]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext3/inode.c
drivers/rtc/rtc-stmp3xxx.c: provide timeout for potentially endless loop polling...
[karo-tx-linux.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include <linux/aio.h>
31 #include "ext3.h"
32 #include "xattr.h"
33 #include "acl.h"
34
35 static int ext3_writepage_trans_blocks(struct inode *inode);
36 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
37
38 /*
39  * Test whether an inode is a fast symlink.
40  */
41 static int ext3_inode_is_fast_symlink(struct inode *inode)
42 {
43         int ea_blocks = EXT3_I(inode)->i_file_acl ?
44                 (inode->i_sb->s_blocksize >> 9) : 0;
45
46         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
47 }
48
49 /*
50  * The ext3 forget function must perform a revoke if we are freeing data
51  * which has been journaled.  Metadata (eg. indirect blocks) must be
52  * revoked in all cases.
53  *
54  * "bh" may be NULL: a metadata block may have been freed from memory
55  * but there may still be a record of it in the journal, and that record
56  * still needs to be revoked.
57  */
58 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
59                         struct buffer_head *bh, ext3_fsblk_t blocknr)
60 {
61         int err;
62
63         might_sleep();
64
65         trace_ext3_forget(inode, is_metadata, blocknr);
66         BUFFER_TRACE(bh, "enter");
67
68         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
69                   "data mode %lx\n",
70                   bh, is_metadata, inode->i_mode,
71                   test_opt(inode->i_sb, DATA_FLAGS));
72
73         /* Never use the revoke function if we are doing full data
74          * journaling: there is no need to, and a V1 superblock won't
75          * support it.  Otherwise, only skip the revoke on un-journaled
76          * data blocks. */
77
78         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
79             (!is_metadata && !ext3_should_journal_data(inode))) {
80                 if (bh) {
81                         BUFFER_TRACE(bh, "call journal_forget");
82                         return ext3_journal_forget(handle, bh);
83                 }
84                 return 0;
85         }
86
87         /*
88          * data!=journal && (is_metadata || should_journal_data(inode))
89          */
90         BUFFER_TRACE(bh, "call ext3_journal_revoke");
91         err = ext3_journal_revoke(handle, blocknr, bh);
92         if (err)
93                 ext3_abort(inode->i_sb, __func__,
94                            "error %d when attempting revoke", err);
95         BUFFER_TRACE(bh, "exit");
96         return err;
97 }
98
99 /*
100  * Work out how many blocks we need to proceed with the next chunk of a
101  * truncate transaction.
102  */
103 static unsigned long blocks_for_truncate(struct inode *inode)
104 {
105         unsigned long needed;
106
107         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
108
109         /* Give ourselves just enough room to cope with inodes in which
110          * i_blocks is corrupt: we've seen disk corruptions in the past
111          * which resulted in random data in an inode which looked enough
112          * like a regular file for ext3 to try to delete it.  Things
113          * will go a bit crazy if that happens, but at least we should
114          * try not to panic the whole kernel. */
115         if (needed < 2)
116                 needed = 2;
117
118         /* But we need to bound the transaction so we don't overflow the
119          * journal. */
120         if (needed > EXT3_MAX_TRANS_DATA)
121                 needed = EXT3_MAX_TRANS_DATA;
122
123         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
124 }
125
126 /*
127  * Truncate transactions can be complex and absolutely huge.  So we need to
128  * be able to restart the transaction at a conventient checkpoint to make
129  * sure we don't overflow the journal.
130  *
131  * start_transaction gets us a new handle for a truncate transaction,
132  * and extend_transaction tries to extend the existing one a bit.  If
133  * extend fails, we need to propagate the failure up and restart the
134  * transaction in the top-level truncate loop. --sct
135  */
136 static handle_t *start_transaction(struct inode *inode)
137 {
138         handle_t *result;
139
140         result = ext3_journal_start(inode, blocks_for_truncate(inode));
141         if (!IS_ERR(result))
142                 return result;
143
144         ext3_std_error(inode->i_sb, PTR_ERR(result));
145         return result;
146 }
147
148 /*
149  * Try to extend this transaction for the purposes of truncation.
150  *
151  * Returns 0 if we managed to create more room.  If we can't create more
152  * room, and the transaction must be restarted we return 1.
153  */
154 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
155 {
156         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
157                 return 0;
158         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
159                 return 0;
160         return 1;
161 }
162
163 /*
164  * Restart the transaction associated with *handle.  This does a commit,
165  * so before we call here everything must be consistently dirtied against
166  * this transaction.
167  */
168 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
169 {
170         int ret;
171
172         jbd_debug(2, "restarting handle %p\n", handle);
173         /*
174          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
175          * At this moment, get_block can be called only for blocks inside
176          * i_size since page cache has been already dropped and writes are
177          * blocked by i_mutex. So we can safely drop the truncate_mutex.
178          */
179         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
180         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
181         mutex_lock(&EXT3_I(inode)->truncate_mutex);
182         return ret;
183 }
184
185 /*
186  * Called at inode eviction from icache
187  */
188 void ext3_evict_inode (struct inode *inode)
189 {
190         struct ext3_inode_info *ei = EXT3_I(inode);
191         struct ext3_block_alloc_info *rsv;
192         handle_t *handle;
193         int want_delete = 0;
194
195         trace_ext3_evict_inode(inode);
196         if (!inode->i_nlink && !is_bad_inode(inode)) {
197                 dquot_initialize(inode);
198                 want_delete = 1;
199         }
200
201         /*
202          * When journalling data dirty buffers are tracked only in the journal.
203          * So although mm thinks everything is clean and ready for reaping the
204          * inode might still have some pages to write in the running
205          * transaction or waiting to be checkpointed. Thus calling
206          * journal_invalidatepage() (via truncate_inode_pages()) to discard
207          * these buffers can cause data loss. Also even if we did not discard
208          * these buffers, we would have no way to find them after the inode
209          * is reaped and thus user could see stale data if he tries to read
210          * them before the transaction is checkpointed. So be careful and
211          * force everything to disk here... We use ei->i_datasync_tid to
212          * store the newest transaction containing inode's data.
213          *
214          * Note that directories do not have this problem because they don't
215          * use page cache.
216          *
217          * The s_journal check handles the case when ext3_get_journal() fails
218          * and puts the journal inode.
219          */
220         if (inode->i_nlink && ext3_should_journal_data(inode) &&
221             EXT3_SB(inode->i_sb)->s_journal &&
222             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
223             inode->i_ino != EXT3_JOURNAL_INO) {
224                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
225                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
226
227                 log_start_commit(journal, commit_tid);
228                 log_wait_commit(journal, commit_tid);
229                 filemap_write_and_wait(&inode->i_data);
230         }
231         truncate_inode_pages(&inode->i_data, 0);
232
233         ext3_discard_reservation(inode);
234         rsv = ei->i_block_alloc_info;
235         ei->i_block_alloc_info = NULL;
236         if (unlikely(rsv))
237                 kfree(rsv);
238
239         if (!want_delete)
240                 goto no_delete;
241
242         handle = start_transaction(inode);
243         if (IS_ERR(handle)) {
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext3_orphan_del(NULL, inode);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 handle->h_sync = 1;
255         inode->i_size = 0;
256         if (inode->i_blocks)
257                 ext3_truncate(inode);
258         /*
259          * Kill off the orphan record created when the inode lost the last
260          * link.  Note that ext3_orphan_del() has to be able to cope with the
261          * deletion of a non-existent orphan - ext3_truncate() could
262          * have removed the record.
263          */
264         ext3_orphan_del(handle, inode);
265         ei->i_dtime = get_seconds();
266
267         /*
268          * One subtle ordering requirement: if anything has gone wrong
269          * (transaction abort, IO errors, whatever), then we can still
270          * do these next steps (the fs will already have been marked as
271          * having errors), but we can't free the inode if the mark_dirty
272          * fails.
273          */
274         if (ext3_mark_inode_dirty(handle, inode)) {
275                 /* If that failed, just dquot_drop() and be done with that */
276                 dquot_drop(inode);
277                 clear_inode(inode);
278         } else {
279                 ext3_xattr_delete_inode(handle, inode);
280                 dquot_free_inode(inode);
281                 dquot_drop(inode);
282                 clear_inode(inode);
283                 ext3_free_inode(handle, inode);
284         }
285         ext3_journal_stop(handle);
286         return;
287 no_delete:
288         clear_inode(inode);
289         dquot_drop(inode);
290 }
291
292 typedef struct {
293         __le32  *p;
294         __le32  key;
295         struct buffer_head *bh;
296 } Indirect;
297
298 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299 {
300         p->key = *(p->p = v);
301         p->bh = bh;
302 }
303
304 static int verify_chain(Indirect *from, Indirect *to)
305 {
306         while (from <= to && from->key == *from->p)
307                 from++;
308         return (from > to);
309 }
310
311 /**
312  *      ext3_block_to_path - parse the block number into array of offsets
313  *      @inode: inode in question (we are only interested in its superblock)
314  *      @i_block: block number to be parsed
315  *      @offsets: array to store the offsets in
316  *      @boundary: set this non-zero if the referred-to block is likely to be
317  *             followed (on disk) by an indirect block.
318  *
319  *      To store the locations of file's data ext3 uses a data structure common
320  *      for UNIX filesystems - tree of pointers anchored in the inode, with
321  *      data blocks at leaves and indirect blocks in intermediate nodes.
322  *      This function translates the block number into path in that tree -
323  *      return value is the path length and @offsets[n] is the offset of
324  *      pointer to (n+1)th node in the nth one. If @block is out of range
325  *      (negative or too large) warning is printed and zero returned.
326  *
327  *      Note: function doesn't find node addresses, so no IO is needed. All
328  *      we need to know is the capacity of indirect blocks (taken from the
329  *      inode->i_sb).
330  */
331
332 /*
333  * Portability note: the last comparison (check that we fit into triple
334  * indirect block) is spelled differently, because otherwise on an
335  * architecture with 32-bit longs and 8Kb pages we might get into trouble
336  * if our filesystem had 8Kb blocks. We might use long long, but that would
337  * kill us on x86. Oh, well, at least the sign propagation does not matter -
338  * i_block would have to be negative in the very beginning, so we would not
339  * get there at all.
340  */
341
342 static int ext3_block_to_path(struct inode *inode,
343                         long i_block, int offsets[4], int *boundary)
344 {
345         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
346         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
347         const long direct_blocks = EXT3_NDIR_BLOCKS,
348                 indirect_blocks = ptrs,
349                 double_blocks = (1 << (ptrs_bits * 2));
350         int n = 0;
351         int final = 0;
352
353         if (i_block < 0) {
354                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
355         } else if (i_block < direct_blocks) {
356                 offsets[n++] = i_block;
357                 final = direct_blocks;
358         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
359                 offsets[n++] = EXT3_IND_BLOCK;
360                 offsets[n++] = i_block;
361                 final = ptrs;
362         } else if ((i_block -= indirect_blocks) < double_blocks) {
363                 offsets[n++] = EXT3_DIND_BLOCK;
364                 offsets[n++] = i_block >> ptrs_bits;
365                 offsets[n++] = i_block & (ptrs - 1);
366                 final = ptrs;
367         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
368                 offsets[n++] = EXT3_TIND_BLOCK;
369                 offsets[n++] = i_block >> (ptrs_bits * 2);
370                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
371                 offsets[n++] = i_block & (ptrs - 1);
372                 final = ptrs;
373         } else {
374                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
375         }
376         if (boundary)
377                 *boundary = final - 1 - (i_block & (ptrs - 1));
378         return n;
379 }
380
381 /**
382  *      ext3_get_branch - read the chain of indirect blocks leading to data
383  *      @inode: inode in question
384  *      @depth: depth of the chain (1 - direct pointer, etc.)
385  *      @offsets: offsets of pointers in inode/indirect blocks
386  *      @chain: place to store the result
387  *      @err: here we store the error value
388  *
389  *      Function fills the array of triples <key, p, bh> and returns %NULL
390  *      if everything went OK or the pointer to the last filled triple
391  *      (incomplete one) otherwise. Upon the return chain[i].key contains
392  *      the number of (i+1)-th block in the chain (as it is stored in memory,
393  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
394  *      number (it points into struct inode for i==0 and into the bh->b_data
395  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
396  *      block for i>0 and NULL for i==0. In other words, it holds the block
397  *      numbers of the chain, addresses they were taken from (and where we can
398  *      verify that chain did not change) and buffer_heads hosting these
399  *      numbers.
400  *
401  *      Function stops when it stumbles upon zero pointer (absent block)
402  *              (pointer to last triple returned, *@err == 0)
403  *      or when it gets an IO error reading an indirect block
404  *              (ditto, *@err == -EIO)
405  *      or when it notices that chain had been changed while it was reading
406  *              (ditto, *@err == -EAGAIN)
407  *      or when it reads all @depth-1 indirect blocks successfully and finds
408  *      the whole chain, all way to the data (returns %NULL, *err == 0).
409  */
410 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
411                                  Indirect chain[4], int *err)
412 {
413         struct super_block *sb = inode->i_sb;
414         Indirect *p = chain;
415         struct buffer_head *bh;
416
417         *err = 0;
418         /* i_data is not going away, no lock needed */
419         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
420         if (!p->key)
421                 goto no_block;
422         while (--depth) {
423                 bh = sb_bread(sb, le32_to_cpu(p->key));
424                 if (!bh)
425                         goto failure;
426                 /* Reader: pointers */
427                 if (!verify_chain(chain, p))
428                         goto changed;
429                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
430                 /* Reader: end */
431                 if (!p->key)
432                         goto no_block;
433         }
434         return NULL;
435
436 changed:
437         brelse(bh);
438         *err = -EAGAIN;
439         goto no_block;
440 failure:
441         *err = -EIO;
442 no_block:
443         return p;
444 }
445
446 /**
447  *      ext3_find_near - find a place for allocation with sufficient locality
448  *      @inode: owner
449  *      @ind: descriptor of indirect block.
450  *
451  *      This function returns the preferred place for block allocation.
452  *      It is used when heuristic for sequential allocation fails.
453  *      Rules are:
454  *        + if there is a block to the left of our position - allocate near it.
455  *        + if pointer will live in indirect block - allocate near that block.
456  *        + if pointer will live in inode - allocate in the same
457  *          cylinder group.
458  *
459  * In the latter case we colour the starting block by the callers PID to
460  * prevent it from clashing with concurrent allocations for a different inode
461  * in the same block group.   The PID is used here so that functionally related
462  * files will be close-by on-disk.
463  *
464  *      Caller must make sure that @ind is valid and will stay that way.
465  */
466 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
467 {
468         struct ext3_inode_info *ei = EXT3_I(inode);
469         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
470         __le32 *p;
471         ext3_fsblk_t bg_start;
472         ext3_grpblk_t colour;
473
474         /* Try to find previous block */
475         for (p = ind->p - 1; p >= start; p--) {
476                 if (*p)
477                         return le32_to_cpu(*p);
478         }
479
480         /* No such thing, so let's try location of indirect block */
481         if (ind->bh)
482                 return ind->bh->b_blocknr;
483
484         /*
485          * It is going to be referred to from the inode itself? OK, just put it
486          * into the same cylinder group then.
487          */
488         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
489         colour = (current->pid % 16) *
490                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
491         return bg_start + colour;
492 }
493
494 /**
495  *      ext3_find_goal - find a preferred place for allocation.
496  *      @inode: owner
497  *      @block:  block we want
498  *      @partial: pointer to the last triple within a chain
499  *
500  *      Normally this function find the preferred place for block allocation,
501  *      returns it.
502  */
503
504 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
505                                    Indirect *partial)
506 {
507         struct ext3_block_alloc_info *block_i;
508
509         block_i =  EXT3_I(inode)->i_block_alloc_info;
510
511         /*
512          * try the heuristic for sequential allocation,
513          * failing that at least try to get decent locality.
514          */
515         if (block_i && (block == block_i->last_alloc_logical_block + 1)
516                 && (block_i->last_alloc_physical_block != 0)) {
517                 return block_i->last_alloc_physical_block + 1;
518         }
519
520         return ext3_find_near(inode, partial);
521 }
522
523 /**
524  *      ext3_blks_to_allocate - Look up the block map and count the number
525  *      of direct blocks need to be allocated for the given branch.
526  *
527  *      @branch: chain of indirect blocks
528  *      @k: number of blocks need for indirect blocks
529  *      @blks: number of data blocks to be mapped.
530  *      @blocks_to_boundary:  the offset in the indirect block
531  *
532  *      return the total number of blocks to be allocate, including the
533  *      direct and indirect blocks.
534  */
535 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
536                 int blocks_to_boundary)
537 {
538         unsigned long count = 0;
539
540         /*
541          * Simple case, [t,d]Indirect block(s) has not allocated yet
542          * then it's clear blocks on that path have not allocated
543          */
544         if (k > 0) {
545                 /* right now we don't handle cross boundary allocation */
546                 if (blks < blocks_to_boundary + 1)
547                         count += blks;
548                 else
549                         count += blocks_to_boundary + 1;
550                 return count;
551         }
552
553         count++;
554         while (count < blks && count <= blocks_to_boundary &&
555                 le32_to_cpu(*(branch[0].p + count)) == 0) {
556                 count++;
557         }
558         return count;
559 }
560
561 /**
562  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
563  *      @handle: handle for this transaction
564  *      @inode: owner
565  *      @goal: preferred place for allocation
566  *      @indirect_blks: the number of blocks need to allocate for indirect
567  *                      blocks
568  *      @blks:  number of blocks need to allocated for direct blocks
569  *      @new_blocks: on return it will store the new block numbers for
570  *      the indirect blocks(if needed) and the first direct block,
571  *      @err: here we store the error value
572  *
573  *      return the number of direct blocks allocated
574  */
575 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
576                         ext3_fsblk_t goal, int indirect_blks, int blks,
577                         ext3_fsblk_t new_blocks[4], int *err)
578 {
579         int target, i;
580         unsigned long count = 0;
581         int index = 0;
582         ext3_fsblk_t current_block = 0;
583         int ret = 0;
584
585         /*
586          * Here we try to allocate the requested multiple blocks at once,
587          * on a best-effort basis.
588          * To build a branch, we should allocate blocks for
589          * the indirect blocks(if not allocated yet), and at least
590          * the first direct block of this branch.  That's the
591          * minimum number of blocks need to allocate(required)
592          */
593         target = blks + indirect_blks;
594
595         while (1) {
596                 count = target;
597                 /* allocating blocks for indirect blocks and direct blocks */
598                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
599                 if (*err)
600                         goto failed_out;
601
602                 target -= count;
603                 /* allocate blocks for indirect blocks */
604                 while (index < indirect_blks && count) {
605                         new_blocks[index++] = current_block++;
606                         count--;
607                 }
608
609                 if (count > 0)
610                         break;
611         }
612
613         /* save the new block number for the first direct block */
614         new_blocks[index] = current_block;
615
616         /* total number of blocks allocated for direct blocks */
617         ret = count;
618         *err = 0;
619         return ret;
620 failed_out:
621         for (i = 0; i <index; i++)
622                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
623         return ret;
624 }
625
626 /**
627  *      ext3_alloc_branch - allocate and set up a chain of blocks.
628  *      @handle: handle for this transaction
629  *      @inode: owner
630  *      @indirect_blks: number of allocated indirect blocks
631  *      @blks: number of allocated direct blocks
632  *      @goal: preferred place for allocation
633  *      @offsets: offsets (in the blocks) to store the pointers to next.
634  *      @branch: place to store the chain in.
635  *
636  *      This function allocates blocks, zeroes out all but the last one,
637  *      links them into chain and (if we are synchronous) writes them to disk.
638  *      In other words, it prepares a branch that can be spliced onto the
639  *      inode. It stores the information about that chain in the branch[], in
640  *      the same format as ext3_get_branch() would do. We are calling it after
641  *      we had read the existing part of chain and partial points to the last
642  *      triple of that (one with zero ->key). Upon the exit we have the same
643  *      picture as after the successful ext3_get_block(), except that in one
644  *      place chain is disconnected - *branch->p is still zero (we did not
645  *      set the last link), but branch->key contains the number that should
646  *      be placed into *branch->p to fill that gap.
647  *
648  *      If allocation fails we free all blocks we've allocated (and forget
649  *      their buffer_heads) and return the error value the from failed
650  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
651  *      as described above and return 0.
652  */
653 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
654                         int indirect_blks, int *blks, ext3_fsblk_t goal,
655                         int *offsets, Indirect *branch)
656 {
657         int blocksize = inode->i_sb->s_blocksize;
658         int i, n = 0;
659         int err = 0;
660         struct buffer_head *bh;
661         int num;
662         ext3_fsblk_t new_blocks[4];
663         ext3_fsblk_t current_block;
664
665         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
666                                 *blks, new_blocks, &err);
667         if (err)
668                 return err;
669
670         branch[0].key = cpu_to_le32(new_blocks[0]);
671         /*
672          * metadata blocks and data blocks are allocated.
673          */
674         for (n = 1; n <= indirect_blks;  n++) {
675                 /*
676                  * Get buffer_head for parent block, zero it out
677                  * and set the pointer to new one, then send
678                  * parent to disk.
679                  */
680                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
681                 if (unlikely(!bh)) {
682                         err = -ENOMEM;
683                         goto failed;
684                 }
685                 branch[n].bh = bh;
686                 lock_buffer(bh);
687                 BUFFER_TRACE(bh, "call get_create_access");
688                 err = ext3_journal_get_create_access(handle, bh);
689                 if (err) {
690                         unlock_buffer(bh);
691                         brelse(bh);
692                         goto failed;
693                 }
694
695                 memset(bh->b_data, 0, blocksize);
696                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
697                 branch[n].key = cpu_to_le32(new_blocks[n]);
698                 *branch[n].p = branch[n].key;
699                 if ( n == indirect_blks) {
700                         current_block = new_blocks[n];
701                         /*
702                          * End of chain, update the last new metablock of
703                          * the chain to point to the new allocated
704                          * data blocks numbers
705                          */
706                         for (i=1; i < num; i++)
707                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
708                 }
709                 BUFFER_TRACE(bh, "marking uptodate");
710                 set_buffer_uptodate(bh);
711                 unlock_buffer(bh);
712
713                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
714                 err = ext3_journal_dirty_metadata(handle, bh);
715                 if (err)
716                         goto failed;
717         }
718         *blks = num;
719         return err;
720 failed:
721         /* Allocation failed, free what we already allocated */
722         for (i = 1; i <= n ; i++) {
723                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
724                 ext3_journal_forget(handle, branch[i].bh);
725         }
726         for (i = 0; i < indirect_blks; i++)
727                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
728
729         ext3_free_blocks(handle, inode, new_blocks[i], num);
730
731         return err;
732 }
733
734 /**
735  * ext3_splice_branch - splice the allocated branch onto inode.
736  * @handle: handle for this transaction
737  * @inode: owner
738  * @block: (logical) number of block we are adding
739  * @where: location of missing link
740  * @num:   number of indirect blocks we are adding
741  * @blks:  number of direct blocks we are adding
742  *
743  * This function fills the missing link and does all housekeeping needed in
744  * inode (->i_blocks, etc.). In case of success we end up with the full
745  * chain to new block and return 0.
746  */
747 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
748                         long block, Indirect *where, int num, int blks)
749 {
750         int i;
751         int err = 0;
752         struct ext3_block_alloc_info *block_i;
753         ext3_fsblk_t current_block;
754         struct ext3_inode_info *ei = EXT3_I(inode);
755         struct timespec now;
756
757         block_i = ei->i_block_alloc_info;
758         /*
759          * If we're splicing into a [td]indirect block (as opposed to the
760          * inode) then we need to get write access to the [td]indirect block
761          * before the splice.
762          */
763         if (where->bh) {
764                 BUFFER_TRACE(where->bh, "get_write_access");
765                 err = ext3_journal_get_write_access(handle, where->bh);
766                 if (err)
767                         goto err_out;
768         }
769         /* That's it */
770
771         *where->p = where->key;
772
773         /*
774          * Update the host buffer_head or inode to point to more just allocated
775          * direct blocks blocks
776          */
777         if (num == 0 && blks > 1) {
778                 current_block = le32_to_cpu(where->key) + 1;
779                 for (i = 1; i < blks; i++)
780                         *(where->p + i ) = cpu_to_le32(current_block++);
781         }
782
783         /*
784          * update the most recently allocated logical & physical block
785          * in i_block_alloc_info, to assist find the proper goal block for next
786          * allocation
787          */
788         if (block_i) {
789                 block_i->last_alloc_logical_block = block + blks - 1;
790                 block_i->last_alloc_physical_block =
791                                 le32_to_cpu(where[num].key) + blks - 1;
792         }
793
794         /* We are done with atomic stuff, now do the rest of housekeeping */
795         now = CURRENT_TIME_SEC;
796         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
797                 inode->i_ctime = now;
798                 ext3_mark_inode_dirty(handle, inode);
799         }
800         /* ext3_mark_inode_dirty already updated i_sync_tid */
801         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
802
803         /* had we spliced it onto indirect block? */
804         if (where->bh) {
805                 /*
806                  * If we spliced it onto an indirect block, we haven't
807                  * altered the inode.  Note however that if it is being spliced
808                  * onto an indirect block at the very end of the file (the
809                  * file is growing) then we *will* alter the inode to reflect
810                  * the new i_size.  But that is not done here - it is done in
811                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
812                  */
813                 jbd_debug(5, "splicing indirect only\n");
814                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
815                 err = ext3_journal_dirty_metadata(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         } else {
819                 /*
820                  * OK, we spliced it into the inode itself on a direct block.
821                  * Inode was dirtied above.
822                  */
823                 jbd_debug(5, "splicing direct\n");
824         }
825         return err;
826
827 err_out:
828         for (i = 1; i <= num; i++) {
829                 BUFFER_TRACE(where[i].bh, "call journal_forget");
830                 ext3_journal_forget(handle, where[i].bh);
831                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
832         }
833         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
834
835         return err;
836 }
837
838 /*
839  * Allocation strategy is simple: if we have to allocate something, we will
840  * have to go the whole way to leaf. So let's do it before attaching anything
841  * to tree, set linkage between the newborn blocks, write them if sync is
842  * required, recheck the path, free and repeat if check fails, otherwise
843  * set the last missing link (that will protect us from any truncate-generated
844  * removals - all blocks on the path are immune now) and possibly force the
845  * write on the parent block.
846  * That has a nice additional property: no special recovery from the failed
847  * allocations is needed - we simply release blocks and do not touch anything
848  * reachable from inode.
849  *
850  * `handle' can be NULL if create == 0.
851  *
852  * The BKL may not be held on entry here.  Be sure to take it early.
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  */
857 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
858                 sector_t iblock, unsigned long maxblocks,
859                 struct buffer_head *bh_result,
860                 int create)
861 {
862         int err = -EIO;
863         int offsets[4];
864         Indirect chain[4];
865         Indirect *partial;
866         ext3_fsblk_t goal;
867         int indirect_blks;
868         int blocks_to_boundary = 0;
869         int depth;
870         struct ext3_inode_info *ei = EXT3_I(inode);
871         int count = 0;
872         ext3_fsblk_t first_block = 0;
873
874
875         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
876         J_ASSERT(handle != NULL || create == 0);
877         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
878
879         if (depth == 0)
880                 goto out;
881
882         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
883
884         /* Simplest case - block found, no allocation needed */
885         if (!partial) {
886                 first_block = le32_to_cpu(chain[depth - 1].key);
887                 clear_buffer_new(bh_result);
888                 count++;
889                 /*map more blocks*/
890                 while (count < maxblocks && count <= blocks_to_boundary) {
891                         ext3_fsblk_t blk;
892
893                         if (!verify_chain(chain, chain + depth - 1)) {
894                                 /*
895                                  * Indirect block might be removed by
896                                  * truncate while we were reading it.
897                                  * Handling of that case: forget what we've
898                                  * got now. Flag the err as EAGAIN, so it
899                                  * will reread.
900                                  */
901                                 err = -EAGAIN;
902                                 count = 0;
903                                 break;
904                         }
905                         blk = le32_to_cpu(*(chain[depth-1].p + count));
906
907                         if (blk == first_block + count)
908                                 count++;
909                         else
910                                 break;
911                 }
912                 if (err != -EAGAIN)
913                         goto got_it;
914         }
915
916         /* Next simple case - plain lookup or failed read of indirect block */
917         if (!create || err == -EIO)
918                 goto cleanup;
919
920         /*
921          * Block out ext3_truncate while we alter the tree
922          */
923         mutex_lock(&ei->truncate_mutex);
924
925         /*
926          * If the indirect block is missing while we are reading
927          * the chain(ext3_get_branch() returns -EAGAIN err), or
928          * if the chain has been changed after we grab the semaphore,
929          * (either because another process truncated this branch, or
930          * another get_block allocated this branch) re-grab the chain to see if
931          * the request block has been allocated or not.
932          *
933          * Since we already block the truncate/other get_block
934          * at this point, we will have the current copy of the chain when we
935          * splice the branch into the tree.
936          */
937         if (err == -EAGAIN || !verify_chain(chain, partial)) {
938                 while (partial > chain) {
939                         brelse(partial->bh);
940                         partial--;
941                 }
942                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
943                 if (!partial) {
944                         count++;
945                         mutex_unlock(&ei->truncate_mutex);
946                         if (err)
947                                 goto cleanup;
948                         clear_buffer_new(bh_result);
949                         goto got_it;
950                 }
951         }
952
953         /*
954          * Okay, we need to do block allocation.  Lazily initialize the block
955          * allocation info here if necessary
956         */
957         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
958                 ext3_init_block_alloc_info(inode);
959
960         goal = ext3_find_goal(inode, iblock, partial);
961
962         /* the number of blocks need to allocate for [d,t]indirect blocks */
963         indirect_blks = (chain + depth) - partial - 1;
964
965         /*
966          * Next look up the indirect map to count the totoal number of
967          * direct blocks to allocate for this branch.
968          */
969         count = ext3_blks_to_allocate(partial, indirect_blks,
970                                         maxblocks, blocks_to_boundary);
971         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
972                                 offsets + (partial - chain), partial);
973
974         /*
975          * The ext3_splice_branch call will free and forget any buffers
976          * on the new chain if there is a failure, but that risks using
977          * up transaction credits, especially for bitmaps where the
978          * credits cannot be returned.  Can we handle this somehow?  We
979          * may need to return -EAGAIN upwards in the worst case.  --sct
980          */
981         if (!err)
982                 err = ext3_splice_branch(handle, inode, iblock,
983                                         partial, indirect_blks, count);
984         mutex_unlock(&ei->truncate_mutex);
985         if (err)
986                 goto cleanup;
987
988         set_buffer_new(bh_result);
989 got_it:
990         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
991         if (count > blocks_to_boundary)
992                 set_buffer_boundary(bh_result);
993         err = count;
994         /* Clean up and exit */
995         partial = chain + depth - 1;    /* the whole chain */
996 cleanup:
997         while (partial > chain) {
998                 BUFFER_TRACE(partial->bh, "call brelse");
999                 brelse(partial->bh);
1000                 partial--;
1001         }
1002         BUFFER_TRACE(bh_result, "returned");
1003 out:
1004         trace_ext3_get_blocks_exit(inode, iblock,
1005                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1006                                    count, err);
1007         return err;
1008 }
1009
1010 /* Maximum number of blocks we map for direct IO at once. */
1011 #define DIO_MAX_BLOCKS 4096
1012 /*
1013  * Number of credits we need for writing DIO_MAX_BLOCKS:
1014  * We need sb + group descriptor + bitmap + inode -> 4
1015  * For B blocks with A block pointers per block we need:
1016  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1017  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1018  */
1019 #define DIO_CREDITS 25
1020
1021 static int ext3_get_block(struct inode *inode, sector_t iblock,
1022                         struct buffer_head *bh_result, int create)
1023 {
1024         handle_t *handle = ext3_journal_current_handle();
1025         int ret = 0, started = 0;
1026         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1027
1028         if (create && !handle) {        /* Direct IO write... */
1029                 if (max_blocks > DIO_MAX_BLOCKS)
1030                         max_blocks = DIO_MAX_BLOCKS;
1031                 handle = ext3_journal_start(inode, DIO_CREDITS +
1032                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1033                 if (IS_ERR(handle)) {
1034                         ret = PTR_ERR(handle);
1035                         goto out;
1036                 }
1037                 started = 1;
1038         }
1039
1040         ret = ext3_get_blocks_handle(handle, inode, iblock,
1041                                         max_blocks, bh_result, create);
1042         if (ret > 0) {
1043                 bh_result->b_size = (ret << inode->i_blkbits);
1044                 ret = 0;
1045         }
1046         if (started)
1047                 ext3_journal_stop(handle);
1048 out:
1049         return ret;
1050 }
1051
1052 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1053                 u64 start, u64 len)
1054 {
1055         return generic_block_fiemap(inode, fieinfo, start, len,
1056                                     ext3_get_block);
1057 }
1058
1059 /*
1060  * `handle' can be NULL if create is zero
1061  */
1062 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1063                                 long block, int create, int *errp)
1064 {
1065         struct buffer_head dummy;
1066         int fatal = 0, err;
1067
1068         J_ASSERT(handle != NULL || create == 0);
1069
1070         dummy.b_state = 0;
1071         dummy.b_blocknr = -1000;
1072         buffer_trace_init(&dummy.b_history);
1073         err = ext3_get_blocks_handle(handle, inode, block, 1,
1074                                         &dummy, create);
1075         /*
1076          * ext3_get_blocks_handle() returns number of blocks
1077          * mapped. 0 in case of a HOLE.
1078          */
1079         if (err > 0) {
1080                 WARN_ON(err > 1);
1081                 err = 0;
1082         }
1083         *errp = err;
1084         if (!err && buffer_mapped(&dummy)) {
1085                 struct buffer_head *bh;
1086                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1087                 if (unlikely(!bh)) {
1088                         *errp = -ENOMEM;
1089                         goto err;
1090                 }
1091                 if (buffer_new(&dummy)) {
1092                         J_ASSERT(create != 0);
1093                         J_ASSERT(handle != NULL);
1094
1095                         /*
1096                          * Now that we do not always journal data, we should
1097                          * keep in mind whether this should always journal the
1098                          * new buffer as metadata.  For now, regular file
1099                          * writes use ext3_get_block instead, so it's not a
1100                          * problem.
1101                          */
1102                         lock_buffer(bh);
1103                         BUFFER_TRACE(bh, "call get_create_access");
1104                         fatal = ext3_journal_get_create_access(handle, bh);
1105                         if (!fatal && !buffer_uptodate(bh)) {
1106                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1107                                 set_buffer_uptodate(bh);
1108                         }
1109                         unlock_buffer(bh);
1110                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1111                         err = ext3_journal_dirty_metadata(handle, bh);
1112                         if (!fatal)
1113                                 fatal = err;
1114                 } else {
1115                         BUFFER_TRACE(bh, "not a new buffer");
1116                 }
1117                 if (fatal) {
1118                         *errp = fatal;
1119                         brelse(bh);
1120                         bh = NULL;
1121                 }
1122                 return bh;
1123         }
1124 err:
1125         return NULL;
1126 }
1127
1128 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1129                                int block, int create, int *err)
1130 {
1131         struct buffer_head * bh;
1132
1133         bh = ext3_getblk(handle, inode, block, create, err);
1134         if (!bh)
1135                 return bh;
1136         if (bh_uptodate_or_lock(bh))
1137                 return bh;
1138         get_bh(bh);
1139         bh->b_end_io = end_buffer_read_sync;
1140         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1141         wait_on_buffer(bh);
1142         if (buffer_uptodate(bh))
1143                 return bh;
1144         put_bh(bh);
1145         *err = -EIO;
1146         return NULL;
1147 }
1148
1149 static int walk_page_buffers(   handle_t *handle,
1150                                 struct buffer_head *head,
1151                                 unsigned from,
1152                                 unsigned to,
1153                                 int *partial,
1154                                 int (*fn)(      handle_t *handle,
1155                                                 struct buffer_head *bh))
1156 {
1157         struct buffer_head *bh;
1158         unsigned block_start, block_end;
1159         unsigned blocksize = head->b_size;
1160         int err, ret = 0;
1161         struct buffer_head *next;
1162
1163         for (   bh = head, block_start = 0;
1164                 ret == 0 && (bh != head || !block_start);
1165                 block_start = block_end, bh = next)
1166         {
1167                 next = bh->b_this_page;
1168                 block_end = block_start + blocksize;
1169                 if (block_end <= from || block_start >= to) {
1170                         if (partial && !buffer_uptodate(bh))
1171                                 *partial = 1;
1172                         continue;
1173                 }
1174                 err = (*fn)(handle, bh);
1175                 if (!ret)
1176                         ret = err;
1177         }
1178         return ret;
1179 }
1180
1181 /*
1182  * To preserve ordering, it is essential that the hole instantiation and
1183  * the data write be encapsulated in a single transaction.  We cannot
1184  * close off a transaction and start a new one between the ext3_get_block()
1185  * and the commit_write().  So doing the journal_start at the start of
1186  * prepare_write() is the right place.
1187  *
1188  * Also, this function can nest inside ext3_writepage() ->
1189  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1190  * has generated enough buffer credits to do the whole page.  So we won't
1191  * block on the journal in that case, which is good, because the caller may
1192  * be PF_MEMALLOC.
1193  *
1194  * By accident, ext3 can be reentered when a transaction is open via
1195  * quota file writes.  If we were to commit the transaction while thus
1196  * reentered, there can be a deadlock - we would be holding a quota
1197  * lock, and the commit would never complete if another thread had a
1198  * transaction open and was blocking on the quota lock - a ranking
1199  * violation.
1200  *
1201  * So what we do is to rely on the fact that journal_stop/journal_start
1202  * will _not_ run commit under these circumstances because handle->h_ref
1203  * is elevated.  We'll still have enough credits for the tiny quotafile
1204  * write.
1205  */
1206 static int do_journal_get_write_access(handle_t *handle,
1207                                         struct buffer_head *bh)
1208 {
1209         int dirty = buffer_dirty(bh);
1210         int ret;
1211
1212         if (!buffer_mapped(bh) || buffer_freed(bh))
1213                 return 0;
1214         /*
1215          * __block_prepare_write() could have dirtied some buffers. Clean
1216          * the dirty bit as jbd2_journal_get_write_access() could complain
1217          * otherwise about fs integrity issues. Setting of the dirty bit
1218          * by __block_prepare_write() isn't a real problem here as we clear
1219          * the bit before releasing a page lock and thus writeback cannot
1220          * ever write the buffer.
1221          */
1222         if (dirty)
1223                 clear_buffer_dirty(bh);
1224         ret = ext3_journal_get_write_access(handle, bh);
1225         if (!ret && dirty)
1226                 ret = ext3_journal_dirty_metadata(handle, bh);
1227         return ret;
1228 }
1229
1230 /*
1231  * Truncate blocks that were not used by write. We have to truncate the
1232  * pagecache as well so that corresponding buffers get properly unmapped.
1233  */
1234 static void ext3_truncate_failed_write(struct inode *inode)
1235 {
1236         truncate_inode_pages(inode->i_mapping, inode->i_size);
1237         ext3_truncate(inode);
1238 }
1239
1240 /*
1241  * Truncate blocks that were not used by direct IO write. We have to zero out
1242  * the last file block as well because direct IO might have written to it.
1243  */
1244 static void ext3_truncate_failed_direct_write(struct inode *inode)
1245 {
1246         ext3_block_truncate_page(inode, inode->i_size);
1247         ext3_truncate(inode);
1248 }
1249
1250 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1251                                 loff_t pos, unsigned len, unsigned flags,
1252                                 struct page **pagep, void **fsdata)
1253 {
1254         struct inode *inode = mapping->host;
1255         int ret;
1256         handle_t *handle;
1257         int retries = 0;
1258         struct page *page;
1259         pgoff_t index;
1260         unsigned from, to;
1261         /* Reserve one block more for addition to orphan list in case
1262          * we allocate blocks but write fails for some reason */
1263         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1264
1265         trace_ext3_write_begin(inode, pos, len, flags);
1266
1267         index = pos >> PAGE_CACHE_SHIFT;
1268         from = pos & (PAGE_CACHE_SIZE - 1);
1269         to = from + len;
1270
1271 retry:
1272         page = grab_cache_page_write_begin(mapping, index, flags);
1273         if (!page)
1274                 return -ENOMEM;
1275         *pagep = page;
1276
1277         handle = ext3_journal_start(inode, needed_blocks);
1278         if (IS_ERR(handle)) {
1279                 unlock_page(page);
1280                 page_cache_release(page);
1281                 ret = PTR_ERR(handle);
1282                 goto out;
1283         }
1284         ret = __block_write_begin(page, pos, len, ext3_get_block);
1285         if (ret)
1286                 goto write_begin_failed;
1287
1288         if (ext3_should_journal_data(inode)) {
1289                 ret = walk_page_buffers(handle, page_buffers(page),
1290                                 from, to, NULL, do_journal_get_write_access);
1291         }
1292 write_begin_failed:
1293         if (ret) {
1294                 /*
1295                  * block_write_begin may have instantiated a few blocks
1296                  * outside i_size.  Trim these off again. Don't need
1297                  * i_size_read because we hold i_mutex.
1298                  *
1299                  * Add inode to orphan list in case we crash before truncate
1300                  * finishes. Do this only if ext3_can_truncate() agrees so
1301                  * that orphan processing code is happy.
1302                  */
1303                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1304                         ext3_orphan_add(handle, inode);
1305                 ext3_journal_stop(handle);
1306                 unlock_page(page);
1307                 page_cache_release(page);
1308                 if (pos + len > inode->i_size)
1309                         ext3_truncate_failed_write(inode);
1310         }
1311         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1312                 goto retry;
1313 out:
1314         return ret;
1315 }
1316
1317
1318 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1319 {
1320         int err = journal_dirty_data(handle, bh);
1321         if (err)
1322                 ext3_journal_abort_handle(__func__, __func__,
1323                                                 bh, handle, err);
1324         return err;
1325 }
1326
1327 /* For ordered writepage and write_end functions */
1328 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1329 {
1330         /*
1331          * Write could have mapped the buffer but it didn't copy the data in
1332          * yet. So avoid filing such buffer into a transaction.
1333          */
1334         if (buffer_mapped(bh) && buffer_uptodate(bh))
1335                 return ext3_journal_dirty_data(handle, bh);
1336         return 0;
1337 }
1338
1339 /* For write_end() in data=journal mode */
1340 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1341 {
1342         if (!buffer_mapped(bh) || buffer_freed(bh))
1343                 return 0;
1344         set_buffer_uptodate(bh);
1345         return ext3_journal_dirty_metadata(handle, bh);
1346 }
1347
1348 /*
1349  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1350  * for the whole page but later we failed to copy the data in. Update inode
1351  * size according to what we managed to copy. The rest is going to be
1352  * truncated in write_end function.
1353  */
1354 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1355 {
1356         /* What matters to us is i_disksize. We don't write i_size anywhere */
1357         if (pos + copied > inode->i_size)
1358                 i_size_write(inode, pos + copied);
1359         if (pos + copied > EXT3_I(inode)->i_disksize) {
1360                 EXT3_I(inode)->i_disksize = pos + copied;
1361                 mark_inode_dirty(inode);
1362         }
1363 }
1364
1365 /*
1366  * We need to pick up the new inode size which generic_commit_write gave us
1367  * `file' can be NULL - eg, when called from page_symlink().
1368  *
1369  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1370  * buffers are managed internally.
1371  */
1372 static int ext3_ordered_write_end(struct file *file,
1373                                 struct address_space *mapping,
1374                                 loff_t pos, unsigned len, unsigned copied,
1375                                 struct page *page, void *fsdata)
1376 {
1377         handle_t *handle = ext3_journal_current_handle();
1378         struct inode *inode = file->f_mapping->host;
1379         unsigned from, to;
1380         int ret = 0, ret2;
1381
1382         trace_ext3_ordered_write_end(inode, pos, len, copied);
1383         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1384
1385         from = pos & (PAGE_CACHE_SIZE - 1);
1386         to = from + copied;
1387         ret = walk_page_buffers(handle, page_buffers(page),
1388                 from, to, NULL, journal_dirty_data_fn);
1389
1390         if (ret == 0)
1391                 update_file_sizes(inode, pos, copied);
1392         /*
1393          * There may be allocated blocks outside of i_size because
1394          * we failed to copy some data. Prepare for truncate.
1395          */
1396         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1397                 ext3_orphan_add(handle, inode);
1398         ret2 = ext3_journal_stop(handle);
1399         if (!ret)
1400                 ret = ret2;
1401         unlock_page(page);
1402         page_cache_release(page);
1403
1404         if (pos + len > inode->i_size)
1405                 ext3_truncate_failed_write(inode);
1406         return ret ? ret : copied;
1407 }
1408
1409 static int ext3_writeback_write_end(struct file *file,
1410                                 struct address_space *mapping,
1411                                 loff_t pos, unsigned len, unsigned copied,
1412                                 struct page *page, void *fsdata)
1413 {
1414         handle_t *handle = ext3_journal_current_handle();
1415         struct inode *inode = file->f_mapping->host;
1416         int ret;
1417
1418         trace_ext3_writeback_write_end(inode, pos, len, copied);
1419         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1420         update_file_sizes(inode, pos, copied);
1421         /*
1422          * There may be allocated blocks outside of i_size because
1423          * we failed to copy some data. Prepare for truncate.
1424          */
1425         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1426                 ext3_orphan_add(handle, inode);
1427         ret = ext3_journal_stop(handle);
1428         unlock_page(page);
1429         page_cache_release(page);
1430
1431         if (pos + len > inode->i_size)
1432                 ext3_truncate_failed_write(inode);
1433         return ret ? ret : copied;
1434 }
1435
1436 static int ext3_journalled_write_end(struct file *file,
1437                                 struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned copied,
1439                                 struct page *page, void *fsdata)
1440 {
1441         handle_t *handle = ext3_journal_current_handle();
1442         struct inode *inode = mapping->host;
1443         struct ext3_inode_info *ei = EXT3_I(inode);
1444         int ret = 0, ret2;
1445         int partial = 0;
1446         unsigned from, to;
1447
1448         trace_ext3_journalled_write_end(inode, pos, len, copied);
1449         from = pos & (PAGE_CACHE_SIZE - 1);
1450         to = from + len;
1451
1452         if (copied < len) {
1453                 if (!PageUptodate(page))
1454                         copied = 0;
1455                 page_zero_new_buffers(page, from + copied, to);
1456                 to = from + copied;
1457         }
1458
1459         ret = walk_page_buffers(handle, page_buffers(page), from,
1460                                 to, &partial, write_end_fn);
1461         if (!partial)
1462                 SetPageUptodate(page);
1463
1464         if (pos + copied > inode->i_size)
1465                 i_size_write(inode, pos + copied);
1466         /*
1467          * There may be allocated blocks outside of i_size because
1468          * we failed to copy some data. Prepare for truncate.
1469          */
1470         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1471                 ext3_orphan_add(handle, inode);
1472         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1473         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1474         if (inode->i_size > ei->i_disksize) {
1475                 ei->i_disksize = inode->i_size;
1476                 ret2 = ext3_mark_inode_dirty(handle, inode);
1477                 if (!ret)
1478                         ret = ret2;
1479         }
1480
1481         ret2 = ext3_journal_stop(handle);
1482         if (!ret)
1483                 ret = ret2;
1484         unlock_page(page);
1485         page_cache_release(page);
1486
1487         if (pos + len > inode->i_size)
1488                 ext3_truncate_failed_write(inode);
1489         return ret ? ret : copied;
1490 }
1491
1492 /*
1493  * bmap() is special.  It gets used by applications such as lilo and by
1494  * the swapper to find the on-disk block of a specific piece of data.
1495  *
1496  * Naturally, this is dangerous if the block concerned is still in the
1497  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1498  * filesystem and enables swap, then they may get a nasty shock when the
1499  * data getting swapped to that swapfile suddenly gets overwritten by
1500  * the original zero's written out previously to the journal and
1501  * awaiting writeback in the kernel's buffer cache.
1502  *
1503  * So, if we see any bmap calls here on a modified, data-journaled file,
1504  * take extra steps to flush any blocks which might be in the cache.
1505  */
1506 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1507 {
1508         struct inode *inode = mapping->host;
1509         journal_t *journal;
1510         int err;
1511
1512         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1513                 /*
1514                  * This is a REALLY heavyweight approach, but the use of
1515                  * bmap on dirty files is expected to be extremely rare:
1516                  * only if we run lilo or swapon on a freshly made file
1517                  * do we expect this to happen.
1518                  *
1519                  * (bmap requires CAP_SYS_RAWIO so this does not
1520                  * represent an unprivileged user DOS attack --- we'd be
1521                  * in trouble if mortal users could trigger this path at
1522                  * will.)
1523                  *
1524                  * NB. EXT3_STATE_JDATA is not set on files other than
1525                  * regular files.  If somebody wants to bmap a directory
1526                  * or symlink and gets confused because the buffer
1527                  * hasn't yet been flushed to disk, they deserve
1528                  * everything they get.
1529                  */
1530
1531                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1532                 journal = EXT3_JOURNAL(inode);
1533                 journal_lock_updates(journal);
1534                 err = journal_flush(journal);
1535                 journal_unlock_updates(journal);
1536
1537                 if (err)
1538                         return 0;
1539         }
1540
1541         return generic_block_bmap(mapping,block,ext3_get_block);
1542 }
1543
1544 static int bget_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546         get_bh(bh);
1547         return 0;
1548 }
1549
1550 static int bput_one(handle_t *handle, struct buffer_head *bh)
1551 {
1552         put_bh(bh);
1553         return 0;
1554 }
1555
1556 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1557 {
1558         return !buffer_mapped(bh);
1559 }
1560
1561 /*
1562  * Note that we always start a transaction even if we're not journalling
1563  * data.  This is to preserve ordering: any hole instantiation within
1564  * __block_write_full_page -> ext3_get_block() should be journalled
1565  * along with the data so we don't crash and then get metadata which
1566  * refers to old data.
1567  *
1568  * In all journalling modes block_write_full_page() will start the I/O.
1569  *
1570  * Problem:
1571  *
1572  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1573  *              ext3_writepage()
1574  *
1575  * Similar for:
1576  *
1577  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1578  *
1579  * Same applies to ext3_get_block().  We will deadlock on various things like
1580  * lock_journal and i_truncate_mutex.
1581  *
1582  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1583  * allocations fail.
1584  *
1585  * 16May01: If we're reentered then journal_current_handle() will be
1586  *          non-zero. We simply *return*.
1587  *
1588  * 1 July 2001: @@@ FIXME:
1589  *   In journalled data mode, a data buffer may be metadata against the
1590  *   current transaction.  But the same file is part of a shared mapping
1591  *   and someone does a writepage() on it.
1592  *
1593  *   We will move the buffer onto the async_data list, but *after* it has
1594  *   been dirtied. So there's a small window where we have dirty data on
1595  *   BJ_Metadata.
1596  *
1597  *   Note that this only applies to the last partial page in the file.  The
1598  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1599  *   broken code anyway: it's wrong for msync()).
1600  *
1601  *   It's a rare case: affects the final partial page, for journalled data
1602  *   where the file is subject to bith write() and writepage() in the same
1603  *   transction.  To fix it we'll need a custom block_write_full_page().
1604  *   We'll probably need that anyway for journalling writepage() output.
1605  *
1606  * We don't honour synchronous mounts for writepage().  That would be
1607  * disastrous.  Any write() or metadata operation will sync the fs for
1608  * us.
1609  *
1610  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1611  * we don't need to open a transaction here.
1612  */
1613 static int ext3_ordered_writepage(struct page *page,
1614                                 struct writeback_control *wbc)
1615 {
1616         struct inode *inode = page->mapping->host;
1617         struct buffer_head *page_bufs;
1618         handle_t *handle = NULL;
1619         int ret = 0;
1620         int err;
1621
1622         J_ASSERT(PageLocked(page));
1623         /*
1624          * We don't want to warn for emergency remount. The condition is
1625          * ordered to avoid dereferencing inode->i_sb in non-error case to
1626          * avoid slow-downs.
1627          */
1628         WARN_ON_ONCE(IS_RDONLY(inode) &&
1629                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1630
1631         /*
1632          * We give up here if we're reentered, because it might be for a
1633          * different filesystem.
1634          */
1635         if (ext3_journal_current_handle())
1636                 goto out_fail;
1637
1638         trace_ext3_ordered_writepage(page);
1639         if (!page_has_buffers(page)) {
1640                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1641                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1642                 page_bufs = page_buffers(page);
1643         } else {
1644                 page_bufs = page_buffers(page);
1645                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1646                                        NULL, buffer_unmapped)) {
1647                         /* Provide NULL get_block() to catch bugs if buffers
1648                          * weren't really mapped */
1649                         return block_write_full_page(page, NULL, wbc);
1650                 }
1651         }
1652         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1653
1654         if (IS_ERR(handle)) {
1655                 ret = PTR_ERR(handle);
1656                 goto out_fail;
1657         }
1658
1659         walk_page_buffers(handle, page_bufs, 0,
1660                         PAGE_CACHE_SIZE, NULL, bget_one);
1661
1662         ret = block_write_full_page(page, ext3_get_block, wbc);
1663
1664         /*
1665          * The page can become unlocked at any point now, and
1666          * truncate can then come in and change things.  So we
1667          * can't touch *page from now on.  But *page_bufs is
1668          * safe due to elevated refcount.
1669          */
1670
1671         /*
1672          * And attach them to the current transaction.  But only if
1673          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1674          * and generally junk.
1675          */
1676         if (ret == 0) {
1677                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1678                                         NULL, journal_dirty_data_fn);
1679                 if (!ret)
1680                         ret = err;
1681         }
1682         walk_page_buffers(handle, page_bufs, 0,
1683                         PAGE_CACHE_SIZE, NULL, bput_one);
1684         err = ext3_journal_stop(handle);
1685         if (!ret)
1686                 ret = err;
1687         return ret;
1688
1689 out_fail:
1690         redirty_page_for_writepage(wbc, page);
1691         unlock_page(page);
1692         return ret;
1693 }
1694
1695 static int ext3_writeback_writepage(struct page *page,
1696                                 struct writeback_control *wbc)
1697 {
1698         struct inode *inode = page->mapping->host;
1699         handle_t *handle = NULL;
1700         int ret = 0;
1701         int err;
1702
1703         J_ASSERT(PageLocked(page));
1704         /*
1705          * We don't want to warn for emergency remount. The condition is
1706          * ordered to avoid dereferencing inode->i_sb in non-error case to
1707          * avoid slow-downs.
1708          */
1709         WARN_ON_ONCE(IS_RDONLY(inode) &&
1710                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1711
1712         if (ext3_journal_current_handle())
1713                 goto out_fail;
1714
1715         trace_ext3_writeback_writepage(page);
1716         if (page_has_buffers(page)) {
1717                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1718                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1719                         /* Provide NULL get_block() to catch bugs if buffers
1720                          * weren't really mapped */
1721                         return block_write_full_page(page, NULL, wbc);
1722                 }
1723         }
1724
1725         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1726         if (IS_ERR(handle)) {
1727                 ret = PTR_ERR(handle);
1728                 goto out_fail;
1729         }
1730
1731         ret = block_write_full_page(page, ext3_get_block, wbc);
1732
1733         err = ext3_journal_stop(handle);
1734         if (!ret)
1735                 ret = err;
1736         return ret;
1737
1738 out_fail:
1739         redirty_page_for_writepage(wbc, page);
1740         unlock_page(page);
1741         return ret;
1742 }
1743
1744 static int ext3_journalled_writepage(struct page *page,
1745                                 struct writeback_control *wbc)
1746 {
1747         struct inode *inode = page->mapping->host;
1748         handle_t *handle = NULL;
1749         int ret = 0;
1750         int err;
1751
1752         J_ASSERT(PageLocked(page));
1753         /*
1754          * We don't want to warn for emergency remount. The condition is
1755          * ordered to avoid dereferencing inode->i_sb in non-error case to
1756          * avoid slow-downs.
1757          */
1758         WARN_ON_ONCE(IS_RDONLY(inode) &&
1759                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1760
1761         if (ext3_journal_current_handle())
1762                 goto no_write;
1763
1764         trace_ext3_journalled_writepage(page);
1765         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1766         if (IS_ERR(handle)) {
1767                 ret = PTR_ERR(handle);
1768                 goto no_write;
1769         }
1770
1771         if (!page_has_buffers(page) || PageChecked(page)) {
1772                 /*
1773                  * It's mmapped pagecache.  Add buffers and journal it.  There
1774                  * doesn't seem much point in redirtying the page here.
1775                  */
1776                 ClearPageChecked(page);
1777                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1778                                           ext3_get_block);
1779                 if (ret != 0) {
1780                         ext3_journal_stop(handle);
1781                         goto out_unlock;
1782                 }
1783                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1784                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1785
1786                 err = walk_page_buffers(handle, page_buffers(page), 0,
1787                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1788                 if (ret == 0)
1789                         ret = err;
1790                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1791                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1792                            handle->h_transaction->t_tid);
1793                 unlock_page(page);
1794         } else {
1795                 /*
1796                  * It may be a page full of checkpoint-mode buffers.  We don't
1797                  * really know unless we go poke around in the buffer_heads.
1798                  * But block_write_full_page will do the right thing.
1799                  */
1800                 ret = block_write_full_page(page, ext3_get_block, wbc);
1801         }
1802         err = ext3_journal_stop(handle);
1803         if (!ret)
1804                 ret = err;
1805 out:
1806         return ret;
1807
1808 no_write:
1809         redirty_page_for_writepage(wbc, page);
1810 out_unlock:
1811         unlock_page(page);
1812         goto out;
1813 }
1814
1815 static int ext3_readpage(struct file *file, struct page *page)
1816 {
1817         trace_ext3_readpage(page);
1818         return mpage_readpage(page, ext3_get_block);
1819 }
1820
1821 static int
1822 ext3_readpages(struct file *file, struct address_space *mapping,
1823                 struct list_head *pages, unsigned nr_pages)
1824 {
1825         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1826 }
1827
1828 static void ext3_invalidatepage(struct page *page, unsigned int offset,
1829                                 unsigned int length)
1830 {
1831         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1832
1833         trace_ext3_invalidatepage(page, offset, length);
1834
1835         /*
1836          * If it's a full truncate we just forget about the pending dirtying
1837          */
1838         if (offset == 0 && length == PAGE_CACHE_SIZE)
1839                 ClearPageChecked(page);
1840
1841         journal_invalidatepage(journal, page, offset, length);
1842 }
1843
1844 static int ext3_releasepage(struct page *page, gfp_t wait)
1845 {
1846         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1847
1848         trace_ext3_releasepage(page);
1849         WARN_ON(PageChecked(page));
1850         if (!page_has_buffers(page))
1851                 return 0;
1852         return journal_try_to_free_buffers(journal, page, wait);
1853 }
1854
1855 /*
1856  * If the O_DIRECT write will extend the file then add this inode to the
1857  * orphan list.  So recovery will truncate it back to the original size
1858  * if the machine crashes during the write.
1859  *
1860  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1861  * crashes then stale disk data _may_ be exposed inside the file. But current
1862  * VFS code falls back into buffered path in that case so we are safe.
1863  */
1864 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1865                         const struct iovec *iov, loff_t offset,
1866                         unsigned long nr_segs)
1867 {
1868         struct file *file = iocb->ki_filp;
1869         struct inode *inode = file->f_mapping->host;
1870         struct ext3_inode_info *ei = EXT3_I(inode);
1871         handle_t *handle;
1872         ssize_t ret;
1873         int orphan = 0;
1874         size_t count = iov_length(iov, nr_segs);
1875         int retries = 0;
1876
1877         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1878
1879         if (rw == WRITE) {
1880                 loff_t final_size = offset + count;
1881
1882                 if (final_size > inode->i_size) {
1883                         /* Credits for sb + inode write */
1884                         handle = ext3_journal_start(inode, 2);
1885                         if (IS_ERR(handle)) {
1886                                 ret = PTR_ERR(handle);
1887                                 goto out;
1888                         }
1889                         ret = ext3_orphan_add(handle, inode);
1890                         if (ret) {
1891                                 ext3_journal_stop(handle);
1892                                 goto out;
1893                         }
1894                         orphan = 1;
1895                         ei->i_disksize = inode->i_size;
1896                         ext3_journal_stop(handle);
1897                 }
1898         }
1899
1900 retry:
1901         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1902                                  ext3_get_block);
1903         /*
1904          * In case of error extending write may have instantiated a few
1905          * blocks outside i_size. Trim these off again.
1906          */
1907         if (unlikely((rw & WRITE) && ret < 0)) {
1908                 loff_t isize = i_size_read(inode);
1909                 loff_t end = offset + iov_length(iov, nr_segs);
1910
1911                 if (end > isize)
1912                         ext3_truncate_failed_direct_write(inode);
1913         }
1914         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1915                 goto retry;
1916
1917         if (orphan) {
1918                 int err;
1919
1920                 /* Credits for sb + inode write */
1921                 handle = ext3_journal_start(inode, 2);
1922                 if (IS_ERR(handle)) {
1923                         /* This is really bad luck. We've written the data
1924                          * but cannot extend i_size. Truncate allocated blocks
1925                          * and pretend the write failed... */
1926                         ext3_truncate_failed_direct_write(inode);
1927                         ret = PTR_ERR(handle);
1928                         goto out;
1929                 }
1930                 if (inode->i_nlink)
1931                         ext3_orphan_del(handle, inode);
1932                 if (ret > 0) {
1933                         loff_t end = offset + ret;
1934                         if (end > inode->i_size) {
1935                                 ei->i_disksize = end;
1936                                 i_size_write(inode, end);
1937                                 /*
1938                                  * We're going to return a positive `ret'
1939                                  * here due to non-zero-length I/O, so there's
1940                                  * no way of reporting error returns from
1941                                  * ext3_mark_inode_dirty() to userspace.  So
1942                                  * ignore it.
1943                                  */
1944                                 ext3_mark_inode_dirty(handle, inode);
1945                         }
1946                 }
1947                 err = ext3_journal_stop(handle);
1948                 if (ret == 0)
1949                         ret = err;
1950         }
1951 out:
1952         trace_ext3_direct_IO_exit(inode, offset,
1953                                 iov_length(iov, nr_segs), rw, ret);
1954         return ret;
1955 }
1956
1957 /*
1958  * Pages can be marked dirty completely asynchronously from ext3's journalling
1959  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1960  * much here because ->set_page_dirty is called under VFS locks.  The page is
1961  * not necessarily locked.
1962  *
1963  * We cannot just dirty the page and leave attached buffers clean, because the
1964  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1965  * or jbddirty because all the journalling code will explode.
1966  *
1967  * So what we do is to mark the page "pending dirty" and next time writepage
1968  * is called, propagate that into the buffers appropriately.
1969  */
1970 static int ext3_journalled_set_page_dirty(struct page *page)
1971 {
1972         SetPageChecked(page);
1973         return __set_page_dirty_nobuffers(page);
1974 }
1975
1976 static const struct address_space_operations ext3_ordered_aops = {
1977         .readpage               = ext3_readpage,
1978         .readpages              = ext3_readpages,
1979         .writepage              = ext3_ordered_writepage,
1980         .write_begin            = ext3_write_begin,
1981         .write_end              = ext3_ordered_write_end,
1982         .bmap                   = ext3_bmap,
1983         .invalidatepage         = ext3_invalidatepage,
1984         .releasepage            = ext3_releasepage,
1985         .direct_IO              = ext3_direct_IO,
1986         .migratepage            = buffer_migrate_page,
1987         .is_partially_uptodate  = block_is_partially_uptodate,
1988         .is_dirty_writeback     = buffer_check_dirty_writeback,
1989         .error_remove_page      = generic_error_remove_page,
1990 };
1991
1992 static const struct address_space_operations ext3_writeback_aops = {
1993         .readpage               = ext3_readpage,
1994         .readpages              = ext3_readpages,
1995         .writepage              = ext3_writeback_writepage,
1996         .write_begin            = ext3_write_begin,
1997         .write_end              = ext3_writeback_write_end,
1998         .bmap                   = ext3_bmap,
1999         .invalidatepage         = ext3_invalidatepage,
2000         .releasepage            = ext3_releasepage,
2001         .direct_IO              = ext3_direct_IO,
2002         .migratepage            = buffer_migrate_page,
2003         .is_partially_uptodate  = block_is_partially_uptodate,
2004         .error_remove_page      = generic_error_remove_page,
2005 };
2006
2007 static const struct address_space_operations ext3_journalled_aops = {
2008         .readpage               = ext3_readpage,
2009         .readpages              = ext3_readpages,
2010         .writepage              = ext3_journalled_writepage,
2011         .write_begin            = ext3_write_begin,
2012         .write_end              = ext3_journalled_write_end,
2013         .set_page_dirty         = ext3_journalled_set_page_dirty,
2014         .bmap                   = ext3_bmap,
2015         .invalidatepage         = ext3_invalidatepage,
2016         .releasepage            = ext3_releasepage,
2017         .is_partially_uptodate  = block_is_partially_uptodate,
2018         .error_remove_page      = generic_error_remove_page,
2019 };
2020
2021 void ext3_set_aops(struct inode *inode)
2022 {
2023         if (ext3_should_order_data(inode))
2024                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2025         else if (ext3_should_writeback_data(inode))
2026                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2027         else
2028                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2029 }
2030
2031 /*
2032  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2033  * up to the end of the block which corresponds to `from'.
2034  * This required during truncate. We need to physically zero the tail end
2035  * of that block so it doesn't yield old data if the file is later grown.
2036  */
2037 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2038 {
2039         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2040         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2041         unsigned blocksize, iblock, length, pos;
2042         struct page *page;
2043         handle_t *handle = NULL;
2044         struct buffer_head *bh;
2045         int err = 0;
2046
2047         /* Truncated on block boundary - nothing to do */
2048         blocksize = inode->i_sb->s_blocksize;
2049         if ((from & (blocksize - 1)) == 0)
2050                 return 0;
2051
2052         page = grab_cache_page(inode->i_mapping, index);
2053         if (!page)
2054                 return -ENOMEM;
2055         length = blocksize - (offset & (blocksize - 1));
2056         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2057
2058         if (!page_has_buffers(page))
2059                 create_empty_buffers(page, blocksize, 0);
2060
2061         /* Find the buffer that contains "offset" */
2062         bh = page_buffers(page);
2063         pos = blocksize;
2064         while (offset >= pos) {
2065                 bh = bh->b_this_page;
2066                 iblock++;
2067                 pos += blocksize;
2068         }
2069
2070         err = 0;
2071         if (buffer_freed(bh)) {
2072                 BUFFER_TRACE(bh, "freed: skip");
2073                 goto unlock;
2074         }
2075
2076         if (!buffer_mapped(bh)) {
2077                 BUFFER_TRACE(bh, "unmapped");
2078                 ext3_get_block(inode, iblock, bh, 0);
2079                 /* unmapped? It's a hole - nothing to do */
2080                 if (!buffer_mapped(bh)) {
2081                         BUFFER_TRACE(bh, "still unmapped");
2082                         goto unlock;
2083                 }
2084         }
2085
2086         /* Ok, it's mapped. Make sure it's up-to-date */
2087         if (PageUptodate(page))
2088                 set_buffer_uptodate(bh);
2089
2090         if (!bh_uptodate_or_lock(bh)) {
2091                 err = bh_submit_read(bh);
2092                 /* Uhhuh. Read error. Complain and punt. */
2093                 if (err)
2094                         goto unlock;
2095         }
2096
2097         /* data=writeback mode doesn't need transaction to zero-out data */
2098         if (!ext3_should_writeback_data(inode)) {
2099                 /* We journal at most one block */
2100                 handle = ext3_journal_start(inode, 1);
2101                 if (IS_ERR(handle)) {
2102                         clear_highpage(page);
2103                         flush_dcache_page(page);
2104                         err = PTR_ERR(handle);
2105                         goto unlock;
2106                 }
2107         }
2108
2109         if (ext3_should_journal_data(inode)) {
2110                 BUFFER_TRACE(bh, "get write access");
2111                 err = ext3_journal_get_write_access(handle, bh);
2112                 if (err)
2113                         goto stop;
2114         }
2115
2116         zero_user(page, offset, length);
2117         BUFFER_TRACE(bh, "zeroed end of block");
2118
2119         err = 0;
2120         if (ext3_should_journal_data(inode)) {
2121                 err = ext3_journal_dirty_metadata(handle, bh);
2122         } else {
2123                 if (ext3_should_order_data(inode))
2124                         err = ext3_journal_dirty_data(handle, bh);
2125                 mark_buffer_dirty(bh);
2126         }
2127 stop:
2128         if (handle)
2129                 ext3_journal_stop(handle);
2130
2131 unlock:
2132         unlock_page(page);
2133         page_cache_release(page);
2134         return err;
2135 }
2136
2137 /*
2138  * Probably it should be a library function... search for first non-zero word
2139  * or memcmp with zero_page, whatever is better for particular architecture.
2140  * Linus?
2141  */
2142 static inline int all_zeroes(__le32 *p, __le32 *q)
2143 {
2144         while (p < q)
2145                 if (*p++)
2146                         return 0;
2147         return 1;
2148 }
2149
2150 /**
2151  *      ext3_find_shared - find the indirect blocks for partial truncation.
2152  *      @inode:   inode in question
2153  *      @depth:   depth of the affected branch
2154  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2155  *      @chain:   place to store the pointers to partial indirect blocks
2156  *      @top:     place to the (detached) top of branch
2157  *
2158  *      This is a helper function used by ext3_truncate().
2159  *
2160  *      When we do truncate() we may have to clean the ends of several
2161  *      indirect blocks but leave the blocks themselves alive. Block is
2162  *      partially truncated if some data below the new i_size is referred
2163  *      from it (and it is on the path to the first completely truncated
2164  *      data block, indeed).  We have to free the top of that path along
2165  *      with everything to the right of the path. Since no allocation
2166  *      past the truncation point is possible until ext3_truncate()
2167  *      finishes, we may safely do the latter, but top of branch may
2168  *      require special attention - pageout below the truncation point
2169  *      might try to populate it.
2170  *
2171  *      We atomically detach the top of branch from the tree, store the
2172  *      block number of its root in *@top, pointers to buffer_heads of
2173  *      partially truncated blocks - in @chain[].bh and pointers to
2174  *      their last elements that should not be removed - in
2175  *      @chain[].p. Return value is the pointer to last filled element
2176  *      of @chain.
2177  *
2178  *      The work left to caller to do the actual freeing of subtrees:
2179  *              a) free the subtree starting from *@top
2180  *              b) free the subtrees whose roots are stored in
2181  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2182  *              c) free the subtrees growing from the inode past the @chain[0].
2183  *                      (no partially truncated stuff there).  */
2184
2185 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2186                         int offsets[4], Indirect chain[4], __le32 *top)
2187 {
2188         Indirect *partial, *p;
2189         int k, err;
2190
2191         *top = 0;
2192         /* Make k index the deepest non-null offset + 1 */
2193         for (k = depth; k > 1 && !offsets[k-1]; k--)
2194                 ;
2195         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2196         /* Writer: pointers */
2197         if (!partial)
2198                 partial = chain + k-1;
2199         /*
2200          * If the branch acquired continuation since we've looked at it -
2201          * fine, it should all survive and (new) top doesn't belong to us.
2202          */
2203         if (!partial->key && *partial->p)
2204                 /* Writer: end */
2205                 goto no_top;
2206         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2207                 ;
2208         /*
2209          * OK, we've found the last block that must survive. The rest of our
2210          * branch should be detached before unlocking. However, if that rest
2211          * of branch is all ours and does not grow immediately from the inode
2212          * it's easier to cheat and just decrement partial->p.
2213          */
2214         if (p == chain + k - 1 && p > chain) {
2215                 p->p--;
2216         } else {
2217                 *top = *p->p;
2218                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2219 #if 0
2220                 *p->p = 0;
2221 #endif
2222         }
2223         /* Writer: end */
2224
2225         while(partial > p) {
2226                 brelse(partial->bh);
2227                 partial--;
2228         }
2229 no_top:
2230         return partial;
2231 }
2232
2233 /*
2234  * Zero a number of block pointers in either an inode or an indirect block.
2235  * If we restart the transaction we must again get write access to the
2236  * indirect block for further modification.
2237  *
2238  * We release `count' blocks on disk, but (last - first) may be greater
2239  * than `count' because there can be holes in there.
2240  */
2241 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2242                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2243                 unsigned long count, __le32 *first, __le32 *last)
2244 {
2245         __le32 *p;
2246         if (try_to_extend_transaction(handle, inode)) {
2247                 if (bh) {
2248                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2249                         if (ext3_journal_dirty_metadata(handle, bh))
2250                                 return;
2251                 }
2252                 ext3_mark_inode_dirty(handle, inode);
2253                 truncate_restart_transaction(handle, inode);
2254                 if (bh) {
2255                         BUFFER_TRACE(bh, "retaking write access");
2256                         if (ext3_journal_get_write_access(handle, bh))
2257                                 return;
2258                 }
2259         }
2260
2261         /*
2262          * Any buffers which are on the journal will be in memory. We find
2263          * them on the hash table so journal_revoke() will run journal_forget()
2264          * on them.  We've already detached each block from the file, so
2265          * bforget() in journal_forget() should be safe.
2266          *
2267          * AKPM: turn on bforget in journal_forget()!!!
2268          */
2269         for (p = first; p < last; p++) {
2270                 u32 nr = le32_to_cpu(*p);
2271                 if (nr) {
2272                         struct buffer_head *bh;
2273
2274                         *p = 0;
2275                         bh = sb_find_get_block(inode->i_sb, nr);
2276                         ext3_forget(handle, 0, inode, bh, nr);
2277                 }
2278         }
2279
2280         ext3_free_blocks(handle, inode, block_to_free, count);
2281 }
2282
2283 /**
2284  * ext3_free_data - free a list of data blocks
2285  * @handle:     handle for this transaction
2286  * @inode:      inode we are dealing with
2287  * @this_bh:    indirect buffer_head which contains *@first and *@last
2288  * @first:      array of block numbers
2289  * @last:       points immediately past the end of array
2290  *
2291  * We are freeing all blocks referred from that array (numbers are stored as
2292  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2293  *
2294  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2295  * blocks are contiguous then releasing them at one time will only affect one
2296  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2297  * actually use a lot of journal space.
2298  *
2299  * @this_bh will be %NULL if @first and @last point into the inode's direct
2300  * block pointers.
2301  */
2302 static void ext3_free_data(handle_t *handle, struct inode *inode,
2303                            struct buffer_head *this_bh,
2304                            __le32 *first, __le32 *last)
2305 {
2306         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2307         unsigned long count = 0;            /* Number of blocks in the run */
2308         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2309                                                corresponding to
2310                                                block_to_free */
2311         ext3_fsblk_t nr;                    /* Current block # */
2312         __le32 *p;                          /* Pointer into inode/ind
2313                                                for current block */
2314         int err;
2315
2316         if (this_bh) {                          /* For indirect block */
2317                 BUFFER_TRACE(this_bh, "get_write_access");
2318                 err = ext3_journal_get_write_access(handle, this_bh);
2319                 /* Important: if we can't update the indirect pointers
2320                  * to the blocks, we can't free them. */
2321                 if (err)
2322                         return;
2323         }
2324
2325         for (p = first; p < last; p++) {
2326                 nr = le32_to_cpu(*p);
2327                 if (nr) {
2328                         /* accumulate blocks to free if they're contiguous */
2329                         if (count == 0) {
2330                                 block_to_free = nr;
2331                                 block_to_free_p = p;
2332                                 count = 1;
2333                         } else if (nr == block_to_free + count) {
2334                                 count++;
2335                         } else {
2336                                 ext3_clear_blocks(handle, inode, this_bh,
2337                                                   block_to_free,
2338                                                   count, block_to_free_p, p);
2339                                 block_to_free = nr;
2340                                 block_to_free_p = p;
2341                                 count = 1;
2342                         }
2343                 }
2344         }
2345
2346         if (count > 0)
2347                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2348                                   count, block_to_free_p, p);
2349
2350         if (this_bh) {
2351                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2352
2353                 /*
2354                  * The buffer head should have an attached journal head at this
2355                  * point. However, if the data is corrupted and an indirect
2356                  * block pointed to itself, it would have been detached when
2357                  * the block was cleared. Check for this instead of OOPSing.
2358                  */
2359                 if (bh2jh(this_bh))
2360                         ext3_journal_dirty_metadata(handle, this_bh);
2361                 else
2362                         ext3_error(inode->i_sb, "ext3_free_data",
2363                                    "circular indirect block detected, "
2364                                    "inode=%lu, block=%llu",
2365                                    inode->i_ino,
2366                                    (unsigned long long)this_bh->b_blocknr);
2367         }
2368 }
2369
2370 /**
2371  *      ext3_free_branches - free an array of branches
2372  *      @handle: JBD handle for this transaction
2373  *      @inode: inode we are dealing with
2374  *      @parent_bh: the buffer_head which contains *@first and *@last
2375  *      @first: array of block numbers
2376  *      @last:  pointer immediately past the end of array
2377  *      @depth: depth of the branches to free
2378  *
2379  *      We are freeing all blocks referred from these branches (numbers are
2380  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2381  *      appropriately.
2382  */
2383 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2384                                struct buffer_head *parent_bh,
2385                                __le32 *first, __le32 *last, int depth)
2386 {
2387         ext3_fsblk_t nr;
2388         __le32 *p;
2389
2390         if (is_handle_aborted(handle))
2391                 return;
2392
2393         if (depth--) {
2394                 struct buffer_head *bh;
2395                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2396                 p = last;
2397                 while (--p >= first) {
2398                         nr = le32_to_cpu(*p);
2399                         if (!nr)
2400                                 continue;               /* A hole */
2401
2402                         /* Go read the buffer for the next level down */
2403                         bh = sb_bread(inode->i_sb, nr);
2404
2405                         /*
2406                          * A read failure? Report error and clear slot
2407                          * (should be rare).
2408                          */
2409                         if (!bh) {
2410                                 ext3_error(inode->i_sb, "ext3_free_branches",
2411                                            "Read failure, inode=%lu, block="E3FSBLK,
2412                                            inode->i_ino, nr);
2413                                 continue;
2414                         }
2415
2416                         /* This zaps the entire block.  Bottom up. */
2417                         BUFFER_TRACE(bh, "free child branches");
2418                         ext3_free_branches(handle, inode, bh,
2419                                            (__le32*)bh->b_data,
2420                                            (__le32*)bh->b_data + addr_per_block,
2421                                            depth);
2422
2423                         /*
2424                          * Everything below this this pointer has been
2425                          * released.  Now let this top-of-subtree go.
2426                          *
2427                          * We want the freeing of this indirect block to be
2428                          * atomic in the journal with the updating of the
2429                          * bitmap block which owns it.  So make some room in
2430                          * the journal.
2431                          *
2432                          * We zero the parent pointer *after* freeing its
2433                          * pointee in the bitmaps, so if extend_transaction()
2434                          * for some reason fails to put the bitmap changes and
2435                          * the release into the same transaction, recovery
2436                          * will merely complain about releasing a free block,
2437                          * rather than leaking blocks.
2438                          */
2439                         if (is_handle_aborted(handle))
2440                                 return;
2441                         if (try_to_extend_transaction(handle, inode)) {
2442                                 ext3_mark_inode_dirty(handle, inode);
2443                                 truncate_restart_transaction(handle, inode);
2444                         }
2445
2446                         /*
2447                          * We've probably journalled the indirect block several
2448                          * times during the truncate.  But it's no longer
2449                          * needed and we now drop it from the transaction via
2450                          * journal_revoke().
2451                          *
2452                          * That's easy if it's exclusively part of this
2453                          * transaction.  But if it's part of the committing
2454                          * transaction then journal_forget() will simply
2455                          * brelse() it.  That means that if the underlying
2456                          * block is reallocated in ext3_get_block(),
2457                          * unmap_underlying_metadata() will find this block
2458                          * and will try to get rid of it.  damn, damn. Thus
2459                          * we don't allow a block to be reallocated until
2460                          * a transaction freeing it has fully committed.
2461                          *
2462                          * We also have to make sure journal replay after a
2463                          * crash does not overwrite non-journaled data blocks
2464                          * with old metadata when the block got reallocated for
2465                          * data.  Thus we have to store a revoke record for a
2466                          * block in the same transaction in which we free the
2467                          * block.
2468                          */
2469                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2470
2471                         ext3_free_blocks(handle, inode, nr, 1);
2472
2473                         if (parent_bh) {
2474                                 /*
2475                                  * The block which we have just freed is
2476                                  * pointed to by an indirect block: journal it
2477                                  */
2478                                 BUFFER_TRACE(parent_bh, "get_write_access");
2479                                 if (!ext3_journal_get_write_access(handle,
2480                                                                    parent_bh)){
2481                                         *p = 0;
2482                                         BUFFER_TRACE(parent_bh,
2483                                         "call ext3_journal_dirty_metadata");
2484                                         ext3_journal_dirty_metadata(handle,
2485                                                                     parent_bh);
2486                                 }
2487                         }
2488                 }
2489         } else {
2490                 /* We have reached the bottom of the tree. */
2491                 BUFFER_TRACE(parent_bh, "free data blocks");
2492                 ext3_free_data(handle, inode, parent_bh, first, last);
2493         }
2494 }
2495
2496 int ext3_can_truncate(struct inode *inode)
2497 {
2498         if (S_ISREG(inode->i_mode))
2499                 return 1;
2500         if (S_ISDIR(inode->i_mode))
2501                 return 1;
2502         if (S_ISLNK(inode->i_mode))
2503                 return !ext3_inode_is_fast_symlink(inode);
2504         return 0;
2505 }
2506
2507 /*
2508  * ext3_truncate()
2509  *
2510  * We block out ext3_get_block() block instantiations across the entire
2511  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2512  * simultaneously on behalf of the same inode.
2513  *
2514  * As we work through the truncate and commit bits of it to the journal there
2515  * is one core, guiding principle: the file's tree must always be consistent on
2516  * disk.  We must be able to restart the truncate after a crash.
2517  *
2518  * The file's tree may be transiently inconsistent in memory (although it
2519  * probably isn't), but whenever we close off and commit a journal transaction,
2520  * the contents of (the filesystem + the journal) must be consistent and
2521  * restartable.  It's pretty simple, really: bottom up, right to left (although
2522  * left-to-right works OK too).
2523  *
2524  * Note that at recovery time, journal replay occurs *before* the restart of
2525  * truncate against the orphan inode list.
2526  *
2527  * The committed inode has the new, desired i_size (which is the same as
2528  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2529  * that this inode's truncate did not complete and it will again call
2530  * ext3_truncate() to have another go.  So there will be instantiated blocks
2531  * to the right of the truncation point in a crashed ext3 filesystem.  But
2532  * that's fine - as long as they are linked from the inode, the post-crash
2533  * ext3_truncate() run will find them and release them.
2534  */
2535 void ext3_truncate(struct inode *inode)
2536 {
2537         handle_t *handle;
2538         struct ext3_inode_info *ei = EXT3_I(inode);
2539         __le32 *i_data = ei->i_data;
2540         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2541         int offsets[4];
2542         Indirect chain[4];
2543         Indirect *partial;
2544         __le32 nr = 0;
2545         int n;
2546         long last_block;
2547         unsigned blocksize = inode->i_sb->s_blocksize;
2548
2549         trace_ext3_truncate_enter(inode);
2550
2551         if (!ext3_can_truncate(inode))
2552                 goto out_notrans;
2553
2554         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2555                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2556
2557         handle = start_transaction(inode);
2558         if (IS_ERR(handle))
2559                 goto out_notrans;
2560
2561         last_block = (inode->i_size + blocksize-1)
2562                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2563         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2564         if (n == 0)
2565                 goto out_stop;  /* error */
2566
2567         /*
2568          * OK.  This truncate is going to happen.  We add the inode to the
2569          * orphan list, so that if this truncate spans multiple transactions,
2570          * and we crash, we will resume the truncate when the filesystem
2571          * recovers.  It also marks the inode dirty, to catch the new size.
2572          *
2573          * Implication: the file must always be in a sane, consistent
2574          * truncatable state while each transaction commits.
2575          */
2576         if (ext3_orphan_add(handle, inode))
2577                 goto out_stop;
2578
2579         /*
2580          * The orphan list entry will now protect us from any crash which
2581          * occurs before the truncate completes, so it is now safe to propagate
2582          * the new, shorter inode size (held for now in i_size) into the
2583          * on-disk inode. We do this via i_disksize, which is the value which
2584          * ext3 *really* writes onto the disk inode.
2585          */
2586         ei->i_disksize = inode->i_size;
2587
2588         /*
2589          * From here we block out all ext3_get_block() callers who want to
2590          * modify the block allocation tree.
2591          */
2592         mutex_lock(&ei->truncate_mutex);
2593
2594         if (n == 1) {           /* direct blocks */
2595                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2596                                i_data + EXT3_NDIR_BLOCKS);
2597                 goto do_indirects;
2598         }
2599
2600         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2601         /* Kill the top of shared branch (not detached) */
2602         if (nr) {
2603                 if (partial == chain) {
2604                         /* Shared branch grows from the inode */
2605                         ext3_free_branches(handle, inode, NULL,
2606                                            &nr, &nr+1, (chain+n-1) - partial);
2607                         *partial->p = 0;
2608                         /*
2609                          * We mark the inode dirty prior to restart,
2610                          * and prior to stop.  No need for it here.
2611                          */
2612                 } else {
2613                         /* Shared branch grows from an indirect block */
2614                         ext3_free_branches(handle, inode, partial->bh,
2615                                         partial->p,
2616                                         partial->p+1, (chain+n-1) - partial);
2617                 }
2618         }
2619         /* Clear the ends of indirect blocks on the shared branch */
2620         while (partial > chain) {
2621                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2622                                    (__le32*)partial->bh->b_data+addr_per_block,
2623                                    (chain+n-1) - partial);
2624                 BUFFER_TRACE(partial->bh, "call brelse");
2625                 brelse (partial->bh);
2626                 partial--;
2627         }
2628 do_indirects:
2629         /* Kill the remaining (whole) subtrees */
2630         switch (offsets[0]) {
2631         default:
2632                 nr = i_data[EXT3_IND_BLOCK];
2633                 if (nr) {
2634                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2635                         i_data[EXT3_IND_BLOCK] = 0;
2636                 }
2637         case EXT3_IND_BLOCK:
2638                 nr = i_data[EXT3_DIND_BLOCK];
2639                 if (nr) {
2640                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2641                         i_data[EXT3_DIND_BLOCK] = 0;
2642                 }
2643         case EXT3_DIND_BLOCK:
2644                 nr = i_data[EXT3_TIND_BLOCK];
2645                 if (nr) {
2646                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2647                         i_data[EXT3_TIND_BLOCK] = 0;
2648                 }
2649         case EXT3_TIND_BLOCK:
2650                 ;
2651         }
2652
2653         ext3_discard_reservation(inode);
2654
2655         mutex_unlock(&ei->truncate_mutex);
2656         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2657         ext3_mark_inode_dirty(handle, inode);
2658
2659         /*
2660          * In a multi-transaction truncate, we only make the final transaction
2661          * synchronous
2662          */
2663         if (IS_SYNC(inode))
2664                 handle->h_sync = 1;
2665 out_stop:
2666         /*
2667          * If this was a simple ftruncate(), and the file will remain alive
2668          * then we need to clear up the orphan record which we created above.
2669          * However, if this was a real unlink then we were called by
2670          * ext3_evict_inode(), and we allow that function to clean up the
2671          * orphan info for us.
2672          */
2673         if (inode->i_nlink)
2674                 ext3_orphan_del(handle, inode);
2675
2676         ext3_journal_stop(handle);
2677         trace_ext3_truncate_exit(inode);
2678         return;
2679 out_notrans:
2680         /*
2681          * Delete the inode from orphan list so that it doesn't stay there
2682          * forever and trigger assertion on umount.
2683          */
2684         if (inode->i_nlink)
2685                 ext3_orphan_del(NULL, inode);
2686         trace_ext3_truncate_exit(inode);
2687 }
2688
2689 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2690                 unsigned long ino, struct ext3_iloc *iloc)
2691 {
2692         unsigned long block_group;
2693         unsigned long offset;
2694         ext3_fsblk_t block;
2695         struct ext3_group_desc *gdp;
2696
2697         if (!ext3_valid_inum(sb, ino)) {
2698                 /*
2699                  * This error is already checked for in namei.c unless we are
2700                  * looking at an NFS filehandle, in which case no error
2701                  * report is needed
2702                  */
2703                 return 0;
2704         }
2705
2706         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2707         gdp = ext3_get_group_desc(sb, block_group, NULL);
2708         if (!gdp)
2709                 return 0;
2710         /*
2711          * Figure out the offset within the block group inode table
2712          */
2713         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2714                 EXT3_INODE_SIZE(sb);
2715         block = le32_to_cpu(gdp->bg_inode_table) +
2716                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2717
2718         iloc->block_group = block_group;
2719         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2720         return block;
2721 }
2722
2723 /*
2724  * ext3_get_inode_loc returns with an extra refcount against the inode's
2725  * underlying buffer_head on success. If 'in_mem' is true, we have all
2726  * data in memory that is needed to recreate the on-disk version of this
2727  * inode.
2728  */
2729 static int __ext3_get_inode_loc(struct inode *inode,
2730                                 struct ext3_iloc *iloc, int in_mem)
2731 {
2732         ext3_fsblk_t block;
2733         struct buffer_head *bh;
2734
2735         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2736         if (!block)
2737                 return -EIO;
2738
2739         bh = sb_getblk(inode->i_sb, block);
2740         if (unlikely(!bh)) {
2741                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2742                                 "unable to read inode block - "
2743                                 "inode=%lu, block="E3FSBLK,
2744                                  inode->i_ino, block);
2745                 return -ENOMEM;
2746         }
2747         if (!buffer_uptodate(bh)) {
2748                 lock_buffer(bh);
2749
2750                 /*
2751                  * If the buffer has the write error flag, we have failed
2752                  * to write out another inode in the same block.  In this
2753                  * case, we don't have to read the block because we may
2754                  * read the old inode data successfully.
2755                  */
2756                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2757                         set_buffer_uptodate(bh);
2758
2759                 if (buffer_uptodate(bh)) {
2760                         /* someone brought it uptodate while we waited */
2761                         unlock_buffer(bh);
2762                         goto has_buffer;
2763                 }
2764
2765                 /*
2766                  * If we have all information of the inode in memory and this
2767                  * is the only valid inode in the block, we need not read the
2768                  * block.
2769                  */
2770                 if (in_mem) {
2771                         struct buffer_head *bitmap_bh;
2772                         struct ext3_group_desc *desc;
2773                         int inodes_per_buffer;
2774                         int inode_offset, i;
2775                         int block_group;
2776                         int start;
2777
2778                         block_group = (inode->i_ino - 1) /
2779                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2780                         inodes_per_buffer = bh->b_size /
2781                                 EXT3_INODE_SIZE(inode->i_sb);
2782                         inode_offset = ((inode->i_ino - 1) %
2783                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2784                         start = inode_offset & ~(inodes_per_buffer - 1);
2785
2786                         /* Is the inode bitmap in cache? */
2787                         desc = ext3_get_group_desc(inode->i_sb,
2788                                                 block_group, NULL);
2789                         if (!desc)
2790                                 goto make_io;
2791
2792                         bitmap_bh = sb_getblk(inode->i_sb,
2793                                         le32_to_cpu(desc->bg_inode_bitmap));
2794                         if (unlikely(!bitmap_bh))
2795                                 goto make_io;
2796
2797                         /*
2798                          * If the inode bitmap isn't in cache then the
2799                          * optimisation may end up performing two reads instead
2800                          * of one, so skip it.
2801                          */
2802                         if (!buffer_uptodate(bitmap_bh)) {
2803                                 brelse(bitmap_bh);
2804                                 goto make_io;
2805                         }
2806                         for (i = start; i < start + inodes_per_buffer; i++) {
2807                                 if (i == inode_offset)
2808                                         continue;
2809                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2810                                         break;
2811                         }
2812                         brelse(bitmap_bh);
2813                         if (i == start + inodes_per_buffer) {
2814                                 /* all other inodes are free, so skip I/O */
2815                                 memset(bh->b_data, 0, bh->b_size);
2816                                 set_buffer_uptodate(bh);
2817                                 unlock_buffer(bh);
2818                                 goto has_buffer;
2819                         }
2820                 }
2821
2822 make_io:
2823                 /*
2824                  * There are other valid inodes in the buffer, this inode
2825                  * has in-inode xattrs, or we don't have this inode in memory.
2826                  * Read the block from disk.
2827                  */
2828                 trace_ext3_load_inode(inode);
2829                 get_bh(bh);
2830                 bh->b_end_io = end_buffer_read_sync;
2831                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2832                 wait_on_buffer(bh);
2833                 if (!buffer_uptodate(bh)) {
2834                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2835                                         "unable to read inode block - "
2836                                         "inode=%lu, block="E3FSBLK,
2837                                         inode->i_ino, block);
2838                         brelse(bh);
2839                         return -EIO;
2840                 }
2841         }
2842 has_buffer:
2843         iloc->bh = bh;
2844         return 0;
2845 }
2846
2847 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2848 {
2849         /* We have all inode data except xattrs in memory here. */
2850         return __ext3_get_inode_loc(inode, iloc,
2851                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2852 }
2853
2854 void ext3_set_inode_flags(struct inode *inode)
2855 {
2856         unsigned int flags = EXT3_I(inode)->i_flags;
2857
2858         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2859         if (flags & EXT3_SYNC_FL)
2860                 inode->i_flags |= S_SYNC;
2861         if (flags & EXT3_APPEND_FL)
2862                 inode->i_flags |= S_APPEND;
2863         if (flags & EXT3_IMMUTABLE_FL)
2864                 inode->i_flags |= S_IMMUTABLE;
2865         if (flags & EXT3_NOATIME_FL)
2866                 inode->i_flags |= S_NOATIME;
2867         if (flags & EXT3_DIRSYNC_FL)
2868                 inode->i_flags |= S_DIRSYNC;
2869 }
2870
2871 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2872 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2873 {
2874         unsigned int flags = ei->vfs_inode.i_flags;
2875
2876         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2877                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2878         if (flags & S_SYNC)
2879                 ei->i_flags |= EXT3_SYNC_FL;
2880         if (flags & S_APPEND)
2881                 ei->i_flags |= EXT3_APPEND_FL;
2882         if (flags & S_IMMUTABLE)
2883                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2884         if (flags & S_NOATIME)
2885                 ei->i_flags |= EXT3_NOATIME_FL;
2886         if (flags & S_DIRSYNC)
2887                 ei->i_flags |= EXT3_DIRSYNC_FL;
2888 }
2889
2890 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2891 {
2892         struct ext3_iloc iloc;
2893         struct ext3_inode *raw_inode;
2894         struct ext3_inode_info *ei;
2895         struct buffer_head *bh;
2896         struct inode *inode;
2897         journal_t *journal = EXT3_SB(sb)->s_journal;
2898         transaction_t *transaction;
2899         long ret;
2900         int block;
2901         uid_t i_uid;
2902         gid_t i_gid;
2903
2904         inode = iget_locked(sb, ino);
2905         if (!inode)
2906                 return ERR_PTR(-ENOMEM);
2907         if (!(inode->i_state & I_NEW))
2908                 return inode;
2909
2910         ei = EXT3_I(inode);
2911         ei->i_block_alloc_info = NULL;
2912
2913         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2914         if (ret < 0)
2915                 goto bad_inode;
2916         bh = iloc.bh;
2917         raw_inode = ext3_raw_inode(&iloc);
2918         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2919         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2920         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2921         if(!(test_opt (inode->i_sb, NO_UID32))) {
2922                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2923                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2924         }
2925         i_uid_write(inode, i_uid);
2926         i_gid_write(inode, i_gid);
2927         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2928         inode->i_size = le32_to_cpu(raw_inode->i_size);
2929         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2930         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2931         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2932         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2933
2934         ei->i_state_flags = 0;
2935         ei->i_dir_start_lookup = 0;
2936         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2937         /* We now have enough fields to check if the inode was active or not.
2938          * This is needed because nfsd might try to access dead inodes
2939          * the test is that same one that e2fsck uses
2940          * NeilBrown 1999oct15
2941          */
2942         if (inode->i_nlink == 0) {
2943                 if (inode->i_mode == 0 ||
2944                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2945                         /* this inode is deleted */
2946                         brelse (bh);
2947                         ret = -ESTALE;
2948                         goto bad_inode;
2949                 }
2950                 /* The only unlinked inodes we let through here have
2951                  * valid i_mode and are being read by the orphan
2952                  * recovery code: that's fine, we're about to complete
2953                  * the process of deleting those. */
2954         }
2955         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2956         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2957 #ifdef EXT3_FRAGMENTS
2958         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2959         ei->i_frag_no = raw_inode->i_frag;
2960         ei->i_frag_size = raw_inode->i_fsize;
2961 #endif
2962         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2963         if (!S_ISREG(inode->i_mode)) {
2964                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2965         } else {
2966                 inode->i_size |=
2967                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2968         }
2969         ei->i_disksize = inode->i_size;
2970         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2971         ei->i_block_group = iloc.block_group;
2972         /*
2973          * NOTE! The in-memory inode i_data array is in little-endian order
2974          * even on big-endian machines: we do NOT byteswap the block numbers!
2975          */
2976         for (block = 0; block < EXT3_N_BLOCKS; block++)
2977                 ei->i_data[block] = raw_inode->i_block[block];
2978         INIT_LIST_HEAD(&ei->i_orphan);
2979
2980         /*
2981          * Set transaction id's of transactions that have to be committed
2982          * to finish f[data]sync. We set them to currently running transaction
2983          * as we cannot be sure that the inode or some of its metadata isn't
2984          * part of the transaction - the inode could have been reclaimed and
2985          * now it is reread from disk.
2986          */
2987         if (journal) {
2988                 tid_t tid;
2989
2990                 spin_lock(&journal->j_state_lock);
2991                 if (journal->j_running_transaction)
2992                         transaction = journal->j_running_transaction;
2993                 else
2994                         transaction = journal->j_committing_transaction;
2995                 if (transaction)
2996                         tid = transaction->t_tid;
2997                 else
2998                         tid = journal->j_commit_sequence;
2999                 spin_unlock(&journal->j_state_lock);
3000                 atomic_set(&ei->i_sync_tid, tid);
3001                 atomic_set(&ei->i_datasync_tid, tid);
3002         }
3003
3004         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3005             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3006                 /*
3007                  * When mke2fs creates big inodes it does not zero out
3008                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3009                  * so ignore those first few inodes.
3010                  */
3011                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3012                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3013                     EXT3_INODE_SIZE(inode->i_sb)) {
3014                         brelse (bh);
3015                         ret = -EIO;
3016                         goto bad_inode;
3017                 }
3018                 if (ei->i_extra_isize == 0) {
3019                         /* The extra space is currently unused. Use it. */
3020                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3021                                             EXT3_GOOD_OLD_INODE_SIZE;
3022                 } else {
3023                         __le32 *magic = (void *)raw_inode +
3024                                         EXT3_GOOD_OLD_INODE_SIZE +
3025                                         ei->i_extra_isize;
3026                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3027                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3028                 }
3029         } else
3030                 ei->i_extra_isize = 0;
3031
3032         if (S_ISREG(inode->i_mode)) {
3033                 inode->i_op = &ext3_file_inode_operations;
3034                 inode->i_fop = &ext3_file_operations;
3035                 ext3_set_aops(inode);
3036         } else if (S_ISDIR(inode->i_mode)) {
3037                 inode->i_op = &ext3_dir_inode_operations;
3038                 inode->i_fop = &ext3_dir_operations;
3039         } else if (S_ISLNK(inode->i_mode)) {
3040                 if (ext3_inode_is_fast_symlink(inode)) {
3041                         inode->i_op = &ext3_fast_symlink_inode_operations;
3042                         nd_terminate_link(ei->i_data, inode->i_size,
3043                                 sizeof(ei->i_data) - 1);
3044                 } else {
3045                         inode->i_op = &ext3_symlink_inode_operations;
3046                         ext3_set_aops(inode);
3047                 }
3048         } else {
3049                 inode->i_op = &ext3_special_inode_operations;
3050                 if (raw_inode->i_block[0])
3051                         init_special_inode(inode, inode->i_mode,
3052                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3053                 else
3054                         init_special_inode(inode, inode->i_mode,
3055                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3056         }
3057         brelse (iloc.bh);
3058         ext3_set_inode_flags(inode);
3059         unlock_new_inode(inode);
3060         return inode;
3061
3062 bad_inode:
3063         iget_failed(inode);
3064         return ERR_PTR(ret);
3065 }
3066
3067 /*
3068  * Post the struct inode info into an on-disk inode location in the
3069  * buffer-cache.  This gobbles the caller's reference to the
3070  * buffer_head in the inode location struct.
3071  *
3072  * The caller must have write access to iloc->bh.
3073  */
3074 static int ext3_do_update_inode(handle_t *handle,
3075                                 struct inode *inode,
3076                                 struct ext3_iloc *iloc)
3077 {
3078         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3079         struct ext3_inode_info *ei = EXT3_I(inode);
3080         struct buffer_head *bh = iloc->bh;
3081         int err = 0, rc, block;
3082         int need_datasync = 0;
3083         __le32 disksize;
3084         uid_t i_uid;
3085         gid_t i_gid;
3086
3087 again:
3088         /* we can't allow multiple procs in here at once, its a bit racey */
3089         lock_buffer(bh);
3090
3091         /* For fields not not tracking in the in-memory inode,
3092          * initialise them to zero for new inodes. */
3093         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3094                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3095
3096         ext3_get_inode_flags(ei);
3097         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3098         i_uid = i_uid_read(inode);
3099         i_gid = i_gid_read(inode);
3100         if(!(test_opt(inode->i_sb, NO_UID32))) {
3101                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3102                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3103 /*
3104  * Fix up interoperability with old kernels. Otherwise, old inodes get
3105  * re-used with the upper 16 bits of the uid/gid intact
3106  */
3107                 if(!ei->i_dtime) {
3108                         raw_inode->i_uid_high =
3109                                 cpu_to_le16(high_16_bits(i_uid));
3110                         raw_inode->i_gid_high =
3111                                 cpu_to_le16(high_16_bits(i_gid));
3112                 } else {
3113                         raw_inode->i_uid_high = 0;
3114                         raw_inode->i_gid_high = 0;
3115                 }
3116         } else {
3117                 raw_inode->i_uid_low =
3118                         cpu_to_le16(fs_high2lowuid(i_uid));
3119                 raw_inode->i_gid_low =
3120                         cpu_to_le16(fs_high2lowgid(i_gid));
3121                 raw_inode->i_uid_high = 0;
3122                 raw_inode->i_gid_high = 0;
3123         }
3124         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3125         disksize = cpu_to_le32(ei->i_disksize);
3126         if (disksize != raw_inode->i_size) {
3127                 need_datasync = 1;
3128                 raw_inode->i_size = disksize;
3129         }
3130         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3131         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3132         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3133         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3134         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3135         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3136 #ifdef EXT3_FRAGMENTS
3137         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3138         raw_inode->i_frag = ei->i_frag_no;
3139         raw_inode->i_fsize = ei->i_frag_size;
3140 #endif
3141         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3142         if (!S_ISREG(inode->i_mode)) {
3143                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3144         } else {
3145                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3146                 if (disksize != raw_inode->i_size_high) {
3147                         raw_inode->i_size_high = disksize;
3148                         need_datasync = 1;
3149                 }
3150                 if (ei->i_disksize > 0x7fffffffULL) {
3151                         struct super_block *sb = inode->i_sb;
3152                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3153                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3154                             EXT3_SB(sb)->s_es->s_rev_level ==
3155                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3156                                /* If this is the first large file
3157                                 * created, add a flag to the superblock.
3158                                 */
3159                                 unlock_buffer(bh);
3160                                 err = ext3_journal_get_write_access(handle,
3161                                                 EXT3_SB(sb)->s_sbh);
3162                                 if (err)
3163                                         goto out_brelse;
3164
3165                                 ext3_update_dynamic_rev(sb);
3166                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3167                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3168                                 handle->h_sync = 1;
3169                                 err = ext3_journal_dirty_metadata(handle,
3170                                                 EXT3_SB(sb)->s_sbh);
3171                                 /* get our lock and start over */
3172                                 goto again;
3173                         }
3174                 }
3175         }
3176         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3177         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3178                 if (old_valid_dev(inode->i_rdev)) {
3179                         raw_inode->i_block[0] =
3180                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3181                         raw_inode->i_block[1] = 0;
3182                 } else {
3183                         raw_inode->i_block[0] = 0;
3184                         raw_inode->i_block[1] =
3185                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3186                         raw_inode->i_block[2] = 0;
3187                 }
3188         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3189                 raw_inode->i_block[block] = ei->i_data[block];
3190
3191         if (ei->i_extra_isize)
3192                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3193
3194         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3195         unlock_buffer(bh);
3196         rc = ext3_journal_dirty_metadata(handle, bh);
3197         if (!err)
3198                 err = rc;
3199         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3200
3201         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3202         if (need_datasync)
3203                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3204 out_brelse:
3205         brelse (bh);
3206         ext3_std_error(inode->i_sb, err);
3207         return err;
3208 }
3209
3210 /*
3211  * ext3_write_inode()
3212  *
3213  * We are called from a few places:
3214  *
3215  * - Within generic_file_write() for O_SYNC files.
3216  *   Here, there will be no transaction running. We wait for any running
3217  *   transaction to commit.
3218  *
3219  * - Within sys_sync(), kupdate and such.
3220  *   We wait on commit, if tol to.
3221  *
3222  * - Within prune_icache() (PF_MEMALLOC == true)
3223  *   Here we simply return.  We can't afford to block kswapd on the
3224  *   journal commit.
3225  *
3226  * In all cases it is actually safe for us to return without doing anything,
3227  * because the inode has been copied into a raw inode buffer in
3228  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3229  * knfsd.
3230  *
3231  * Note that we are absolutely dependent upon all inode dirtiers doing the
3232  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3233  * which we are interested.
3234  *
3235  * It would be a bug for them to not do this.  The code:
3236  *
3237  *      mark_inode_dirty(inode)
3238  *      stuff();
3239  *      inode->i_size = expr;
3240  *
3241  * is in error because a kswapd-driven write_inode() could occur while
3242  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3243  * will no longer be on the superblock's dirty inode list.
3244  */
3245 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3246 {
3247         if (current->flags & PF_MEMALLOC)
3248                 return 0;
3249
3250         if (ext3_journal_current_handle()) {
3251                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3252                 dump_stack();
3253                 return -EIO;
3254         }
3255
3256         if (wbc->sync_mode != WB_SYNC_ALL)
3257                 return 0;
3258
3259         return ext3_force_commit(inode->i_sb);
3260 }
3261
3262 /*
3263  * ext3_setattr()
3264  *
3265  * Called from notify_change.
3266  *
3267  * We want to trap VFS attempts to truncate the file as soon as
3268  * possible.  In particular, we want to make sure that when the VFS
3269  * shrinks i_size, we put the inode on the orphan list and modify
3270  * i_disksize immediately, so that during the subsequent flushing of
3271  * dirty pages and freeing of disk blocks, we can guarantee that any
3272  * commit will leave the blocks being flushed in an unused state on
3273  * disk.  (On recovery, the inode will get truncated and the blocks will
3274  * be freed, so we have a strong guarantee that no future commit will
3275  * leave these blocks visible to the user.)
3276  *
3277  * Called with inode->sem down.
3278  */
3279 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3280 {
3281         struct inode *inode = dentry->d_inode;
3282         int error, rc = 0;
3283         const unsigned int ia_valid = attr->ia_valid;
3284
3285         error = inode_change_ok(inode, attr);
3286         if (error)
3287                 return error;
3288
3289         if (is_quota_modification(inode, attr))
3290                 dquot_initialize(inode);
3291         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3292             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3293                 handle_t *handle;
3294
3295                 /* (user+group)*(old+new) structure, inode write (sb,
3296                  * inode block, ? - but truncate inode update has it) */
3297                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3298                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3299                 if (IS_ERR(handle)) {
3300                         error = PTR_ERR(handle);
3301                         goto err_out;
3302                 }
3303                 error = dquot_transfer(inode, attr);
3304                 if (error) {
3305                         ext3_journal_stop(handle);
3306                         return error;
3307                 }
3308                 /* Update corresponding info in inode so that everything is in
3309                  * one transaction */
3310                 if (attr->ia_valid & ATTR_UID)
3311                         inode->i_uid = attr->ia_uid;
3312                 if (attr->ia_valid & ATTR_GID)
3313                         inode->i_gid = attr->ia_gid;
3314                 error = ext3_mark_inode_dirty(handle, inode);
3315                 ext3_journal_stop(handle);
3316         }
3317
3318         if (attr->ia_valid & ATTR_SIZE)
3319                 inode_dio_wait(inode);
3320
3321         if (S_ISREG(inode->i_mode) &&
3322             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3323                 handle_t *handle;
3324
3325                 handle = ext3_journal_start(inode, 3);
3326                 if (IS_ERR(handle)) {
3327                         error = PTR_ERR(handle);
3328                         goto err_out;
3329                 }
3330
3331                 error = ext3_orphan_add(handle, inode);
3332                 if (error) {
3333                         ext3_journal_stop(handle);
3334                         goto err_out;
3335                 }
3336                 EXT3_I(inode)->i_disksize = attr->ia_size;
3337                 error = ext3_mark_inode_dirty(handle, inode);
3338                 ext3_journal_stop(handle);
3339                 if (error) {
3340                         /* Some hard fs error must have happened. Bail out. */
3341                         ext3_orphan_del(NULL, inode);
3342                         goto err_out;
3343                 }
3344                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3345                 if (rc) {
3346                         /* Cleanup orphan list and exit */
3347                         handle = ext3_journal_start(inode, 3);
3348                         if (IS_ERR(handle)) {
3349                                 ext3_orphan_del(NULL, inode);
3350                                 goto err_out;
3351                         }
3352                         ext3_orphan_del(handle, inode);
3353                         ext3_journal_stop(handle);
3354                         goto err_out;
3355                 }
3356         }
3357
3358         if ((attr->ia_valid & ATTR_SIZE) &&
3359             attr->ia_size != i_size_read(inode)) {
3360                 truncate_setsize(inode, attr->ia_size);
3361                 ext3_truncate(inode);
3362         }
3363
3364         setattr_copy(inode, attr);
3365         mark_inode_dirty(inode);
3366
3367         if (ia_valid & ATTR_MODE)
3368                 rc = ext3_acl_chmod(inode);
3369
3370 err_out:
3371         ext3_std_error(inode->i_sb, error);
3372         if (!error)
3373                 error = rc;
3374         return error;
3375 }
3376
3377
3378 /*
3379  * How many blocks doth make a writepage()?
3380  *
3381  * With N blocks per page, it may be:
3382  * N data blocks
3383  * 2 indirect block
3384  * 2 dindirect
3385  * 1 tindirect
3386  * N+5 bitmap blocks (from the above)
3387  * N+5 group descriptor summary blocks
3388  * 1 inode block
3389  * 1 superblock.
3390  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3391  *
3392  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3393  *
3394  * With ordered or writeback data it's the same, less the N data blocks.
3395  *
3396  * If the inode's direct blocks can hold an integral number of pages then a
3397  * page cannot straddle two indirect blocks, and we can only touch one indirect
3398  * and dindirect block, and the "5" above becomes "3".
3399  *
3400  * This still overestimates under most circumstances.  If we were to pass the
3401  * start and end offsets in here as well we could do block_to_path() on each
3402  * block and work out the exact number of indirects which are touched.  Pah.
3403  */
3404
3405 static int ext3_writepage_trans_blocks(struct inode *inode)
3406 {
3407         int bpp = ext3_journal_blocks_per_page(inode);
3408         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3409         int ret;
3410
3411         if (ext3_should_journal_data(inode))
3412                 ret = 3 * (bpp + indirects) + 2;
3413         else
3414                 ret = 2 * (bpp + indirects) + indirects + 2;
3415
3416 #ifdef CONFIG_QUOTA
3417         /* We know that structure was already allocated during dquot_initialize so
3418          * we will be updating only the data blocks + inodes */
3419         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3420 #endif
3421
3422         return ret;
3423 }
3424
3425 /*
3426  * The caller must have previously called ext3_reserve_inode_write().
3427  * Give this, we know that the caller already has write access to iloc->bh.
3428  */
3429 int ext3_mark_iloc_dirty(handle_t *handle,
3430                 struct inode *inode, struct ext3_iloc *iloc)
3431 {
3432         int err = 0;
3433
3434         /* the do_update_inode consumes one bh->b_count */
3435         get_bh(iloc->bh);
3436
3437         /* ext3_do_update_inode() does journal_dirty_metadata */
3438         err = ext3_do_update_inode(handle, inode, iloc);
3439         put_bh(iloc->bh);
3440         return err;
3441 }
3442
3443 /*
3444  * On success, We end up with an outstanding reference count against
3445  * iloc->bh.  This _must_ be cleaned up later.
3446  */
3447
3448 int
3449 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3450                          struct ext3_iloc *iloc)
3451 {
3452         int err = 0;
3453         if (handle) {
3454                 err = ext3_get_inode_loc(inode, iloc);
3455                 if (!err) {
3456                         BUFFER_TRACE(iloc->bh, "get_write_access");
3457                         err = ext3_journal_get_write_access(handle, iloc->bh);
3458                         if (err) {
3459                                 brelse(iloc->bh);
3460                                 iloc->bh = NULL;
3461                         }
3462                 }
3463         }
3464         ext3_std_error(inode->i_sb, err);
3465         return err;
3466 }
3467
3468 /*
3469  * What we do here is to mark the in-core inode as clean with respect to inode
3470  * dirtiness (it may still be data-dirty).
3471  * This means that the in-core inode may be reaped by prune_icache
3472  * without having to perform any I/O.  This is a very good thing,
3473  * because *any* task may call prune_icache - even ones which
3474  * have a transaction open against a different journal.
3475  *
3476  * Is this cheating?  Not really.  Sure, we haven't written the
3477  * inode out, but prune_icache isn't a user-visible syncing function.
3478  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3479  * we start and wait on commits.
3480  */
3481 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3482 {
3483         struct ext3_iloc iloc;
3484         int err;
3485
3486         might_sleep();
3487         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3488         err = ext3_reserve_inode_write(handle, inode, &iloc);
3489         if (!err)
3490                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3491         return err;
3492 }
3493
3494 /*
3495  * ext3_dirty_inode() is called from __mark_inode_dirty()
3496  *
3497  * We're really interested in the case where a file is being extended.
3498  * i_size has been changed by generic_commit_write() and we thus need
3499  * to include the updated inode in the current transaction.
3500  *
3501  * Also, dquot_alloc_space() will always dirty the inode when blocks
3502  * are allocated to the file.
3503  *
3504  * If the inode is marked synchronous, we don't honour that here - doing
3505  * so would cause a commit on atime updates, which we don't bother doing.
3506  * We handle synchronous inodes at the highest possible level.
3507  */
3508 void ext3_dirty_inode(struct inode *inode, int flags)
3509 {
3510         handle_t *current_handle = ext3_journal_current_handle();
3511         handle_t *handle;
3512
3513         handle = ext3_journal_start(inode, 2);
3514         if (IS_ERR(handle))
3515                 goto out;
3516         if (current_handle &&
3517                 current_handle->h_transaction != handle->h_transaction) {
3518                 /* This task has a transaction open against a different fs */
3519                 printk(KERN_EMERG "%s: transactions do not match!\n",
3520                        __func__);
3521         } else {
3522                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3523                                 current_handle);
3524                 ext3_mark_inode_dirty(handle, inode);
3525         }
3526         ext3_journal_stop(handle);
3527 out:
3528         return;
3529 }
3530
3531 #if 0
3532 /*
3533  * Bind an inode's backing buffer_head into this transaction, to prevent
3534  * it from being flushed to disk early.  Unlike
3535  * ext3_reserve_inode_write, this leaves behind no bh reference and
3536  * returns no iloc structure, so the caller needs to repeat the iloc
3537  * lookup to mark the inode dirty later.
3538  */
3539 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3540 {
3541         struct ext3_iloc iloc;
3542
3543         int err = 0;
3544         if (handle) {
3545                 err = ext3_get_inode_loc(inode, &iloc);
3546                 if (!err) {
3547                         BUFFER_TRACE(iloc.bh, "get_write_access");
3548                         err = journal_get_write_access(handle, iloc.bh);
3549                         if (!err)
3550                                 err = ext3_journal_dirty_metadata(handle,
3551                                                                   iloc.bh);
3552                         brelse(iloc.bh);
3553                 }
3554         }
3555         ext3_std_error(inode->i_sb, err);
3556         return err;
3557 }
3558 #endif
3559
3560 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3561 {
3562         journal_t *journal;
3563         handle_t *handle;
3564         int err;
3565
3566         /*
3567          * We have to be very careful here: changing a data block's
3568          * journaling status dynamically is dangerous.  If we write a
3569          * data block to the journal, change the status and then delete
3570          * that block, we risk forgetting to revoke the old log record
3571          * from the journal and so a subsequent replay can corrupt data.
3572          * So, first we make sure that the journal is empty and that
3573          * nobody is changing anything.
3574          */
3575
3576         journal = EXT3_JOURNAL(inode);
3577         if (is_journal_aborted(journal))
3578                 return -EROFS;
3579
3580         journal_lock_updates(journal);
3581         journal_flush(journal);
3582
3583         /*
3584          * OK, there are no updates running now, and all cached data is
3585          * synced to disk.  We are now in a completely consistent state
3586          * which doesn't have anything in the journal, and we know that
3587          * no filesystem updates are running, so it is safe to modify
3588          * the inode's in-core data-journaling state flag now.
3589          */
3590
3591         if (val)
3592                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3593         else
3594                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3595         ext3_set_aops(inode);
3596
3597         journal_unlock_updates(journal);
3598
3599         /* Finally we can mark the inode as dirty. */
3600
3601         handle = ext3_journal_start(inode, 1);
3602         if (IS_ERR(handle))
3603                 return PTR_ERR(handle);
3604
3605         err = ext3_mark_inode_dirty(handle, inode);
3606         handle->h_sync = 1;
3607         ext3_journal_stop(handle);
3608         ext3_std_error(inode->i_sb, err);
3609
3610         return err;
3611 }