]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ecryptfs/crypto.c
d10757635b9c9360288e18217b28de298fc48407
[karo-tx-linux.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 #define DECRYPT         0
41 #define ENCRYPT         1
42
43 /**
44  * ecryptfs_to_hex
45  * @dst: Buffer to take hex character representation of contents of
46  *       src; must be at least of size (src_size * 2)
47  * @src: Buffer to be converted to a hex string respresentation
48  * @src_size: number of bytes to convert
49  */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52         int x;
53
54         for (x = 0; x < src_size; x++)
55                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57
58 /**
59  * ecryptfs_from_hex
60  * @dst: Buffer to take the bytes from src hex; must be at least of
61  *       size (src_size / 2)
62  * @src: Buffer to be converted from a hex string respresentation to raw value
63  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64  */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67         int x;
68         char tmp[3] = { 0, };
69
70         for (x = 0; x < dst_size; x++) {
71                 tmp[0] = src[x * 2];
72                 tmp[1] = src[x * 2 + 1];
73                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74         }
75 }
76
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88                                   struct ecryptfs_crypt_stat *crypt_stat,
89                                   char *src, int len)
90 {
91         struct scatterlist sg;
92         struct hash_desc desc = {
93                 .tfm = crypt_stat->hash_tfm,
94                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
95         };
96         int rc = 0;
97
98         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99         sg_init_one(&sg, (u8 *)src, len);
100         if (!desc.tfm) {
101                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102                                              CRYPTO_ALG_ASYNC);
103                 if (IS_ERR(desc.tfm)) {
104                         rc = PTR_ERR(desc.tfm);
105                         ecryptfs_printk(KERN_ERR, "Error attempting to "
106                                         "allocate crypto context; rc = [%d]\n",
107                                         rc);
108                         goto out;
109                 }
110                 crypt_stat->hash_tfm = desc.tfm;
111         }
112         rc = crypto_hash_init(&desc);
113         if (rc) {
114                 printk(KERN_ERR
115                        "%s: Error initializing crypto hash; rc = [%d]\n",
116                        __func__, rc);
117                 goto out;
118         }
119         rc = crypto_hash_update(&desc, &sg, len);
120         if (rc) {
121                 printk(KERN_ERR
122                        "%s: Error updating crypto hash; rc = [%d]\n",
123                        __func__, rc);
124                 goto out;
125         }
126         rc = crypto_hash_final(&desc, dst);
127         if (rc) {
128                 printk(KERN_ERR
129                        "%s: Error finalizing crypto hash; rc = [%d]\n",
130                        __func__, rc);
131                 goto out;
132         }
133 out:
134         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135         return rc;
136 }
137
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139                                                   char *cipher_name,
140                                                   char *chaining_modifier)
141 {
142         int cipher_name_len = strlen(cipher_name);
143         int chaining_modifier_len = strlen(chaining_modifier);
144         int algified_name_len;
145         int rc;
146
147         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149         if (!(*algified_name)) {
150                 rc = -ENOMEM;
151                 goto out;
152         }
153         snprintf((*algified_name), algified_name_len, "%s(%s)",
154                  chaining_modifier, cipher_name);
155         rc = 0;
156 out:
157         return rc;
158 }
159
160 /**
161  * ecryptfs_derive_iv
162  * @iv: destination for the derived iv vale
163  * @crypt_stat: Pointer to crypt_stat struct for the current inode
164  * @offset: Offset of the extent whose IV we are to derive
165  *
166  * Generate the initialization vector from the given root IV and page
167  * offset.
168  *
169  * Returns zero on success; non-zero on error.
170  */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172                        loff_t offset)
173 {
174         int rc = 0;
175         char dst[MD5_DIGEST_SIZE];
176         char src[ECRYPTFS_MAX_IV_BYTES + 16];
177
178         if (unlikely(ecryptfs_verbosity > 0)) {
179                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181         }
182         /* TODO: It is probably secure to just cast the least
183          * significant bits of the root IV into an unsigned long and
184          * add the offset to that rather than go through all this
185          * hashing business. -Halcrow */
186         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187         memset((src + crypt_stat->iv_bytes), 0, 16);
188         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189         if (unlikely(ecryptfs_verbosity > 0)) {
190                 ecryptfs_printk(KERN_DEBUG, "source:\n");
191                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192         }
193         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194                                     (crypt_stat->iv_bytes + 16));
195         if (rc) {
196                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197                                 "MD5 while generating IV for a page\n");
198                 goto out;
199         }
200         memcpy(iv, dst, crypt_stat->iv_bytes);
201         if (unlikely(ecryptfs_verbosity > 0)) {
202                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204         }
205 out:
206         return rc;
207 }
208
209 /**
210  * ecryptfs_init_crypt_stat
211  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212  *
213  * Initialize the crypt_stat structure.
214  */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219         INIT_LIST_HEAD(&crypt_stat->keysig_list);
220         mutex_init(&crypt_stat->keysig_list_mutex);
221         mutex_init(&crypt_stat->cs_mutex);
222         mutex_init(&crypt_stat->cs_tfm_mutex);
223         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226
227 /**
228  * ecryptfs_destroy_crypt_stat
229  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230  *
231  * Releases all memory associated with a crypt_stat struct.
232  */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236
237         if (crypt_stat->tfm)
238                 crypto_free_ablkcipher(crypt_stat->tfm);
239         if (crypt_stat->hash_tfm)
240                 crypto_free_hash(crypt_stat->hash_tfm);
241         list_for_each_entry_safe(key_sig, key_sig_tmp,
242                                  &crypt_stat->keysig_list, crypt_stat_list) {
243                 list_del(&key_sig->crypt_stat_list);
244                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245         }
246         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248
249 void ecryptfs_destroy_mount_crypt_stat(
250         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253
254         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255                 return;
256         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258                                  &mount_crypt_stat->global_auth_tok_list,
259                                  mount_crypt_stat_list) {
260                 list_del(&auth_tok->mount_crypt_stat_list);
261                 if (auth_tok->global_auth_tok_key
262                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
263                         key_put(auth_tok->global_auth_tok_key);
264                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
265         }
266         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
268 }
269
270 /**
271  * virt_to_scatterlist
272  * @addr: Virtual address
273  * @size: Size of data; should be an even multiple of the block size
274  * @sg: Pointer to scatterlist array; set to NULL to obtain only
275  *      the number of scatterlist structs required in array
276  * @sg_size: Max array size
277  *
278  * Fills in a scatterlist array with page references for a passed
279  * virtual address.
280  *
281  * Returns the number of scatterlist structs in array used
282  */
283 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
284                         int sg_size)
285 {
286         int i = 0;
287         struct page *pg;
288         int offset;
289         int remainder_of_page;
290
291         sg_init_table(sg, sg_size);
292
293         while (size > 0 && i < sg_size) {
294                 pg = virt_to_page(addr);
295                 offset = offset_in_page(addr);
296                 sg_set_page(&sg[i], pg, 0, offset);
297                 remainder_of_page = PAGE_CACHE_SIZE - offset;
298                 if (size >= remainder_of_page) {
299                         sg[i].length = remainder_of_page;
300                         addr += remainder_of_page;
301                         size -= remainder_of_page;
302                 } else {
303                         sg[i].length = size;
304                         addr += size;
305                         size = 0;
306                 }
307                 i++;
308         }
309         if (size > 0)
310                 return -ENOMEM;
311         return i;
312 }
313
314 struct extent_crypt_result {
315         struct completion completion;
316         int rc;
317 };
318
319 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
320 {
321         struct extent_crypt_result *ecr = req->data;
322
323         if (rc == -EINPROGRESS)
324                 return;
325
326         ecr->rc = rc;
327         complete(&ecr->completion);
328 }
329
330 /**
331  * crypt_scatterlist
332  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333  * @dst_sg: Destination of the data after performing the crypto operation
334  * @src_sg: Data to be encrypted or decrypted
335  * @size: Length of data
336  * @iv: IV to use
337  * @op: ENCRYPT or DECRYPT to indicate the desired operation
338  *
339  * Returns the number of bytes encrypted or decrypted; negative value on error
340  */
341 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342                              struct scatterlist *dst_sg,
343                              struct scatterlist *src_sg, int size,
344                              unsigned char *iv, int op)
345 {
346         struct ablkcipher_request *req = NULL;
347         struct extent_crypt_result ecr;
348         int rc = 0;
349
350         BUG_ON(!crypt_stat || !crypt_stat->tfm
351                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352         if (unlikely(ecryptfs_verbosity > 0)) {
353                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354                                 crypt_stat->key_size);
355                 ecryptfs_dump_hex(crypt_stat->key,
356                                   crypt_stat->key_size);
357         }
358
359         init_completion(&ecr.completion);
360
361         mutex_lock(&crypt_stat->cs_tfm_mutex);
362         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
363         if (!req) {
364                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
365                 rc = -ENOMEM;
366                 goto out;
367         }
368
369         ablkcipher_request_set_callback(req,
370                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
371                         extent_crypt_complete, &ecr);
372         /* Consider doing this once, when the file is opened */
373         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
374                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
375                                               crypt_stat->key_size);
376                 if (rc) {
377                         ecryptfs_printk(KERN_ERR,
378                                         "Error setting key; rc = [%d]\n",
379                                         rc);
380                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
381                         rc = -EINVAL;
382                         goto out;
383                 }
384                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
385         }
386         mutex_unlock(&crypt_stat->cs_tfm_mutex);
387         ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388         rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
389                              crypto_ablkcipher_decrypt(req);
390         if (rc == -EINPROGRESS || rc == -EBUSY) {
391                 struct extent_crypt_result *ecr = req->base.data;
392
393                 wait_for_completion(&ecr->completion);
394                 rc = ecr->rc;
395                 INIT_COMPLETION(ecr->completion);
396         }
397 out:
398         ablkcipher_request_free(req);
399         return rc;
400 }
401
402 /**
403  * lower_offset_for_page
404  *
405  * Convert an eCryptfs page index into a lower byte offset
406  */
407 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
408                                     struct page *page)
409 {
410         return ecryptfs_lower_header_size(crypt_stat) +
411                (page->index << PAGE_CACHE_SHIFT);
412 }
413
414 /**
415  * crypt_extent
416  * @crypt_stat: crypt_stat containing cryptographic context for the
417  *              encryption operation
418  * @dst_page: The page to write the result into
419  * @src_page: The page to read from
420  * @extent_offset: Page extent offset for use in generating IV
421  * @op: ENCRYPT or DECRYPT to indicate the desired operation
422  *
423  * Encrypts or decrypts one extent of data.
424  *
425  * Return zero on success; non-zero otherwise
426  */
427 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
428                         struct page *dst_page,
429                         struct page *src_page,
430                         unsigned long extent_offset, int op)
431 {
432         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
433         loff_t extent_base;
434         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435         struct scatterlist src_sg, dst_sg;
436         size_t extent_size = crypt_stat->extent_size;
437         int rc;
438
439         extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
441                                 (extent_base + extent_offset));
442         if (rc) {
443                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
444                         "extent [0x%.16llx]; rc = [%d]\n",
445                         (unsigned long long)(extent_base + extent_offset), rc);
446                 goto out;
447         }
448
449         sg_init_table(&src_sg, 1);
450         sg_init_table(&dst_sg, 1);
451
452         sg_set_page(&src_sg, src_page, extent_size,
453                     extent_offset * extent_size);
454         sg_set_page(&dst_sg, dst_page, extent_size,
455                     extent_offset * extent_size);
456
457         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
458                                extent_iv, op);
459         if (rc < 0) {
460                 printk(KERN_ERR "%s: Error attempting to crypt page with "
461                        "page_index = [%ld], extent_offset = [%ld]; "
462                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463                 goto out;
464         }
465         rc = 0;
466 out:
467         return rc;
468 }
469
470 /**
471  * ecryptfs_encrypt_page
472  * @page: Page mapped from the eCryptfs inode for the file; contains
473  *        decrypted content that needs to be encrypted (to a temporary
474  *        page; not in place) and written out to the lower file
475  *
476  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477  * that eCryptfs pages may straddle the lower pages -- for instance,
478  * if the file was created on a machine with an 8K page size
479  * (resulting in an 8K header), and then the file is copied onto a
480  * host with a 32K page size, then when reading page 0 of the eCryptfs
481  * file, 24K of page 0 of the lower file will be read and decrypted,
482  * and then 8K of page 1 of the lower file will be read and decrypted.
483  *
484  * Returns zero on success; negative on error
485  */
486 int ecryptfs_encrypt_page(struct page *page)
487 {
488         struct inode *ecryptfs_inode;
489         struct ecryptfs_crypt_stat *crypt_stat;
490         char *enc_extent_virt;
491         struct page *enc_extent_page = NULL;
492         loff_t extent_offset;
493         loff_t lower_offset;
494         int rc = 0;
495
496         ecryptfs_inode = page->mapping->host;
497         crypt_stat =
498                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500         enc_extent_page = alloc_page(GFP_USER);
501         if (!enc_extent_page) {
502                 rc = -ENOMEM;
503                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504                                 "encrypted extent\n");
505                 goto out;
506         }
507
508         for (extent_offset = 0;
509              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510              extent_offset++) {
511                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
512                                   extent_offset, ENCRYPT);
513                 if (rc) {
514                         printk(KERN_ERR "%s: Error encrypting extent; "
515                                "rc = [%d]\n", __func__, rc);
516                         goto out;
517                 }
518         }
519
520         lower_offset = lower_offset_for_page(crypt_stat, page);
521         enc_extent_virt = kmap(enc_extent_page);
522         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
523                                   PAGE_CACHE_SIZE);
524         kunmap(enc_extent_page);
525         if (rc < 0) {
526                 ecryptfs_printk(KERN_ERR,
527                         "Error attempting to write lower page; rc = [%d]\n",
528                         rc);
529                 goto out;
530         }
531         rc = 0;
532 out:
533         if (enc_extent_page) {
534                 __free_page(enc_extent_page);
535         }
536         return rc;
537 }
538
539 /**
540  * ecryptfs_decrypt_page
541  * @page: Page mapped from the eCryptfs inode for the file; data read
542  *        and decrypted from the lower file will be written into this
543  *        page
544  *
545  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
546  * that eCryptfs pages may straddle the lower pages -- for instance,
547  * if the file was created on a machine with an 8K page size
548  * (resulting in an 8K header), and then the file is copied onto a
549  * host with a 32K page size, then when reading page 0 of the eCryptfs
550  * file, 24K of page 0 of the lower file will be read and decrypted,
551  * and then 8K of page 1 of the lower file will be read and decrypted.
552  *
553  * Returns zero on success; negative on error
554  */
555 int ecryptfs_decrypt_page(struct page *page)
556 {
557         struct inode *ecryptfs_inode;
558         struct ecryptfs_crypt_stat *crypt_stat;
559         char *page_virt;
560         unsigned long extent_offset;
561         loff_t lower_offset;
562         int rc = 0;
563
564         ecryptfs_inode = page->mapping->host;
565         crypt_stat =
566                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568
569         lower_offset = lower_offset_for_page(crypt_stat, page);
570         page_virt = kmap(page);
571         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572                                  ecryptfs_inode);
573         kunmap(page);
574         if (rc < 0) {
575                 ecryptfs_printk(KERN_ERR,
576                         "Error attempting to read lower page; rc = [%d]\n",
577                         rc);
578                 goto out;
579         }
580
581         for (extent_offset = 0;
582              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583              extent_offset++) {
584                 rc = crypt_extent(crypt_stat, page, page,
585                                   extent_offset, DECRYPT);
586                 if (rc) {
587                         printk(KERN_ERR "%s: Error encrypting extent; "
588                                "rc = [%d]\n", __func__, rc);
589                         goto out;
590                 }
591         }
592 out:
593         return rc;
594 }
595
596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
597
598 /**
599  * ecryptfs_init_crypt_ctx
600  * @crypt_stat: Uninitialized crypt stats structure
601  *
602  * Initialize the crypto context.
603  *
604  * TODO: Performance: Keep a cache of initialized cipher contexts;
605  * only init if needed
606  */
607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
608 {
609         char *full_alg_name;
610         int rc = -EINVAL;
611
612         if (!crypt_stat->cipher) {
613                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
614                 goto out;
615         }
616         ecryptfs_printk(KERN_DEBUG,
617                         "Initializing cipher [%s]; strlen = [%d]; "
618                         "key_size_bits = [%zd]\n",
619                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
620                         crypt_stat->key_size << 3);
621         if (crypt_stat->tfm) {
622                 rc = 0;
623                 goto out;
624         }
625         mutex_lock(&crypt_stat->cs_tfm_mutex);
626         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
627                                                     crypt_stat->cipher, "cbc");
628         if (rc)
629                 goto out_unlock;
630         crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
631         kfree(full_alg_name);
632         if (IS_ERR(crypt_stat->tfm)) {
633                 rc = PTR_ERR(crypt_stat->tfm);
634                 crypt_stat->tfm = NULL;
635                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
636                                 "Error initializing cipher [%s]\n",
637                                 crypt_stat->cipher);
638                 goto out_unlock;
639         }
640         crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
641         rc = 0;
642 out_unlock:
643         mutex_unlock(&crypt_stat->cs_tfm_mutex);
644 out:
645         return rc;
646 }
647
648 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
649 {
650         int extent_size_tmp;
651
652         crypt_stat->extent_mask = 0xFFFFFFFF;
653         crypt_stat->extent_shift = 0;
654         if (crypt_stat->extent_size == 0)
655                 return;
656         extent_size_tmp = crypt_stat->extent_size;
657         while ((extent_size_tmp & 0x01) == 0) {
658                 extent_size_tmp >>= 1;
659                 crypt_stat->extent_mask <<= 1;
660                 crypt_stat->extent_shift++;
661         }
662 }
663
664 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
665 {
666         /* Default values; may be overwritten as we are parsing the
667          * packets. */
668         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
669         set_extent_mask_and_shift(crypt_stat);
670         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
671         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
672                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673         else {
674                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
675                         crypt_stat->metadata_size =
676                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
677                 else
678                         crypt_stat->metadata_size = PAGE_CACHE_SIZE;
679         }
680 }
681
682 /**
683  * ecryptfs_compute_root_iv
684  * @crypt_stats
685  *
686  * On error, sets the root IV to all 0's.
687  */
688 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
689 {
690         int rc = 0;
691         char dst[MD5_DIGEST_SIZE];
692
693         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
694         BUG_ON(crypt_stat->iv_bytes <= 0);
695         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
696                 rc = -EINVAL;
697                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
698                                 "cannot generate root IV\n");
699                 goto out;
700         }
701         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
702                                     crypt_stat->key_size);
703         if (rc) {
704                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
705                                 "MD5 while generating root IV\n");
706                 goto out;
707         }
708         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
709 out:
710         if (rc) {
711                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
712                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
713         }
714         return rc;
715 }
716
717 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
718 {
719         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
720         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
721         ecryptfs_compute_root_iv(crypt_stat);
722         if (unlikely(ecryptfs_verbosity > 0)) {
723                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
724                 ecryptfs_dump_hex(crypt_stat->key,
725                                   crypt_stat->key_size);
726         }
727 }
728
729 /**
730  * ecryptfs_copy_mount_wide_flags_to_inode_flags
731  * @crypt_stat: The inode's cryptographic context
732  * @mount_crypt_stat: The mount point's cryptographic context
733  *
734  * This function propagates the mount-wide flags to individual inode
735  * flags.
736  */
737 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
738         struct ecryptfs_crypt_stat *crypt_stat,
739         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
740 {
741         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
742                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
743         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
744                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
745         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
746                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
747                 if (mount_crypt_stat->flags
748                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
749                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
750                 else if (mount_crypt_stat->flags
751                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
752                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
753         }
754 }
755
756 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
757         struct ecryptfs_crypt_stat *crypt_stat,
758         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
759 {
760         struct ecryptfs_global_auth_tok *global_auth_tok;
761         int rc = 0;
762
763         mutex_lock(&crypt_stat->keysig_list_mutex);
764         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
765
766         list_for_each_entry(global_auth_tok,
767                             &mount_crypt_stat->global_auth_tok_list,
768                             mount_crypt_stat_list) {
769                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
770                         continue;
771                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
772                 if (rc) {
773                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
774                         goto out;
775                 }
776         }
777
778 out:
779         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
780         mutex_unlock(&crypt_stat->keysig_list_mutex);
781         return rc;
782 }
783
784 /**
785  * ecryptfs_set_default_crypt_stat_vals
786  * @crypt_stat: The inode's cryptographic context
787  * @mount_crypt_stat: The mount point's cryptographic context
788  *
789  * Default values in the event that policy does not override them.
790  */
791 static void ecryptfs_set_default_crypt_stat_vals(
792         struct ecryptfs_crypt_stat *crypt_stat,
793         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
794 {
795         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
796                                                       mount_crypt_stat);
797         ecryptfs_set_default_sizes(crypt_stat);
798         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
799         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
800         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
801         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
802         crypt_stat->mount_crypt_stat = mount_crypt_stat;
803 }
804
805 /**
806  * ecryptfs_new_file_context
807  * @ecryptfs_inode: The eCryptfs inode
808  *
809  * If the crypto context for the file has not yet been established,
810  * this is where we do that.  Establishing a new crypto context
811  * involves the following decisions:
812  *  - What cipher to use?
813  *  - What set of authentication tokens to use?
814  * Here we just worry about getting enough information into the
815  * authentication tokens so that we know that they are available.
816  * We associate the available authentication tokens with the new file
817  * via the set of signatures in the crypt_stat struct.  Later, when
818  * the headers are actually written out, we may again defer to
819  * userspace to perform the encryption of the session key; for the
820  * foreseeable future, this will be the case with public key packets.
821  *
822  * Returns zero on success; non-zero otherwise
823  */
824 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
825 {
826         struct ecryptfs_crypt_stat *crypt_stat =
827             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
828         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
829             &ecryptfs_superblock_to_private(
830                     ecryptfs_inode->i_sb)->mount_crypt_stat;
831         int cipher_name_len;
832         int rc = 0;
833
834         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
835         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
836         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
837                                                       mount_crypt_stat);
838         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
839                                                          mount_crypt_stat);
840         if (rc) {
841                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
842                        "to the inode key sigs; rc = [%d]\n", rc);
843                 goto out;
844         }
845         cipher_name_len =
846                 strlen(mount_crypt_stat->global_default_cipher_name);
847         memcpy(crypt_stat->cipher,
848                mount_crypt_stat->global_default_cipher_name,
849                cipher_name_len);
850         crypt_stat->cipher[cipher_name_len] = '\0';
851         crypt_stat->key_size =
852                 mount_crypt_stat->global_default_cipher_key_size;
853         ecryptfs_generate_new_key(crypt_stat);
854         rc = ecryptfs_init_crypt_ctx(crypt_stat);
855         if (rc)
856                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
857                                 "context for cipher [%s]: rc = [%d]\n",
858                                 crypt_stat->cipher, rc);
859 out:
860         return rc;
861 }
862
863 /**
864  * ecryptfs_validate_marker - check for the ecryptfs marker
865  * @data: The data block in which to check
866  *
867  * Returns zero if marker found; -EINVAL if not found
868  */
869 static int ecryptfs_validate_marker(char *data)
870 {
871         u32 m_1, m_2;
872
873         m_1 = get_unaligned_be32(data);
874         m_2 = get_unaligned_be32(data + 4);
875         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
876                 return 0;
877         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
878                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
879                         MAGIC_ECRYPTFS_MARKER);
880         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
881                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
882         return -EINVAL;
883 }
884
885 struct ecryptfs_flag_map_elem {
886         u32 file_flag;
887         u32 local_flag;
888 };
889
890 /* Add support for additional flags by adding elements here. */
891 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
892         {0x00000001, ECRYPTFS_ENABLE_HMAC},
893         {0x00000002, ECRYPTFS_ENCRYPTED},
894         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
895         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
896 };
897
898 /**
899  * ecryptfs_process_flags
900  * @crypt_stat: The cryptographic context
901  * @page_virt: Source data to be parsed
902  * @bytes_read: Updated with the number of bytes read
903  *
904  * Returns zero on success; non-zero if the flag set is invalid
905  */
906 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
907                                   char *page_virt, int *bytes_read)
908 {
909         int rc = 0;
910         int i;
911         u32 flags;
912
913         flags = get_unaligned_be32(page_virt);
914         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
915                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
916                 if (flags & ecryptfs_flag_map[i].file_flag) {
917                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
918                 } else
919                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
920         /* Version is in top 8 bits of the 32-bit flag vector */
921         crypt_stat->file_version = ((flags >> 24) & 0xFF);
922         (*bytes_read) = 4;
923         return rc;
924 }
925
926 /**
927  * write_ecryptfs_marker
928  * @page_virt: The pointer to in a page to begin writing the marker
929  * @written: Number of bytes written
930  *
931  * Marker = 0x3c81b7f5
932  */
933 static void write_ecryptfs_marker(char *page_virt, size_t *written)
934 {
935         u32 m_1, m_2;
936
937         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
938         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
939         put_unaligned_be32(m_1, page_virt);
940         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
941         put_unaligned_be32(m_2, page_virt);
942         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
943 }
944
945 void ecryptfs_write_crypt_stat_flags(char *page_virt,
946                                      struct ecryptfs_crypt_stat *crypt_stat,
947                                      size_t *written)
948 {
949         u32 flags = 0;
950         int i;
951
952         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
953                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
954                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
955                         flags |= ecryptfs_flag_map[i].file_flag;
956         /* Version is in top 8 bits of the 32-bit flag vector */
957         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
958         put_unaligned_be32(flags, page_virt);
959         (*written) = 4;
960 }
961
962 struct ecryptfs_cipher_code_str_map_elem {
963         char cipher_str[16];
964         u8 cipher_code;
965 };
966
967 /* Add support for additional ciphers by adding elements here. The
968  * cipher_code is whatever OpenPGP applicatoins use to identify the
969  * ciphers. List in order of probability. */
970 static struct ecryptfs_cipher_code_str_map_elem
971 ecryptfs_cipher_code_str_map[] = {
972         {"aes",RFC2440_CIPHER_AES_128 },
973         {"blowfish", RFC2440_CIPHER_BLOWFISH},
974         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
975         {"cast5", RFC2440_CIPHER_CAST_5},
976         {"twofish", RFC2440_CIPHER_TWOFISH},
977         {"cast6", RFC2440_CIPHER_CAST_6},
978         {"aes", RFC2440_CIPHER_AES_192},
979         {"aes", RFC2440_CIPHER_AES_256}
980 };
981
982 /**
983  * ecryptfs_code_for_cipher_string
984  * @cipher_name: The string alias for the cipher
985  * @key_bytes: Length of key in bytes; used for AES code selection
986  *
987  * Returns zero on no match, or the cipher code on match
988  */
989 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
990 {
991         int i;
992         u8 code = 0;
993         struct ecryptfs_cipher_code_str_map_elem *map =
994                 ecryptfs_cipher_code_str_map;
995
996         if (strcmp(cipher_name, "aes") == 0) {
997                 switch (key_bytes) {
998                 case 16:
999                         code = RFC2440_CIPHER_AES_128;
1000                         break;
1001                 case 24:
1002                         code = RFC2440_CIPHER_AES_192;
1003                         break;
1004                 case 32:
1005                         code = RFC2440_CIPHER_AES_256;
1006                 }
1007         } else {
1008                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1009                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1010                                 code = map[i].cipher_code;
1011                                 break;
1012                         }
1013         }
1014         return code;
1015 }
1016
1017 /**
1018  * ecryptfs_cipher_code_to_string
1019  * @str: Destination to write out the cipher name
1020  * @cipher_code: The code to convert to cipher name string
1021  *
1022  * Returns zero on success
1023  */
1024 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1025 {
1026         int rc = 0;
1027         int i;
1028
1029         str[0] = '\0';
1030         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1031                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1032                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1033         if (str[0] == '\0') {
1034                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1035                                 "[%d]\n", cipher_code);
1036                 rc = -EINVAL;
1037         }
1038         return rc;
1039 }
1040
1041 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1042 {
1043         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1044         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1045         int rc;
1046
1047         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1048                                  inode);
1049         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1050                 return rc >= 0 ? -EINVAL : rc;
1051         rc = ecryptfs_validate_marker(marker);
1052         if (!rc)
1053                 ecryptfs_i_size_init(file_size, inode);
1054         return rc;
1055 }
1056
1057 void
1058 ecryptfs_write_header_metadata(char *virt,
1059                                struct ecryptfs_crypt_stat *crypt_stat,
1060                                size_t *written)
1061 {
1062         u32 header_extent_size;
1063         u16 num_header_extents_at_front;
1064
1065         header_extent_size = (u32)crypt_stat->extent_size;
1066         num_header_extents_at_front =
1067                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1068         put_unaligned_be32(header_extent_size, virt);
1069         virt += 4;
1070         put_unaligned_be16(num_header_extents_at_front, virt);
1071         (*written) = 6;
1072 }
1073
1074 struct kmem_cache *ecryptfs_header_cache;
1075
1076 /**
1077  * ecryptfs_write_headers_virt
1078  * @page_virt: The virtual address to write the headers to
1079  * @max: The size of memory allocated at page_virt
1080  * @size: Set to the number of bytes written by this function
1081  * @crypt_stat: The cryptographic context
1082  * @ecryptfs_dentry: The eCryptfs dentry
1083  *
1084  * Format version: 1
1085  *
1086  *   Header Extent:
1087  *     Octets 0-7:        Unencrypted file size (big-endian)
1088  *     Octets 8-15:       eCryptfs special marker
1089  *     Octets 16-19:      Flags
1090  *      Octet 16:         File format version number (between 0 and 255)
1091  *      Octets 17-18:     Reserved
1092  *      Octet 19:         Bit 1 (lsb): Reserved
1093  *                        Bit 2: Encrypted?
1094  *                        Bits 3-8: Reserved
1095  *     Octets 20-23:      Header extent size (big-endian)
1096  *     Octets 24-25:      Number of header extents at front of file
1097  *                        (big-endian)
1098  *     Octet  26:         Begin RFC 2440 authentication token packet set
1099  *   Data Extent 0:
1100  *     Lower data (CBC encrypted)
1101  *   Data Extent 1:
1102  *     Lower data (CBC encrypted)
1103  *   ...
1104  *
1105  * Returns zero on success
1106  */
1107 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1108                                        size_t *size,
1109                                        struct ecryptfs_crypt_stat *crypt_stat,
1110                                        struct dentry *ecryptfs_dentry)
1111 {
1112         int rc;
1113         size_t written;
1114         size_t offset;
1115
1116         offset = ECRYPTFS_FILE_SIZE_BYTES;
1117         write_ecryptfs_marker((page_virt + offset), &written);
1118         offset += written;
1119         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1120                                         &written);
1121         offset += written;
1122         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1123                                        &written);
1124         offset += written;
1125         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1126                                               ecryptfs_dentry, &written,
1127                                               max - offset);
1128         if (rc)
1129                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1130                                 "set; rc = [%d]\n", rc);
1131         if (size) {
1132                 offset += written;
1133                 *size = offset;
1134         }
1135         return rc;
1136 }
1137
1138 static int
1139 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1140                                     char *virt, size_t virt_len)
1141 {
1142         int rc;
1143
1144         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1145                                   0, virt_len);
1146         if (rc < 0)
1147                 printk(KERN_ERR "%s: Error attempting to write header "
1148                        "information to lower file; rc = [%d]\n", __func__, rc);
1149         else
1150                 rc = 0;
1151         return rc;
1152 }
1153
1154 static int
1155 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1156                                  char *page_virt, size_t size)
1157 {
1158         int rc;
1159
1160         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1161                                size, 0);
1162         return rc;
1163 }
1164
1165 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1166                                                unsigned int order)
1167 {
1168         struct page *page;
1169
1170         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1171         if (page)
1172                 return (unsigned long) page_address(page);
1173         return 0;
1174 }
1175
1176 /**
1177  * ecryptfs_write_metadata
1178  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1179  * @ecryptfs_inode: The newly created eCryptfs inode
1180  *
1181  * Write the file headers out.  This will likely involve a userspace
1182  * callout, in which the session key is encrypted with one or more
1183  * public keys and/or the passphrase necessary to do the encryption is
1184  * retrieved via a prompt.  Exactly what happens at this point should
1185  * be policy-dependent.
1186  *
1187  * Returns zero on success; non-zero on error
1188  */
1189 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1190                             struct inode *ecryptfs_inode)
1191 {
1192         struct ecryptfs_crypt_stat *crypt_stat =
1193                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1194         unsigned int order;
1195         char *virt;
1196         size_t virt_len;
1197         size_t size = 0;
1198         int rc = 0;
1199
1200         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1201                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1202                         printk(KERN_ERR "Key is invalid; bailing out\n");
1203                         rc = -EINVAL;
1204                         goto out;
1205                 }
1206         } else {
1207                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1208                        __func__);
1209                 rc = -EINVAL;
1210                 goto out;
1211         }
1212         virt_len = crypt_stat->metadata_size;
1213         order = get_order(virt_len);
1214         /* Released in this function */
1215         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1216         if (!virt) {
1217                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1218                 rc = -ENOMEM;
1219                 goto out;
1220         }
1221         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1222         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1223                                          ecryptfs_dentry);
1224         if (unlikely(rc)) {
1225                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1226                        __func__, rc);
1227                 goto out_free;
1228         }
1229         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1230                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1231                                                       size);
1232         else
1233                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1234                                                          virt_len);
1235         if (rc) {
1236                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1237                        "rc = [%d]\n", __func__, rc);
1238                 goto out_free;
1239         }
1240 out_free:
1241         free_pages((unsigned long)virt, order);
1242 out:
1243         return rc;
1244 }
1245
1246 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1247 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1248 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1249                                  char *virt, int *bytes_read,
1250                                  int validate_header_size)
1251 {
1252         int rc = 0;
1253         u32 header_extent_size;
1254         u16 num_header_extents_at_front;
1255
1256         header_extent_size = get_unaligned_be32(virt);
1257         virt += sizeof(__be32);
1258         num_header_extents_at_front = get_unaligned_be16(virt);
1259         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1260                                      * (size_t)header_extent_size));
1261         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1262         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1263             && (crypt_stat->metadata_size
1264                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1265                 rc = -EINVAL;
1266                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1267                        crypt_stat->metadata_size);
1268         }
1269         return rc;
1270 }
1271
1272 /**
1273  * set_default_header_data
1274  * @crypt_stat: The cryptographic context
1275  *
1276  * For version 0 file format; this function is only for backwards
1277  * compatibility for files created with the prior versions of
1278  * eCryptfs.
1279  */
1280 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1281 {
1282         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1283 }
1284
1285 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1286 {
1287         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1288         struct ecryptfs_crypt_stat *crypt_stat;
1289         u64 file_size;
1290
1291         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1292         mount_crypt_stat =
1293                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1294         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1295                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1296                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1297                         file_size += crypt_stat->metadata_size;
1298         } else
1299                 file_size = get_unaligned_be64(page_virt);
1300         i_size_write(inode, (loff_t)file_size);
1301         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1302 }
1303
1304 /**
1305  * ecryptfs_read_headers_virt
1306  * @page_virt: The virtual address into which to read the headers
1307  * @crypt_stat: The cryptographic context
1308  * @ecryptfs_dentry: The eCryptfs dentry
1309  * @validate_header_size: Whether to validate the header size while reading
1310  *
1311  * Read/parse the header data. The header format is detailed in the
1312  * comment block for the ecryptfs_write_headers_virt() function.
1313  *
1314  * Returns zero on success
1315  */
1316 static int ecryptfs_read_headers_virt(char *page_virt,
1317                                       struct ecryptfs_crypt_stat *crypt_stat,
1318                                       struct dentry *ecryptfs_dentry,
1319                                       int validate_header_size)
1320 {
1321         int rc = 0;
1322         int offset;
1323         int bytes_read;
1324
1325         ecryptfs_set_default_sizes(crypt_stat);
1326         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1327                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1328         offset = ECRYPTFS_FILE_SIZE_BYTES;
1329         rc = ecryptfs_validate_marker(page_virt + offset);
1330         if (rc)
1331                 goto out;
1332         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1333                 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1334         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1335         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1336                                     &bytes_read);
1337         if (rc) {
1338                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1339                 goto out;
1340         }
1341         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1342                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1343                                 "file version [%d] is supported by this "
1344                                 "version of eCryptfs\n",
1345                                 crypt_stat->file_version,
1346                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1347                 rc = -EINVAL;
1348                 goto out;
1349         }
1350         offset += bytes_read;
1351         if (crypt_stat->file_version >= 1) {
1352                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1353                                            &bytes_read, validate_header_size);
1354                 if (rc) {
1355                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1356                                         "metadata; rc = [%d]\n", rc);
1357                 }
1358                 offset += bytes_read;
1359         } else
1360                 set_default_header_data(crypt_stat);
1361         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1362                                        ecryptfs_dentry);
1363 out:
1364         return rc;
1365 }
1366
1367 /**
1368  * ecryptfs_read_xattr_region
1369  * @page_virt: The vitual address into which to read the xattr data
1370  * @ecryptfs_inode: The eCryptfs inode
1371  *
1372  * Attempts to read the crypto metadata from the extended attribute
1373  * region of the lower file.
1374  *
1375  * Returns zero on success; non-zero on error
1376  */
1377 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1378 {
1379         struct dentry *lower_dentry =
1380                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1381         ssize_t size;
1382         int rc = 0;
1383
1384         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1385                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1386         if (size < 0) {
1387                 if (unlikely(ecryptfs_verbosity > 0))
1388                         printk(KERN_INFO "Error attempting to read the [%s] "
1389                                "xattr from the lower file; return value = "
1390                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1391                 rc = -EINVAL;
1392                 goto out;
1393         }
1394 out:
1395         return rc;
1396 }
1397
1398 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1399                                             struct inode *inode)
1400 {
1401         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1402         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1403         int rc;
1404
1405         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1406                                      ECRYPTFS_XATTR_NAME, file_size,
1407                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1408         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1409                 return rc >= 0 ? -EINVAL : rc;
1410         rc = ecryptfs_validate_marker(marker);
1411         if (!rc)
1412                 ecryptfs_i_size_init(file_size, inode);
1413         return rc;
1414 }
1415
1416 /**
1417  * ecryptfs_read_metadata
1418  *
1419  * Common entry point for reading file metadata. From here, we could
1420  * retrieve the header information from the header region of the file,
1421  * the xattr region of the file, or some other repostory that is
1422  * stored separately from the file itself. The current implementation
1423  * supports retrieving the metadata information from the file contents
1424  * and from the xattr region.
1425  *
1426  * Returns zero if valid headers found and parsed; non-zero otherwise
1427  */
1428 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1429 {
1430         int rc;
1431         char *page_virt;
1432         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1433         struct ecryptfs_crypt_stat *crypt_stat =
1434             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1435         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1436                 &ecryptfs_superblock_to_private(
1437                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1438
1439         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1440                                                       mount_crypt_stat);
1441         /* Read the first page from the underlying file */
1442         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1443         if (!page_virt) {
1444                 rc = -ENOMEM;
1445                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1446                        __func__);
1447                 goto out;
1448         }
1449         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1450                                  ecryptfs_inode);
1451         if (rc >= 0)
1452                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1453                                                 ecryptfs_dentry,
1454                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1455         if (rc) {
1456                 /* metadata is not in the file header, so try xattrs */
1457                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1458                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1459                 if (rc) {
1460                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1461                                "file header region or xattr region, inode %lu\n",
1462                                 ecryptfs_inode->i_ino);
1463                         rc = -EINVAL;
1464                         goto out;
1465                 }
1466                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1467                                                 ecryptfs_dentry,
1468                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1469                 if (rc) {
1470                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1471                                "file xattr region either, inode %lu\n",
1472                                 ecryptfs_inode->i_ino);
1473                         rc = -EINVAL;
1474                 }
1475                 if (crypt_stat->mount_crypt_stat->flags
1476                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1477                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1478                 } else {
1479                         printk(KERN_WARNING "Attempt to access file with "
1480                                "crypto metadata only in the extended attribute "
1481                                "region, but eCryptfs was mounted without "
1482                                "xattr support enabled. eCryptfs will not treat "
1483                                "this like an encrypted file, inode %lu\n",
1484                                 ecryptfs_inode->i_ino);
1485                         rc = -EINVAL;
1486                 }
1487         }
1488 out:
1489         if (page_virt) {
1490                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1491                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1492         }
1493         return rc;
1494 }
1495
1496 /**
1497  * ecryptfs_encrypt_filename - encrypt filename
1498  *
1499  * CBC-encrypts the filename. We do not want to encrypt the same
1500  * filename with the same key and IV, which may happen with hard
1501  * links, so we prepend random bits to each filename.
1502  *
1503  * Returns zero on success; non-zero otherwise
1504  */
1505 static int
1506 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1507                           struct ecryptfs_crypt_stat *crypt_stat,
1508                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1509 {
1510         int rc = 0;
1511
1512         filename->encrypted_filename = NULL;
1513         filename->encrypted_filename_size = 0;
1514         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1515             || (mount_crypt_stat && (mount_crypt_stat->flags
1516                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1517                 size_t packet_size;
1518                 size_t remaining_bytes;
1519
1520                 rc = ecryptfs_write_tag_70_packet(
1521                         NULL, NULL,
1522                         &filename->encrypted_filename_size,
1523                         mount_crypt_stat, NULL,
1524                         filename->filename_size);
1525                 if (rc) {
1526                         printk(KERN_ERR "%s: Error attempting to get packet "
1527                                "size for tag 72; rc = [%d]\n", __func__,
1528                                rc);
1529                         filename->encrypted_filename_size = 0;
1530                         goto out;
1531                 }
1532                 filename->encrypted_filename =
1533                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1534                 if (!filename->encrypted_filename) {
1535                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1536                                "to kmalloc [%zd] bytes\n", __func__,
1537                                filename->encrypted_filename_size);
1538                         rc = -ENOMEM;
1539                         goto out;
1540                 }
1541                 remaining_bytes = filename->encrypted_filename_size;
1542                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1543                                                   &remaining_bytes,
1544                                                   &packet_size,
1545                                                   mount_crypt_stat,
1546                                                   filename->filename,
1547                                                   filename->filename_size);
1548                 if (rc) {
1549                         printk(KERN_ERR "%s: Error attempting to generate "
1550                                "tag 70 packet; rc = [%d]\n", __func__,
1551                                rc);
1552                         kfree(filename->encrypted_filename);
1553                         filename->encrypted_filename = NULL;
1554                         filename->encrypted_filename_size = 0;
1555                         goto out;
1556                 }
1557                 filename->encrypted_filename_size = packet_size;
1558         } else {
1559                 printk(KERN_ERR "%s: No support for requested filename "
1560                        "encryption method in this release\n", __func__);
1561                 rc = -EOPNOTSUPP;
1562                 goto out;
1563         }
1564 out:
1565         return rc;
1566 }
1567
1568 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1569                                   const char *name, size_t name_size)
1570 {
1571         int rc = 0;
1572
1573         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1574         if (!(*copied_name)) {
1575                 rc = -ENOMEM;
1576                 goto out;
1577         }
1578         memcpy((void *)(*copied_name), (void *)name, name_size);
1579         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1580                                                  * in printing out the
1581                                                  * string in debug
1582                                                  * messages */
1583         (*copied_name_size) = name_size;
1584 out:
1585         return rc;
1586 }
1587
1588 /**
1589  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1590  * @key_tfm: Crypto context for key material, set by this function
1591  * @cipher_name: Name of the cipher
1592  * @key_size: Size of the key in bytes
1593  *
1594  * Returns zero on success. Any crypto_tfm structs allocated here
1595  * should be released by other functions, such as on a superblock put
1596  * event, regardless of whether this function succeeds for fails.
1597  */
1598 static int
1599 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1600                             char *cipher_name, size_t *key_size)
1601 {
1602         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1603         char *full_alg_name = NULL;
1604         int rc;
1605
1606         *key_tfm = NULL;
1607         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1608                 rc = -EINVAL;
1609                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1610                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1611                 goto out;
1612         }
1613         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1614                                                     "ecb");
1615         if (rc)
1616                 goto out;
1617         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1618         if (IS_ERR(*key_tfm)) {
1619                 rc = PTR_ERR(*key_tfm);
1620                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1621                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1622                 goto out;
1623         }
1624         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1625         if (*key_size == 0) {
1626                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1627
1628                 *key_size = alg->max_keysize;
1629         }
1630         get_random_bytes(dummy_key, *key_size);
1631         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1632         if (rc) {
1633                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1634                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1635                        rc);
1636                 rc = -EINVAL;
1637                 goto out;
1638         }
1639 out:
1640         kfree(full_alg_name);
1641         return rc;
1642 }
1643
1644 struct kmem_cache *ecryptfs_key_tfm_cache;
1645 static struct list_head key_tfm_list;
1646 struct mutex key_tfm_list_mutex;
1647
1648 int __init ecryptfs_init_crypto(void)
1649 {
1650         mutex_init(&key_tfm_list_mutex);
1651         INIT_LIST_HEAD(&key_tfm_list);
1652         return 0;
1653 }
1654
1655 /**
1656  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1657  *
1658  * Called only at module unload time
1659  */
1660 int ecryptfs_destroy_crypto(void)
1661 {
1662         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1663
1664         mutex_lock(&key_tfm_list_mutex);
1665         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1666                                  key_tfm_list) {
1667                 list_del(&key_tfm->key_tfm_list);
1668                 if (key_tfm->key_tfm)
1669                         crypto_free_blkcipher(key_tfm->key_tfm);
1670                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1671         }
1672         mutex_unlock(&key_tfm_list_mutex);
1673         return 0;
1674 }
1675
1676 int
1677 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1678                          size_t key_size)
1679 {
1680         struct ecryptfs_key_tfm *tmp_tfm;
1681         int rc = 0;
1682
1683         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1684
1685         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1686         if (key_tfm != NULL)
1687                 (*key_tfm) = tmp_tfm;
1688         if (!tmp_tfm) {
1689                 rc = -ENOMEM;
1690                 printk(KERN_ERR "Error attempting to allocate from "
1691                        "ecryptfs_key_tfm_cache\n");
1692                 goto out;
1693         }
1694         mutex_init(&tmp_tfm->key_tfm_mutex);
1695         strncpy(tmp_tfm->cipher_name, cipher_name,
1696                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1697         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1698         tmp_tfm->key_size = key_size;
1699         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1700                                          tmp_tfm->cipher_name,
1701                                          &tmp_tfm->key_size);
1702         if (rc) {
1703                 printk(KERN_ERR "Error attempting to initialize key TFM "
1704                        "cipher with name = [%s]; rc = [%d]\n",
1705                        tmp_tfm->cipher_name, rc);
1706                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1707                 if (key_tfm != NULL)
1708                         (*key_tfm) = NULL;
1709                 goto out;
1710         }
1711         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1712 out:
1713         return rc;
1714 }
1715
1716 /**
1717  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1718  * @cipher_name: the name of the cipher to search for
1719  * @key_tfm: set to corresponding tfm if found
1720  *
1721  * Searches for cached key_tfm matching @cipher_name
1722  * Must be called with &key_tfm_list_mutex held
1723  * Returns 1 if found, with @key_tfm set
1724  * Returns 0 if not found, with @key_tfm set to NULL
1725  */
1726 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1727 {
1728         struct ecryptfs_key_tfm *tmp_key_tfm;
1729
1730         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1731
1732         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1733                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1734                         if (key_tfm)
1735                                 (*key_tfm) = tmp_key_tfm;
1736                         return 1;
1737                 }
1738         }
1739         if (key_tfm)
1740                 (*key_tfm) = NULL;
1741         return 0;
1742 }
1743
1744 /**
1745  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1746  *
1747  * @tfm: set to cached tfm found, or new tfm created
1748  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1749  * @cipher_name: the name of the cipher to search for and/or add
1750  *
1751  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1752  * Searches for cached item first, and creates new if not found.
1753  * Returns 0 on success, non-zero if adding new cipher failed
1754  */
1755 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1756                                                struct mutex **tfm_mutex,
1757                                                char *cipher_name)
1758 {
1759         struct ecryptfs_key_tfm *key_tfm;
1760         int rc = 0;
1761
1762         (*tfm) = NULL;
1763         (*tfm_mutex) = NULL;
1764
1765         mutex_lock(&key_tfm_list_mutex);
1766         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1767                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1768                 if (rc) {
1769                         printk(KERN_ERR "Error adding new key_tfm to list; "
1770                                         "rc = [%d]\n", rc);
1771                         goto out;
1772                 }
1773         }
1774         (*tfm) = key_tfm->key_tfm;
1775         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1776 out:
1777         mutex_unlock(&key_tfm_list_mutex);
1778         return rc;
1779 }
1780
1781 /* 64 characters forming a 6-bit target field */
1782 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1783                                                  "EFGHIJKLMNOPQRST"
1784                                                  "UVWXYZabcdefghij"
1785                                                  "klmnopqrstuvwxyz");
1786
1787 /* We could either offset on every reverse map or just pad some 0x00's
1788  * at the front here */
1789 static const unsigned char filename_rev_map[256] = {
1790         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1791         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1792         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1793         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1794         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1795         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1796         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1797         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1798         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1799         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1800         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1801         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1802         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1803         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1804         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1805         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1806 };
1807
1808 /**
1809  * ecryptfs_encode_for_filename
1810  * @dst: Destination location for encoded filename
1811  * @dst_size: Size of the encoded filename in bytes
1812  * @src: Source location for the filename to encode
1813  * @src_size: Size of the source in bytes
1814  */
1815 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1816                                   unsigned char *src, size_t src_size)
1817 {
1818         size_t num_blocks;
1819         size_t block_num = 0;
1820         size_t dst_offset = 0;
1821         unsigned char last_block[3];
1822
1823         if (src_size == 0) {
1824                 (*dst_size) = 0;
1825                 goto out;
1826         }
1827         num_blocks = (src_size / 3);
1828         if ((src_size % 3) == 0) {
1829                 memcpy(last_block, (&src[src_size - 3]), 3);
1830         } else {
1831                 num_blocks++;
1832                 last_block[2] = 0x00;
1833                 switch (src_size % 3) {
1834                 case 1:
1835                         last_block[0] = src[src_size - 1];
1836                         last_block[1] = 0x00;
1837                         break;
1838                 case 2:
1839                         last_block[0] = src[src_size - 2];
1840                         last_block[1] = src[src_size - 1];
1841                 }
1842         }
1843         (*dst_size) = (num_blocks * 4);
1844         if (!dst)
1845                 goto out;
1846         while (block_num < num_blocks) {
1847                 unsigned char *src_block;
1848                 unsigned char dst_block[4];
1849
1850                 if (block_num == (num_blocks - 1))
1851                         src_block = last_block;
1852                 else
1853                         src_block = &src[block_num * 3];
1854                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1855                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1856                                 | ((src_block[1] >> 4) & 0x0F));
1857                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1858                                 | ((src_block[2] >> 6) & 0x03));
1859                 dst_block[3] = (src_block[2] & 0x3F);
1860                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1861                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1862                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1863                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1864                 block_num++;
1865         }
1866 out:
1867         return;
1868 }
1869
1870 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1871 {
1872         /* Not exact; conservatively long. Every block of 4
1873          * encoded characters decodes into a block of 3
1874          * decoded characters. This segment of code provides
1875          * the caller with the maximum amount of allocated
1876          * space that @dst will need to point to in a
1877          * subsequent call. */
1878         return ((encoded_size + 1) * 3) / 4;
1879 }
1880
1881 /**
1882  * ecryptfs_decode_from_filename
1883  * @dst: If NULL, this function only sets @dst_size and returns. If
1884  *       non-NULL, this function decodes the encoded octets in @src
1885  *       into the memory that @dst points to.
1886  * @dst_size: Set to the size of the decoded string.
1887  * @src: The encoded set of octets to decode.
1888  * @src_size: The size of the encoded set of octets to decode.
1889  */
1890 static void
1891 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1892                               const unsigned char *src, size_t src_size)
1893 {
1894         u8 current_bit_offset = 0;
1895         size_t src_byte_offset = 0;
1896         size_t dst_byte_offset = 0;
1897
1898         if (dst == NULL) {
1899                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1900                 goto out;
1901         }
1902         while (src_byte_offset < src_size) {
1903                 unsigned char src_byte =
1904                                 filename_rev_map[(int)src[src_byte_offset]];
1905
1906                 switch (current_bit_offset) {
1907                 case 0:
1908                         dst[dst_byte_offset] = (src_byte << 2);
1909                         current_bit_offset = 6;
1910                         break;
1911                 case 6:
1912                         dst[dst_byte_offset++] |= (src_byte >> 4);
1913                         dst[dst_byte_offset] = ((src_byte & 0xF)
1914                                                  << 4);
1915                         current_bit_offset = 4;
1916                         break;
1917                 case 4:
1918                         dst[dst_byte_offset++] |= (src_byte >> 2);
1919                         dst[dst_byte_offset] = (src_byte << 6);
1920                         current_bit_offset = 2;
1921                         break;
1922                 case 2:
1923                         dst[dst_byte_offset++] |= (src_byte);
1924                         dst[dst_byte_offset] = 0;
1925                         current_bit_offset = 0;
1926                         break;
1927                 }
1928                 src_byte_offset++;
1929         }
1930         (*dst_size) = dst_byte_offset;
1931 out:
1932         return;
1933 }
1934
1935 /**
1936  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1937  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1938  * @name: The plaintext name
1939  * @length: The length of the plaintext
1940  * @encoded_name: The encypted name
1941  *
1942  * Encrypts and encodes a filename into something that constitutes a
1943  * valid filename for a filesystem, with printable characters.
1944  *
1945  * We assume that we have a properly initialized crypto context,
1946  * pointed to by crypt_stat->tfm.
1947  *
1948  * Returns zero on success; non-zero on otherwise
1949  */
1950 int ecryptfs_encrypt_and_encode_filename(
1951         char **encoded_name,
1952         size_t *encoded_name_size,
1953         struct ecryptfs_crypt_stat *crypt_stat,
1954         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1955         const char *name, size_t name_size)
1956 {
1957         size_t encoded_name_no_prefix_size;
1958         int rc = 0;
1959
1960         (*encoded_name) = NULL;
1961         (*encoded_name_size) = 0;
1962         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1963             || (mount_crypt_stat && (mount_crypt_stat->flags
1964                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1965                 struct ecryptfs_filename *filename;
1966
1967                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1968                 if (!filename) {
1969                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1970                                "to kzalloc [%zd] bytes\n", __func__,
1971                                sizeof(*filename));
1972                         rc = -ENOMEM;
1973                         goto out;
1974                 }
1975                 filename->filename = (char *)name;
1976                 filename->filename_size = name_size;
1977                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1978                                                mount_crypt_stat);
1979                 if (rc) {
1980                         printk(KERN_ERR "%s: Error attempting to encrypt "
1981                                "filename; rc = [%d]\n", __func__, rc);
1982                         kfree(filename);
1983                         goto out;
1984                 }
1985                 ecryptfs_encode_for_filename(
1986                         NULL, &encoded_name_no_prefix_size,
1987                         filename->encrypted_filename,
1988                         filename->encrypted_filename_size);
1989                 if ((crypt_stat && (crypt_stat->flags
1990                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1991                     || (mount_crypt_stat
1992                         && (mount_crypt_stat->flags
1993                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1994                         (*encoded_name_size) =
1995                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1996                                  + encoded_name_no_prefix_size);
1997                 else
1998                         (*encoded_name_size) =
1999                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2000                                  + encoded_name_no_prefix_size);
2001                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2002                 if (!(*encoded_name)) {
2003                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2004                                "to kzalloc [%zd] bytes\n", __func__,
2005                                (*encoded_name_size));
2006                         rc = -ENOMEM;
2007                         kfree(filename->encrypted_filename);
2008                         kfree(filename);
2009                         goto out;
2010                 }
2011                 if ((crypt_stat && (crypt_stat->flags
2012                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2013                     || (mount_crypt_stat
2014                         && (mount_crypt_stat->flags
2015                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2016                         memcpy((*encoded_name),
2017                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2018                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2019                         ecryptfs_encode_for_filename(
2020                             ((*encoded_name)
2021                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2022                             &encoded_name_no_prefix_size,
2023                             filename->encrypted_filename,
2024                             filename->encrypted_filename_size);
2025                         (*encoded_name_size) =
2026                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2027                                  + encoded_name_no_prefix_size);
2028                         (*encoded_name)[(*encoded_name_size)] = '\0';
2029                 } else {
2030                         rc = -EOPNOTSUPP;
2031                 }
2032                 if (rc) {
2033                         printk(KERN_ERR "%s: Error attempting to encode "
2034                                "encrypted filename; rc = [%d]\n", __func__,
2035                                rc);
2036                         kfree((*encoded_name));
2037                         (*encoded_name) = NULL;
2038                         (*encoded_name_size) = 0;
2039                 }
2040                 kfree(filename->encrypted_filename);
2041                 kfree(filename);
2042         } else {
2043                 rc = ecryptfs_copy_filename(encoded_name,
2044                                             encoded_name_size,
2045                                             name, name_size);
2046         }
2047 out:
2048         return rc;
2049 }
2050
2051 /**
2052  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2053  * @plaintext_name: The plaintext name
2054  * @plaintext_name_size: The plaintext name size
2055  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2056  * @name: The filename in cipher text
2057  * @name_size: The cipher text name size
2058  *
2059  * Decrypts and decodes the filename.
2060  *
2061  * Returns zero on error; non-zero otherwise
2062  */
2063 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2064                                          size_t *plaintext_name_size,
2065                                          struct super_block *sb,
2066                                          const char *name, size_t name_size)
2067 {
2068         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2069                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2070         char *decoded_name;
2071         size_t decoded_name_size;
2072         size_t packet_size;
2073         int rc = 0;
2074
2075         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2076             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2077             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2078             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2079                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2080                 const char *orig_name = name;
2081                 size_t orig_name_size = name_size;
2082
2083                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2084                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2085                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2086                                               name, name_size);
2087                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2088                 if (!decoded_name) {
2089                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2090                                "to kmalloc [%zd] bytes\n", __func__,
2091                                decoded_name_size);
2092                         rc = -ENOMEM;
2093                         goto out;
2094                 }
2095                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2096                                               name, name_size);
2097                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2098                                                   plaintext_name_size,
2099                                                   &packet_size,
2100                                                   mount_crypt_stat,
2101                                                   decoded_name,
2102                                                   decoded_name_size);
2103                 if (rc) {
2104                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2105                                "from filename; copying through filename "
2106                                "as-is\n", __func__);
2107                         rc = ecryptfs_copy_filename(plaintext_name,
2108                                                     plaintext_name_size,
2109                                                     orig_name, orig_name_size);
2110                         goto out_free;
2111                 }
2112         } else {
2113                 rc = ecryptfs_copy_filename(plaintext_name,
2114                                             plaintext_name_size,
2115                                             name, name_size);
2116                 goto out;
2117         }
2118 out_free:
2119         kfree(decoded_name);
2120 out:
2121         return rc;
2122 }
2123
2124 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2125
2126 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2127                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2128 {
2129         struct blkcipher_desc desc;
2130         struct mutex *tfm_mutex;
2131         size_t cipher_blocksize;
2132         int rc;
2133
2134         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2135                 (*namelen) = lower_namelen;
2136                 return 0;
2137         }
2138
2139         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2140                         mount_crypt_stat->global_default_fn_cipher_name);
2141         if (unlikely(rc)) {
2142                 (*namelen) = 0;
2143                 return rc;
2144         }
2145
2146         mutex_lock(tfm_mutex);
2147         cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2148         mutex_unlock(tfm_mutex);
2149
2150         /* Return an exact amount for the common cases */
2151         if (lower_namelen == NAME_MAX
2152             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2153                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2154                 return 0;
2155         }
2156
2157         /* Return a safe estimate for the uncommon cases */
2158         (*namelen) = lower_namelen;
2159         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2160         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2161         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2162         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2163         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2164         /* Worst case is that the filename is padded nearly a full block size */
2165         (*namelen) -= cipher_blocksize - 1;
2166
2167         if ((*namelen) < 0)
2168                 (*namelen) = 0;
2169
2170         return 0;
2171 }