]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/coredump.c
NFC: Close a race condition in llcp_sock_getname()
[karo-tx-linux.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/timekeeping.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlb.h>
40 #include <asm/exec.h>
41
42 #include <trace/events/task.h>
43 #include "internal.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51
52 struct core_name {
53         char *corename;
54         int used, size;
55 };
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn, int size)
60 {
61         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62
63         if (!corename)
64                 return -ENOMEM;
65
66         if (size > core_name_size) /* racy but harmless */
67                 core_name_size = size;
68
69         cn->size = ksize(corename);
70         cn->corename = corename;
71         return 0;
72 }
73
74 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
75                                      va_list arg)
76 {
77         int free, need;
78         va_list arg_copy;
79
80 again:
81         free = cn->size - cn->used;
82
83         va_copy(arg_copy, arg);
84         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
85         va_end(arg_copy);
86
87         if (need < free) {
88                 cn->used += need;
89                 return 0;
90         }
91
92         if (!expand_corename(cn, cn->size + need - free + 1))
93                 goto again;
94
95         return -ENOMEM;
96 }
97
98 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
99 {
100         va_list arg;
101         int ret;
102
103         va_start(arg, fmt);
104         ret = cn_vprintf(cn, fmt, arg);
105         va_end(arg);
106
107         return ret;
108 }
109
110 static __printf(2, 3)
111 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
112 {
113         int cur = cn->used;
114         va_list arg;
115         int ret;
116
117         va_start(arg, fmt);
118         ret = cn_vprintf(cn, fmt, arg);
119         va_end(arg);
120
121         if (ret == 0) {
122                 /*
123                  * Ensure that this coredump name component can't cause the
124                  * resulting corefile path to consist of a ".." or ".".
125                  */
126                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
127                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
128                                 && cn->corename[cur+1] == '.'))
129                         cn->corename[cur] = '!';
130
131                 /*
132                  * Empty names are fishy and could be used to create a "//" in a
133                  * corefile name, causing the coredump to happen one directory
134                  * level too high. Enforce that all components of the core
135                  * pattern are at least one character long.
136                  */
137                 if (cn->used == cur)
138                         ret = cn_printf(cn, "!");
139         }
140
141         for (; cur < cn->used; ++cur) {
142                 if (cn->corename[cur] == '/')
143                         cn->corename[cur] = '!';
144         }
145         return ret;
146 }
147
148 static int cn_print_exe_file(struct core_name *cn)
149 {
150         struct file *exe_file;
151         char *pathbuf, *path;
152         int ret;
153
154         exe_file = get_mm_exe_file(current->mm);
155         if (!exe_file)
156                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
157
158         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
159         if (!pathbuf) {
160                 ret = -ENOMEM;
161                 goto put_exe_file;
162         }
163
164         path = file_path(exe_file, pathbuf, PATH_MAX);
165         if (IS_ERR(path)) {
166                 ret = PTR_ERR(path);
167                 goto free_buf;
168         }
169
170         ret = cn_esc_printf(cn, "%s", path);
171
172 free_buf:
173         kfree(pathbuf);
174 put_exe_file:
175         fput(exe_file);
176         return ret;
177 }
178
179 /* format_corename will inspect the pattern parameter, and output a
180  * name into corename, which must have space for at least
181  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
182  */
183 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
184 {
185         const struct cred *cred = current_cred();
186         const char *pat_ptr = core_pattern;
187         int ispipe = (*pat_ptr == '|');
188         int pid_in_pattern = 0;
189         int err = 0;
190
191         cn->used = 0;
192         cn->corename = NULL;
193         if (expand_corename(cn, core_name_size))
194                 return -ENOMEM;
195         cn->corename[0] = '\0';
196
197         if (ispipe)
198                 ++pat_ptr;
199
200         /* Repeat as long as we have more pattern to process and more output
201            space */
202         while (*pat_ptr) {
203                 if (*pat_ptr != '%') {
204                         err = cn_printf(cn, "%c", *pat_ptr++);
205                 } else {
206                         switch (*++pat_ptr) {
207                         /* single % at the end, drop that */
208                         case 0:
209                                 goto out;
210                         /* Double percent, output one percent */
211                         case '%':
212                                 err = cn_printf(cn, "%c", '%');
213                                 break;
214                         /* pid */
215                         case 'p':
216                                 pid_in_pattern = 1;
217                                 err = cn_printf(cn, "%d",
218                                               task_tgid_vnr(current));
219                                 break;
220                         /* global pid */
221                         case 'P':
222                                 err = cn_printf(cn, "%d",
223                                               task_tgid_nr(current));
224                                 break;
225                         case 'i':
226                                 err = cn_printf(cn, "%d",
227                                               task_pid_vnr(current));
228                                 break;
229                         case 'I':
230                                 err = cn_printf(cn, "%d",
231                                               task_pid_nr(current));
232                                 break;
233                         /* uid */
234                         case 'u':
235                                 err = cn_printf(cn, "%u",
236                                                 from_kuid(&init_user_ns,
237                                                           cred->uid));
238                                 break;
239                         /* gid */
240                         case 'g':
241                                 err = cn_printf(cn, "%u",
242                                                 from_kgid(&init_user_ns,
243                                                           cred->gid));
244                                 break;
245                         case 'd':
246                                 err = cn_printf(cn, "%d",
247                                         __get_dumpable(cprm->mm_flags));
248                                 break;
249                         /* signal that caused the coredump */
250                         case 's':
251                                 err = cn_printf(cn, "%d",
252                                                 cprm->siginfo->si_signo);
253                                 break;
254                         /* UNIX time of coredump */
255                         case 't': {
256                                 time64_t time;
257
258                                 time = ktime_get_real_seconds();
259                                 err = cn_printf(cn, "%lld", time);
260                                 break;
261                         }
262                         /* hostname */
263                         case 'h':
264                                 down_read(&uts_sem);
265                                 err = cn_esc_printf(cn, "%s",
266                                               utsname()->nodename);
267                                 up_read(&uts_sem);
268                                 break;
269                         /* executable */
270                         case 'e':
271                                 err = cn_esc_printf(cn, "%s", current->comm);
272                                 break;
273                         case 'E':
274                                 err = cn_print_exe_file(cn);
275                                 break;
276                         /* core limit size */
277                         case 'c':
278                                 err = cn_printf(cn, "%lu",
279                                               rlimit(RLIMIT_CORE));
280                                 break;
281                         default:
282                                 break;
283                         }
284                         ++pat_ptr;
285                 }
286
287                 if (err)
288                         return err;
289         }
290
291 out:
292         /* Backward compatibility with core_uses_pid:
293          *
294          * If core_pattern does not include a %p (as is the default)
295          * and core_uses_pid is set, then .%pid will be appended to
296          * the filename. Do not do this for piped commands. */
297         if (!ispipe && !pid_in_pattern && core_uses_pid) {
298                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
299                 if (err)
300                         return err;
301         }
302         return ispipe;
303 }
304
305 static int zap_process(struct task_struct *start, int exit_code, int flags)
306 {
307         struct task_struct *t;
308         int nr = 0;
309
310         /* ignore all signals except SIGKILL, see prepare_signal() */
311         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
312         start->signal->group_exit_code = exit_code;
313         start->signal->group_stop_count = 0;
314
315         for_each_thread(start, t) {
316                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
317                 if (t != current && t->mm) {
318                         sigaddset(&t->pending.signal, SIGKILL);
319                         signal_wake_up(t, 1);
320                         nr++;
321                 }
322         }
323
324         return nr;
325 }
326
327 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
328                         struct core_state *core_state, int exit_code)
329 {
330         struct task_struct *g, *p;
331         unsigned long flags;
332         int nr = -EAGAIN;
333
334         spin_lock_irq(&tsk->sighand->siglock);
335         if (!signal_group_exit(tsk->signal)) {
336                 mm->core_state = core_state;
337                 tsk->signal->group_exit_task = tsk;
338                 nr = zap_process(tsk, exit_code, 0);
339                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
340         }
341         spin_unlock_irq(&tsk->sighand->siglock);
342         if (unlikely(nr < 0))
343                 return nr;
344
345         tsk->flags |= PF_DUMPCORE;
346         if (atomic_read(&mm->mm_users) == nr + 1)
347                 goto done;
348         /*
349          * We should find and kill all tasks which use this mm, and we should
350          * count them correctly into ->nr_threads. We don't take tasklist
351          * lock, but this is safe wrt:
352          *
353          * fork:
354          *      None of sub-threads can fork after zap_process(leader). All
355          *      processes which were created before this point should be
356          *      visible to zap_threads() because copy_process() adds the new
357          *      process to the tail of init_task.tasks list, and lock/unlock
358          *      of ->siglock provides a memory barrier.
359          *
360          * do_exit:
361          *      The caller holds mm->mmap_sem. This means that the task which
362          *      uses this mm can't pass exit_mm(), so it can't exit or clear
363          *      its ->mm.
364          *
365          * de_thread:
366          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
367          *      we must see either old or new leader, this does not matter.
368          *      However, it can change p->sighand, so lock_task_sighand(p)
369          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
370          *      it can't fail.
371          *
372          *      Note also that "g" can be the old leader with ->mm == NULL
373          *      and already unhashed and thus removed from ->thread_group.
374          *      This is OK, __unhash_process()->list_del_rcu() does not
375          *      clear the ->next pointer, we will find the new leader via
376          *      next_thread().
377          */
378         rcu_read_lock();
379         for_each_process(g) {
380                 if (g == tsk->group_leader)
381                         continue;
382                 if (g->flags & PF_KTHREAD)
383                         continue;
384
385                 for_each_thread(g, p) {
386                         if (unlikely(!p->mm))
387                                 continue;
388                         if (unlikely(p->mm == mm)) {
389                                 lock_task_sighand(p, &flags);
390                                 nr += zap_process(p, exit_code,
391                                                         SIGNAL_GROUP_EXIT);
392                                 unlock_task_sighand(p, &flags);
393                         }
394                         break;
395                 }
396         }
397         rcu_read_unlock();
398 done:
399         atomic_set(&core_state->nr_threads, nr);
400         return nr;
401 }
402
403 static int coredump_wait(int exit_code, struct core_state *core_state)
404 {
405         struct task_struct *tsk = current;
406         struct mm_struct *mm = tsk->mm;
407         int core_waiters = -EBUSY;
408
409         init_completion(&core_state->startup);
410         core_state->dumper.task = tsk;
411         core_state->dumper.next = NULL;
412
413         down_write(&mm->mmap_sem);
414         if (!mm->core_state)
415                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
416         up_write(&mm->mmap_sem);
417
418         if (core_waiters > 0) {
419                 struct core_thread *ptr;
420
421                 wait_for_completion(&core_state->startup);
422                 /*
423                  * Wait for all the threads to become inactive, so that
424                  * all the thread context (extended register state, like
425                  * fpu etc) gets copied to the memory.
426                  */
427                 ptr = core_state->dumper.next;
428                 while (ptr != NULL) {
429                         wait_task_inactive(ptr->task, 0);
430                         ptr = ptr->next;
431                 }
432         }
433
434         return core_waiters;
435 }
436
437 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
438 {
439         struct core_thread *curr, *next;
440         struct task_struct *task;
441
442         spin_lock_irq(&current->sighand->siglock);
443         if (core_dumped && !__fatal_signal_pending(current))
444                 current->signal->group_exit_code |= 0x80;
445         current->signal->group_exit_task = NULL;
446         current->signal->flags = SIGNAL_GROUP_EXIT;
447         spin_unlock_irq(&current->sighand->siglock);
448
449         next = mm->core_state->dumper.next;
450         while ((curr = next) != NULL) {
451                 next = curr->next;
452                 task = curr->task;
453                 /*
454                  * see exit_mm(), curr->task must not see
455                  * ->task == NULL before we read ->next.
456                  */
457                 smp_mb();
458                 curr->task = NULL;
459                 wake_up_process(task);
460         }
461
462         mm->core_state = NULL;
463 }
464
465 static bool dump_interrupted(void)
466 {
467         /*
468          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
469          * can do try_to_freeze() and check __fatal_signal_pending(),
470          * but then we need to teach dump_write() to restart and clear
471          * TIF_SIGPENDING.
472          */
473         return signal_pending(current);
474 }
475
476 static void wait_for_dump_helpers(struct file *file)
477 {
478         struct pipe_inode_info *pipe = file->private_data;
479
480         pipe_lock(pipe);
481         pipe->readers++;
482         pipe->writers--;
483         wake_up_interruptible_sync(&pipe->wait);
484         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
485         pipe_unlock(pipe);
486
487         /*
488          * We actually want wait_event_freezable() but then we need
489          * to clear TIF_SIGPENDING and improve dump_interrupted().
490          */
491         wait_event_interruptible(pipe->wait, pipe->readers == 1);
492
493         pipe_lock(pipe);
494         pipe->readers--;
495         pipe->writers++;
496         pipe_unlock(pipe);
497 }
498
499 /*
500  * umh_pipe_setup
501  * helper function to customize the process used
502  * to collect the core in userspace.  Specifically
503  * it sets up a pipe and installs it as fd 0 (stdin)
504  * for the process.  Returns 0 on success, or
505  * PTR_ERR on failure.
506  * Note that it also sets the core limit to 1.  This
507  * is a special value that we use to trap recursive
508  * core dumps
509  */
510 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
511 {
512         struct file *files[2];
513         struct coredump_params *cp = (struct coredump_params *)info->data;
514         int err = create_pipe_files(files, 0);
515         if (err)
516                 return err;
517
518         cp->file = files[1];
519
520         err = replace_fd(0, files[0], 0);
521         fput(files[0]);
522         /* and disallow core files too */
523         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
524
525         return err;
526 }
527
528 void do_coredump(const siginfo_t *siginfo)
529 {
530         struct core_state core_state;
531         struct core_name cn;
532         struct mm_struct *mm = current->mm;
533         struct linux_binfmt * binfmt;
534         const struct cred *old_cred;
535         struct cred *cred;
536         int retval = 0;
537         int ispipe;
538         struct files_struct *displaced;
539         /* require nonrelative corefile path and be extra careful */
540         bool need_suid_safe = false;
541         bool core_dumped = false;
542         static atomic_t core_dump_count = ATOMIC_INIT(0);
543         struct coredump_params cprm = {
544                 .siginfo = siginfo,
545                 .regs = signal_pt_regs(),
546                 .limit = rlimit(RLIMIT_CORE),
547                 /*
548                  * We must use the same mm->flags while dumping core to avoid
549                  * inconsistency of bit flags, since this flag is not protected
550                  * by any locks.
551                  */
552                 .mm_flags = mm->flags,
553         };
554
555         audit_core_dumps(siginfo->si_signo);
556
557         binfmt = mm->binfmt;
558         if (!binfmt || !binfmt->core_dump)
559                 goto fail;
560         if (!__get_dumpable(cprm.mm_flags))
561                 goto fail;
562
563         cred = prepare_creds();
564         if (!cred)
565                 goto fail;
566         /*
567          * We cannot trust fsuid as being the "true" uid of the process
568          * nor do we know its entire history. We only know it was tainted
569          * so we dump it as root in mode 2, and only into a controlled
570          * environment (pipe handler or fully qualified path).
571          */
572         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
573                 /* Setuid core dump mode */
574                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
575                 need_suid_safe = true;
576         }
577
578         retval = coredump_wait(siginfo->si_signo, &core_state);
579         if (retval < 0)
580                 goto fail_creds;
581
582         old_cred = override_creds(cred);
583
584         ispipe = format_corename(&cn, &cprm);
585
586         if (ispipe) {
587                 int dump_count;
588                 char **helper_argv;
589                 struct subprocess_info *sub_info;
590
591                 if (ispipe < 0) {
592                         printk(KERN_WARNING "format_corename failed\n");
593                         printk(KERN_WARNING "Aborting core\n");
594                         goto fail_unlock;
595                 }
596
597                 if (cprm.limit == 1) {
598                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
599                          *
600                          * Normally core limits are irrelevant to pipes, since
601                          * we're not writing to the file system, but we use
602                          * cprm.limit of 1 here as a special value, this is a
603                          * consistent way to catch recursive crashes.
604                          * We can still crash if the core_pattern binary sets
605                          * RLIM_CORE = !1, but it runs as root, and can do
606                          * lots of stupid things.
607                          *
608                          * Note that we use task_tgid_vnr here to grab the pid
609                          * of the process group leader.  That way we get the
610                          * right pid if a thread in a multi-threaded
611                          * core_pattern process dies.
612                          */
613                         printk(KERN_WARNING
614                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
615                                 task_tgid_vnr(current), current->comm);
616                         printk(KERN_WARNING "Aborting core\n");
617                         goto fail_unlock;
618                 }
619                 cprm.limit = RLIM_INFINITY;
620
621                 dump_count = atomic_inc_return(&core_dump_count);
622                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
623                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
624                                task_tgid_vnr(current), current->comm);
625                         printk(KERN_WARNING "Skipping core dump\n");
626                         goto fail_dropcount;
627                 }
628
629                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
630                 if (!helper_argv) {
631                         printk(KERN_WARNING "%s failed to allocate memory\n",
632                                __func__);
633                         goto fail_dropcount;
634                 }
635
636                 retval = -ENOMEM;
637                 sub_info = call_usermodehelper_setup(helper_argv[0],
638                                                 helper_argv, NULL, GFP_KERNEL,
639                                                 umh_pipe_setup, NULL, &cprm);
640                 if (sub_info)
641                         retval = call_usermodehelper_exec(sub_info,
642                                                           UMH_WAIT_EXEC);
643
644                 argv_free(helper_argv);
645                 if (retval) {
646                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
647                                cn.corename);
648                         goto close_fail;
649                 }
650         } else {
651                 struct inode *inode;
652
653                 if (cprm.limit < binfmt->min_coredump)
654                         goto fail_unlock;
655
656                 if (need_suid_safe && cn.corename[0] != '/') {
657                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
658                                 "to fully qualified path!\n",
659                                 task_tgid_vnr(current), current->comm);
660                         printk(KERN_WARNING "Skipping core dump\n");
661                         goto fail_unlock;
662                 }
663
664                 /*
665                  * Unlink the file if it exists unless this is a SUID
666                  * binary - in that case, we're running around with root
667                  * privs and don't want to unlink another user's coredump.
668                  */
669                 if (!need_suid_safe) {
670                         mm_segment_t old_fs;
671
672                         old_fs = get_fs();
673                         set_fs(KERNEL_DS);
674                         /*
675                          * If it doesn't exist, that's fine. If there's some
676                          * other problem, we'll catch it at the filp_open().
677                          */
678                         (void) sys_unlink((const char __user *)cn.corename);
679                         set_fs(old_fs);
680                 }
681
682                 /*
683                  * There is a race between unlinking and creating the
684                  * file, but if that causes an EEXIST here, that's
685                  * fine - another process raced with us while creating
686                  * the corefile, and the other process won. To userspace,
687                  * what matters is that at least one of the two processes
688                  * writes its coredump successfully, not which one.
689                  */
690                 cprm.file = filp_open(cn.corename,
691                                  O_CREAT | 2 | O_NOFOLLOW |
692                                  O_LARGEFILE | O_EXCL,
693                                  0600);
694                 if (IS_ERR(cprm.file))
695                         goto fail_unlock;
696
697                 inode = file_inode(cprm.file);
698                 if (inode->i_nlink > 1)
699                         goto close_fail;
700                 if (d_unhashed(cprm.file->f_path.dentry))
701                         goto close_fail;
702                 /*
703                  * AK: actually i see no reason to not allow this for named
704                  * pipes etc, but keep the previous behaviour for now.
705                  */
706                 if (!S_ISREG(inode->i_mode))
707                         goto close_fail;
708                 /*
709                  * Don't dump core if the filesystem changed owner or mode
710                  * of the file during file creation. This is an issue when
711                  * a process dumps core while its cwd is e.g. on a vfat
712                  * filesystem.
713                  */
714                 if (!uid_eq(inode->i_uid, current_fsuid()))
715                         goto close_fail;
716                 if ((inode->i_mode & 0677) != 0600)
717                         goto close_fail;
718                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719                         goto close_fail;
720                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721                         goto close_fail;
722         }
723
724         /* get us an unshared descriptor table; almost always a no-op */
725         retval = unshare_files(&displaced);
726         if (retval)
727                 goto close_fail;
728         if (displaced)
729                 put_files_struct(displaced);
730         if (!dump_interrupted()) {
731                 file_start_write(cprm.file);
732                 core_dumped = binfmt->core_dump(&cprm);
733                 file_end_write(cprm.file);
734         }
735         if (ispipe && core_pipe_limit)
736                 wait_for_dump_helpers(cprm.file);
737 close_fail:
738         if (cprm.file)
739                 filp_close(cprm.file, NULL);
740 fail_dropcount:
741         if (ispipe)
742                 atomic_dec(&core_dump_count);
743 fail_unlock:
744         kfree(cn.corename);
745         coredump_finish(mm, core_dumped);
746         revert_creds(old_cred);
747 fail_creds:
748         put_cred(cred);
749 fail:
750         return;
751 }
752
753 /*
754  * Core dumping helper functions.  These are the only things you should
755  * do on a core-file: use only these functions to write out all the
756  * necessary info.
757  */
758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760         struct file *file = cprm->file;
761         loff_t pos = file->f_pos;
762         ssize_t n;
763         if (cprm->written + nr > cprm->limit)
764                 return 0;
765         while (nr) {
766                 if (dump_interrupted())
767                         return 0;
768                 n = __kernel_write(file, addr, nr, &pos);
769                 if (n <= 0)
770                         return 0;
771                 file->f_pos = pos;
772                 cprm->written += n;
773                 nr -= n;
774         }
775         return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778
779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781         static char zeroes[PAGE_SIZE];
782         struct file *file = cprm->file;
783         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784                 if (cprm->written + nr > cprm->limit)
785                         return 0;
786                 if (dump_interrupted() ||
787                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788                         return 0;
789                 cprm->written += nr;
790                 return 1;
791         } else {
792                 while (nr > PAGE_SIZE) {
793                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794                                 return 0;
795                         nr -= PAGE_SIZE;
796                 }
797                 return dump_emit(cprm, zeroes, nr);
798         }
799 }
800 EXPORT_SYMBOL(dump_skip);
801
802 int dump_align(struct coredump_params *cprm, int align)
803 {
804         unsigned mod = cprm->written & (align - 1);
805         if (align & (align - 1))
806                 return 0;
807         return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);