first = page_buffers(page);
303         local_irq_save(flags);
304         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305         clear_buffer_async_read(bh);
306         unlock_buffer(bh);
307         tmp = bh;
308         do {
309                 if (!buffer_uptodate(tmp))
310                         page_uptodate = 0;
311                 if (buffer_async_read(tmp)) {
312                         BUG_ON(!buffer_locked(tmp));
313                         goto still_busy;
314                 }
315                 tmp = tmp->b_this_page;
316         } while (tmp != bh);
317         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318         local_irq_restore(flags);
319
320         /*
321          * If none of the buffers had errors and they are all
322          * uptodate then we can set the page uptodate.
323          */
324         if (page_uptodate && !PageError(page))
325                 SetPageUptodate(page);
326         unlock_page(page);
327         return;
328
329 still_busy:
330         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331         local_irq_restore(flags);
332         return;
333 }
334
335 /*
336  * Completion handler for block_write_full_page() - pages which are unlocked
337  * during I/O, and which have PageWriteback cleared upon I/O completion.
338  */
339 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340 {
341         unsigned long flags;
342         struct buffer_head *first;
343         struct buffer_head *tmp;
344         struct page *page;
345
346         BUG_ON(!buffer_async_write(bh));
347
348         page = bh->b_page;
349         if (uptodate) {
350                 set_buffer_uptodate(bh);
351         } else {
352                 buffer_io_error(bh, ", lost async page write");
353                 set_bit(AS_EIO, &page->mapping->flags);
354                 set_buffer_write_io_error(bh);
355                 clear_buffer_uptodate(bh);
356                 SetPageError(page);
357         }
358
359         first = page_buffers(page);
360         local_irq_save(flags);
361         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362
363         clear_buffer_async_write(bh);
364         unlock_buffer(bh);
365         tmp = bh->b_this_page;
366         while (tmp != bh) {
367                 if (buffer_async_write(tmp)) {
368                         BUG_ON(!buffer_locked(tmp));
369                         goto still_busy;
370                 }
371                 tmp = tmp->b_this_page;
372         }
373         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374         local_irq_restore(flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380         local_irq_restore(flags);
381         return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408         bh->b_end_io = end_buffer_async_read;
409         set_buffer_async_read(bh);
410 }
411
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413                                           bh_end_io_t *handler)
414 {
415         bh->b_end_io = handler;
416         set_buffer_async_write(bh);
417 }
418
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421         mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space 
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480         list_del_init(&bh->b_assoc_buffers);
481         WARN_ON(!bh->b_assoc_map);
482         if (buffer_write_io_error(bh))
483                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484         bh->b_assoc_map = NULL;
485 }
486
487 int inode_has_buffers(struct inode *inode)
488 {
489         return !list_empty(&inode->i_data.private_list);
490 }
491
492 /*
493  * osync is designed to support O_SYNC io.  It waits synchronously for
494  * all already-submitted IO to complete, but does not queue any new
495  * writes to the disk.
496  *
497  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498  * you dirty the buffers, and then use osync_inode_buffers to wait for
499  * completion.  Any other dirty buffers which are not yet queued for
500  * write will not be flushed to disk by the osync.
501  */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504         struct buffer_head *bh;
505         struct list_head *p;
506         int err = 0;
507
508         spin_lock(lock);
509 repeat:
510         list_for_each_prev(p, list) {
511                 bh = BH_ENTRY(p);
512                 if (buffer_locked(bh)) {
513                         get_bh(bh);
514                         spin_unlock(lock);
515                         wait_on_buffer(bh);
516                         if (!buffer_uptodate(bh))
517                                 err = -EIO;
518                         brelse(bh);
519                         spin_lock(lock);
520                         goto repeat;
521                 }
522         }
523         spin_unlock(lock);
524         return err;
525 }
526
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532
533 static void do_thaw_all(struct work_struct *work)
534 {
535         iterate_supers(do_thaw_one, NULL);
536         kfree(work);
537         printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539
540 /**
541  * emergency_thaw_all -- forcibly thaw every frozen filesystem
542  *
543  * Used for emergency unfreeze of all filesystems via SysRq
544  */
545 void emergency_thaw_all(void)
546 {
547         struct work_struct *work;
548
549         work = kmalloc(sizeof(*work), GFP_ATOMIC);
550         if (work) {
551                 INIT_WORK(work, do_thaw_all);
552                 schedule_work(work);
553         }
554 }
555
556 /**
557  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558  * @mapping: the mapping which wants those buffers written
559  *
560  * Starts I/O against the buffers at mapping->private_list, and waits upon
561  * that I/O.
562  *
563  * Basically, this is a convenience function for fsync().
564  * @mapping is a file or directory which needs those buffers to be written for
565  * a successful fsync().
566  */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569         struct address_space *buffer_mapping = mapping->private_data;
570
571         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572                 return 0;
573
574         return fsync_buffers_list(&buffer_mapping->private_lock,
575                                         &mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578
579 /*
580  * Called when we've recently written block `bblock', and it is known that
581  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
582  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
583  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
584  */
585 void write_boundary_block(struct block_device *bdev,
586                         sector_t bblock, unsigned blocksize)
587 {
588         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589         if (bh) {
590                 if (buffer_dirty(bh))
591                         ll_rw_block(WRITE, 1, &bh);
592                 put_bh(bh);
593         }
594 }
595
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598         struct address_space *mapping = inode->i_mapping;
599         struct address_space *buffer_mapping = bh->b_page->mapping;
600
601         mark_buffer_dirty(bh);
602         if (!mapping->private_data) {
603                 mapping->private_data = buffer_mapping;
604         } else {
605                 BUG_ON(mapping->private_data != buffer_mapping);
606         }
607         if (!bh->b_assoc_map) {
608                 spin_lock(&buffer_mapping->private_lock);
609                 list_move_tail(&bh->b_assoc_buffers,
610                                 &mapping->private_list);
611                 bh->b_assoc_map = mapping;
612                 spin_unlock(&buffer_mapping->private_lock);
613         }
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617 /*
618  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619  * dirty.
620  *
621  * If warn is true, then emit a warning if the page is not uptodate and has
622  * not been truncated.
623  *
624  * The caller must hold mem_cgroup_begin_page_stat() lock.
625  */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627                              struct mem_cgroup *memcg, int warn)
628 {
629         unsigned long flags;
630
631         spin_lock_irqsave(&mapping->tree_lock, flags);
632         if (page->mapping) {    /* Race with truncate? */
633                 WARN_ON_ONCE(warn && !PageUptodate(page));
634                 account_page_dirtied(page, mapping, memcg);
635                 radix_tree_tag_set(&mapping->page_tree,
636                                 page_index(page), PAGECACHE_TAG_DIRTY);
637         }
638         spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640
641 /*
642  * Add a page to the dirty page list.
643  *
644  * It is a sad fact of life that this function is called from several places
645  * deeply under spinlocking.  It may not sleep.
646  *
647  * If the page has buffers, the uptodate buffers are set dirty, to preserve
648  * dirty-state coherency between the page and the buffers.  It the page does
649  * not have buffers then when they are later attached they will all be set
650  * dirty.
651  *
652  * The buffers are dirtied before the page is dirtied.  There's a small race
653  * window in which a writepage caller may see the page cleanness but not the
654  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
655  * before the buffers, a concurrent writepage caller could clear the page dirty
656  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657  * page on the dirty page list.
658  *
659  * We use private_lock to lock against try_to_free_buffers while using the
660  * page's buffer list.  Also use this to protect against clean buffers being
661  * added to the page after it was set dirty.
662  *
663  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
664  * address_space though.
665  */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668         int newly_dirty;
669         struct mem_cgroup *memcg;
670         struct address_space *mapping = page_mapping(page);
671
672         if (unlikely(!mapping))
673                 return !TestSetPageDirty(page);
674
675         spin_lock(&mapping->private_lock);
676         if (page_has_buffers(page)) {
677                 struct buffer_head *head = page_buffers(page);
678                 struct buffer_head *bh = head;
679
680                 do {
681                         set_buffer_dirty(bh);
682                         bh = bh->b_this_page;
683                 } while (bh != head);
684         }
685         /*
686          * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
687          * per-memcg dirty page counters.
688          */
689         memcg = mem_cgroup_begin_page_stat(page);
690         newly_dirty = !TestSetPageDirty(page);
691         spin_unlock(&mapping->private_lock);
692
693         if (newly_dirty)
694                 __set_page_dirty(page, mapping, memcg, 1);
695
696         mem_cgroup_end_page_stat(memcg);
697
698         if (newly_dirty)
699                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700
701         return newly_dirty;
702 }
703 EXPORT_SYMBOL(__set_page_dirty_buffers);
704
705 /*
706  * Write out and wait upon a list of buffers.
707  *
708  * We have conflicting pressures: we want to make sure that all
709  * initially dirty buffers get waited on, but that any subsequently
710  * dirtied buffers don't.  After all, we don't want fsync to last
711  * forever if somebody is actively writing to the file.
712  *
713  * Do this in two main stages: first we copy dirty buffers to a
714  * temporary inode list, queueing the writes as we go.  Then we clean
715  * up, waiting for those writes to complete.
716  * 
717  * During this second stage, any subsequent updates to the file may end
718  * up refiling the buffer on the original inode's dirty list again, so
719  * there is a chance we will end up with a buffer queued for write but
720  * not yet completed on that list.  So, as a final cleanup we go through
721  * the osync code to catch these locked, dirty buffers without requeuing
722  * any newly dirty buffers for write.
723  */
724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726         struct buffer_head *bh;
727         struct list_head tmp;
728         struct address_space *mapping;
729         int err = 0, err2;
730         struct blk_plug plug;
731
732         INIT_LIST_HEAD(&tmp);
733         blk_start_plug(&plug);
734
735         spin_lock(lock);
736         while (!list_empty(list)) {
737                 bh = BH_ENTRY(list->next);
738                 mapping = bh->b_assoc_map;
739                 __remove_assoc_queue(bh);
740                 /* Avoid race with mark_buffer_dirty_inode() which does
741                  * a lockless check and we rely on seeing the dirty bit */
742                 smp_mb();
743                 if (buffer_dirty(bh) || buffer_locked(bh)) {
744                         list_add(&bh->b_assoc_buffers, &tmp);
745                         bh->b_assoc_map = mapping;
746                         if (buffer_dirty(bh)) {
747                                 get_bh(bh);
748                                 spin_unlock(lock);
749                                 /*
750                                  * Ensure any pending I/O completes so that
751                                  * write_dirty_buffer() actually writes the
752                                  * current contents - it is a noop if I/O is
753                                  * still in flight on potentially older
754                                  * contents.
755                                  */
756                                 write_dirty_buffer(bh, WRITE_SYNC);
757
758                                 /*
759                                  * Kick off IO for the previous mapping. Note
760                                  * that we will not run the very last mapping,
761                                  * wait_on_buffer() will do that for us
762                                  * through sync_buffer().
763                                  */
764                                 brelse(bh);
765                                 spin_lock(lock);
766                         }
767                 }
768         }
769
770         spin_unlock(lock);
771         blk_finish_plug(&plug);
772         spin_lock(lock);
773
774         while (!list_empty(&tmp)) {
775                 bh = BH_ENTRY(tmp.prev);
776                 get_bh(bh);
777                 mapping = bh->b_assoc_map;
778                 __remove_assoc_queue(bh);
779                 /* Avoid race with mark_buffer_dirty_inode() which does
780                  * a lockless check and we rely on seeing the dirty bit */
781                 smp_mb();
782                 if (buffer_dirty(bh)) {
783                         list_add(&bh->b_assoc_buffers,
784                                  &mapping->private_list);
785                         bh->b_assoc_map = mapping;
786                 }
787                 spin_unlock(lock);
788                 wait_on_buffer(bh);
789                 if (!buffer_uptodate(bh))
790                         err = -EIO;
791                 brelse(bh);
792                 spin_lock(lock);
793         }
794         
795         spin_unlock(lock);
796         err2 = osync_buffers_list(lock, list);
797         if (err)
798                 return err;
799         else
800                 return err2;
801 }
802
803 /*
804  * Invalidate any and all dirty buffers on a given inode.  We are
805  * probably unmounting the fs, but that doesn't mean we have already
806  * done a sync().  Just drop the buffers from the inode list.
807  *
808  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
809  * assumes that all the buffers are against the blockdev.  Not true
810  * for reiserfs.
811  */
812 void invalidate_inode_buffers(struct inode *inode)
813 {
814         if (inode_has_buffers(inode)) {
815                 struct address_space *mapping = &inode->i_data;
816                 struct list_head *list = &mapping->private_list;
817                 struct address_space *buffer_mapping = mapping->private_data;
818
819                 spin_lock(&buffer_mapping->private_lock);
820                 while (!list_empty(list))
821                         __remove_assoc_queue(BH_ENTRY(list->next));
822                 spin_unlock(&buffer_mapping->private_lock);
823         }
824 }
825 EXPORT_SYMBOL(invalidate_inode_buffers);
826
827 /*
828  * Remove any clean buffers from the inode's buffer list.  This is called
829  * when we're trying to free the inode itself.  Those buffers can pin it.
830  *
831  * Returns true if all buffers were removed.
832  */
833 int remove_inode_buffers(struct inode *inode)
834 {
835         int ret = 1;
836
837         if (inode_has_buffers(inode)) {
838                 struct address_space *mapping = &inode->i_data;
839                 struct list_head *list = &mapping->private_list;
840                 struct address_space *buffer_mapping = mapping->private_data;
841
842                 spin_lock(&buffer_mapping->private_lock);
843                 while (!list_empty(list)) {
844                         struct buffer_head *bh = BH_ENTRY(list->next);
845                         if (buffer_dirty(bh)) {
846                                 ret = 0;
847                                 break;
848                         }
849                         __remove_assoc_queue(bh);
850                 }
851                 spin_unlock(&buffer_mapping->private_lock);
852         }
853         return ret;
854 }
855
856 /*
857  * Create the appropriate buffers when given a page for data area and
858  * the size of each buffer.. Use the bh->b_this_page linked list to
859  * follow the buffers created.  Return NULL if unable to create more
860  * buffers.
861  *
862  * The retry flag is used to differentiate async IO (paging, swapping)
863  * which may not fail from ordinary buffer allocations.
864  */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866                 int retry)
867 {
868         struct buffer_head *bh, *head;
869         long offset;
870
871 try_again:
872         head = NULL;
873         offset = PAGE_SIZE;
874         while ((offset -= size) >= 0) {
875                 bh = alloc_buffer_head(GFP_NOFS);
876                 if (!bh)
877                         goto no_grow;
878
879                 bh->b_this_page = head;
880                 bh->b_blocknr = -1;
881                 head = bh;
882
883                 bh->b_size = size;
884
885                 /* Link the buffer to its page */
886                 set_bh_page(bh, page, offset);
887         }
888         return head;
889 /*
890  * In case anything failed, we just free everything we got.
891  */
892 no_grow:
893         if (head) {
894                 do {
895                         bh = head;
896                         head = head->b_this_page;
897                         free_buffer_head(bh);
898                 } while (head);
899         }
900
901         /*
902          * Return failure for non-async IO requests.  Async IO requests
903          * are not allowed to fail, so we have to wait until buffer heads
904          * become available.  But we don't want tasks sleeping with 
905          * partially complete buffers, so all were released above.
906          */
907         if (!retry)
908                 return NULL;
909
910         /* We're _really_ low on memory. Now we just
911          * wait for old buffer heads to become free due to
912          * finishing IO.  Since this is an async request and
913          * the reserve list is empty, we're sure there are 
914          * async buffer heads in use.
915          */
916         free_more_memory();
917         goto try_again;
918 }
919 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920
921 static inline void
922 link_dev_buffers(struct page *page, struct buffer_head *head)
923 {
924         struct buffer_head *bh, *tail;
925
926         bh = head;
927         do {
928                 tail = bh;
929                 bh = bh->b_this_page;
930         } while (bh);
931         tail->b_this_page = head;
932         attach_page_buffers(page, head);
933 }
934
935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 {
937         sector_t retval = ~((sector_t)0);
938         loff_t sz = i_size_read(bdev->bd_inode);
939
940         if (sz) {
941                 unsigned int sizebits = blksize_bits(size);
942                 retval = (sz >> sizebits);
943         }
944         return retval;
945 }
946
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */ 
950 static sector_t
951 init_page_buffers(struct page *page, struct block_device *bdev,
952                         sector_t block, int size)
953 {
954         struct buffer_head *head = page_buffers(page);
955         struct buffer_head *bh = head;
956         int uptodate = PageUptodate(page);
957         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958
959         do {
960                 if (!buffer_mapped(bh)) {
961                         init_buffer(bh, NULL, NULL);
962                         bh->b_bdev = bdev;
963                         bh->b_blocknr = block;
964                         if (uptodate)
965                                 set_buffer_uptodate(bh);
966                         if (block < end_block)
967                                 set_buffer_mapped(bh);
968                 }
969                 block++;
970                 bh = bh->b_this_page;
971         } while (bh != head);
972
973         /*
974          * Caller needs to validate requested block against end of device.
975          */
976         return end_block;
977 }
978
979 /*
980  * Create the page-cache page that contains the requested block.
981  *
982  * This is used purely for blockdev mappings.
983  */
984 static int
985 grow_dev_page(struct block_device *bdev, sector_t block,
986               pgoff_t index, int size, int sizebits, gfp_t gfp)
987 {
988         struct inode *inode = bdev->bd_inode;
989         struct page *page;
990         struct buffer_head *bh;
991         sector_t end_block;
992         int ret = 0;            /* Will call free_more_memory() */
993         gfp_t gfp_mask;
994
995         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996
997         /*
998          * XXX: __getblk_slow() can not really deal with failure and
999          * will endlessly loop on improvised global reclaim.  Prefer
1000          * looping in the allocator rather than here, at least that
1001          * code knows what it's doing.
1002          */
1003         gfp_mask |= __GFP_NOFAIL;
1004
1005         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006         if (!page)
1007                 return ret;
1008
1009         BUG_ON(!PageLocked(page));
1010
1011         if (page_has_buffers(page)) {
1012                 bh = page_buffers(page);
1013                 if (bh->b_size == size) {
1014                         end_block = init_page_buffers(page, bdev,
1015                                                 (sector_t)index << sizebits,
1016                                                 size);
1017                         goto done;
1018                 }
1019                 if (!try_to_free_buffers(page))
1020                         goto failed;
1021         }
1022
1023         /*
1024          * Allocate some buffers for this page
1025          */
1026         bh = alloc_page_buffers(page, size, 0);
1027         if (!bh)
1028                 goto failed;
1029
1030         /*
1031          * Link the page to the buffers and initialise them.  Take the
1032          * lock to be atomic wrt __find_get_block(), which does not
1033          * run under the page lock.
1034          */
1035         spin_lock(&inode->i_mapping->private_lock);
1036         link_dev_buffers(page, bh);
1037         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038                         size);
1039         spin_unlock(&inode->i_mapping->private_lock);
1040 done:
1041         ret = (block < end_block) ? 1 : -ENXIO;
1042 failed:
1043         unlock_page(page);
1044         page_cache_release(page);
1045         return ret;
1046 }
1047
1048 /*
1049  * Create buffers for the specified block device block's page.  If
1050  * that page was dirty, the buffers are set dirty also.
1051  */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 {
1055         pgoff_t index;
1056         int sizebits;
1057
1058         sizebits = -1;
1059         do {
1060                 sizebits++;
1061         } while ((size << sizebits) < PAGE_SIZE);
1062
1063         index = block >> sizebits;
1064
1065         /*
1066          * Check for a block which wants to lie outside our maximum possible
1067          * pagecache index.  (this comparison is done using sector_t types).
1068          */
1069         if (unlikely(index != block >> sizebits)) {
1070                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071                         "device %pg\n",
1072                         __func__, (unsigned long long)block,
1073                         bdev);
1074                 return -EIO;
1075         }
1076
1077         /* Create a page with the proper size buffers.. */
1078         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 }
1080
1081 struct buffer_head *
1082 __getblk_slow(struct block_device *bdev, sector_t block,
1083              unsigned size, gfp_t gfp)
1084 {
1085         /* Size must be multiple of hard sectorsize */
1086         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087                         (size < 512 || size > PAGE_SIZE))) {
1088                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089                                         size);
1090                 printk(KERN_ERR "logical block size: %d\n",
1091                                         bdev_logical_block_size(bdev));
1092
1093                 dump_stack();
1094                 return NULL;
1095         }
1096
1097         for (;;) {
1098                 struct buffer_head *bh;
1099                 int ret;
1100
1101                 bh = __find_get_block(bdev, block, size);
1102                 if (bh)
1103                         return bh;
1104
1105                 ret = grow_buffers(bdev, block, size, gfp);
1106                 if (ret < 0)
1107                         return NULL;
1108                 if (ret == 0)
1109                         free_more_memory();
1110         }
1111 }
1112 EXPORT_SYMBOL(__getblk_slow);
1113
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and mapping->host->i_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151         WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153         trace_block_dirty_buffer(bh);
1154
1155         /*
1156          * Very *carefully* optimize the it-is-already-dirty case.
1157          *
1158          * Don't let the final "is it dirty" escape to before we
1159          * perhaps modified the buffer.
1160          */
1161         if (buffer_dirty(bh)) {
1162                 smp_mb();
1163                 if (buffer_dirty(bh))
1164                         return;
1165         }
1166
1167         if (!test_set_buffer_dirty(bh)) {
1168                 struct page *page = bh->b_page;
1169                 struct address_space *mapping = NULL;
1170                 struct mem_cgroup *memcg;
1171
1172                 memcg = mem_cgroup_begin_page_stat(page);
1173                 if (!TestSetPageDirty(page)) {
1174                         mapping = page_mapping(page);
1175                         if (mapping)
1176                                 __set_page_dirty(page, mapping, memcg, 0);
1177                 }
1178                 mem_cgroup_end_page_stat(memcg);
1179                 if (mapping)
1180                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181         }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194         if (atomic_read(&buf->b_count)) {
1195                 put_bh(buf);
1196                 return;
1197         }
1198         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208         clear_buffer_dirty(bh);
1209         if (bh->b_assoc_map) {
1210                 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212                 spin_lock(&buffer_mapping->private_lock);
1213                 list_del_init(&bh->b_assoc_buffers);
1214                 bh->b_assoc_map = NULL;
1215                 spin_unlock(&buffer_mapping->private_lock);
1216         }
1217         __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223         lock_buffer(bh);
1224         if (buffer_uptodate(bh)) {
1225                 unlock_buffer(bh);
1226                 return bh;
1227         } else {
1228                 get_bh(bh);
1229                 bh->b_end_io = end_buffer_read_sync;
1230                 submit_bh(READ, bh);
1231                 wait_on_buffer(bh);
1232                 if (buffer_uptodate(bh))
1233                         return bh;
1234         }
1235         brelse(bh);
1236         return NULL;
1237 }
1238
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252
1253 #define BH_LRU_SIZE     16
1254
1255 struct bh_lru {
1256         struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()   local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock()   preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272         BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281         struct buffer_head *evictee = NULL;
1282
1283         check_irqs_on();
1284         bh_lru_lock();
1285         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286                 struct buffer_head *bhs[BH_LRU_SIZE];
1287                 int in;
1288                 int out = 0;
1289
1290                 get_bh(bh);
1291                 bhs[out++] = bh;
1292                 for (in = 0; in < BH_LRU_SIZE; in++) {
1293                         struct buffer_head *bh2 =
1294                                 __this_cpu_read(bh_lrus.bhs[in]);
1295
1296                         if (bh2 == bh) {
1297                                 __brelse(bh2);
1298                         } else {
1299                                 if (out >= BH_LRU_SIZE) {
1300                                         BUG_ON(evictee != NULL);
1301                                         evictee = bh2;
1302                                 } else {
1303                                         bhs[out++] = bh2;
1304                                 }
1305                         }
1306                 }
1307                 while (out < BH_LRU_SIZE)
1308                         bhs[out++] = NULL;
1309                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310         }
1311         bh_lru_unlock();
1312
1313         if (evictee)
1314                 __brelse(evictee);
1315 }
1316
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323         struct buffer_head *ret = NULL;
1324         unsigned int i;
1325
1326         check_irqs_on();
1327         bh_lru_lock();
1328         for (i = 0; i < BH_LRU_SIZE; i++) {
1329                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330
1331                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332                     bh->b_size == size) {
1333                         if (i) {
1334                                 while (i) {
1335                                         __this_cpu_write(bh_lrus.bhs[i],
1336                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1337                                         i--;
1338                                 }
1339                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1340                         }
1341                         get_bh(bh);
1342                         ret = bh;
1343                         break;
1344                 }
1345         }
1346         bh_lru_unlock();
1347         return ret;
1348 }
1349
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360         if (bh == NULL) {
1361                 /* __find_get_block_slow will mark the page accessed */
1362                 bh = __find_get_block_slow(bdev, block);
1363                 if (bh)
1364                         bh_lru_install(bh);
1365         } else
1366                 touch_buffer(bh);
1367
1368         return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371
1372 /*
1373  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374  * which corresponds to the passed block_device, block and size. The
1375  * returned buffer has its reference count incremented.
1376  *
1377  * __getblk_gfp() will lock up the machine if grow_dev_page's
1378  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1379  */
1380 struct buffer_head *
1381 __getblk_gfp(struct block_device *bdev, sector_t block,
1382              unsigned size, gfp_t gfp)
1383 {
1384         struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386         might_sleep();
1387         if (bh == NULL)
1388                 bh = __getblk_slow(bdev, block, size, gfp);
1389         return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk_gfp);
1392
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398         struct buffer_head *bh = __getblk(bdev, block, size);
1399         if (likely(bh)) {
1400                 ll_rw_block(READA, 1, &bh);
1401                 brelse(bh);
1402         }
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405
1406 /**
1407  *  __bread_gfp() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  *  @gfp: page allocation flag
1412  *
1413  *  Reads a specified block, and returns buffer head that contains it.
1414  *  The page cache can be allocated from non-movable area
1415  *  not to prevent page migration if you set gfp to zero.
1416  *  It returns NULL if the block was unreadable.
1417  */
1418 struct buffer_head *
1419 __bread_gfp(struct block_device *bdev, sector_t block,
1420                    unsigned size, gfp_t gfp)
1421 {
1422         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423
1424         if (likely(bh) && !buffer_uptodate(bh))
1425                 bh = __bread_slow(bh);
1426         return bh;
1427 }
1428 EXPORT_SYMBOL(__bread_gfp);
1429
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437         struct bh_lru *b = &get_cpu_var(bh_lrus);
1438         int i;
1439
1440         for (i = 0; i < BH_LRU_SIZE; i++) {
1441                 brelse(b->bhs[i]);
1442                 b->bhs[i] = NULL;
1443         }
1444         put_cpu_var(bh_lrus);
1445 }
1446
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450         int i;
1451         
1452         for (i = 0; i < BH_LRU_SIZE; i++) {
1453                 if (b->bhs[i])
1454                         return 1;
1455         }
1456
1457         return 0;
1458 }
1459
1460 void invalidate_bh_lrus(void)
1461 {
1462         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465
1466 void set_bh_page(struct buffer_head *bh,
1467                 struct page *page, unsigned long offset)
1468 {
1469         bh->b_page = page;
1470         BUG_ON(offset >= PAGE_SIZE);
1471         if (PageHighMem(page))
1472                 /*
1473                  * This catches illegal uses and preserves the offset:
1474                  */
1475                 bh->b_data = (char *)(0 + offset);
1476         else
1477                 bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480
1481 /*
1482  * Called when truncating a buffer on a page completely.
1483  */
1484
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488          1 << BH_Delay | 1 << BH_Unwritten)
1489
1490 static void discard_buffer(struct buffer_head * bh)
1491 {
1492         unsigned long b_state, b_state_old;
1493
1494         lock_buffer(bh);
1495         clear_buffer_dirty(bh);
1496         bh->b_bdev = NULL;
1497         b_state = bh->b_state;
1498         for (;;) {
1499                 b_state_old = cmpxchg(&bh->b_state, b_state,
1500                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1501                 if (b_state_old == b_state)
1502                         break;
1503                 b_state = b_state_old;
1504         }
1505         unlock_buffer(bh);
1506 }
1507
1508 /**
1509  * block_invalidatepage - invalidate part or all of a buffer-backed page
1510  *
1511  * @page: the page which is affected
1512  * @offset: start of the range to invalidate
1513  * @length: length of the range to invalidate
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidated by a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned int offset,
1525                           unsigned int length)
1526 {
1527         struct buffer_head *head, *bh, *next;
1528         unsigned int curr_off = 0;
1529         unsigned int stop = length + offset;
1530
1531         BUG_ON(!PageLocked(page));
1532         if (!page_has_buffers(page))
1533                 goto out;
1534
1535         /*
1536          * Check for overflow
1537          */
1538         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1539
1540         head = page_buffers(page);
1541         bh = head;
1542         do {
1543                 unsigned int next_off = curr_off + bh->b_size;
1544                 next = bh->b_this_page;
1545
1546                 /*
1547                  * Are we still fully in range ?
1548                  */
1549                 if (next_off > stop)
1550                         goto out;
1551
1552                 /*
1553                  * is this block fully invalidated?
1554                  */
1555                 if (offset <= curr_off)
1556                         discard_buffer(bh);
1557                 curr_off = next_off;
1558                 bh = next;
1559         } while (bh != head);
1560
1561         /*
1562          * We release buffers only if the entire page is being invalidated.
1563          * The get_block cached value has been unconditionally invalidated,
1564          * so real IO is not possible anymore.
1565          */
1566         if (offset == 0)
1567                 try_to_release_page(page, 0);
1568 out:
1569         return;
1570 }
1571 EXPORT_SYMBOL(block_invalidatepage);
1572
1573
1574 /*
1575  * We attach and possibly dirty the buffers atomically wrt
1576  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1577  * is already excluded via the page lock.
1578  */
1579 void create_empty_buffers(struct page *page,
1580                         unsigned long blocksize, unsigned long b_state)
1581 {
1582         struct buffer_head *bh, *head, *tail;
1583
1584         head = alloc_page_buffers(page, blocksize, 1);
1585         bh = head;
1586         do {
1587                 bh->b_state |= b_state;
1588                 tail = bh;
1589                 bh = bh->b_this_page;
1590         } while (bh);
1591         tail->b_this_page = head;
1592
1593         spin_lock(&page->mapping->private_lock);
1594         if (PageUptodate(page) || PageDirty(page)) {
1595                 bh = head;
1596                 do {
1597                         if (PageDirty(page))
1598                                 set_buffer_dirty(bh);
1599                         if (PageUptodate(page))
1600                                 set_buffer_uptodate(bh);
1601                         bh = bh->b_this_page;
1602                 } while (bh != head);
1603         }
1604         attach_page_buffers(page, head);
1605         spin_unlock(&page->mapping->private_lock);
1606 }
1607 EXPORT_SYMBOL(create_empty_buffers);
1608
1609 /*
1610  * We are taking a block for data and we don't want any output from any
1611  * buffer-cache aliases starting from return from that function and
1612  * until the moment when something will explicitly mark the buffer
1613  * dirty (hopefully that will not happen until we will free that block ;-)
1614  * We don't even need to mark it not-uptodate - nobody can expect
1615  * anything from a newly allocated buffer anyway. We used to used
1616  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1617  * don't want to mark the alias unmapped, for example - it would confuse
1618  * anyone who might pick it with bread() afterwards...
1619  *
1620  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1621  * be writeout I/O going on against recently-freed buffers.  We don't
1622  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1623  * only if we really need to.  That happens here.
1624  */
1625 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1626 {
1627         struct buffer_head *old_bh;
1628
1629         might_sleep();
1630
1631         old_bh = __find_get_block_slow(bdev, block);
1632         if (old_bh) {
1633                 clear_buffer_dirty(old_bh);
1634                 wait_on_buffer(old_bh);
1635                 clear_buffer_req(old_bh);
1636                 __brelse(old_bh);
1637         }
1638 }
1639 EXPORT_SYMBOL(unmap_underlying_metadata);
1640
1641 /*
1642  * Size is a power-of-two in the range 512..PAGE_SIZE,
1643  * and the case we care about most is PAGE_SIZE.
1644  *
1645  * So this *could* possibly be written with those
1646  * constraints in mind (relevant mostly if some
1647  * architecture has a slow bit-scan instruction)
1648  */
1649 static inline int block_size_bits(unsigned int blocksize)
1650 {
1651         return ilog2(blocksize);
1652 }
1653
1654 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1655 {
1656         BUG_ON(!PageLocked(page));
1657
1658         if (!page_has_buffers(page))
1659                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1660         return page_buffers(page);
1661 }
1662
1663 /*
1664  * NOTE! All mapped/uptodate combinations are valid:
1665  *
1666  *      Mapped  Uptodate        Meaning
1667  *
1668  *      No      No              "unknown" - must do get_block()
1669  *      No      Yes             "hole" - zero-filled
1670  *      Yes     No              "allocated" - allocated on disk, not read in
1671  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1672  *
1673  * "Dirty" is valid only with the last case (mapped+uptodate).
1674  */
1675
1676 /*
1677  * While block_write_full_page is writing back the dirty buffers under
1678  * the page lock, whoever dirtied the buffers may decide to clean them
1679  * again at any time.  We handle that by only looking at the buffer
1680  * state inside lock_buffer().
1681  *
1682  * If block_write_full_page() is called for regular writeback
1683  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1684  * locked buffer.   This only can happen if someone has written the buffer
1685  * directly, with submit_bh().  At the address_space level PageWriteback
1686  * prevents this contention from occurring.
1687  *
1688  * If block_write_full_page() is called with wbc->sync_mode ==
1689  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1690  * causes the writes to be flagged as synchronous writes.
1691  */
1692 static int __block_write_full_page(struct inode *inode, struct page *page,
1693                         get_block_t *get_block, struct writeback_control *wbc,
1694                         bh_end_io_t *handler)
1695 {
1696         int err;
1697         sector_t block;
1698         sector_t last_block;
1699         struct buffer_head *bh, *head;
1700         unsigned int blocksize, bbits;
1701         int nr_underway = 0;
1702         int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1703
1704         head = create_page_buffers(page, inode,
1705                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1706
1707         /*
1708          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1709          * here, and the (potentially unmapped) buffers may become dirty at
1710          * any time.  If a buffer becomes dirty here after we've inspected it
1711          * then we just miss that fact, and the page stays dirty.
1712          *
1713          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1714          * handle that here by just cleaning them.
1715          */
1716
1717         bh = head;
1718         blocksize = bh->b_size;
1719         bbits = block_size_bits(blocksize);
1720
1721         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1722         last_block = (i_size_read(inode) - 1) >> bbits;
1723
1724         /*
1725          * Get all the dirty buffers mapped to disk addresses and
1726          * handle any aliases from the underlying blockdev's mapping.
1727          */
1728         do {
1729                 if (block > last_block) {
1730                         /*
1731                          * mapped buffers outside i_size will occur, because
1732                          * this page can be outside i_size when there is a
1733                          * truncate in progress.
1734                          */
1735                         /*
1736                          * The buffer was zeroed by block_write_full_page()
1737                          */
1738                         clear_buffer_dirty(bh);
1739                         set_buffer_uptodate(bh);
1740                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1741                            buffer_dirty(bh)) {
1742                         WARN_ON(bh->b_size != blocksize);
1743                         err = get_block(inode, block, bh, 1);
1744                         if (err)
1745                                 goto recover;
1746                         clear_buffer_delay(bh);
1747                         if (buffer_new(bh)) {
1748                                 /* blockdev mappings never come here */
1749                                 clear_buffer_new(bh);
1750                                 unmap_underlying_metadata(bh->b_bdev,
1751                                                         bh->b_blocknr);
1752                         }
1753                 }
1754                 bh = bh->b_this_page;
1755                 block++;
1756         } while (bh != head);
1757
1758         do {
1759                 if (!buffer_mapped(bh))
1760                         continue;
1761                 /*
1762                  * If it's a fully non-blocking write attempt and we cannot
1763                  * lock the buffer then redirty the page.  Note that this can
1764                  * potentially cause a busy-wait loop from writeback threads
1765                  * and kswapd activity, but those code paths have their own
1766                  * higher-level throttling.
1767                  */
1768                 if (wbc->sync_mode != WB_SYNC_NONE) {
1769                         lock_buffer(bh);
1770                 } else if (!trylock_buffer(bh)) {
1771                         redirty_page_for_writepage(wbc, page);
1772                         continue;
1773                 }
1774                 if (test_clear_buffer_dirty(bh)) {
1775                         mark_buffer_async_write_endio(bh, handler);
1776                 } else {
1777                         unlock_buffer(bh);
1778                 }
1779         } while ((bh = bh->b_this_page) != head);
1780
1781         /*
1782          * The page and its buffers are protected by PageWriteback(), so we can
1783          * drop the bh refcounts early.
1784          */
1785         BUG_ON(PageWriteback(page));
1786         set_page_writeback(page);
1787
1788         do {
1789                 struct buffer_head *next = bh->b_this_page;
1790                 if (buffer_async_write(bh)) {
1791                         submit_bh_wbc(write_op, bh, 0, wbc);
1792                         nr_underway++;
1793                 }
1794                 bh = next;
1795         } while (bh != head);
1796         unlock_page(page);
1797
1798         err = 0;
1799 done:
1800         if (nr_underway == 0) {
1801                 /*
1802                  * The page was marked dirty, but the buffers were
1803                  * clean.  Someone wrote them back by hand with
1804                  * ll_rw_block/submit_bh.  A rare case.
1805                  */
1806                 end_page_writeback(page);
1807
1808                 /*
1809                  * The page and buffer_heads can be released at any time from
1810                  * here on.
1811                  */
1812         }
1813         return err;
1814
1815 recover:
1816         /*
1817          * ENOSPC, or some other error.  We may already have added some
1818          * blocks to the file, so we need to write these out to avoid
1819          * exposing stale data.
1820          * The page is currently locked and not marked for writeback
1821          */
1822         bh = head;
1823         /* Recovery: lock and submit the mapped buffers */
1824         do {
1825                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1826                     !buffer_delay(bh)) {
1827                         lock_buffer(bh);
1828                         mark_buffer_async_write_endio(bh, handler);
1829                 } else {
1830                         /*
1831                          * The buffer may have been set dirty during
1832                          * attachment to a dirty page.
1833                          */
1834                         clear_buffer_dirty(bh);
1835                 }
1836         } while ((bh = bh->b_this_page) != head);
1837         SetPageError(page);
1838         BUG_ON(PageWriteback(page));
1839         mapping_set_error(page->mapping, err);
1840         set_page_writeback(page);
1841         do {
1842                 struct buffer_head *next = bh->b_this_page;
1843                 if (buffer_async_write(bh)) {
1844                         clear_buffer_dirty(bh);
1845                         submit_bh_wbc(write_op, bh, 0, wbc);
1846                         nr_underway++;
1847                 }
1848                 bh = next;
1849         } while (bh != head);
1850         unlock_page(page);
1851         goto done;
1852 }
1853
1854 /*
1855  * If a page has any new buffers, zero them out here, and mark them uptodate
1856  * and dirty so they'll be written out (in order to prevent uninitialised
1857  * block data from leaking). And clear the new bit.
1858  */
1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860 {
1861         unsigned int block_start, block_end;
1862         struct buffer_head *head, *bh;
1863
1864         BUG_ON(!PageLocked(page));
1865         if (!page_has_buffers(page))
1866                 return;
1867
1868         bh = head = page_buffers(page);
1869         block_start = 0;
1870         do {
1871                 block_end = block_start + bh->b_size;
1872
1873                 if (buffer_new(bh)) {
1874                         if (block_end > from && block_start < to) {
1875                                 if (!PageUptodate(page)) {
1876                                         unsigned start, size;
1877
1878                                         start = max(from, block_start);
1879                                         size = min(to, block_end) - start;
1880
1881                                         zero_user(page, start, size);
1882                                         set_buffer_uptodate(bh);
1883                                 }
1884
1885                                 clear_buffer_new(bh);
1886                                 mark_buffer_dirty(bh);
1887                         }
1888                 }
1889
1890                 block_start = block_end;
1891                 bh = bh->b_this_page;
1892         } while (bh != head);
1893 }
1894 EXPORT_SYMBOL(page_zero_new_buffers);
1895
1896 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1897                 get_block_t *get_block)
1898 {
1899         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1900         unsigned to = from + len;
1901         struct inode *inode = page->mapping->host;
1902         unsigned block_start, block_end;
1903         sector_t block;
1904         int err = 0;
1905         unsigned blocksize, bbits;
1906         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1907
1908         BUG_ON(!PageLocked(page));
1909         BUG_ON(from > PAGE_CACHE_SIZE);
1910         BUG_ON(to > PAGE_CACHE_SIZE);
1911         BUG_ON(from > to);
1912
1913         head = create_page_buffers(page, inode, 0);
1914         blocksize = head->b_size;
1915         bbits = block_size_bits(blocksize);
1916
1917         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1918
1919         for(bh = head, block_start = 0; bh != head || !block_start;
1920             block++, block_start=block_end, bh = bh->b_this_page) {
1921                 block_end = block_start + blocksize;
1922                 if (block_end <= from || block_start >= to) {
1923                         if (PageUptodate(page)) {
1924                                 if (!buffer_uptodate(bh))
1925                                         set_buffer_uptodate(bh);
1926                         }
1927                         continue;
1928                 }
1929                 if (buffer_new(bh))
1930                         clear_buffer_new(bh);
1931                 if (!buffer_mapped(bh)) {
1932                         WARN_ON(bh->b_size != blocksize);
1933                         err = get_block(inode, block, bh, 1);
1934                         if (err)
1935                                 break;
1936                         if (buffer_new(bh)) {
1937                                 unmap_underlying_metadata(bh->b_bdev,
1938                                                         bh->b_blocknr);
1939                                 if (PageUptodate(page)) {
1940                                         clear_buffer_new(bh);
1941                                         set_buffer_uptodate(bh);
1942                                         mark_buffer_dirty(bh);
1943                                         continue;
1944                                 }
1945                                 if (block_end > to || block_start < from)
1946                                         zero_user_segments(page,
1947                                                 to, block_end,
1948                                                 block_start, from);
1949                                 continue;
1950                         }
1951                 }
1952                 if (PageUptodate(page)) {
1953                         if (!buffer_uptodate(bh))
1954                                 set_buffer_uptodate(bh);
1955                         continue; 
1956                 }
1957                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1958                     !buffer_unwritten(bh) &&
1959                      (block_start < from || block_end > to)) {
1960                         ll_rw_block(READ, 1, &bh);
1961                         *wait_bh++=bh;
1962                 }
1963         }
1964         /*
1965          * If we issued read requests - let them complete.
1966          */
1967         while(wait_bh > wait) {
1968                 wait_on_buffer(*--wait_bh);
1969                 if (!buffer_uptodate(*wait_bh))
1970                         err = -EIO;
1971         }
1972         if (unlikely(err))
1973                 page_zero_new_buffers(page, from, to);
1974         return err;
1975 }
1976 EXPORT_SYMBOL(__block_write_begin);
1977
1978 static int __block_commit_write(struct inode *inode, struct page *page,
1979                 unsigned from, unsigned to)
1980 {
1981         unsigned block_start, block_end;
1982         int partial = 0;
1983         unsigned blocksize;
1984         struct buffer_head *bh, *head;
1985
1986         bh = head = page_buffers(page);
1987         blocksize = bh->b_size;
1988
1989         block_start = 0;
1990         do {
1991                 block_end = block_start + blocksize;
1992                 if (block_end <= from || block_start >= to) {
1993                         if (!buffer_uptodate(bh))
1994                                 partial = 1;
1995                 } else {
1996                         set_buffer_uptodate(bh);
1997                         mark_buffer_dirty(bh);
1998                 }
1999                 clear_buffer_new(bh);
2000
2001                 block_start = block_end;
2002                 bh = bh->b_this_page;
2003         } while (bh != head);
2004
2005         /*
2006          * If this is a partial write which happened to make all buffers
2007          * uptodate then we can optimize away a bogus readpage() for
2008          * the next read(). Here we 'discover' whether the page went
2009          * uptodate as a result of this (potentially partial) write.
2010          */
2011         if (!partial)
2012                 SetPageUptodate(page);
2013         return 0;
2014 }
2015
2016 /*
2017  * block_write_begin takes care of the basic task of block allocation and
2018  * bringing partial write blocks uptodate first.
2019  *
2020  * The filesystem needs to handle block truncation upon failure.
2021  */
2022 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2023                 unsigned flags, struct page **pagep, get_block_t *get_block)
2024 {
2025         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2026         struct page *page;
2027         int status;
2028
2029         page = grab_cache_page_write_begin(mapping, index, flags);
2030         if (!page)
2031                 return -ENOMEM;
2032
2033         status = __block_write_begin(page, pos, len, get_block);
2034         if (unlikely(status)) {
2035                 unlock_page(page);
2036                 page_cache_release(page);
2037                 page = NULL;
2038         }
2039
2040         *pagep = page;
2041         return status;
2042 }
2043 EXPORT_SYMBOL(block_write_begin);
2044
2045 int block_write_end(struct file *file, struct address_space *mapping,
2046                         loff_t pos, unsigned len, unsigned copied,
2047                         struct page *page, void *fsdata)
2048 {
2049         struct inode *inode = mapping->host;
2050         unsigned start;
2051
2052         start = pos & (PAGE_CACHE_SIZE - 1);
2053
2054         if (unlikely(copied < len)) {
2055                 /*
2056                  * The buffers that were written will now be uptodate, so we
2057                  * don't have to worry about a readpage reading them and
2058                  * overwriting a partial write. However if we have encountered
2059                  * a short write and only partially written into a buffer, it
2060                  * will not be marked uptodate, so a readpage might come in and
2061                  * destroy our partial write.
2062                  *
2063                  * Do the simplest thing, and just treat any short write to a
2064                  * non uptodate page as a zero-length write, and force the
2065                  * caller to redo the whole thing.
2066                  */
2067                 if (!PageUptodate(page))
2068                         copied = 0;
2069
2070                 page_zero_new_buffers(page, start+copied, start+len);
2071         }
2072         flush_dcache_page(page);
2073
2074         /* This could be a short (even 0-length) commit */
2075         __block_commit_write(inode, page, start, start+copied);
2076
2077         return copied;
2078 }
2079 EXPORT_SYMBOL(block_write_end);
2080
2081 int generic_write_end(struct file *file, struct address_space *mapping,
2082                         loff_t pos, unsigned len, unsigned copied,
2083                         struct page *page, void *fsdata)
2084 {
2085         struct inode *inode = mapping->host;
2086         loff_t old_size = inode->i_size;
2087         int i_size_changed = 0;
2088
2089         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2090
2091         /*
2092          * No need to use i_size_read() here, the i_size
2093          * cannot change under us because we hold i_mutex.
2094          *
2095          * But it's important to update i_size while still holding page lock:
2096          * page writeout could otherwise come in and zero beyond i_size.
2097          */
2098         if (pos+copied > inode->i_size) {
2099                 i_size_write(inode, pos+copied);
2100                 i_size_changed = 1;
2101         }
2102
2103         unlock_page(page);
2104         page_cache_release(page);
2105
2106         if (old_size < pos)
2107                 pagecache_isize_extended(inode, old_size, pos);
2108         /*
2109          * Don't mark the inode dirty under page lock. First, it unnecessarily
2110          * makes the holding time of page lock longer. Second, it forces lock
2111          * ordering of page lock and transaction start for journaling
2112          * filesystems.
2113          */
2114         if (i_size_changed)
2115                 mark_inode_dirty(inode);
2116
2117         return copied;
2118 }
2119 EXPORT_SYMBOL(generic_write_end);
2120
2121 /*
2122  * block_is_partially_uptodate checks whether buffers within a page are
2123  * uptodate or not.
2124  *
2125  * Returns true if all buffers which correspond to a file portion
2126  * we want to read are uptodate.
2127  */
2128 int block_is_partially_uptodate(struct page *page, unsigned long from,
2129                                         unsigned long count)
2130 {
2131         unsigned block_start, block_end, blocksize;
2132         unsigned to;
2133         struct buffer_head *bh, *head;
2134         int ret = 1;
2135
2136         if (!page_has_buffers(page))
2137                 return 0;
2138
2139         head = page_buffers(page);
2140         blocksize = head->b_size;
2141         to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2142         to = from + to;
2143         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2144                 return 0;
2145
2146         bh = head;
2147         block_start = 0;
2148         do {
2149                 block_end = block_start + blocksize;
2150                 if (block_end > from && block_start < to) {
2151                         if (!buffer_uptodate(bh)) {
2152                                 ret = 0;
2153                                 break;
2154                         }
2155                         if (block_end >= to)
2156                                 break;
2157                 }
2158                 block_start = block_end;
2159                 bh = bh->b_this_page;
2160         } while (bh != head);
2161
2162         return ret;
2163 }
2164 EXPORT_SYMBOL(block_is_partially_uptodate);
2165
2166 /*
2167  * Generic "read page" function for block devices that have the normal
2168  * get_block functionality. This is most of the block device filesystems.
2169  * Reads the page asynchronously --- the unlock_buffer() and
2170  * set/clear_buffer_uptodate() functions propagate buffer state into the
2171  * page struct once IO has completed.
2172  */
2173 int block_read_full_page(struct page *page, get_block_t *get_block)
2174 {
2175         struct inode *inode = page->mapping->host;
2176         sector_t iblock, lblock;
2177         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2178         unsigned int blocksize, bbits;
2179         int nr, i;
2180         int fully_mapped = 1;
2181
2182         head = create_page_buffers(page, inode, 0);
2183         blocksize = head->b_size;
2184         bbits = block_size_bits(blocksize);
2185
2186         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2187         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2188         bh = head;
2189         nr = 0;
2190         i = 0;
2191
2192         do {
2193                 if (buffer_uptodate(bh))
2194                         continue;
2195
2196                 if (!buffer_mapped(bh)) {
2197                         int err = 0;
2198
2199                         fully_mapped = 0;
2200                         if (iblock < lblock) {
2201                                 WARN_ON(bh->b_size != blocksize);
2202                                 err = get_block(inode, iblock, bh, 0);
2203                                 if (err)
2204                                         SetPageError(page);
2205                         }
2206                         if (!buffer_mapped(bh)) {
2207                                 zero_user(page, i * blocksize, blocksize);
2208                                 if (!err)
2209                                         set_buffer_uptodate(bh);
2210                                 continue;
2211                         }
2212                         /*
2213                          * get_block() might have updated the buffer
2214                          * synchronously
2215                          */
2216                         if (buffer_uptodate(bh))
2217                                 continue;
2218                 }
2219                 arr[nr++] = bh;
2220         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2221
2222         if (fully_mapped)
2223                 SetPageMappedToDisk(page);
2224
2225         if (!nr) {
2226                 /*
2227                  * All buffers are uptodate - we can set the page uptodate
2228                  * as well. But not if get_block() returned an error.
2229                  */
2230                 if (!PageError(page))
2231                         SetPageUptodate(page);
2232                 unlock_page(page);
2233                 return 0;
2234         }
2235
2236         /* Stage two: lock the buffers */
2237         for (i = 0; i < nr; i++) {
2238                 bh = arr[i];
2239                 lock_buffer(bh);
2240                 mark_buffer_async_read(bh);
2241         }
2242
2243         /*
2244          * Stage 3: start the IO.  Check for uptodateness
2245          * inside the buffer lock in case another process reading
2246          * the underlying blockdev brought it uptodate (the sct fix).
2247          */
2248         for (i = 0; i < nr; i++) {
2249                 bh = arr[i];
2250                 if (buffer_uptodate(bh))
2251                         end_buffer_async_read(bh, 1);
2252                 else
2253                         submit_bh(READ, bh);
2254         }
2255         return 0;
2256 }
2257 EXPORT_SYMBOL(block_read_full_page);
2258
2259 /* utility function for filesystems that need to do work on expanding
2260  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2261  * deal with the hole.  
2262  */
2263 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2264 {
2265         struct address_space *mapping = inode->i_mapping;
2266         struct page *page;
2267         void *fsdata;
2268         int err;
2269
2270         err = inode_newsize_ok(inode, size);
2271         if (err)
2272                 goto out;
2273
2274         err = pagecache_write_begin(NULL, mapping, size, 0,
2275                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2276                                 &page, &fsdata);
2277         if (err)
2278                 goto out;
2279
2280         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2281         BUG_ON(err > 0);
2282
2283 out:
2284         return err;
2285 }
2286 EXPORT_SYMBOL(generic_cont_expand_simple);
2287
2288 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2289                             loff_t pos, loff_t *bytes)
2290 {
2291         struct inode *inode = mapping->host;
2292         unsigned blocksize = 1 << inode->i_blkbits;
2293         struct page *page;
2294         void *fsdata;
2295         pgoff_t index, curidx;
2296         loff_t curpos;
2297         unsigned zerofrom, offset, len;
2298         int err = 0;
2299
2300         index = pos >> PAGE_CACHE_SHIFT;
2301         offset = pos & ~PAGE_CACHE_MASK;
2302
2303         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2304                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2305                 if (zerofrom & (blocksize-1)) {
2306                         *bytes |= (blocksize-1);
2307                         (*bytes)++;
2308                 }
2309                 len = PAGE_CACHE_SIZE - zerofrom;
2310
2311                 err = pagecache_write_begin(file, mapping, curpos, len,
2312                                                 AOP_FLAG_UNINTERRUPTIBLE,
2313                                                 &page, &fsdata);
2314                 if (err)
2315                         goto out;
2316                 zero_user(page, zerofrom, len);
2317                 err = pagecache_write_end(file, mapping, curpos, len, len,
2318                                                 page, fsdata);
2319                 if (err < 0)
2320                         goto out;
2321                 BUG_ON(err != len);
2322                 err = 0;
2323
2324                 balance_dirty_pages_ratelimited(mapping);
2325
2326                 if (unlikely(fatal_signal_pending(current))) {
2327                         err = -EINTR;
2328                         goto out;
2329                 }
2330         }
2331
2332         /* page covers the boundary, find the boundary offset */
2333         if (index == curidx) {
2334                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2335                 /* if we will expand the thing last block will be filled */
2336                 if (offset <= zerofrom) {
2337                         goto out;
2338                 }
2339                 if (zerofrom & (blocksize-1)) {
2340                         *bytes |= (blocksize-1);
2341                         (*bytes)++;
2342                 }
2343                 len = offset - zerofrom;
2344
2345                 err = pagecache_write_begin(file, mapping, curpos, len,
2346                                                 AOP_FLAG_UNINTERRUPTIBLE,
2347                                                 &page, &fsdata);
2348                 if (err)
2349                         goto out;
2350                 zero_user(page, zerofrom, len);
2351                 err = pagecache_write_end(file, mapping, curpos, len, len,
2352                                                 page, fsdata);
2353                 if (err < 0)
2354                         goto out;
2355                 BUG_ON(err != len);
2356                 err = 0;
2357         }
2358 out:
2359         return err;
2360 }
2361
2362 /*
2363  * For moronic filesystems that do not allow holes in file.
2364  * We may have to extend the file.
2365  */
2366 int cont_write_begin(struct file *file, struct address_space *mapping,
2367                         loff_t pos, unsigned len, unsigned flags,
2368                         struct page **pagep, void **fsdata,
2369                         get_block_t *get_block, loff_t *bytes)
2370 {
2371         struct inode *inode = mapping->host;
2372         unsigned blocksize = 1 << inode->i_blkbits;
2373         unsigned zerofrom;
2374         int err;
2375
2376         err = cont_expand_zero(file, mapping, pos, bytes);
2377         if (err)
2378                 return err;
2379
2380         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2381         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2382                 *bytes |= (blocksize-1);
2383                 (*bytes)++;
2384         }
2385
2386         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2387 }
2388 EXPORT_SYMBOL(cont_write_begin);
2389
2390 int block_commit_write(struct page *page, unsigned from, unsigned to)
2391 {
2392         struct inode *inode = page->mapping->host;
2393         __block_commit_write(inode,page,from,to);
2394         return 0;
2395 }
2396 EXPORT_SYMBOL(block_commit_write);
2397
2398 /*
2399  * block_page_mkwrite() is not allowed to change the file size as it gets
2400  * called from a page fault handler when a page is first dirtied. Hence we must
2401  * be careful to check for EOF conditions here. We set the page up correctly
2402  * for a written page which means we get ENOSPC checking when writing into
2403  * holes and correct delalloc and unwritten extent mapping on filesystems that
2404  * support these features.
2405  *
2406  * We are not allowed to take the i_mutex here so we have to play games to
2407  * protect against truncate races as the page could now be beyond EOF.  Because
2408  * truncate writes the inode size before removing pages, once we have the
2409  * page lock we can determine safely if the page is beyond EOF. If it is not
2410  * beyond EOF, then the page is guaranteed safe against truncation until we
2411  * unlock the page.
2412  *
2413  * Direct callers of this function should protect against filesystem freezing
2414  * using sb_start_pagefault() - sb_end_pagefault() functions.
2415  */
2416 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2417                          get_block_t get_block)
2418 {
2419         struct page *page = vmf->page;
2420         struct inode *inode = file_inode(vma->vm_file);
2421         unsigned long end;
2422         loff_t size;
2423         int ret;
2424
2425         lock_page(page);
2426         size = i_size_read(inode);
2427         if ((page->mapping != inode->i_mapping) ||
2428             (page_offset(page) > size)) {
2429                 /* We overload EFAULT to mean page got truncated */
2430                 ret = -EFAULT;
2431                 goto out_unlock;
2432         }
2433
2434         /* page is wholly or partially inside EOF */
2435         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2436                 end = size & ~PAGE_CACHE_MASK;
2437         else
2438                 end = PAGE_CACHE_SIZE;
2439
2440         ret = __block_write_begin(page, 0, end, get_block);
2441         if (!ret)
2442                 ret = block_commit_write(page, 0, end);
2443
2444         if (unlikely(ret < 0))
2445                 goto out_unlock;
2446         set_page_dirty(page);
2447         wait_for_stable_page(page);
2448         return 0;
2449 out_unlock:
2450         unlock_page(page);
2451         return ret;
2452 }
2453 EXPORT_SYMBOL(block_page_mkwrite);
2454
2455 /*
2456  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2457  * immediately, while under the page lock.  So it needs a special end_io
2458  * handler which does not touch the bh after unlocking it.
2459  */
2460 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2461 {
2462         __end_buffer_read_notouch(bh, uptodate);
2463 }
2464
2465 /*
2466  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2467  * the page (converting it to circular linked list and taking care of page
2468  * dirty races).
2469  */
2470 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2471 {
2472         struct buffer_head *bh;
2473
2474         BUG_ON(!PageLocked(page));
2475
2476         spin_lock(&page->mapping->private_lock);
2477         bh = head;
2478         do {
2479                 if (PageDirty(page))
2480                         set_buffer_dirty(bh);
2481                 if (!bh->b_this_page)
2482                         bh->b_this_page = head;
2483                 bh = bh->b_this_page;
2484         } while (bh != head);
2485         attach_page_buffers(page, head);
2486         spin_unlock(&page->mapping->private_lock);
2487 }
2488
2489 /*
2490  * On entry, the page is fully not uptodate.
2491  * On exit the page is fully uptodate in the areas outside (from,to)
2492  * The filesystem needs to handle block truncation upon failure.
2493  */
2494 int nobh_write_begin(struct address_space *mapping,
2495                         loff_t pos, unsigned len, unsigned flags,
2496                         struct page **pagep, void **fsdata,
2497                         get_block_t *get_block)
2498 {
2499         struct inode *inode = mapping->host;
2500         const unsigned blkbits = inode->i_blkbits;
2501         const unsigned blocksize = 1 << blkbits;
2502         struct buffer_head *head, *bh;
2503         struct page *page;
2504         pgoff_t index;
2505         unsigned from, to;
2506         unsigned block_in_page;
2507         unsigned block_start, block_end;
2508         sector_t block_in_file;
2509         int nr_reads = 0;
2510         int ret = 0;
2511         int is_mapped_to_disk = 1;
2512
2513         index = pos >> PAGE_CACHE_SHIFT;
2514         from = pos & (PAGE_CACHE_SIZE - 1);
2515         to = from + len;
2516
2517         page = grab_cache_page_write_begin(mapping, index, flags);
2518         if (!page)
2519                 return -ENOMEM;
2520         *pagep = page;
2521         *fsdata = NULL;
2522
2523         if (page_has_buffers(page)) {
2524                 ret = __block_write_begin(page, pos, len, get_block);
2525                 if (unlikely(ret))
2526                         goto out_release;
2527                 return ret;
2528         }
2529
2530         if (PageMappedToDisk(page))
2531                 return 0;
2532
2533         /*
2534          * Allocate buffers so that we can keep track of state, and potentially
2535          * attach them to the page if an error occurs. In the common case of
2536          * no error, they will just be freed again without ever being attached
2537          * to the page (which is all OK, because we're under the page lock).
2538          *
2539          * Be careful: the buffer linked list is a NULL terminated one, rather
2540          * than the circular one we're used to.
2541          */
2542         head = alloc_page_buffers(page, blocksize, 0);
2543         if (!head) {
2544                 ret = -ENOMEM;
2545                 goto out_release;
2546         }
2547
2548         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2549
2550         /*
2551          * We loop across all blocks in the page, whether or not they are
2552          * part of the affected region.  This is so we can discover if the
2553          * page is fully mapped-to-disk.
2554          */
2555         for (block_start = 0, block_in_page = 0, bh = head;
2556                   block_start < PAGE_CACHE_SIZE;
2557                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2558                 int create;
2559
2560                 block_end = block_start + blocksize;
2561                 bh->b_state = 0;
2562                 create = 1;
2563                 if (block_start >= to)
2564                         create = 0;
2565                 ret = get_block(inode, block_in_file + block_in_page,
2566                                         bh, create);
2567                 if (ret)
2568                         goto failed;
2569                 if (!buffer_mapped(bh))
2570                         is_mapped_to_disk = 0;
2571                 if (buffer_new(bh))
2572                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2573                 if (PageUptodate(page)) {
2574                         set_buffer_uptodate(bh);
2575                         continue;
2576                 }
2577                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2578                         zero_user_segments(page, block_start, from,
2579                                                         to, block_end);
2580                         continue;
2581                 }
2582                 if (buffer_uptodate(bh))
2583                         continue;       /* reiserfs does this */
2584                 if (block_start < from || block_end > to) {
2585                         lock_buffer(bh);
2586                         bh->b_end_io = end_buffer_read_nobh;
2587                         submit_bh(READ, bh);
2588                         nr_reads++;
2589                 }
2590         }
2591
2592         if (nr_reads) {
2593                 /*
2594                  * The page is locked, so these buffers are protected from
2595                  * any VM or truncate activity.  Hence we don't need to care
2596                  * for the buffer_head refcounts.
2597                  */
2598                 for (bh = head; bh; bh = bh->b_this_page) {
2599                         wait_on_buffer(bh);
2600                         if (!buffer_uptodate(bh))
2601                                 ret = -EIO;
2602                 }
2603                 if (ret)
2604                         goto failed;
2605         }
2606
2607         if (is_mapped_to_disk)
2608                 SetPageMappedToDisk(page);
2609
2610         *fsdata = head; /* to be released by nobh_write_end */
2611
2612         return 0;
2613
2614 failed:
2615         BUG_ON(!ret);
2616         /*
2617          * Error recovery is a bit difficult. We need to zero out blocks that
2618          * were newly allocated, and dirty them to ensure they get written out.
2619          * Buffers need to be attached to the page at this point, otherwise
2620          * the handling of potential IO errors during writeout would be hard
2621          * (could try doing synchronous writeout, but what if that fails too?)
2622          */
2623         attach_nobh_buffers(page, head);
2624         page_zero_new_buffers(page, from, to);
2625
2626 out_release:
2627         unlock_page(page);
2628         page_cache_release(page);
2629         *pagep = NULL;
2630
2631         return ret;
2632 }
2633 EXPORT_SYMBOL(nobh_write_begin);
2634
2635 int nobh_write_end(struct file *file, struct address_space *mapping,
2636                         loff_t pos, unsigned len, unsigned copied,
2637                         struct page *page, void *fsdata)
2638 {
2639         struct inode *inode = page->mapping->host;
2640         struct buffer_head *head = fsdata;
2641         struct buffer_head *bh;
2642         BUG_ON(fsdata != NULL && page_has_buffers(page));
2643
2644         if (unlikely(copied < len) && head)
2645                 attach_nobh_buffers(page, head);
2646         if (page_has_buffers(page))
2647                 return generic_write_end(file, mapping, pos, len,
2648                                         copied, page, fsdata);
2649
2650         SetPageUptodate(page);
2651         set_page_dirty(page);
2652         if (pos+copied > inode->i_size) {
2653                 i_size_write(inode, pos+copied);
2654                 mark_inode_dirty(inode);
2655         }
2656
2657         unlock_page(page);
2658         page_cache_release(page);
2659
2660         while (head) {
2661                 bh = head;
2662                 head = head->b_this_page;
2663                 free_buffer_head(bh);
2664         }
2665
2666         return copied;
2667 }
2668 EXPORT_SYMBOL(nobh_write_end);
2669
2670 /*
2671  * nobh_writepage() - based on block_full_write_page() except
2672  * that it tries to operate without attaching bufferheads to
2673  * the page.
2674  */
2675 int nobh_writepage(struct page *page, get_block_t *get_block,
2676                         struct writeback_control *wbc)
2677 {
2678         struct inode * const inode = page->mapping->host;
2679         loff_t i_size = i_size_read(inode);
2680         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2681         unsigned offset;
2682         int ret;
2683
2684         /* Is the page fully inside i_size? */
2685         if (page->index < end_index)
2686                 goto out;
2687
2688         /* Is the page fully outside i_size? (truncate in progress) */
2689         offset = i_size & (PAGE_CACHE_SIZE-1);
2690         if (page->index >= end_index+1 || !offset) {
2691                 /*
2692                  * The page may have dirty, unmapped buffers.  For example,
2693                  * they may have been added in ext3_writepage().  Make them
2694                  * freeable here, so the page does not leak.
2695                  */
2696 #if 0
2697                 /* Not really sure about this  - do we need this ? */
2698                 if (page->mapping->a_ops->invalidatepage)
2699                         page->mapping->a_ops->invalidatepage(page, offset);
2700 #endif
2701                 unlock_page(page);
2702                 return 0; /* don't care */
2703         }
2704
2705         /*
2706          * The page straddles i_size.  It must be zeroed out on each and every
2707          * writepage invocation because it may be mmapped.  "A file is mapped
2708          * in multiples of the page size.  For a file that is not a multiple of
2709          * the  page size, the remaining memory is zeroed when mapped, and
2710          * writes to that region are not written out to the file."
2711          */
2712         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2713 out:
2714         ret = mpage_writepage(page, get_block, wbc);
2715         if (ret == -EAGAIN)
2716                 ret = __block_write_full_page(inode, page, get_block, wbc,
2717                                               end_buffer_async_write);
2718         return ret;
2719 }
2720 EXPORT_SYMBOL(nobh_writepage);
2721
2722 int nobh_truncate_page(struct address_space *mapping,
2723                         loff_t from, get_block_t *get_block)
2724 {
2725         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2726         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2727         unsigned blocksize;
2728         sector_t iblock;
2729         unsigned length, pos;
2730         struct inode *inode = mapping->host;
2731         struct page *page;
2732         struct buffer_head map_bh;
2733         int err;
2734
2735         blocksize = 1 << inode->i_blkbits;
2736         length = offset & (blocksize - 1);
2737
2738         /* Block boundary? Nothing to do */
2739         if (!length)
2740                 return 0;
2741
2742         length = blocksize - length;
2743         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2744
2745         page = grab_cache_page(mapping, index);
2746         err = -ENOMEM;
2747         if (!page)
2748                 goto out;
2749
2750         if (page_has_buffers(page)) {
2751 has_buffers:
2752                 unlock_page(page);
2753                 page_cache_release(page);
2754                 return block_truncate_page(mapping, from, get_block);
2755         }
2756
2757         /* Find the buffer that contains "offset" */
2758         pos = blocksize;
2759         while (offset >= pos) {
2760                 iblock++;
2761                 pos += blocksize;
2762         }
2763
2764         map_bh.b_size = blocksize;
2765         map_bh.b_state = 0;
2766         err = get_block(inode, iblock, &map_bh, 0);
2767         if (err)
2768                 goto unlock;
2769         /* unmapped? It's a hole - nothing to do */
2770         if (!buffer_mapped(&map_bh))
2771                 goto unlock;
2772
2773         /* Ok, it's mapped. Make sure it's up-to-date */
2774         if (!PageUptodate(page)) {
2775                 err = mapping->a_ops->readpage(NULL, page);
2776                 if (err) {
2777                         page_cache_release(page);
2778                         goto out;
2779                 }
2780                 lock_page(page);
2781                 if (!PageUptodate(page)) {
2782                         err = -EIO;
2783                         goto unlock;
2784                 }
2785                 if (page_has_buffers(page))
2786                         goto has_buffers;
2787         }
2788         zero_user(page, offset, length);
2789         set_page_dirty(page);
2790         err = 0;
2791
2792 unlock:
2793         unlock_page(page);
2794         page_cache_release(page);
2795 out:
2796         return err;
2797 }
2798 EXPORT_SYMBOL(nobh_truncate_page);
2799
2800 int block_truncate_page(struct address_space *mapping,
2801                         loff_t from, get_block_t *get_block)
2802 {
2803         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2804         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2805         unsigned blocksize;
2806         sector_t iblock;
2807         unsigned length, pos;
2808         struct inode *inode = mapping->host;
2809         struct page *page;
2810         struct buffer_head *bh;
2811         int err;
2812
2813         blocksize = 1 << inode->i_blkbits;
2814         length = offset & (blocksize - 1);
2815
2816         /* Block boundary? Nothing to do */
2817         if (!length)
2818                 return 0;
2819
2820         length = blocksize - length;
2821         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2822         
2823         page = grab_cache_page(mapping, index);
2824         err = -ENOMEM;
2825         if (!page)
2826                 goto out;
2827
2828         if (!page_has_buffers(page))
2829                 create_empty_buffers(page, blocksize, 0);
2830
2831         /* Find the buffer that contains "offset" */
2832         bh = page_buffers(page);
2833         pos = blocksize;
2834         while (offset >= pos) {
2835                 bh = bh->b_this_page;
2836                 iblock++;
2837                 pos += blocksize;
2838         }
2839
2840         err = 0;
2841         if (!buffer_mapped(bh)) {
2842                 WARN_ON(bh->b_size != blocksize);
2843                 err = get_block(inode, iblock, bh, 0);
2844                 if (err)
2845                         goto unlock;
2846                 /* unmapped? It's a hole - nothing to do */
2847                 if (!buffer_mapped(bh))
2848                         goto unlock;
2849         }
2850
2851         /* Ok, it's mapped. Make sure it's up-to-date */
2852         if (PageUptodate(page))
2853                 set_buffer_uptodate(bh);
2854
2855         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2856                 err = -EIO;
2857                 ll_rw_block(READ, 1, &bh);
2858                 wait_on_buffer(bh);
2859                 /* Uhhuh. Read error. Complain and punt. */
2860                 if (!buffer_uptodate(bh))
2861                         goto unlock;
2862         }
2863
2864         zero_user(page, offset, length);
2865         mark_buffer_dirty(bh);
2866         err = 0;
2867
2868 unlock:
2869         unlock_page(page);
2870         page_cache_release(page);
2871 out:
2872         return err;
2873 }
2874 EXPORT_SYMBOL(block_truncate_page);
2875
2876 /*
2877  * The generic ->writepage function for buffer-backed address_spaces
2878  */
2879 int block_write_full_page(struct page *page, get_block_t *get_block,
2880                         struct writeback_control *wbc)
2881 {
2882         struct inode * const inode = page->mapping->host;
2883         loff_t i_size = i_size_read(inode);
2884         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2885         unsigned offset;
2886
2887         /* Is the page fully inside i_size? */
2888         if (page->index < end_index)
2889                 return __block_write_full_page(inode, page, get_block, wbc,
2890                                                end_buffer_async_write);
2891
2892         /* Is the page fully outside i_size? (truncate in progress) */
2893         offset = i_size & (PAGE_CACHE_SIZE-1);
2894         if (page->index >= end_index+1 || !offset) {
2895                 /*
2896                  * The page may have dirty, unmapped buffers.  For example,
2897                  * they may have been added in ext3_writepage().  Make them
2898                  * freeable here, so the page does not leak.
2899                  */
2900                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2901                 unlock_page(page);
2902                 return 0; /* don't care */
2903         }
2904
2905         /*
2906          * The page straddles i_size.  It must be zeroed out on each and every
2907          * writepage invocation because it may be mmapped.  "A file is mapped
2908          * in multiples of the page size.  For a file that is not a multiple of
2909          * the  page size, the remaining memory is zeroed when mapped, and
2910          * writes to that region are not written out to the file."
2911          */
2912         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2913         return __block_write_full_page(inode, page, get_block, wbc,
2914                                                         end_buffer_async_write);
2915 }
2916 EXPORT_SYMBOL(block_write_full_page);
2917
2918 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2919                             get_block_t *get_block)
2920 {
2921         struct buffer_head tmp;
2922         struct inode *inode = mapping->host;
2923         tmp.b_state = 0;
2924         tmp.b_blocknr = 0;
2925         tmp.b_size = 1 << inode->i_blkbits;
2926         get_block(inode, block, &tmp, 0);
2927         return tmp.b_blocknr;
2928 }
2929 EXPORT_SYMBOL(generic_block_bmap);
2930
2931 static void end_bio_bh_io_sync(struct bio *bio)
2932 {
2933         struct buffer_head *bh = bio->bi_private;
2934
2935         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2936                 set_bit(BH_Quiet, &bh->b_state);
2937
2938         bh->b_end_io(bh, !bio->bi_error);
2939         bio_put(bio);
2940 }
2941
2942 /*
2943  * This allows us to do IO even on the odd last sectors
2944  * of a device, even if the block size is some multiple
2945  * of the physical sector size.
2946  *
2947  * We'll just truncate the bio to the size of the device,
2948  * and clear the end of the buffer head manually.
2949  *
2950  * Truly out-of-range accesses will turn into actual IO
2951  * errors, this only handles the "we need to be able to
2952  * do IO at the final sector" case.
2953  */
2954 void guard_bio_eod(int rw, struct bio *bio)
2955 {
2956         sector_t maxsector;
2957         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2958         unsigned truncated_bytes;
2959
2960         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2961         if (!maxsector)
2962                 return;
2963
2964         /*
2965          * If the *whole* IO is past the end of the device,
2966          * let it through, and the IO layer will turn it into
2967          * an EIO.
2968          */
2969         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2970                 return;
2971
2972         maxsector -= bio->bi_iter.bi_sector;
2973         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2974                 return;
2975
2976         /* Uhhuh. We've got a bio that straddles the device size! */
2977         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2978
2979         /* Truncate the bio.. */
2980         bio->bi_iter.bi_size -= truncated_bytes;
2981         bvec->bv_len -= truncated_bytes;
2982
2983         /* ..and clear the end of the buffer for reads */
2984         if ((rw & RW_MASK) == READ) {
2985                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2986                                 truncated_bytes);
2987         }
2988 }
2989
2990 static int submit_bh_wbc(int rw, struct buffer_head *bh,
2991                          unsigned long bio_flags, struct writeback_control *wbc)
2992 {
2993         struct bio *bio;
2994
2995         BUG_ON(!buffer_locked(bh));
2996         BUG_ON(!buffer_mapped(bh));
2997         BUG_ON(!bh->b_end_io);
2998         BUG_ON(buffer_delay(bh));
2999         BUG_ON(buffer_unwritten(bh));
3000
3001         /*
3002          * Only clear out a write error when rewriting
3003          */
3004         if (test_set_buffer_req(bh) && (rw & WRITE))
3005                 clear_buffer_write_io_error(bh);
3006
3007         /*
3008          * from here on down, it's all bio -- do the initial mapping,
3009          * submit_bio -> generic_make_request may further map this bio around
3010          */
3011         bio = bio_alloc(GFP_NOIO, 1);
3012
3013         if (wbc) {
3014                 wbc_init_bio(wbc, bio);
3015                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3016         }
3017
3018         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3019         bio->bi_bdev = bh->b_bdev;
3020
3021         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3022         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3023
3024         bio->bi_end_io = end_bio_bh_io_sync;
3025         bio->bi_private = bh;
3026         bio->bi_flags |= bio_flags;
3027
3028         /* Take care of bh's that straddle the end of the device */
3029         guard_bio_eod(rw, bio);
3030
3031         if (buffer_meta(bh))
3032                 rw |= REQ_META;
3033         if (buffer_prio(bh))
3034                 rw |= REQ_PRIO;
3035
3036         submit_bio(rw, bio);
3037         return 0;
3038 }
3039
3040 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3041 {
3042         return submit_bh_wbc(rw, bh, bio_flags, NULL);
3043 }
3044 EXPORT_SYMBOL_GPL(_submit_bh);
3045
3046 int submit_bh(int rw, struct buffer_head *bh)
3047 {
3048         return submit_bh_wbc(rw, bh, 0, NULL);
3049 }
3050 EXPORT_SYMBOL(submit_bh);
3051
3052 /**
3053  * ll_rw_block: low-level access to block devices (DEPRECATED)
3054  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3055  * @nr: number of &struct buffer_heads in the array
3056  * @bhs: array of pointers to &struct buffer_head
3057  *
3058  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3059  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3060  * %READA option is described in the documentation for generic_make_request()
3061  * which ll_rw_block() calls.
3062  *
3063  * This function drops any buffer that it cannot get a lock on (with the
3064  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3065  * request, and any buffer that appears to be up-to-date when doing read
3066  * request.  Further it marks as clean buffers that are processed for
3067  * writing (the buffer cache won't assume that they are actually clean
3068  * until the buffer gets unlocked).
3069  *
3070  * ll_rw_block sets b_end_io to simple completion handler that marks
3071  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3072  * any waiters. 
3073  *
3074  * All of the buffers must be for the same device, and must also be a
3075  * multiple of the current approved size for the device.
3076  */
3077 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3078 {
3079         int i;
3080
3081         for (i = 0; i < nr; i++) {
3082                 struct buffer_head *bh = bhs[i];
3083
3084                 if (!trylock_buffer(bh))
3085                         continue;
3086                 if (rw == WRITE) {
3087                         if (test_clear_buffer_dirty(bh)) {
3088                                 bh->b_end_io = end_buffer_write_sync;
3089                                 get_bh(bh);
3090                                 submit_bh(WRITE, bh);
3091                                 continue;
3092                         }
3093                 } else {
3094                         if (!buffer_uptodate(bh)) {
3095                                 bh->b_end_io = end_buffer_read_sync;
3096                                 get_bh(bh);
3097                                 submit_bh(rw, bh);
3098                                 continue;
3099                         }
3100                 }
3101                 unlock_buffer(bh);
3102         }
3103 }
3104 EXPORT_SYMBOL(ll_rw_block);
3105
3106 void write_dirty_buffer(struct buffer_head *bh, int rw)
3107 {
3108         lock_buffer(bh);
3109         if (!test_clear_buffer_dirty(bh)) {
3110                 unlock_buffer(bh);
3111                 return;
3112         }
3113         bh->b_end_io = end_buffer_write_sync;
3114         get_bh(bh);
3115         submit_bh(rw, bh);
3116 }
3117 EXPORT_SYMBOL(write_dirty_buffer);
3118
3119 /*
3120  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3121  * and then start new I/O and then wait upon it.  The caller must have a ref on
3122  * the buffer_head.
3123  */
3124 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3125 {
3126         int ret = 0;
3127
3128         WARN_ON(atomic_read(&bh->b_count) < 1);
3129         lock_buffer(bh);
3130         if (test_clear_buffer_dirty(bh)) {
3131                 get_bh(bh);
3132                 bh->b_end_io = end_buffer_write_sync;
3133                 ret = submit_bh(rw, bh);
3134                 wait_on_buffer(bh);
3135                 if (!ret && !buffer_uptodate(bh))
3136                         ret = -EIO;
3137         } else {
3138                 unlock_buffer(bh);
3139         }
3140         return ret;
3141 }
3142 EXPORT_SYMBOL(__sync_dirty_buffer);
3143
3144 int sync_dirty_buffer(struct buffer_head *bh)
3145 {
3146         return __sync_dirty_buffer(bh, WRITE_SYNC);
3147 }
3148 EXPORT_SYMBOL(sync_dirty_buffer);
3149
3150 /*
3151  * try_to_free_buffers() checks if all the buffers on this particular page
3152  * are unused, and releases them if so.
3153  *
3154  * Exclusion against try_to_free_buffers may be obtained by either
3155  * locking the page or by holding its mapping's private_lock.
3156  *
3157  * If the page is dirty but all the buffers are clean then we need to
3158  * be sure to mark the page clean as well.  This is because the page
3159  * may be against a block device, and a later reattachment of buffers
3160  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3161  * filesystem data on the same device.
3162  *
3163  * The same applies to regular filesystem pages: if all the buffers are
3164  * clean then we set the page clean and proceed.  To do that, we require
3165  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3166  * private_lock.
3167  *
3168  * try_to_free_buffers() is non-blocking.
3169  */
3170 static inline int buffer_busy(struct buffer_head *bh)
3171 {
3172         return atomic_read(&bh->b_count) |
3173                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3174 }
3175
3176 static int
3177 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3178 {
3179         struct buffer_head *head = page_buffers(page);
3180         struct buffer_head *bh;
3181
3182         bh = head;
3183         do {
3184                 if (buffer_write_io_error(bh) && page->mapping)
3185                         set_bit(AS_EIO, &page->mapping->flags);
3186                 if (buffer_busy(bh))
3187                         goto failed;
3188                 bh = bh->b_this_page;
3189         } while (bh != head);
3190
3191         do {
3192                 struct buffer_head *next = bh->b_this_page;
3193
3194                 if (bh->b_assoc_map)
3195                         __remove_assoc_queue(bh);
3196                 bh = next;
3197         } while (bh != head);
3198         *buffers_to_free = head;
3199         __clear_page_buffers(page);
3200         return 1;
3201 failed:
3202         return 0;
3203 }
3204
3205 int try_to_free_buffers(struct page *page)
3206 {
3207         struct address_space * const mapping = page->mapping;
3208         struct buffer_head *buffers_to_free = NULL;
3209         int ret = 0;
3210
3211         BUG_ON(!PageLocked(page));
3212         if (PageWriteback(page))
3213                 return 0;
3214
3215         if (mapping == NULL) {          /* can this still happen? */
3216                 ret = drop_buffers(page, &buffers_to_free);
3217                 goto out;
3218         }
3219
3220         spin_lock(&mapping->private_lock);
3221         ret = drop_buffers(page, &buffers_to_free);
3222
3223         /*
3224          * If the filesystem writes its buffers by hand (eg ext3)
3225          * then we can have clean buffers against a dirty page.  We
3226          * clean the page here; otherwise the VM will never notice
3227          * that the filesystem did any IO at all.
3228          *
3229          * Also, during truncate, discard_buffer will have marked all
3230          * the page's buffers clean.  We discover that here and clean
3231          * the page also.
3232          *
3233          * private_lock must be held over this entire operation in order
3234          * to synchronise against __set_page_dirty_buffers and prevent the
3235          * dirty bit from being lost.
3236          */
3237         if (ret)
3238                 cancel_dirty_page(page);
3239         spin_unlock(&mapping->private_lock);
3240 out:
3241         if (buffers_to_free) {
3242                 struct buffer_head *bh = buffers_to_free;
3243
3244                 do {
3245                         struct buffer_head *next = bh->b_this_page;
3246                         free_buffer_head(bh);
3247                         bh = next;
3248                 } while (bh != buffers_to_free);
3249         }
3250         return ret;
3251 }
3252 EXPORT_SYMBOL(try_to_free_buffers);
3253
3254 /*
3255  * There are no bdflush tunables left.  But distributions are
3256  * still running obsolete flush daemons, so we terminate them here.
3257  *
3258  * Use of bdflush() is deprecated and will be removed in a future kernel.
3259  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3260  */
3261 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3262 {
3263         static int msg_count;
3264
3265         if (!capable(CAP_SYS_ADMIN))
3266                 return -EPERM;
3267
3268         if (msg_count < 5) {
3269                 msg_count++;
3270                 printk(KERN_INFO
3271                         "warning: process `%s' used the obsolete bdflush"
3272                         " system call\n", current->comm);
3273                 printk(KERN_INFO "Fix your initscripts?\n");
3274         }
3275
3276         if (func == 1)
3277                 do_exit(0);
3278         return 0;
3279 }
3280
3281 /*
3282  * Buffer-head allocation
3283  */
3284 static struct kmem_cache *bh_cachep __read_mostly;
3285
3286 /*
3287  * Once the number of bh's in the machine exceeds this level, we start
3288  * stripping them in writeback.
3289  */
3290 static unsigned long max_buffer_heads;
3291
3292 int buffer_heads_over_limit;
3293
3294 struct bh_accounting {
3295         int nr;                 /* Number of live bh's */
3296         int ratelimit;          /* Limit cacheline bouncing */
3297 };
3298
3299 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3300
3301 static void recalc_bh_state(void)
3302 {
3303         int i;
3304         int tot = 0;
3305
3306         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3307                 return;
3308         __this_cpu_write(bh_accounting.ratelimit, 0);
3309         for_each_online_cpu(i)
3310                 tot += per_cpu(bh_accounting, i).nr;
3311         buffer_heads_over_limit = (tot > max_buffer_heads);
3312 }
3313
3314 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3315 {
3316         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3317         if (ret) {
3318                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3319                 preempt_disable();
3320                 __this_cpu_inc(bh_accounting.nr);
3321                 recalc_bh_state();
3322                 preempt_enable();
3323         }
3324         return ret;
3325 }
3326 EXPORT_SYMBOL(alloc_buffer_head);
3327
3328 void free_buffer_head(struct buffer_head *bh)
3329 {
3330         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3331         kmem_cache_free(bh_cachep, bh);
3332         preempt_disable();
3333         __this_cpu_dec(bh_accounting.nr);
3334         recalc_bh_state();
3335         preempt_enable();
3336 }
3337 EXPORT_SYMBOL(free_buffer_head);
3338
3339 static void buffer_exit_cpu(int cpu)
3340 {
3341         int i;
3342         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3343
3344         for (i = 0; i < BH_LRU_SIZE; i++) {
3345                 brelse(b->bhs[i]);
3346                 b->bhs[i] = NULL;
3347         }
3348         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3349         per_cpu(bh_accounting, cpu).nr = 0;
3350 }
3351
3352 static int buffer_cpu_notify(struct notifier_block *self,
3353                               unsigned long action, void *hcpu)
3354 {
3355         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3356                 buffer_exit_cpu((unsigned long)hcpu);
3357         return NOTIFY_OK;
3358 }
3359
3360 /**
3361  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3362  * @bh: struct buffer_head
3363  *
3364  * Return true if the buffer is up-to-date and false,
3365  * with the buffer locked, if not.
3366  */
3367 int bh_uptodate_or_lock(struct buffer_head *bh)
3368 {
3369         if (!buffer_uptodate(bh)) {
3370                 lock_buffer(bh);
3371                 if (!buffer_uptodate(bh))
3372                         return 0;
3373                 unlock_buffer(bh);
3374         }
3375         return 1;
3376 }
3377 EXPORT_SYMBOL(bh_uptodate_or_lock);
3378
3379 /**
3380  * bh_submit_read - Submit a locked buffer for reading
3381  * @bh: struct buffer_head
3382  *
3383  * Returns zero on success and -EIO on error.
3384  */
3385 int bh_submit_read(struct buffer_head *bh)
3386 {
3387         BUG_ON(!buffer_locked(bh));
3388
3389         if (buffer_uptodate(bh)) {
3390                 unlock_buffer(bh);
3391                 return 0;
3392         }
3393
3394         get_bh(bh);
3395         bh->b_end_io = end_buffer_read_sync;
3396         submit_bh(READ, bh);
3397         wait_on_buffer(bh);
3398         if (buffer_uptodate(bh))
3399                 return 0;
3400         return -EIO;
3401 }
3402 EXPORT_SYMBOL(bh_submit_read);
3403
3404 void __init buffer_init(void)
3405 {
3406         unsigned long nrpages;
3407
3408         bh_cachep = kmem_cache_create("buffer_head",
3409                         sizeof(struct buffer_head), 0,
3410                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3411                                 SLAB_MEM_SPREAD),
3412                                 NULL);
3413
3414         /*
3415          * Limit the bh occupancy to 10% of ZONE_NORMAL
3416          */
3417         nrpages = (nr_free_buffer_pages() * 10) / 100;
3418         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3419         hotcpu_notifier(buffer_cpu_notify, 0);
3420 }