]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/exec.c
ubifs: Remove dead code from ubifs_get_link()
[karo-tx-linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         BUG_ON(!fmt);
83         if (WARN_ON(!fmt->load_binary))
84                 return;
85         write_lock(&binfmt_lock);
86         insert ? list_add(&fmt->lh, &formats) :
87                  list_add_tail(&fmt->lh, &formats);
88         write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122         struct linux_binfmt *fmt;
123         struct file *file;
124         struct filename *tmp = getname(library);
125         int error = PTR_ERR(tmp);
126         static const struct open_flags uselib_flags = {
127                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128                 .acc_mode = MAY_READ | MAY_EXEC,
129                 .intent = LOOKUP_OPEN,
130                 .lookup_flags = LOOKUP_FOLLOW,
131         };
132
133         if (IS_ERR(tmp))
134                 goto out;
135
136         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137         putname(tmp);
138         error = PTR_ERR(file);
139         if (IS_ERR(file))
140                 goto out;
141
142         error = -EINVAL;
143         if (!S_ISREG(file_inode(file)->i_mode))
144                 goto exit;
145
146         error = -EACCES;
147         if (path_noexec(&file->f_path))
148                 goto exit;
149
150         fsnotify_open(file);
151
152         error = -ENOEXEC;
153
154         read_lock(&binfmt_lock);
155         list_for_each_entry(fmt, &formats, lh) {
156                 if (!fmt->load_shlib)
157                         continue;
158                 if (!try_module_get(fmt->module))
159                         continue;
160                 read_unlock(&binfmt_lock);
161                 error = fmt->load_shlib(file);
162                 read_lock(&binfmt_lock);
163                 put_binfmt(fmt);
164                 if (error != -ENOEXEC)
165                         break;
166         }
167         read_unlock(&binfmt_lock);
168 exit:
169         fput(file);
170 out:
171         return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184         struct mm_struct *mm = current->mm;
185         long diff = (long)(pages - bprm->vma_pages);
186
187         if (!mm || !diff)
188                 return;
189
190         bprm->vma_pages = pages;
191         add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195                 int write)
196 {
197         struct page *page;
198         int ret;
199         unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202         if (write) {
203                 ret = expand_downwards(bprm->vma, pos);
204                 if (ret < 0)
205                         return NULL;
206         }
207 #endif
208
209         if (write)
210                 gup_flags |= FOLL_WRITE;
211
212         /*
213          * We are doing an exec().  'current' is the process
214          * doing the exec and bprm->mm is the new process's mm.
215          */
216         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217                         &page, NULL, NULL);
218         if (ret <= 0)
219                 return NULL;
220
221         if (write) {
222                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223                 struct rlimit *rlim;
224
225                 acct_arg_size(bprm, size / PAGE_SIZE);
226
227                 /*
228                  * We've historically supported up to 32 pages (ARG_MAX)
229                  * of argument strings even with small stacks
230                  */
231                 if (size <= ARG_MAX)
232                         return page;
233
234                 /*
235                  * Limit to 1/4-th the stack size for the argv+env strings.
236                  * This ensures that:
237                  *  - the remaining binfmt code will not run out of stack space,
238                  *  - the program will have a reasonable amount of stack left
239                  *    to work from.
240                  */
241                 rlim = current->signal->rlim;
242                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
243                         put_page(page);
244                         return NULL;
245                 }
246         }
247
248         return page;
249 }
250
251 static void put_arg_page(struct page *page)
252 {
253         put_page(page);
254 }
255
256 static void free_arg_pages(struct linux_binprm *bprm)
257 {
258 }
259
260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
261                 struct page *page)
262 {
263         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
264 }
265
266 static int __bprm_mm_init(struct linux_binprm *bprm)
267 {
268         int err;
269         struct vm_area_struct *vma = NULL;
270         struct mm_struct *mm = bprm->mm;
271
272         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
273         if (!vma)
274                 return -ENOMEM;
275
276         if (down_write_killable(&mm->mmap_sem)) {
277                 err = -EINTR;
278                 goto err_free;
279         }
280         vma->vm_mm = mm;
281
282         /*
283          * Place the stack at the largest stack address the architecture
284          * supports. Later, we'll move this to an appropriate place. We don't
285          * use STACK_TOP because that can depend on attributes which aren't
286          * configured yet.
287          */
288         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
289         vma->vm_end = STACK_TOP_MAX;
290         vma->vm_start = vma->vm_end - PAGE_SIZE;
291         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
292         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
293         INIT_LIST_HEAD(&vma->anon_vma_chain);
294
295         err = insert_vm_struct(mm, vma);
296         if (err)
297                 goto err;
298
299         mm->stack_vm = mm->total_vm = 1;
300         arch_bprm_mm_init(mm, vma);
301         up_write(&mm->mmap_sem);
302         bprm->p = vma->vm_end - sizeof(void *);
303         return 0;
304 err:
305         up_write(&mm->mmap_sem);
306 err_free:
307         bprm->vma = NULL;
308         kmem_cache_free(vm_area_cachep, vma);
309         return err;
310 }
311
312 static bool valid_arg_len(struct linux_binprm *bprm, long len)
313 {
314         return len <= MAX_ARG_STRLEN;
315 }
316
317 #else
318
319 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
320 {
321 }
322
323 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
324                 int write)
325 {
326         struct page *page;
327
328         page = bprm->page[pos / PAGE_SIZE];
329         if (!page && write) {
330                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
331                 if (!page)
332                         return NULL;
333                 bprm->page[pos / PAGE_SIZE] = page;
334         }
335
336         return page;
337 }
338
339 static void put_arg_page(struct page *page)
340 {
341 }
342
343 static void free_arg_page(struct linux_binprm *bprm, int i)
344 {
345         if (bprm->page[i]) {
346                 __free_page(bprm->page[i]);
347                 bprm->page[i] = NULL;
348         }
349 }
350
351 static void free_arg_pages(struct linux_binprm *bprm)
352 {
353         int i;
354
355         for (i = 0; i < MAX_ARG_PAGES; i++)
356                 free_arg_page(bprm, i);
357 }
358
359 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
360                 struct page *page)
361 {
362 }
363
364 static int __bprm_mm_init(struct linux_binprm *bprm)
365 {
366         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
367         return 0;
368 }
369
370 static bool valid_arg_len(struct linux_binprm *bprm, long len)
371 {
372         return len <= bprm->p;
373 }
374
375 #endif /* CONFIG_MMU */
376
377 /*
378  * Create a new mm_struct and populate it with a temporary stack
379  * vm_area_struct.  We don't have enough context at this point to set the stack
380  * flags, permissions, and offset, so we use temporary values.  We'll update
381  * them later in setup_arg_pages().
382  */
383 static int bprm_mm_init(struct linux_binprm *bprm)
384 {
385         int err;
386         struct mm_struct *mm = NULL;
387
388         bprm->mm = mm = mm_alloc();
389         err = -ENOMEM;
390         if (!mm)
391                 goto err;
392
393         err = __bprm_mm_init(bprm);
394         if (err)
395                 goto err;
396
397         return 0;
398
399 err:
400         if (mm) {
401                 bprm->mm = NULL;
402                 mmdrop(mm);
403         }
404
405         return err;
406 }
407
408 struct user_arg_ptr {
409 #ifdef CONFIG_COMPAT
410         bool is_compat;
411 #endif
412         union {
413                 const char __user *const __user *native;
414 #ifdef CONFIG_COMPAT
415                 const compat_uptr_t __user *compat;
416 #endif
417         } ptr;
418 };
419
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421 {
422         const char __user *native;
423
424 #ifdef CONFIG_COMPAT
425         if (unlikely(argv.is_compat)) {
426                 compat_uptr_t compat;
427
428                 if (get_user(compat, argv.ptr.compat + nr))
429                         return ERR_PTR(-EFAULT);
430
431                 return compat_ptr(compat);
432         }
433 #endif
434
435         if (get_user(native, argv.ptr.native + nr))
436                 return ERR_PTR(-EFAULT);
437
438         return native;
439 }
440
441 /*
442  * count() counts the number of strings in array ARGV.
443  */
444 static int count(struct user_arg_ptr argv, int max)
445 {
446         int i = 0;
447
448         if (argv.ptr.native != NULL) {
449                 for (;;) {
450                         const char __user *p = get_user_arg_ptr(argv, i);
451
452                         if (!p)
453                                 break;
454
455                         if (IS_ERR(p))
456                                 return -EFAULT;
457
458                         if (i >= max)
459                                 return -E2BIG;
460                         ++i;
461
462                         if (fatal_signal_pending(current))
463                                 return -ERESTARTNOHAND;
464                         cond_resched();
465                 }
466         }
467         return i;
468 }
469
470 /*
471  * 'copy_strings()' copies argument/environment strings from the old
472  * processes's memory to the new process's stack.  The call to get_user_pages()
473  * ensures the destination page is created and not swapped out.
474  */
475 static int copy_strings(int argc, struct user_arg_ptr argv,
476                         struct linux_binprm *bprm)
477 {
478         struct page *kmapped_page = NULL;
479         char *kaddr = NULL;
480         unsigned long kpos = 0;
481         int ret;
482
483         while (argc-- > 0) {
484                 const char __user *str;
485                 int len;
486                 unsigned long pos;
487
488                 ret = -EFAULT;
489                 str = get_user_arg_ptr(argv, argc);
490                 if (IS_ERR(str))
491                         goto out;
492
493                 len = strnlen_user(str, MAX_ARG_STRLEN);
494                 if (!len)
495                         goto out;
496
497                 ret = -E2BIG;
498                 if (!valid_arg_len(bprm, len))
499                         goto out;
500
501                 /* We're going to work our way backwords. */
502                 pos = bprm->p;
503                 str += len;
504                 bprm->p -= len;
505
506                 while (len > 0) {
507                         int offset, bytes_to_copy;
508
509                         if (fatal_signal_pending(current)) {
510                                 ret = -ERESTARTNOHAND;
511                                 goto out;
512                         }
513                         cond_resched();
514
515                         offset = pos % PAGE_SIZE;
516                         if (offset == 0)
517                                 offset = PAGE_SIZE;
518
519                         bytes_to_copy = offset;
520                         if (bytes_to_copy > len)
521                                 bytes_to_copy = len;
522
523                         offset -= bytes_to_copy;
524                         pos -= bytes_to_copy;
525                         str -= bytes_to_copy;
526                         len -= bytes_to_copy;
527
528                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
529                                 struct page *page;
530
531                                 page = get_arg_page(bprm, pos, 1);
532                                 if (!page) {
533                                         ret = -E2BIG;
534                                         goto out;
535                                 }
536
537                                 if (kmapped_page) {
538                                         flush_kernel_dcache_page(kmapped_page);
539                                         kunmap(kmapped_page);
540                                         put_arg_page(kmapped_page);
541                                 }
542                                 kmapped_page = page;
543                                 kaddr = kmap(kmapped_page);
544                                 kpos = pos & PAGE_MASK;
545                                 flush_arg_page(bprm, kpos, kmapped_page);
546                         }
547                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
548                                 ret = -EFAULT;
549                                 goto out;
550                         }
551                 }
552         }
553         ret = 0;
554 out:
555         if (kmapped_page) {
556                 flush_kernel_dcache_page(kmapped_page);
557                 kunmap(kmapped_page);
558                 put_arg_page(kmapped_page);
559         }
560         return ret;
561 }
562
563 /*
564  * Like copy_strings, but get argv and its values from kernel memory.
565  */
566 int copy_strings_kernel(int argc, const char *const *__argv,
567                         struct linux_binprm *bprm)
568 {
569         int r;
570         mm_segment_t oldfs = get_fs();
571         struct user_arg_ptr argv = {
572                 .ptr.native = (const char __user *const  __user *)__argv,
573         };
574
575         set_fs(KERNEL_DS);
576         r = copy_strings(argc, argv, bprm);
577         set_fs(oldfs);
578
579         return r;
580 }
581 EXPORT_SYMBOL(copy_strings_kernel);
582
583 #ifdef CONFIG_MMU
584
585 /*
586  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
587  * the binfmt code determines where the new stack should reside, we shift it to
588  * its final location.  The process proceeds as follows:
589  *
590  * 1) Use shift to calculate the new vma endpoints.
591  * 2) Extend vma to cover both the old and new ranges.  This ensures the
592  *    arguments passed to subsequent functions are consistent.
593  * 3) Move vma's page tables to the new range.
594  * 4) Free up any cleared pgd range.
595  * 5) Shrink the vma to cover only the new range.
596  */
597 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
598 {
599         struct mm_struct *mm = vma->vm_mm;
600         unsigned long old_start = vma->vm_start;
601         unsigned long old_end = vma->vm_end;
602         unsigned long length = old_end - old_start;
603         unsigned long new_start = old_start - shift;
604         unsigned long new_end = old_end - shift;
605         struct mmu_gather tlb;
606
607         BUG_ON(new_start > new_end);
608
609         /*
610          * ensure there are no vmas between where we want to go
611          * and where we are
612          */
613         if (vma != find_vma(mm, new_start))
614                 return -EFAULT;
615
616         /*
617          * cover the whole range: [new_start, old_end)
618          */
619         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
620                 return -ENOMEM;
621
622         /*
623          * move the page tables downwards, on failure we rely on
624          * process cleanup to remove whatever mess we made.
625          */
626         if (length != move_page_tables(vma, old_start,
627                                        vma, new_start, length, false))
628                 return -ENOMEM;
629
630         lru_add_drain();
631         tlb_gather_mmu(&tlb, mm, old_start, old_end);
632         if (new_end > old_start) {
633                 /*
634                  * when the old and new regions overlap clear from new_end.
635                  */
636                 free_pgd_range(&tlb, new_end, old_end, new_end,
637                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
638         } else {
639                 /*
640                  * otherwise, clean from old_start; this is done to not touch
641                  * the address space in [new_end, old_start) some architectures
642                  * have constraints on va-space that make this illegal (IA64) -
643                  * for the others its just a little faster.
644                  */
645                 free_pgd_range(&tlb, old_start, old_end, new_end,
646                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
647         }
648         tlb_finish_mmu(&tlb, old_start, old_end);
649
650         /*
651          * Shrink the vma to just the new range.  Always succeeds.
652          */
653         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
654
655         return 0;
656 }
657
658 /*
659  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
660  * the stack is optionally relocated, and some extra space is added.
661  */
662 int setup_arg_pages(struct linux_binprm *bprm,
663                     unsigned long stack_top,
664                     int executable_stack)
665 {
666         unsigned long ret;
667         unsigned long stack_shift;
668         struct mm_struct *mm = current->mm;
669         struct vm_area_struct *vma = bprm->vma;
670         struct vm_area_struct *prev = NULL;
671         unsigned long vm_flags;
672         unsigned long stack_base;
673         unsigned long stack_size;
674         unsigned long stack_expand;
675         unsigned long rlim_stack;
676
677 #ifdef CONFIG_STACK_GROWSUP
678         /* Limit stack size */
679         stack_base = rlimit_max(RLIMIT_STACK);
680         if (stack_base > STACK_SIZE_MAX)
681                 stack_base = STACK_SIZE_MAX;
682
683         /* Add space for stack randomization. */
684         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
685
686         /* Make sure we didn't let the argument array grow too large. */
687         if (vma->vm_end - vma->vm_start > stack_base)
688                 return -ENOMEM;
689
690         stack_base = PAGE_ALIGN(stack_top - stack_base);
691
692         stack_shift = vma->vm_start - stack_base;
693         mm->arg_start = bprm->p - stack_shift;
694         bprm->p = vma->vm_end - stack_shift;
695 #else
696         stack_top = arch_align_stack(stack_top);
697         stack_top = PAGE_ALIGN(stack_top);
698
699         if (unlikely(stack_top < mmap_min_addr) ||
700             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
701                 return -ENOMEM;
702
703         stack_shift = vma->vm_end - stack_top;
704
705         bprm->p -= stack_shift;
706         mm->arg_start = bprm->p;
707 #endif
708
709         if (bprm->loader)
710                 bprm->loader -= stack_shift;
711         bprm->exec -= stack_shift;
712
713         if (down_write_killable(&mm->mmap_sem))
714                 return -EINTR;
715
716         vm_flags = VM_STACK_FLAGS;
717
718         /*
719          * Adjust stack execute permissions; explicitly enable for
720          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
721          * (arch default) otherwise.
722          */
723         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
724                 vm_flags |= VM_EXEC;
725         else if (executable_stack == EXSTACK_DISABLE_X)
726                 vm_flags &= ~VM_EXEC;
727         vm_flags |= mm->def_flags;
728         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
729
730         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
731                         vm_flags);
732         if (ret)
733                 goto out_unlock;
734         BUG_ON(prev != vma);
735
736         /* Move stack pages down in memory. */
737         if (stack_shift) {
738                 ret = shift_arg_pages(vma, stack_shift);
739                 if (ret)
740                         goto out_unlock;
741         }
742
743         /* mprotect_fixup is overkill to remove the temporary stack flags */
744         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
745
746         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
747         stack_size = vma->vm_end - vma->vm_start;
748         /*
749          * Align this down to a page boundary as expand_stack
750          * will align it up.
751          */
752         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
753 #ifdef CONFIG_STACK_GROWSUP
754         if (stack_size + stack_expand > rlim_stack)
755                 stack_base = vma->vm_start + rlim_stack;
756         else
757                 stack_base = vma->vm_end + stack_expand;
758 #else
759         if (stack_size + stack_expand > rlim_stack)
760                 stack_base = vma->vm_end - rlim_stack;
761         else
762                 stack_base = vma->vm_start - stack_expand;
763 #endif
764         current->mm->start_stack = bprm->p;
765         ret = expand_stack(vma, stack_base);
766         if (ret)
767                 ret = -EFAULT;
768
769 out_unlock:
770         up_write(&mm->mmap_sem);
771         return ret;
772 }
773 EXPORT_SYMBOL(setup_arg_pages);
774
775 #else
776
777 /*
778  * Transfer the program arguments and environment from the holding pages
779  * onto the stack. The provided stack pointer is adjusted accordingly.
780  */
781 int transfer_args_to_stack(struct linux_binprm *bprm,
782                            unsigned long *sp_location)
783 {
784         unsigned long index, stop, sp;
785         int ret = 0;
786
787         stop = bprm->p >> PAGE_SHIFT;
788         sp = *sp_location;
789
790         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
791                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
792                 char *src = kmap(bprm->page[index]) + offset;
793                 sp -= PAGE_SIZE - offset;
794                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
795                         ret = -EFAULT;
796                 kunmap(bprm->page[index]);
797                 if (ret)
798                         goto out;
799         }
800
801         *sp_location = sp;
802
803 out:
804         return ret;
805 }
806 EXPORT_SYMBOL(transfer_args_to_stack);
807
808 #endif /* CONFIG_MMU */
809
810 static struct file *do_open_execat(int fd, struct filename *name, int flags)
811 {
812         struct file *file;
813         int err;
814         struct open_flags open_exec_flags = {
815                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
816                 .acc_mode = MAY_EXEC,
817                 .intent = LOOKUP_OPEN,
818                 .lookup_flags = LOOKUP_FOLLOW,
819         };
820
821         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
822                 return ERR_PTR(-EINVAL);
823         if (flags & AT_SYMLINK_NOFOLLOW)
824                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
825         if (flags & AT_EMPTY_PATH)
826                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
827
828         file = do_filp_open(fd, name, &open_exec_flags);
829         if (IS_ERR(file))
830                 goto out;
831
832         err = -EACCES;
833         if (!S_ISREG(file_inode(file)->i_mode))
834                 goto exit;
835
836         if (path_noexec(&file->f_path))
837                 goto exit;
838
839         err = deny_write_access(file);
840         if (err)
841                 goto exit;
842
843         if (name->name[0] != '\0')
844                 fsnotify_open(file);
845
846 out:
847         return file;
848
849 exit:
850         fput(file);
851         return ERR_PTR(err);
852 }
853
854 struct file *open_exec(const char *name)
855 {
856         struct filename *filename = getname_kernel(name);
857         struct file *f = ERR_CAST(filename);
858
859         if (!IS_ERR(filename)) {
860                 f = do_open_execat(AT_FDCWD, filename, 0);
861                 putname(filename);
862         }
863         return f;
864 }
865 EXPORT_SYMBOL(open_exec);
866
867 int kernel_read(struct file *file, loff_t offset,
868                 char *addr, unsigned long count)
869 {
870         mm_segment_t old_fs;
871         loff_t pos = offset;
872         int result;
873
874         old_fs = get_fs();
875         set_fs(get_ds());
876         /* The cast to a user pointer is valid due to the set_fs() */
877         result = vfs_read(file, (void __user *)addr, count, &pos);
878         set_fs(old_fs);
879         return result;
880 }
881
882 EXPORT_SYMBOL(kernel_read);
883
884 int kernel_read_file(struct file *file, void **buf, loff_t *size,
885                      loff_t max_size, enum kernel_read_file_id id)
886 {
887         loff_t i_size, pos;
888         ssize_t bytes = 0;
889         int ret;
890
891         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
892                 return -EINVAL;
893
894         ret = security_kernel_read_file(file, id);
895         if (ret)
896                 return ret;
897
898         ret = deny_write_access(file);
899         if (ret)
900                 return ret;
901
902         i_size = i_size_read(file_inode(file));
903         if (max_size > 0 && i_size > max_size) {
904                 ret = -EFBIG;
905                 goto out;
906         }
907         if (i_size <= 0) {
908                 ret = -EINVAL;
909                 goto out;
910         }
911
912         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
913                 *buf = vmalloc(i_size);
914         if (!*buf) {
915                 ret = -ENOMEM;
916                 goto out;
917         }
918
919         pos = 0;
920         while (pos < i_size) {
921                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
922                                     i_size - pos);
923                 if (bytes < 0) {
924                         ret = bytes;
925                         goto out;
926                 }
927
928                 if (bytes == 0)
929                         break;
930                 pos += bytes;
931         }
932
933         if (pos != i_size) {
934                 ret = -EIO;
935                 goto out_free;
936         }
937
938         ret = security_kernel_post_read_file(file, *buf, i_size, id);
939         if (!ret)
940                 *size = pos;
941
942 out_free:
943         if (ret < 0) {
944                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
945                         vfree(*buf);
946                         *buf = NULL;
947                 }
948         }
949
950 out:
951         allow_write_access(file);
952         return ret;
953 }
954 EXPORT_SYMBOL_GPL(kernel_read_file);
955
956 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
957                                loff_t max_size, enum kernel_read_file_id id)
958 {
959         struct file *file;
960         int ret;
961
962         if (!path || !*path)
963                 return -EINVAL;
964
965         file = filp_open(path, O_RDONLY, 0);
966         if (IS_ERR(file))
967                 return PTR_ERR(file);
968
969         ret = kernel_read_file(file, buf, size, max_size, id);
970         fput(file);
971         return ret;
972 }
973 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
974
975 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
976                              enum kernel_read_file_id id)
977 {
978         struct fd f = fdget(fd);
979         int ret = -EBADF;
980
981         if (!f.file)
982                 goto out;
983
984         ret = kernel_read_file(f.file, buf, size, max_size, id);
985 out:
986         fdput(f);
987         return ret;
988 }
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
990
991 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
992 {
993         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
994         if (res > 0)
995                 flush_icache_range(addr, addr + len);
996         return res;
997 }
998 EXPORT_SYMBOL(read_code);
999
1000 static int exec_mmap(struct mm_struct *mm)
1001 {
1002         struct task_struct *tsk;
1003         struct mm_struct *old_mm, *active_mm;
1004
1005         /* Notify parent that we're no longer interested in the old VM */
1006         tsk = current;
1007         old_mm = current->mm;
1008         mm_release(tsk, old_mm);
1009
1010         if (old_mm) {
1011                 sync_mm_rss(old_mm);
1012                 /*
1013                  * Make sure that if there is a core dump in progress
1014                  * for the old mm, we get out and die instead of going
1015                  * through with the exec.  We must hold mmap_sem around
1016                  * checking core_state and changing tsk->mm.
1017                  */
1018                 down_read(&old_mm->mmap_sem);
1019                 if (unlikely(old_mm->core_state)) {
1020                         up_read(&old_mm->mmap_sem);
1021                         return -EINTR;
1022                 }
1023         }
1024         task_lock(tsk);
1025         active_mm = tsk->active_mm;
1026         tsk->mm = mm;
1027         tsk->active_mm = mm;
1028         activate_mm(active_mm, mm);
1029         tsk->mm->vmacache_seqnum = 0;
1030         vmacache_flush(tsk);
1031         task_unlock(tsk);
1032         if (old_mm) {
1033                 up_read(&old_mm->mmap_sem);
1034                 BUG_ON(active_mm != old_mm);
1035                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036                 mm_update_next_owner(old_mm);
1037                 mmput(old_mm);
1038                 return 0;
1039         }
1040         mmdrop(active_mm);
1041         return 0;
1042 }
1043
1044 /*
1045  * This function makes sure the current process has its own signal table,
1046  * so that flush_signal_handlers can later reset the handlers without
1047  * disturbing other processes.  (Other processes might share the signal
1048  * table via the CLONE_SIGHAND option to clone().)
1049  */
1050 static int de_thread(struct task_struct *tsk)
1051 {
1052         struct signal_struct *sig = tsk->signal;
1053         struct sighand_struct *oldsighand = tsk->sighand;
1054         spinlock_t *lock = &oldsighand->siglock;
1055
1056         if (thread_group_empty(tsk))
1057                 goto no_thread_group;
1058
1059         /*
1060          * Kill all other threads in the thread group.
1061          */
1062         spin_lock_irq(lock);
1063         if (signal_group_exit(sig)) {
1064                 /*
1065                  * Another group action in progress, just
1066                  * return so that the signal is processed.
1067                  */
1068                 spin_unlock_irq(lock);
1069                 return -EAGAIN;
1070         }
1071
1072         sig->group_exit_task = tsk;
1073         sig->notify_count = zap_other_threads(tsk);
1074         if (!thread_group_leader(tsk))
1075                 sig->notify_count--;
1076
1077         while (sig->notify_count) {
1078                 __set_current_state(TASK_KILLABLE);
1079                 spin_unlock_irq(lock);
1080                 schedule();
1081                 if (unlikely(__fatal_signal_pending(tsk)))
1082                         goto killed;
1083                 spin_lock_irq(lock);
1084         }
1085         spin_unlock_irq(lock);
1086
1087         /*
1088          * At this point all other threads have exited, all we have to
1089          * do is to wait for the thread group leader to become inactive,
1090          * and to assume its PID:
1091          */
1092         if (!thread_group_leader(tsk)) {
1093                 struct task_struct *leader = tsk->group_leader;
1094
1095                 for (;;) {
1096                         cgroup_threadgroup_change_begin(tsk);
1097                         write_lock_irq(&tasklist_lock);
1098                         /*
1099                          * Do this under tasklist_lock to ensure that
1100                          * exit_notify() can't miss ->group_exit_task
1101                          */
1102                         sig->notify_count = -1;
1103                         if (likely(leader->exit_state))
1104                                 break;
1105                         __set_current_state(TASK_KILLABLE);
1106                         write_unlock_irq(&tasklist_lock);
1107                         cgroup_threadgroup_change_end(tsk);
1108                         schedule();
1109                         if (unlikely(__fatal_signal_pending(tsk)))
1110                                 goto killed;
1111                 }
1112
1113                 /*
1114                  * The only record we have of the real-time age of a
1115                  * process, regardless of execs it's done, is start_time.
1116                  * All the past CPU time is accumulated in signal_struct
1117                  * from sister threads now dead.  But in this non-leader
1118                  * exec, nothing survives from the original leader thread,
1119                  * whose birth marks the true age of this process now.
1120                  * When we take on its identity by switching to its PID, we
1121                  * also take its birthdate (always earlier than our own).
1122                  */
1123                 tsk->start_time = leader->start_time;
1124                 tsk->real_start_time = leader->real_start_time;
1125
1126                 BUG_ON(!same_thread_group(leader, tsk));
1127                 BUG_ON(has_group_leader_pid(tsk));
1128                 /*
1129                  * An exec() starts a new thread group with the
1130                  * TGID of the previous thread group. Rehash the
1131                  * two threads with a switched PID, and release
1132                  * the former thread group leader:
1133                  */
1134
1135                 /* Become a process group leader with the old leader's pid.
1136                  * The old leader becomes a thread of the this thread group.
1137                  * Note: The old leader also uses this pid until release_task
1138                  *       is called.  Odd but simple and correct.
1139                  */
1140                 tsk->pid = leader->pid;
1141                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1142                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1143                 transfer_pid(leader, tsk, PIDTYPE_SID);
1144
1145                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1146                 list_replace_init(&leader->sibling, &tsk->sibling);
1147
1148                 tsk->group_leader = tsk;
1149                 leader->group_leader = tsk;
1150
1151                 tsk->exit_signal = SIGCHLD;
1152                 leader->exit_signal = -1;
1153
1154                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1155                 leader->exit_state = EXIT_DEAD;
1156
1157                 /*
1158                  * We are going to release_task()->ptrace_unlink() silently,
1159                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1160                  * the tracer wont't block again waiting for this thread.
1161                  */
1162                 if (unlikely(leader->ptrace))
1163                         __wake_up_parent(leader, leader->parent);
1164                 write_unlock_irq(&tasklist_lock);
1165                 cgroup_threadgroup_change_end(tsk);
1166
1167                 release_task(leader);
1168         }
1169
1170         sig->group_exit_task = NULL;
1171         sig->notify_count = 0;
1172
1173 no_thread_group:
1174         /* we have changed execution domain */
1175         tsk->exit_signal = SIGCHLD;
1176
1177 #ifdef CONFIG_POSIX_TIMERS
1178         exit_itimers(sig);
1179         flush_itimer_signals();
1180 #endif
1181
1182         if (atomic_read(&oldsighand->count) != 1) {
1183                 struct sighand_struct *newsighand;
1184                 /*
1185                  * This ->sighand is shared with the CLONE_SIGHAND
1186                  * but not CLONE_THREAD task, switch to the new one.
1187                  */
1188                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189                 if (!newsighand)
1190                         return -ENOMEM;
1191
1192                 atomic_set(&newsighand->count, 1);
1193                 memcpy(newsighand->action, oldsighand->action,
1194                        sizeof(newsighand->action));
1195
1196                 write_lock_irq(&tasklist_lock);
1197                 spin_lock(&oldsighand->siglock);
1198                 rcu_assign_pointer(tsk->sighand, newsighand);
1199                 spin_unlock(&oldsighand->siglock);
1200                 write_unlock_irq(&tasklist_lock);
1201
1202                 __cleanup_sighand(oldsighand);
1203         }
1204
1205         BUG_ON(!thread_group_leader(tsk));
1206         return 0;
1207
1208 killed:
1209         /* protects against exit_notify() and __exit_signal() */
1210         read_lock(&tasklist_lock);
1211         sig->group_exit_task = NULL;
1212         sig->notify_count = 0;
1213         read_unlock(&tasklist_lock);
1214         return -EAGAIN;
1215 }
1216
1217 char *get_task_comm(char *buf, struct task_struct *tsk)
1218 {
1219         /* buf must be at least sizeof(tsk->comm) in size */
1220         task_lock(tsk);
1221         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1222         task_unlock(tsk);
1223         return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(get_task_comm);
1226
1227 /*
1228  * These functions flushes out all traces of the currently running executable
1229  * so that a new one can be started
1230  */
1231
1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234         task_lock(tsk);
1235         trace_task_rename(tsk, buf);
1236         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1237         task_unlock(tsk);
1238         perf_event_comm(tsk, exec);
1239 }
1240
1241 int flush_old_exec(struct linux_binprm * bprm)
1242 {
1243         int retval;
1244
1245         /*
1246          * Make sure we have a private signal table and that
1247          * we are unassociated from the previous thread group.
1248          */
1249         retval = de_thread(current);
1250         if (retval)
1251                 goto out;
1252
1253         /*
1254          * Must be called _before_ exec_mmap() as bprm->mm is
1255          * not visibile until then. This also enables the update
1256          * to be lockless.
1257          */
1258         set_mm_exe_file(bprm->mm, bprm->file);
1259
1260         /*
1261          * Release all of the old mmap stuff
1262          */
1263         acct_arg_size(bprm, 0);
1264         retval = exec_mmap(bprm->mm);
1265         if (retval)
1266                 goto out;
1267
1268         bprm->mm = NULL;                /* We're using it now */
1269
1270         set_fs(USER_DS);
1271         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1272                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1273         flush_thread();
1274         current->personality &= ~bprm->per_clear;
1275
1276         /*
1277          * We have to apply CLOEXEC before we change whether the process is
1278          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1279          * trying to access the should-be-closed file descriptors of a process
1280          * undergoing exec(2).
1281          */
1282         do_close_on_exec(current->files);
1283         return 0;
1284
1285 out:
1286         return retval;
1287 }
1288 EXPORT_SYMBOL(flush_old_exec);
1289
1290 void would_dump(struct linux_binprm *bprm, struct file *file)
1291 {
1292         struct inode *inode = file_inode(file);
1293         if (inode_permission(inode, MAY_READ) < 0) {
1294                 struct user_namespace *old, *user_ns;
1295                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1296
1297                 /* Ensure mm->user_ns contains the executable */
1298                 user_ns = old = bprm->mm->user_ns;
1299                 while ((user_ns != &init_user_ns) &&
1300                        !privileged_wrt_inode_uidgid(user_ns, inode))
1301                         user_ns = user_ns->parent;
1302
1303                 if (old != user_ns) {
1304                         bprm->mm->user_ns = get_user_ns(user_ns);
1305                         put_user_ns(old);
1306                 }
1307         }
1308 }
1309 EXPORT_SYMBOL(would_dump);
1310
1311 void setup_new_exec(struct linux_binprm * bprm)
1312 {
1313         arch_pick_mmap_layout(current->mm);
1314
1315         /* This is the point of no return */
1316         current->sas_ss_sp = current->sas_ss_size = 0;
1317
1318         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1319                 set_dumpable(current->mm, SUID_DUMP_USER);
1320         else
1321                 set_dumpable(current->mm, suid_dumpable);
1322
1323         arch_setup_new_exec();
1324         perf_event_exec();
1325         __set_task_comm(current, kbasename(bprm->filename), true);
1326
1327         /* Set the new mm task size. We have to do that late because it may
1328          * depend on TIF_32BIT which is only updated in flush_thread() on
1329          * some architectures like powerpc
1330          */
1331         current->mm->task_size = TASK_SIZE;
1332
1333         /* install the new credentials */
1334         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1335             !gid_eq(bprm->cred->gid, current_egid())) {
1336                 current->pdeath_signal = 0;
1337         } else {
1338                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1339                         set_dumpable(current->mm, suid_dumpable);
1340         }
1341
1342         /* An exec changes our domain. We are no longer part of the thread
1343            group */
1344         current->self_exec_id++;
1345         flush_signal_handlers(current, 0);
1346 }
1347 EXPORT_SYMBOL(setup_new_exec);
1348
1349 /*
1350  * Prepare credentials and lock ->cred_guard_mutex.
1351  * install_exec_creds() commits the new creds and drops the lock.
1352  * Or, if exec fails before, free_bprm() should release ->cred and
1353  * and unlock.
1354  */
1355 int prepare_bprm_creds(struct linux_binprm *bprm)
1356 {
1357         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1358                 return -ERESTARTNOINTR;
1359
1360         bprm->cred = prepare_exec_creds();
1361         if (likely(bprm->cred))
1362                 return 0;
1363
1364         mutex_unlock(&current->signal->cred_guard_mutex);
1365         return -ENOMEM;
1366 }
1367
1368 static void free_bprm(struct linux_binprm *bprm)
1369 {
1370         free_arg_pages(bprm);
1371         if (bprm->cred) {
1372                 mutex_unlock(&current->signal->cred_guard_mutex);
1373                 abort_creds(bprm->cred);
1374         }
1375         if (bprm->file) {
1376                 allow_write_access(bprm->file);
1377                 fput(bprm->file);
1378         }
1379         /* If a binfmt changed the interp, free it. */
1380         if (bprm->interp != bprm->filename)
1381                 kfree(bprm->interp);
1382         kfree(bprm);
1383 }
1384
1385 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1386 {
1387         /* If a binfmt changed the interp, free it first. */
1388         if (bprm->interp != bprm->filename)
1389                 kfree(bprm->interp);
1390         bprm->interp = kstrdup(interp, GFP_KERNEL);
1391         if (!bprm->interp)
1392                 return -ENOMEM;
1393         return 0;
1394 }
1395 EXPORT_SYMBOL(bprm_change_interp);
1396
1397 /*
1398  * install the new credentials for this executable
1399  */
1400 void install_exec_creds(struct linux_binprm *bprm)
1401 {
1402         security_bprm_committing_creds(bprm);
1403
1404         commit_creds(bprm->cred);
1405         bprm->cred = NULL;
1406
1407         /*
1408          * Disable monitoring for regular users
1409          * when executing setuid binaries. Must
1410          * wait until new credentials are committed
1411          * by commit_creds() above
1412          */
1413         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1414                 perf_event_exit_task(current);
1415         /*
1416          * cred_guard_mutex must be held at least to this point to prevent
1417          * ptrace_attach() from altering our determination of the task's
1418          * credentials; any time after this it may be unlocked.
1419          */
1420         security_bprm_committed_creds(bprm);
1421         mutex_unlock(&current->signal->cred_guard_mutex);
1422 }
1423 EXPORT_SYMBOL(install_exec_creds);
1424
1425 /*
1426  * determine how safe it is to execute the proposed program
1427  * - the caller must hold ->cred_guard_mutex to protect against
1428  *   PTRACE_ATTACH or seccomp thread-sync
1429  */
1430 static void check_unsafe_exec(struct linux_binprm *bprm)
1431 {
1432         struct task_struct *p = current, *t;
1433         unsigned n_fs;
1434
1435         if (p->ptrace)
1436                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1437
1438         /*
1439          * This isn't strictly necessary, but it makes it harder for LSMs to
1440          * mess up.
1441          */
1442         if (task_no_new_privs(current))
1443                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1444
1445         t = p;
1446         n_fs = 1;
1447         spin_lock(&p->fs->lock);
1448         rcu_read_lock();
1449         while_each_thread(p, t) {
1450                 if (t->fs == p->fs)
1451                         n_fs++;
1452         }
1453         rcu_read_unlock();
1454
1455         if (p->fs->users > n_fs)
1456                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1457         else
1458                 p->fs->in_exec = 1;
1459         spin_unlock(&p->fs->lock);
1460 }
1461
1462 static void bprm_fill_uid(struct linux_binprm *bprm)
1463 {
1464         struct inode *inode;
1465         unsigned int mode;
1466         kuid_t uid;
1467         kgid_t gid;
1468
1469         /*
1470          * Since this can be called multiple times (via prepare_binprm),
1471          * we must clear any previous work done when setting set[ug]id
1472          * bits from any earlier bprm->file uses (for example when run
1473          * first for a setuid script then again for its interpreter).
1474          */
1475         bprm->cred->euid = current_euid();
1476         bprm->cred->egid = current_egid();
1477
1478         if (!mnt_may_suid(bprm->file->f_path.mnt))
1479                 return;
1480
1481         if (task_no_new_privs(current))
1482                 return;
1483
1484         inode = bprm->file->f_path.dentry->d_inode;
1485         mode = READ_ONCE(inode->i_mode);
1486         if (!(mode & (S_ISUID|S_ISGID)))
1487                 return;
1488
1489         /* Be careful if suid/sgid is set */
1490         inode_lock(inode);
1491
1492         /* reload atomically mode/uid/gid now that lock held */
1493         mode = inode->i_mode;
1494         uid = inode->i_uid;
1495         gid = inode->i_gid;
1496         inode_unlock(inode);
1497
1498         /* We ignore suid/sgid if there are no mappings for them in the ns */
1499         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1500                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1501                 return;
1502
1503         if (mode & S_ISUID) {
1504                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1505                 bprm->cred->euid = uid;
1506         }
1507
1508         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1509                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1510                 bprm->cred->egid = gid;
1511         }
1512 }
1513
1514 /*
1515  * Fill the binprm structure from the inode.
1516  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1517  *
1518  * This may be called multiple times for binary chains (scripts for example).
1519  */
1520 int prepare_binprm(struct linux_binprm *bprm)
1521 {
1522         int retval;
1523
1524         bprm_fill_uid(bprm);
1525
1526         /* fill in binprm security blob */
1527         retval = security_bprm_set_creds(bprm);
1528         if (retval)
1529                 return retval;
1530         bprm->cred_prepared = 1;
1531
1532         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1533         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1534 }
1535
1536 EXPORT_SYMBOL(prepare_binprm);
1537
1538 /*
1539  * Arguments are '\0' separated strings found at the location bprm->p
1540  * points to; chop off the first by relocating brpm->p to right after
1541  * the first '\0' encountered.
1542  */
1543 int remove_arg_zero(struct linux_binprm *bprm)
1544 {
1545         int ret = 0;
1546         unsigned long offset;
1547         char *kaddr;
1548         struct page *page;
1549
1550         if (!bprm->argc)
1551                 return 0;
1552
1553         do {
1554                 offset = bprm->p & ~PAGE_MASK;
1555                 page = get_arg_page(bprm, bprm->p, 0);
1556                 if (!page) {
1557                         ret = -EFAULT;
1558                         goto out;
1559                 }
1560                 kaddr = kmap_atomic(page);
1561
1562                 for (; offset < PAGE_SIZE && kaddr[offset];
1563                                 offset++, bprm->p++)
1564                         ;
1565
1566                 kunmap_atomic(kaddr);
1567                 put_arg_page(page);
1568         } while (offset == PAGE_SIZE);
1569
1570         bprm->p++;
1571         bprm->argc--;
1572         ret = 0;
1573
1574 out:
1575         return ret;
1576 }
1577 EXPORT_SYMBOL(remove_arg_zero);
1578
1579 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1580 /*
1581  * cycle the list of binary formats handler, until one recognizes the image
1582  */
1583 int search_binary_handler(struct linux_binprm *bprm)
1584 {
1585         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1586         struct linux_binfmt *fmt;
1587         int retval;
1588
1589         /* This allows 4 levels of binfmt rewrites before failing hard. */
1590         if (bprm->recursion_depth > 5)
1591                 return -ELOOP;
1592
1593         retval = security_bprm_check(bprm);
1594         if (retval)
1595                 return retval;
1596
1597         retval = -ENOENT;
1598  retry:
1599         read_lock(&binfmt_lock);
1600         list_for_each_entry(fmt, &formats, lh) {
1601                 if (!try_module_get(fmt->module))
1602                         continue;
1603                 read_unlock(&binfmt_lock);
1604                 bprm->recursion_depth++;
1605                 retval = fmt->load_binary(bprm);
1606                 read_lock(&binfmt_lock);
1607                 put_binfmt(fmt);
1608                 bprm->recursion_depth--;
1609                 if (retval < 0 && !bprm->mm) {
1610                         /* we got to flush_old_exec() and failed after it */
1611                         read_unlock(&binfmt_lock);
1612                         force_sigsegv(SIGSEGV, current);
1613                         return retval;
1614                 }
1615                 if (retval != -ENOEXEC || !bprm->file) {
1616                         read_unlock(&binfmt_lock);
1617                         return retval;
1618                 }
1619         }
1620         read_unlock(&binfmt_lock);
1621
1622         if (need_retry) {
1623                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1624                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1625                         return retval;
1626                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1627                         return retval;
1628                 need_retry = false;
1629                 goto retry;
1630         }
1631
1632         return retval;
1633 }
1634 EXPORT_SYMBOL(search_binary_handler);
1635
1636 static int exec_binprm(struct linux_binprm *bprm)
1637 {
1638         pid_t old_pid, old_vpid;
1639         int ret;
1640
1641         /* Need to fetch pid before load_binary changes it */
1642         old_pid = current->pid;
1643         rcu_read_lock();
1644         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1645         rcu_read_unlock();
1646
1647         ret = search_binary_handler(bprm);
1648         if (ret >= 0) {
1649                 audit_bprm(bprm);
1650                 trace_sched_process_exec(current, old_pid, bprm);
1651                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1652                 proc_exec_connector(current);
1653         }
1654
1655         return ret;
1656 }
1657
1658 /*
1659  * sys_execve() executes a new program.
1660  */
1661 static int do_execveat_common(int fd, struct filename *filename,
1662                               struct user_arg_ptr argv,
1663                               struct user_arg_ptr envp,
1664                               int flags)
1665 {
1666         char *pathbuf = NULL;
1667         struct linux_binprm *bprm;
1668         struct file *file;
1669         struct files_struct *displaced;
1670         int retval;
1671
1672         if (IS_ERR(filename))
1673                 return PTR_ERR(filename);
1674
1675         /*
1676          * We move the actual failure in case of RLIMIT_NPROC excess from
1677          * set*uid() to execve() because too many poorly written programs
1678          * don't check setuid() return code.  Here we additionally recheck
1679          * whether NPROC limit is still exceeded.
1680          */
1681         if ((current->flags & PF_NPROC_EXCEEDED) &&
1682             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1683                 retval = -EAGAIN;
1684                 goto out_ret;
1685         }
1686
1687         /* We're below the limit (still or again), so we don't want to make
1688          * further execve() calls fail. */
1689         current->flags &= ~PF_NPROC_EXCEEDED;
1690
1691         retval = unshare_files(&displaced);
1692         if (retval)
1693                 goto out_ret;
1694
1695         retval = -ENOMEM;
1696         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1697         if (!bprm)
1698                 goto out_files;
1699
1700         retval = prepare_bprm_creds(bprm);
1701         if (retval)
1702                 goto out_free;
1703
1704         check_unsafe_exec(bprm);
1705         current->in_execve = 1;
1706
1707         file = do_open_execat(fd, filename, flags);
1708         retval = PTR_ERR(file);
1709         if (IS_ERR(file))
1710                 goto out_unmark;
1711
1712         sched_exec();
1713
1714         bprm->file = file;
1715         if (fd == AT_FDCWD || filename->name[0] == '/') {
1716                 bprm->filename = filename->name;
1717         } else {
1718                 if (filename->name[0] == '\0')
1719                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1720                 else
1721                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1722                                             fd, filename->name);
1723                 if (!pathbuf) {
1724                         retval = -ENOMEM;
1725                         goto out_unmark;
1726                 }
1727                 /*
1728                  * Record that a name derived from an O_CLOEXEC fd will be
1729                  * inaccessible after exec. Relies on having exclusive access to
1730                  * current->files (due to unshare_files above).
1731                  */
1732                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1733                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1734                 bprm->filename = pathbuf;
1735         }
1736         bprm->interp = bprm->filename;
1737
1738         retval = bprm_mm_init(bprm);
1739         if (retval)
1740                 goto out_unmark;
1741
1742         bprm->argc = count(argv, MAX_ARG_STRINGS);
1743         if ((retval = bprm->argc) < 0)
1744                 goto out;
1745
1746         bprm->envc = count(envp, MAX_ARG_STRINGS);
1747         if ((retval = bprm->envc) < 0)
1748                 goto out;
1749
1750         retval = prepare_binprm(bprm);
1751         if (retval < 0)
1752                 goto out;
1753
1754         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1755         if (retval < 0)
1756                 goto out;
1757
1758         bprm->exec = bprm->p;
1759         retval = copy_strings(bprm->envc, envp, bprm);
1760         if (retval < 0)
1761                 goto out;
1762
1763         retval = copy_strings(bprm->argc, argv, bprm);
1764         if (retval < 0)
1765                 goto out;
1766
1767         would_dump(bprm, bprm->file);
1768
1769         retval = exec_binprm(bprm);
1770         if (retval < 0)
1771                 goto out;
1772
1773         /* execve succeeded */
1774         current->fs->in_exec = 0;
1775         current->in_execve = 0;
1776         acct_update_integrals(current);
1777         task_numa_free(current);
1778         free_bprm(bprm);
1779         kfree(pathbuf);
1780         putname(filename);
1781         if (displaced)
1782                 put_files_struct(displaced);
1783         return retval;
1784
1785 out:
1786         if (bprm->mm) {
1787                 acct_arg_size(bprm, 0);
1788                 mmput(bprm->mm);
1789         }
1790
1791 out_unmark:
1792         current->fs->in_exec = 0;
1793         current->in_execve = 0;
1794
1795 out_free:
1796         free_bprm(bprm);
1797         kfree(pathbuf);
1798
1799 out_files:
1800         if (displaced)
1801                 reset_files_struct(displaced);
1802 out_ret:
1803         putname(filename);
1804         return retval;
1805 }
1806
1807 int do_execve(struct filename *filename,
1808         const char __user *const __user *__argv,
1809         const char __user *const __user *__envp)
1810 {
1811         struct user_arg_ptr argv = { .ptr.native = __argv };
1812         struct user_arg_ptr envp = { .ptr.native = __envp };
1813         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1814 }
1815
1816 int do_execveat(int fd, struct filename *filename,
1817                 const char __user *const __user *__argv,
1818                 const char __user *const __user *__envp,
1819                 int flags)
1820 {
1821         struct user_arg_ptr argv = { .ptr.native = __argv };
1822         struct user_arg_ptr envp = { .ptr.native = __envp };
1823
1824         return do_execveat_common(fd, filename, argv, envp, flags);
1825 }
1826
1827 #ifdef CONFIG_COMPAT
1828 static int compat_do_execve(struct filename *filename,
1829         const compat_uptr_t __user *__argv,
1830         const compat_uptr_t __user *__envp)
1831 {
1832         struct user_arg_ptr argv = {
1833                 .is_compat = true,
1834                 .ptr.compat = __argv,
1835         };
1836         struct user_arg_ptr envp = {
1837                 .is_compat = true,
1838                 .ptr.compat = __envp,
1839         };
1840         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1841 }
1842
1843 static int compat_do_execveat(int fd, struct filename *filename,
1844                               const compat_uptr_t __user *__argv,
1845                               const compat_uptr_t __user *__envp,
1846                               int flags)
1847 {
1848         struct user_arg_ptr argv = {
1849                 .is_compat = true,
1850                 .ptr.compat = __argv,
1851         };
1852         struct user_arg_ptr envp = {
1853                 .is_compat = true,
1854                 .ptr.compat = __envp,
1855         };
1856         return do_execveat_common(fd, filename, argv, envp, flags);
1857 }
1858 #endif
1859
1860 void set_binfmt(struct linux_binfmt *new)
1861 {
1862         struct mm_struct *mm = current->mm;
1863
1864         if (mm->binfmt)
1865                 module_put(mm->binfmt->module);
1866
1867         mm->binfmt = new;
1868         if (new)
1869                 __module_get(new->module);
1870 }
1871 EXPORT_SYMBOL(set_binfmt);
1872
1873 /*
1874  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1875  */
1876 void set_dumpable(struct mm_struct *mm, int value)
1877 {
1878         unsigned long old, new;
1879
1880         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1881                 return;
1882
1883         do {
1884                 old = ACCESS_ONCE(mm->flags);
1885                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1886         } while (cmpxchg(&mm->flags, old, new) != old);
1887 }
1888
1889 SYSCALL_DEFINE3(execve,
1890                 const char __user *, filename,
1891                 const char __user *const __user *, argv,
1892                 const char __user *const __user *, envp)
1893 {
1894         return do_execve(getname(filename), argv, envp);
1895 }
1896
1897 SYSCALL_DEFINE5(execveat,
1898                 int, fd, const char __user *, filename,
1899                 const char __user *const __user *, argv,
1900                 const char __user *const __user *, envp,
1901                 int, flags)
1902 {
1903         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1904
1905         return do_execveat(fd,
1906                            getname_flags(filename, lookup_flags, NULL),
1907                            argv, envp, flags);
1908 }
1909
1910 #ifdef CONFIG_COMPAT
1911 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1912         const compat_uptr_t __user *, argv,
1913         const compat_uptr_t __user *, envp)
1914 {
1915         return compat_do_execve(getname(filename), argv, envp);
1916 }
1917
1918 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1919                        const char __user *, filename,
1920                        const compat_uptr_t __user *, argv,
1921                        const compat_uptr_t __user *, envp,
1922                        int,  flags)
1923 {
1924         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1925
1926         return compat_do_execveat(fd,
1927                                   getname_flags(filename, lookup_flags, NULL),
1928                                   argv, envp, flags);
1929 }
1930 #endif