]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge tag 'jfs-4.13' of git://github.com/kleikamp/linux-shaggy
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         return S_ISLNK(inode->i_mode) && inode->i_size &&
152                (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188         int extra_credits = 3;
189         struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (inode->i_ino != EXT4_JOURNAL_INO &&
213                     ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215                     inode->i_data.nrpages) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240
241         if (!IS_NOQUOTA(inode))
242                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245                                  ext4_blocks_for_truncate(inode)+extra_credits);
246         if (IS_ERR(handle)) {
247                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248                 /*
249                  * If we're going to skip the normal cleanup, we still need to
250                  * make sure that the in-core orphan linked list is properly
251                  * cleaned up.
252                  */
253                 ext4_orphan_del(NULL, inode);
254                 sb_end_intwrite(inode->i_sb);
255                 goto no_delete;
256         }
257
258         if (IS_SYNC(inode))
259                 ext4_handle_sync(handle);
260
261         /*
262          * Set inode->i_size to 0 before calling ext4_truncate(). We need
263          * special handling of symlinks here because i_size is used to
264          * determine whether ext4_inode_info->i_data contains symlink data or
265          * block mappings. Setting i_size to 0 will remove its fast symlink
266          * status. Erase i_data so that it becomes a valid empty block map.
267          */
268         if (ext4_inode_is_fast_symlink(inode))
269                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270         inode->i_size = 0;
271         err = ext4_mark_inode_dirty(handle, inode);
272         if (err) {
273                 ext4_warning(inode->i_sb,
274                              "couldn't mark inode dirty (err %d)", err);
275                 goto stop_handle;
276         }
277         if (inode->i_blocks) {
278                 err = ext4_truncate(inode);
279                 if (err) {
280                         ext4_error(inode->i_sb,
281                                    "couldn't truncate inode %lu (err %d)",
282                                    inode->i_ino, err);
283                         goto stop_handle;
284                 }
285         }
286
287         /* Remove xattr references. */
288         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289                                       extra_credits);
290         if (err) {
291                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293                 ext4_journal_stop(handle);
294                 ext4_orphan_del(NULL, inode);
295                 sb_end_intwrite(inode->i_sb);
296                 ext4_xattr_inode_array_free(ea_inode_array);
297                 goto no_delete;
298         }
299
300         /*
301          * Kill off the orphan record which ext4_truncate created.
302          * AKPM: I think this can be inside the above `if'.
303          * Note that ext4_orphan_del() has to be able to cope with the
304          * deletion of a non-existent orphan - this is because we don't
305          * know if ext4_truncate() actually created an orphan record.
306          * (Well, we could do this if we need to, but heck - it works)
307          */
308         ext4_orphan_del(handle, inode);
309         EXT4_I(inode)->i_dtime  = get_seconds();
310
311         /*
312          * One subtle ordering requirement: if anything has gone wrong
313          * (transaction abort, IO errors, whatever), then we can still
314          * do these next steps (the fs will already have been marked as
315          * having errors), but we can't free the inode if the mark_dirty
316          * fails.
317          */
318         if (ext4_mark_inode_dirty(handle, inode))
319                 /* If that failed, just do the required in-core inode clear. */
320                 ext4_clear_inode(inode);
321         else
322                 ext4_free_inode(handle, inode);
323         ext4_journal_stop(handle);
324         sb_end_intwrite(inode->i_sb);
325         ext4_xattr_inode_array_free(ea_inode_array);
326         return;
327 no_delete:
328         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334         return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339  * Called with i_data_sem down, which is important since we can call
340  * ext4_discard_preallocations() from here.
341  */
342 void ext4_da_update_reserve_space(struct inode *inode,
343                                         int used, int quota_claim)
344 {
345         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346         struct ext4_inode_info *ei = EXT4_I(inode);
347
348         spin_lock(&ei->i_block_reservation_lock);
349         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350         if (unlikely(used > ei->i_reserved_data_blocks)) {
351                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352                          "with only %d reserved data blocks",
353                          __func__, inode->i_ino, used,
354                          ei->i_reserved_data_blocks);
355                 WARN_ON(1);
356                 used = ei->i_reserved_data_blocks;
357         }
358
359         /* Update per-inode reservations */
360         ei->i_reserved_data_blocks -= used;
361         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365         /* Update quota subsystem for data blocks */
366         if (quota_claim)
367                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368         else {
369                 /*
370                  * We did fallocate with an offset that is already delayed
371                  * allocated. So on delayed allocated writeback we should
372                  * not re-claim the quota for fallocated blocks.
373                  */
374                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375         }
376
377         /*
378          * If we have done all the pending block allocations and if
379          * there aren't any writers on the inode, we can discard the
380          * inode's preallocations.
381          */
382         if ((ei->i_reserved_data_blocks == 0) &&
383             (atomic_read(&inode->i_writecount) == 0))
384                 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388                                 unsigned int line,
389                                 struct ext4_map_blocks *map)
390 {
391         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392                                    map->m_len)) {
393                 ext4_error_inode(inode, func, line, map->m_pblk,
394                                  "lblock %lu mapped to illegal pblock "
395                                  "(length %d)", (unsigned long) map->m_lblk,
396                                  map->m_len);
397                 return -EFSCORRUPTED;
398         }
399         return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403                        ext4_lblk_t len)
404 {
405         int ret;
406
407         if (ext4_encrypted_inode(inode))
408                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411         if (ret > 0)
412                 ret = 0;
413
414         return ret;
415 }
416
417 #define check_block_validity(inode, map)        \
418         __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422                                        struct inode *inode,
423                                        struct ext4_map_blocks *es_map,
424                                        struct ext4_map_blocks *map,
425                                        int flags)
426 {
427         int retval;
428
429         map->m_flags = 0;
430         /*
431          * There is a race window that the result is not the same.
432          * e.g. xfstests #223 when dioread_nolock enables.  The reason
433          * is that we lookup a block mapping in extent status tree with
434          * out taking i_data_sem.  So at the time the unwritten extent
435          * could be converted.
436          */
437         down_read(&EXT4_I(inode)->i_data_sem);
438         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440                                              EXT4_GET_BLOCKS_KEEP_SIZE);
441         } else {
442                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443                                              EXT4_GET_BLOCKS_KEEP_SIZE);
444         }
445         up_read((&EXT4_I(inode)->i_data_sem));
446
447         /*
448          * We don't check m_len because extent will be collpased in status
449          * tree.  So the m_len might not equal.
450          */
451         if (es_map->m_lblk != map->m_lblk ||
452             es_map->m_flags != map->m_flags ||
453             es_map->m_pblk != map->m_pblk) {
454                 printk("ES cache assertion failed for inode: %lu "
455                        "es_cached ex [%d/%d/%llu/%x] != "
456                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457                        inode->i_ino, es_map->m_lblk, es_map->m_len,
458                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
459                        map->m_len, map->m_pblk, map->m_flags,
460                        retval, flags);
461         }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466  * The ext4_map_blocks() function tries to look up the requested blocks,
467  * and returns if the blocks are already mapped.
468  *
469  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470  * and store the allocated blocks in the result buffer head and mark it
471  * mapped.
472  *
473  * If file type is extents based, it will call ext4_ext_map_blocks(),
474  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475  * based files
476  *
477  * On success, it returns the number of blocks being mapped or allocated.  if
478  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480  *
481  * It returns 0 if plain look up failed (blocks have not been allocated), in
482  * that case, @map is returned as unmapped but we still do fill map->m_len to
483  * indicate the length of a hole starting at map->m_lblk.
484  *
485  * It returns the error in case of allocation failure.
486  */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488                     struct ext4_map_blocks *map, int flags)
489 {
490         struct extent_status es;
491         int retval;
492         int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494         struct ext4_map_blocks orig_map;
495
496         memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499         map->m_flags = 0;
500         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
502                   (unsigned long) map->m_lblk);
503
504         /*
505          * ext4_map_blocks returns an int, and m_len is an unsigned int
506          */
507         if (unlikely(map->m_len > INT_MAX))
508                 map->m_len = INT_MAX;
509
510         /* We can handle the block number less than EXT_MAX_BLOCKS */
511         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512                 return -EFSCORRUPTED;
513
514         /* Lookup extent status tree firstly */
515         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517                         map->m_pblk = ext4_es_pblock(&es) +
518                                         map->m_lblk - es.es_lblk;
519                         map->m_flags |= ext4_es_is_written(&es) ?
520                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526                         map->m_pblk = 0;
527                         retval = es.es_len - (map->m_lblk - es.es_lblk);
528                         if (retval > map->m_len)
529                                 retval = map->m_len;
530                         map->m_len = retval;
531                         retval = 0;
532                 } else {
533                         BUG_ON(1);
534                 }
535 #ifdef ES_AGGRESSIVE_TEST
536                 ext4_map_blocks_es_recheck(handle, inode, map,
537                                            &orig_map, flags);
538 #endif
539                 goto found;
540         }
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 unsigned int status;
556
557                 if (unlikely(retval != map->m_len)) {
558                         ext4_warning(inode->i_sb,
559                                      "ES len assertion failed for inode "
560                                      "%lu: retval %d != map->m_len %d",
561                                      inode->i_ino, retval, map->m_len);
562                         WARN_ON(1);
563                 }
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     !(status & EXTENT_STATUS_WRITTEN) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 /*
599                  * If we need to convert extent to unwritten
600                  * we continue and do the actual work in
601                  * ext4_ext_map_blocks()
602                  */
603                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604                         return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to unwritten extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_block()
616          * with create == 1 flag.
617          */
618         down_write(&EXT4_I(inode)->i_data_sem);
619
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648
649         if (retval > 0) {
650                 unsigned int status;
651
652                 if (unlikely(retval != map->m_len)) {
653                         ext4_warning(inode->i_sb,
654                                      "ES len assertion failed for inode "
655                                      "%lu: retval %d != map->m_len %d",
656                                      inode->i_ino, retval, map->m_len);
657                         WARN_ON(1);
658                 }
659
660                 /*
661                  * We have to zeroout blocks before inserting them into extent
662                  * status tree. Otherwise someone could look them up there and
663                  * use them before they are really zeroed. We also have to
664                  * unmap metadata before zeroing as otherwise writeback can
665                  * overwrite zeros with stale data from block device.
666                  */
667                 if (flags & EXT4_GET_BLOCKS_ZERO &&
668                     map->m_flags & EXT4_MAP_MAPPED &&
669                     map->m_flags & EXT4_MAP_NEW) {
670                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671                                            map->m_len);
672                         ret = ext4_issue_zeroout(inode, map->m_lblk,
673                                                  map->m_pblk, map->m_len);
674                         if (ret) {
675                                 retval = ret;
676                                 goto out_sem;
677                         }
678                 }
679
680                 /*
681                  * If the extent has been zeroed out, we don't need to update
682                  * extent status tree.
683                  */
684                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686                         if (ext4_es_is_written(&es))
687                                 goto out_sem;
688                 }
689                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692                     !(status & EXTENT_STATUS_WRITTEN) &&
693                     ext4_find_delalloc_range(inode, map->m_lblk,
694                                              map->m_lblk + map->m_len - 1))
695                         status |= EXTENT_STATUS_DELAYED;
696                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697                                             map->m_pblk, status);
698                 if (ret < 0) {
699                         retval = ret;
700                         goto out_sem;
701                 }
702         }
703
704 out_sem:
705         up_write((&EXT4_I(inode)->i_data_sem));
706         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707                 ret = check_block_validity(inode, map);
708                 if (ret != 0)
709                         return ret;
710
711                 /*
712                  * Inodes with freshly allocated blocks where contents will be
713                  * visible after transaction commit must be on transaction's
714                  * ordered data list.
715                  */
716                 if (map->m_flags & EXT4_MAP_NEW &&
717                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
719                     !ext4_is_quota_file(inode) &&
720                     ext4_should_order_data(inode)) {
721                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
723                         else
724                                 ret = ext4_jbd2_inode_add_write(handle, inode);
725                         if (ret)
726                                 return ret;
727                 }
728         }
729         return retval;
730 }
731
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738         unsigned long old_state;
739         unsigned long new_state;
740
741         flags &= EXT4_MAP_FLAGS;
742
743         /* Dummy buffer_head? Set non-atomically. */
744         if (!bh->b_page) {
745                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746                 return;
747         }
748         /*
749          * Someone else may be modifying b_state. Be careful! This is ugly but
750          * once we get rid of using bh as a container for mapping information
751          * to pass to / from get_block functions, this can go away.
752          */
753         do {
754                 old_state = READ_ONCE(bh->b_state);
755                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756         } while (unlikely(
757                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         struct ext4_map_blocks map;
764         int ret = 0;
765
766         if (ext4_has_inline_data(inode))
767                 return -ERANGE;
768
769         map.m_lblk = iblock;
770         map.m_len = bh->b_size >> inode->i_blkbits;
771
772         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773                               flags);
774         if (ret > 0) {
775                 map_bh(bh, inode->i_sb, map.m_pblk);
776                 ext4_update_bh_state(bh, map.m_flags);
777                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778                 ret = 0;
779         } else if (ret == 0) {
780                 /* hole case, need to fill in bh->b_size */
781                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782         }
783         return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787                    struct buffer_head *bh, int create)
788 {
789         return _ext4_get_block(inode, iblock, bh,
790                                create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799                              struct buffer_head *bh_result, int create)
800 {
801         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802                    inode->i_ino, create);
803         return _ext4_get_block(inode, iblock, bh_result,
804                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811  * Get blocks function for the cases that need to start a transaction -
812  * generally difference cases of direct IO and DAX IO. It also handles retries
813  * in case of ENOSPC.
814  */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816                                 struct buffer_head *bh_result, int flags)
817 {
818         int dio_credits;
819         handle_t *handle;
820         int retries = 0;
821         int ret;
822
823         /* Trim mapping request to maximum we can map at once for DIO */
824         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826         dio_credits = ext4_chunk_trans_blocks(inode,
827                                       bh_result->b_size >> inode->i_blkbits);
828 retry:
829         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830         if (IS_ERR(handle))
831                 return PTR_ERR(handle);
832
833         ret = _ext4_get_block(inode, iblock, bh_result, flags);
834         ext4_journal_stop(handle);
835
836         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837                 goto retry;
838         return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843                        struct buffer_head *bh, int create)
844 {
845         /* We don't expect handle for direct IO */
846         WARN_ON_ONCE(ext4_journal_current_handle());
847
848         if (!create)
849                 return _ext4_get_block(inode, iblock, bh, 0);
850         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854  * Get block function for AIO DIO writes when we create unwritten extent if
855  * blocks are not allocated yet. The extent will be converted to written
856  * after IO is complete.
857  */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859                 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861         int ret;
862
863         /* We don't expect handle for direct IO */
864         WARN_ON_ONCE(ext4_journal_current_handle());
865
866         ret = ext4_get_block_trans(inode, iblock, bh_result,
867                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869         /*
870          * When doing DIO using unwritten extents, we need io_end to convert
871          * unwritten extents to written on IO completion. We allocate io_end
872          * once we spot unwritten extent and store it in b_private. Generic
873          * DIO code keeps b_private set and furthermore passes the value to
874          * our completion callback in 'private' argument.
875          */
876         if (!ret && buffer_unwritten(bh_result)) {
877                 if (!bh_result->b_private) {
878                         ext4_io_end_t *io_end;
879
880                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
881                         if (!io_end)
882                                 return -ENOMEM;
883                         bh_result->b_private = io_end;
884                         ext4_set_io_unwritten_flag(inode, io_end);
885                 }
886                 set_buffer_defer_completion(bh_result);
887         }
888
889         return ret;
890 }
891
892 /*
893  * Get block function for non-AIO DIO writes when we create unwritten extent if
894  * blocks are not allocated yet. The extent will be converted to written
895  * after IO is complete from ext4_ext_direct_IO() function.
896  */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898                 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900         int ret;
901
902         /* We don't expect handle for direct IO */
903         WARN_ON_ONCE(ext4_journal_current_handle());
904
905         ret = ext4_get_block_trans(inode, iblock, bh_result,
906                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908         /*
909          * Mark inode as having pending DIO writes to unwritten extents.
910          * ext4_ext_direct_IO() checks this flag and converts extents to
911          * written.
912          */
913         if (!ret && buffer_unwritten(bh_result))
914                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916         return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920                    struct buffer_head *bh_result, int create)
921 {
922         int ret;
923
924         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925                    inode->i_ino, create);
926         /* We don't expect handle for direct IO */
927         WARN_ON_ONCE(ext4_journal_current_handle());
928
929         ret = _ext4_get_block(inode, iblock, bh_result, 0);
930         /*
931          * Blocks should have been preallocated! ext4_file_write_iter() checks
932          * that.
933          */
934         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936         return ret;
937 }
938
939
940 /*
941  * `handle' can be NULL if create is zero
942  */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944                                 ext4_lblk_t block, int map_flags)
945 {
946         struct ext4_map_blocks map;
947         struct buffer_head *bh;
948         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949         int err;
950
951         J_ASSERT(handle != NULL || create == 0);
952
953         map.m_lblk = block;
954         map.m_len = 1;
955         err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957         if (err == 0)
958                 return create ? ERR_PTR(-ENOSPC) : NULL;
959         if (err < 0)
960                 return ERR_PTR(err);
961
962         bh = sb_getblk(inode->i_sb, map.m_pblk);
963         if (unlikely(!bh))
964                 return ERR_PTR(-ENOMEM);
965         if (map.m_flags & EXT4_MAP_NEW) {
966                 J_ASSERT(create != 0);
967                 J_ASSERT(handle != NULL);
968
969                 /*
970                  * Now that we do not always journal data, we should
971                  * keep in mind whether this should always journal the
972                  * new buffer as metadata.  For now, regular file
973                  * writes use ext4_get_block instead, so it's not a
974                  * problem.
975                  */
976                 lock_buffer(bh);
977                 BUFFER_TRACE(bh, "call get_create_access");
978                 err = ext4_journal_get_create_access(handle, bh);
979                 if (unlikely(err)) {
980                         unlock_buffer(bh);
981                         goto errout;
982                 }
983                 if (!buffer_uptodate(bh)) {
984                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985                         set_buffer_uptodate(bh);
986                 }
987                 unlock_buffer(bh);
988                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989                 err = ext4_handle_dirty_metadata(handle, inode, bh);
990                 if (unlikely(err))
991                         goto errout;
992         } else
993                 BUFFER_TRACE(bh, "not a new buffer");
994         return bh;
995 errout:
996         brelse(bh);
997         return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001                                ext4_lblk_t block, int map_flags)
1002 {
1003         struct buffer_head *bh;
1004
1005         bh = ext4_getblk(handle, inode, block, map_flags);
1006         if (IS_ERR(bh))
1007                 return bh;
1008         if (!bh || buffer_uptodate(bh))
1009                 return bh;
1010         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011         wait_on_buffer(bh);
1012         if (buffer_uptodate(bh))
1013                 return bh;
1014         put_bh(bh);
1015         return ERR_PTR(-EIO);
1016 }
1017
1018 int ext4_walk_page_buffers(handle_t *handle,
1019                            struct buffer_head *head,
1020                            unsigned from,
1021                            unsigned to,
1022                            int *partial,
1023                            int (*fn)(handle_t *handle,
1024                                      struct buffer_head *bh))
1025 {
1026         struct buffer_head *bh;
1027         unsigned block_start, block_end;
1028         unsigned blocksize = head->b_size;
1029         int err, ret = 0;
1030         struct buffer_head *next;
1031
1032         for (bh = head, block_start = 0;
1033              ret == 0 && (bh != head || !block_start);
1034              block_start = block_end, bh = next) {
1035                 next = bh->b_this_page;
1036                 block_end = block_start + blocksize;
1037                 if (block_end <= from || block_start >= to) {
1038                         if (partial && !buffer_uptodate(bh))
1039                                 *partial = 1;
1040                         continue;
1041                 }
1042                 err = (*fn)(handle, bh);
1043                 if (!ret)
1044                         ret = err;
1045         }
1046         return ret;
1047 }
1048
1049 /*
1050  * To preserve ordering, it is essential that the hole instantiation and
1051  * the data write be encapsulated in a single transaction.  We cannot
1052  * close off a transaction and start a new one between the ext4_get_block()
1053  * and the commit_write().  So doing the jbd2_journal_start at the start of
1054  * prepare_write() is the right place.
1055  *
1056  * Also, this function can nest inside ext4_writepage().  In that case, we
1057  * *know* that ext4_writepage() has generated enough buffer credits to do the
1058  * whole page.  So we won't block on the journal in that case, which is good,
1059  * because the caller may be PF_MEMALLOC.
1060  *
1061  * By accident, ext4 can be reentered when a transaction is open via
1062  * quota file writes.  If we were to commit the transaction while thus
1063  * reentered, there can be a deadlock - we would be holding a quota
1064  * lock, and the commit would never complete if another thread had a
1065  * transaction open and was blocking on the quota lock - a ranking
1066  * violation.
1067  *
1068  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1069  * will _not_ run commit under these circumstances because handle->h_ref
1070  * is elevated.  We'll still have enough credits for the tiny quotafile
1071  * write.
1072  */
1073 int do_journal_get_write_access(handle_t *handle,
1074                                 struct buffer_head *bh)
1075 {
1076         int dirty = buffer_dirty(bh);
1077         int ret;
1078
1079         if (!buffer_mapped(bh) || buffer_freed(bh))
1080                 return 0;
1081         /*
1082          * __block_write_begin() could have dirtied some buffers. Clean
1083          * the dirty bit as jbd2_journal_get_write_access() could complain
1084          * otherwise about fs integrity issues. Setting of the dirty bit
1085          * by __block_write_begin() isn't a real problem here as we clear
1086          * the bit before releasing a page lock and thus writeback cannot
1087          * ever write the buffer.
1088          */
1089         if (dirty)
1090                 clear_buffer_dirty(bh);
1091         BUFFER_TRACE(bh, "get write access");
1092         ret = ext4_journal_get_write_access(handle, bh);
1093         if (!ret && dirty)
1094                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1095         return ret;
1096 }
1097
1098 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1099 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1100                                   get_block_t *get_block)
1101 {
1102         unsigned from = pos & (PAGE_SIZE - 1);
1103         unsigned to = from + len;
1104         struct inode *inode = page->mapping->host;
1105         unsigned block_start, block_end;
1106         sector_t block;
1107         int err = 0;
1108         unsigned blocksize = inode->i_sb->s_blocksize;
1109         unsigned bbits;
1110         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1111         bool decrypt = false;
1112
1113         BUG_ON(!PageLocked(page));
1114         BUG_ON(from > PAGE_SIZE);
1115         BUG_ON(to > PAGE_SIZE);
1116         BUG_ON(from > to);
1117
1118         if (!page_has_buffers(page))
1119                 create_empty_buffers(page, blocksize, 0);
1120         head = page_buffers(page);
1121         bbits = ilog2(blocksize);
1122         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1123
1124         for (bh = head, block_start = 0; bh != head || !block_start;
1125             block++, block_start = block_end, bh = bh->b_this_page) {
1126                 block_end = block_start + blocksize;
1127                 if (block_end <= from || block_start >= to) {
1128                         if (PageUptodate(page)) {
1129                                 if (!buffer_uptodate(bh))
1130                                         set_buffer_uptodate(bh);
1131                         }
1132                         continue;
1133                 }
1134                 if (buffer_new(bh))
1135                         clear_buffer_new(bh);
1136                 if (!buffer_mapped(bh)) {
1137                         WARN_ON(bh->b_size != blocksize);
1138                         err = get_block(inode, block, bh, 1);
1139                         if (err)
1140                                 break;
1141                         if (buffer_new(bh)) {
1142                                 clean_bdev_bh_alias(bh);
1143                                 if (PageUptodate(page)) {
1144                                         clear_buffer_new(bh);
1145                                         set_buffer_uptodate(bh);
1146                                         mark_buffer_dirty(bh);
1147                                         continue;
1148                                 }
1149                                 if (block_end > to || block_start < from)
1150                                         zero_user_segments(page, to, block_end,
1151                                                            block_start, from);
1152                                 continue;
1153                         }
1154                 }
1155                 if (PageUptodate(page)) {
1156                         if (!buffer_uptodate(bh))
1157                                 set_buffer_uptodate(bh);
1158                         continue;
1159                 }
1160                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1161                     !buffer_unwritten(bh) &&
1162                     (block_start < from || block_end > to)) {
1163                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1164                         *wait_bh++ = bh;
1165                         decrypt = ext4_encrypted_inode(inode) &&
1166                                 S_ISREG(inode->i_mode);
1167                 }
1168         }
1169         /*
1170          * If we issued read requests, let them complete.
1171          */
1172         while (wait_bh > wait) {
1173                 wait_on_buffer(*--wait_bh);
1174                 if (!buffer_uptodate(*wait_bh))
1175                         err = -EIO;
1176         }
1177         if (unlikely(err))
1178                 page_zero_new_buffers(page, from, to);
1179         else if (decrypt)
1180                 err = fscrypt_decrypt_page(page->mapping->host, page,
1181                                 PAGE_SIZE, 0, page->index);
1182         return err;
1183 }
1184 #endif
1185
1186 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1187                             loff_t pos, unsigned len, unsigned flags,
1188                             struct page **pagep, void **fsdata)
1189 {
1190         struct inode *inode = mapping->host;
1191         int ret, needed_blocks;
1192         handle_t *handle;
1193         int retries = 0;
1194         struct page *page;
1195         pgoff_t index;
1196         unsigned from, to;
1197
1198         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1199                 return -EIO;
1200
1201         trace_ext4_write_begin(inode, pos, len, flags);
1202         /*
1203          * Reserve one block more for addition to orphan list in case
1204          * we allocate blocks but write fails for some reason
1205          */
1206         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1207         index = pos >> PAGE_SHIFT;
1208         from = pos & (PAGE_SIZE - 1);
1209         to = from + len;
1210
1211         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1212                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1213                                                     flags, pagep);
1214                 if (ret < 0)
1215                         return ret;
1216                 if (ret == 1)
1217                         return 0;
1218         }
1219
1220         /*
1221          * grab_cache_page_write_begin() can take a long time if the
1222          * system is thrashing due to memory pressure, or if the page
1223          * is being written back.  So grab it first before we start
1224          * the transaction handle.  This also allows us to allocate
1225          * the page (if needed) without using GFP_NOFS.
1226          */
1227 retry_grab:
1228         page = grab_cache_page_write_begin(mapping, index, flags);
1229         if (!page)
1230                 return -ENOMEM;
1231         unlock_page(page);
1232
1233 retry_journal:
1234         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1235         if (IS_ERR(handle)) {
1236                 put_page(page);
1237                 return PTR_ERR(handle);
1238         }
1239
1240         lock_page(page);
1241         if (page->mapping != mapping) {
1242                 /* The page got truncated from under us */
1243                 unlock_page(page);
1244                 put_page(page);
1245                 ext4_journal_stop(handle);
1246                 goto retry_grab;
1247         }
1248         /* In case writeback began while the page was unlocked */
1249         wait_for_stable_page(page);
1250
1251 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1252         if (ext4_should_dioread_nolock(inode))
1253                 ret = ext4_block_write_begin(page, pos, len,
1254                                              ext4_get_block_unwritten);
1255         else
1256                 ret = ext4_block_write_begin(page, pos, len,
1257                                              ext4_get_block);
1258 #else
1259         if (ext4_should_dioread_nolock(inode))
1260                 ret = __block_write_begin(page, pos, len,
1261                                           ext4_get_block_unwritten);
1262         else
1263                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1264 #endif
1265         if (!ret && ext4_should_journal_data(inode)) {
1266                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1267                                              from, to, NULL,
1268                                              do_journal_get_write_access);
1269         }
1270
1271         if (ret) {
1272                 unlock_page(page);
1273                 /*
1274                  * __block_write_begin may have instantiated a few blocks
1275                  * outside i_size.  Trim these off again. Don't need
1276                  * i_size_read because we hold i_mutex.
1277                  *
1278                  * Add inode to orphan list in case we crash before
1279                  * truncate finishes
1280                  */
1281                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1282                         ext4_orphan_add(handle, inode);
1283
1284                 ext4_journal_stop(handle);
1285                 if (pos + len > inode->i_size) {
1286                         ext4_truncate_failed_write(inode);
1287                         /*
1288                          * If truncate failed early the inode might
1289                          * still be on the orphan list; we need to
1290                          * make sure the inode is removed from the
1291                          * orphan list in that case.
1292                          */
1293                         if (inode->i_nlink)
1294                                 ext4_orphan_del(NULL, inode);
1295                 }
1296
1297                 if (ret == -ENOSPC &&
1298                     ext4_should_retry_alloc(inode->i_sb, &retries))
1299                         goto retry_journal;
1300                 put_page(page);
1301                 return ret;
1302         }
1303         *pagep = page;
1304         return ret;
1305 }
1306
1307 /* For write_end() in data=journal mode */
1308 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1309 {
1310         int ret;
1311         if (!buffer_mapped(bh) || buffer_freed(bh))
1312                 return 0;
1313         set_buffer_uptodate(bh);
1314         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1315         clear_buffer_meta(bh);
1316         clear_buffer_prio(bh);
1317         return ret;
1318 }
1319
1320 /*
1321  * We need to pick up the new inode size which generic_commit_write gave us
1322  * `file' can be NULL - eg, when called from page_symlink().
1323  *
1324  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1325  * buffers are managed internally.
1326  */
1327 static int ext4_write_end(struct file *file,
1328                           struct address_space *mapping,
1329                           loff_t pos, unsigned len, unsigned copied,
1330                           struct page *page, void *fsdata)
1331 {
1332         handle_t *handle = ext4_journal_current_handle();
1333         struct inode *inode = mapping->host;
1334         loff_t old_size = inode->i_size;
1335         int ret = 0, ret2;
1336         int i_size_changed = 0;
1337
1338         trace_ext4_write_end(inode, pos, len, copied);
1339         if (ext4_has_inline_data(inode)) {
1340                 ret = ext4_write_inline_data_end(inode, pos, len,
1341                                                  copied, page);
1342                 if (ret < 0) {
1343                         unlock_page(page);
1344                         put_page(page);
1345                         goto errout;
1346                 }
1347                 copied = ret;
1348         } else
1349                 copied = block_write_end(file, mapping, pos,
1350                                          len, copied, page, fsdata);
1351         /*
1352          * it's important to update i_size while still holding page lock:
1353          * page writeout could otherwise come in and zero beyond i_size.
1354          */
1355         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1356         unlock_page(page);
1357         put_page(page);
1358
1359         if (old_size < pos)
1360                 pagecache_isize_extended(inode, old_size, pos);
1361         /*
1362          * Don't mark the inode dirty under page lock. First, it unnecessarily
1363          * makes the holding time of page lock longer. Second, it forces lock
1364          * ordering of page lock and transaction start for journaling
1365          * filesystems.
1366          */
1367         if (i_size_changed)
1368                 ext4_mark_inode_dirty(handle, inode);
1369
1370         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1371                 /* if we have allocated more blocks and copied
1372                  * less. We will have blocks allocated outside
1373                  * inode->i_size. So truncate them
1374                  */
1375                 ext4_orphan_add(handle, inode);
1376 errout:
1377         ret2 = ext4_journal_stop(handle);
1378         if (!ret)
1379                 ret = ret2;
1380
1381         if (pos + len > inode->i_size) {
1382                 ext4_truncate_failed_write(inode);
1383                 /*
1384                  * If truncate failed early the inode might still be
1385                  * on the orphan list; we need to make sure the inode
1386                  * is removed from the orphan list in that case.
1387                  */
1388                 if (inode->i_nlink)
1389                         ext4_orphan_del(NULL, inode);
1390         }
1391
1392         return ret ? ret : copied;
1393 }
1394
1395 /*
1396  * This is a private version of page_zero_new_buffers() which doesn't
1397  * set the buffer to be dirty, since in data=journalled mode we need
1398  * to call ext4_handle_dirty_metadata() instead.
1399  */
1400 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1401                                             struct page *page,
1402                                             unsigned from, unsigned to)
1403 {
1404         unsigned int block_start = 0, block_end;
1405         struct buffer_head *head, *bh;
1406
1407         bh = head = page_buffers(page);
1408         do {
1409                 block_end = block_start + bh->b_size;
1410                 if (buffer_new(bh)) {
1411                         if (block_end > from && block_start < to) {
1412                                 if (!PageUptodate(page)) {
1413                                         unsigned start, size;
1414
1415                                         start = max(from, block_start);
1416                                         size = min(to, block_end) - start;
1417
1418                                         zero_user(page, start, size);
1419                                         write_end_fn(handle, bh);
1420                                 }
1421                                 clear_buffer_new(bh);
1422                         }
1423                 }
1424                 block_start = block_end;
1425                 bh = bh->b_this_page;
1426         } while (bh != head);
1427 }
1428
1429 static int ext4_journalled_write_end(struct file *file,
1430                                      struct address_space *mapping,
1431                                      loff_t pos, unsigned len, unsigned copied,
1432                                      struct page *page, void *fsdata)
1433 {
1434         handle_t *handle = ext4_journal_current_handle();
1435         struct inode *inode = mapping->host;
1436         loff_t old_size = inode->i_size;
1437         int ret = 0, ret2;
1438         int partial = 0;
1439         unsigned from, to;
1440         int size_changed = 0;
1441
1442         trace_ext4_journalled_write_end(inode, pos, len, copied);
1443         from = pos & (PAGE_SIZE - 1);
1444         to = from + len;
1445
1446         BUG_ON(!ext4_handle_valid(handle));
1447
1448         if (ext4_has_inline_data(inode)) {
1449                 ret = ext4_write_inline_data_end(inode, pos, len,
1450                                                  copied, page);
1451                 if (ret < 0) {
1452                         unlock_page(page);
1453                         put_page(page);
1454                         goto errout;
1455                 }
1456                 copied = ret;
1457         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1458                 copied = 0;
1459                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1460         } else {
1461                 if (unlikely(copied < len))
1462                         ext4_journalled_zero_new_buffers(handle, page,
1463                                                          from + copied, to);
1464                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1465                                              from + copied, &partial,
1466                                              write_end_fn);
1467                 if (!partial)
1468                         SetPageUptodate(page);
1469         }
1470         size_changed = ext4_update_inode_size(inode, pos + copied);
1471         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1472         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1473         unlock_page(page);
1474         put_page(page);
1475
1476         if (old_size < pos)
1477                 pagecache_isize_extended(inode, old_size, pos);
1478
1479         if (size_changed) {
1480                 ret2 = ext4_mark_inode_dirty(handle, inode);
1481                 if (!ret)
1482                         ret = ret2;
1483         }
1484
1485         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1486                 /* if we have allocated more blocks and copied
1487                  * less. We will have blocks allocated outside
1488                  * inode->i_size. So truncate them
1489                  */
1490                 ext4_orphan_add(handle, inode);
1491
1492 errout:
1493         ret2 = ext4_journal_stop(handle);
1494         if (!ret)
1495                 ret = ret2;
1496         if (pos + len > inode->i_size) {
1497                 ext4_truncate_failed_write(inode);
1498                 /*
1499                  * If truncate failed early the inode might still be
1500                  * on the orphan list; we need to make sure the inode
1501                  * is removed from the orphan list in that case.
1502                  */
1503                 if (inode->i_nlink)
1504                         ext4_orphan_del(NULL, inode);
1505         }
1506
1507         return ret ? ret : copied;
1508 }
1509
1510 /*
1511  * Reserve space for a single cluster
1512  */
1513 static int ext4_da_reserve_space(struct inode *inode)
1514 {
1515         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516         struct ext4_inode_info *ei = EXT4_I(inode);
1517         int ret;
1518
1519         /*
1520          * We will charge metadata quota at writeout time; this saves
1521          * us from metadata over-estimation, though we may go over by
1522          * a small amount in the end.  Here we just reserve for data.
1523          */
1524         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1525         if (ret)
1526                 return ret;
1527
1528         spin_lock(&ei->i_block_reservation_lock);
1529         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1530                 spin_unlock(&ei->i_block_reservation_lock);
1531                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1532                 return -ENOSPC;
1533         }
1534         ei->i_reserved_data_blocks++;
1535         trace_ext4_da_reserve_space(inode);
1536         spin_unlock(&ei->i_block_reservation_lock);
1537
1538         return 0;       /* success */
1539 }
1540
1541 static void ext4_da_release_space(struct inode *inode, int to_free)
1542 {
1543         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1544         struct ext4_inode_info *ei = EXT4_I(inode);
1545
1546         if (!to_free)
1547                 return;         /* Nothing to release, exit */
1548
1549         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1550
1551         trace_ext4_da_release_space(inode, to_free);
1552         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1553                 /*
1554                  * if there aren't enough reserved blocks, then the
1555                  * counter is messed up somewhere.  Since this
1556                  * function is called from invalidate page, it's
1557                  * harmless to return without any action.
1558                  */
1559                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1560                          "ino %lu, to_free %d with only %d reserved "
1561                          "data blocks", inode->i_ino, to_free,
1562                          ei->i_reserved_data_blocks);
1563                 WARN_ON(1);
1564                 to_free = ei->i_reserved_data_blocks;
1565         }
1566         ei->i_reserved_data_blocks -= to_free;
1567
1568         /* update fs dirty data blocks counter */
1569         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1570
1571         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572
1573         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1574 }
1575
1576 static void ext4_da_page_release_reservation(struct page *page,
1577                                              unsigned int offset,
1578                                              unsigned int length)
1579 {
1580         int to_release = 0, contiguous_blks = 0;
1581         struct buffer_head *head, *bh;
1582         unsigned int curr_off = 0;
1583         struct inode *inode = page->mapping->host;
1584         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1585         unsigned int stop = offset + length;
1586         int num_clusters;
1587         ext4_fsblk_t lblk;
1588
1589         BUG_ON(stop > PAGE_SIZE || stop < length);
1590
1591         head = page_buffers(page);
1592         bh = head;
1593         do {
1594                 unsigned int next_off = curr_off + bh->b_size;
1595
1596                 if (next_off > stop)
1597                         break;
1598
1599                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1600                         to_release++;
1601                         contiguous_blks++;
1602                         clear_buffer_delay(bh);
1603                 } else if (contiguous_blks) {
1604                         lblk = page->index <<
1605                                (PAGE_SHIFT - inode->i_blkbits);
1606                         lblk += (curr_off >> inode->i_blkbits) -
1607                                 contiguous_blks;
1608                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609                         contiguous_blks = 0;
1610                 }
1611                 curr_off = next_off;
1612         } while ((bh = bh->b_this_page) != head);
1613
1614         if (contiguous_blks) {
1615                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1616                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1617                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1618         }
1619
1620         /* If we have released all the blocks belonging to a cluster, then we
1621          * need to release the reserved space for that cluster. */
1622         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1623         while (num_clusters > 0) {
1624                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1625                         ((num_clusters - 1) << sbi->s_cluster_bits);
1626                 if (sbi->s_cluster_ratio == 1 ||
1627                     !ext4_find_delalloc_cluster(inode, lblk))
1628                         ext4_da_release_space(inode, 1);
1629
1630                 num_clusters--;
1631         }
1632 }
1633
1634 /*
1635  * Delayed allocation stuff
1636  */
1637
1638 struct mpage_da_data {
1639         struct inode *inode;
1640         struct writeback_control *wbc;
1641
1642         pgoff_t first_page;     /* The first page to write */
1643         pgoff_t next_page;      /* Current page to examine */
1644         pgoff_t last_page;      /* Last page to examine */
1645         /*
1646          * Extent to map - this can be after first_page because that can be
1647          * fully mapped. We somewhat abuse m_flags to store whether the extent
1648          * is delalloc or unwritten.
1649          */
1650         struct ext4_map_blocks map;
1651         struct ext4_io_submit io_submit;        /* IO submission data */
1652         unsigned int do_map:1;
1653 };
1654
1655 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1656                                        bool invalidate)
1657 {
1658         int nr_pages, i;
1659         pgoff_t index, end;
1660         struct pagevec pvec;
1661         struct inode *inode = mpd->inode;
1662         struct address_space *mapping = inode->i_mapping;
1663
1664         /* This is necessary when next_page == 0. */
1665         if (mpd->first_page >= mpd->next_page)
1666                 return;
1667
1668         index = mpd->first_page;
1669         end   = mpd->next_page - 1;
1670         if (invalidate) {
1671                 ext4_lblk_t start, last;
1672                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1673                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1674                 ext4_es_remove_extent(inode, start, last - start + 1);
1675         }
1676
1677         pagevec_init(&pvec, 0);
1678         while (index <= end) {
1679                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1680                 if (nr_pages == 0)
1681                         break;
1682                 for (i = 0; i < nr_pages; i++) {
1683                         struct page *page = pvec.pages[i];
1684                         if (page->index > end)
1685                                 break;
1686                         BUG_ON(!PageLocked(page));
1687                         BUG_ON(PageWriteback(page));
1688                         if (invalidate) {
1689                                 if (page_mapped(page))
1690                                         clear_page_dirty_for_io(page);
1691                                 block_invalidatepage(page, 0, PAGE_SIZE);
1692                                 ClearPageUptodate(page);
1693                         }
1694                         unlock_page(page);
1695                 }
1696                 index = pvec.pages[nr_pages - 1]->index + 1;
1697                 pagevec_release(&pvec);
1698         }
1699 }
1700
1701 static void ext4_print_free_blocks(struct inode *inode)
1702 {
1703         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1704         struct super_block *sb = inode->i_sb;
1705         struct ext4_inode_info *ei = EXT4_I(inode);
1706
1707         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1708                EXT4_C2B(EXT4_SB(inode->i_sb),
1709                         ext4_count_free_clusters(sb)));
1710         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1711         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1712                (long long) EXT4_C2B(EXT4_SB(sb),
1713                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1714         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1715                (long long) EXT4_C2B(EXT4_SB(sb),
1716                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1717         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1718         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1719                  ei->i_reserved_data_blocks);
1720         return;
1721 }
1722
1723 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1724 {
1725         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1726 }
1727
1728 /*
1729  * This function is grabs code from the very beginning of
1730  * ext4_map_blocks, but assumes that the caller is from delayed write
1731  * time. This function looks up the requested blocks and sets the
1732  * buffer delay bit under the protection of i_data_sem.
1733  */
1734 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1735                               struct ext4_map_blocks *map,
1736                               struct buffer_head *bh)
1737 {
1738         struct extent_status es;
1739         int retval;
1740         sector_t invalid_block = ~((sector_t) 0xffff);
1741 #ifdef ES_AGGRESSIVE_TEST
1742         struct ext4_map_blocks orig_map;
1743
1744         memcpy(&orig_map, map, sizeof(*map));
1745 #endif
1746
1747         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1748                 invalid_block = ~0;
1749
1750         map->m_flags = 0;
1751         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1752                   "logical block %lu\n", inode->i_ino, map->m_len,
1753                   (unsigned long) map->m_lblk);
1754
1755         /* Lookup extent status tree firstly */
1756         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1757                 if (ext4_es_is_hole(&es)) {
1758                         retval = 0;
1759                         down_read(&EXT4_I(inode)->i_data_sem);
1760                         goto add_delayed;
1761                 }
1762
1763                 /*
1764                  * Delayed extent could be allocated by fallocate.
1765                  * So we need to check it.
1766                  */
1767                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1768                         map_bh(bh, inode->i_sb, invalid_block);
1769                         set_buffer_new(bh);
1770                         set_buffer_delay(bh);
1771                         return 0;
1772                 }
1773
1774                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1775                 retval = es.es_len - (iblock - es.es_lblk);
1776                 if (retval > map->m_len)
1777                         retval = map->m_len;
1778                 map->m_len = retval;
1779                 if (ext4_es_is_written(&es))
1780                         map->m_flags |= EXT4_MAP_MAPPED;
1781                 else if (ext4_es_is_unwritten(&es))
1782                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1783                 else
1784                         BUG_ON(1);
1785
1786 #ifdef ES_AGGRESSIVE_TEST
1787                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1788 #endif
1789                 return retval;
1790         }
1791
1792         /*
1793          * Try to see if we can get the block without requesting a new
1794          * file system block.
1795          */
1796         down_read(&EXT4_I(inode)->i_data_sem);
1797         if (ext4_has_inline_data(inode))
1798                 retval = 0;
1799         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1800                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1801         else
1802                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1803
1804 add_delayed:
1805         if (retval == 0) {
1806                 int ret;
1807                 /*
1808                  * XXX: __block_prepare_write() unmaps passed block,
1809                  * is it OK?
1810                  */
1811                 /*
1812                  * If the block was allocated from previously allocated cluster,
1813                  * then we don't need to reserve it again. However we still need
1814                  * to reserve metadata for every block we're going to write.
1815                  */
1816                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1817                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1818                         ret = ext4_da_reserve_space(inode);
1819                         if (ret) {
1820                                 /* not enough space to reserve */
1821                                 retval = ret;
1822                                 goto out_unlock;
1823                         }
1824                 }
1825
1826                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1827                                             ~0, EXTENT_STATUS_DELAYED);
1828                 if (ret) {
1829                         retval = ret;
1830                         goto out_unlock;
1831                 }
1832
1833                 map_bh(bh, inode->i_sb, invalid_block);
1834                 set_buffer_new(bh);
1835                 set_buffer_delay(bh);
1836         } else if (retval > 0) {
1837                 int ret;
1838                 unsigned int status;
1839
1840                 if (unlikely(retval != map->m_len)) {
1841                         ext4_warning(inode->i_sb,
1842                                      "ES len assertion failed for inode "
1843                                      "%lu: retval %d != map->m_len %d",
1844                                      inode->i_ino, retval, map->m_len);
1845                         WARN_ON(1);
1846                 }
1847
1848                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1849                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1850                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1851                                             map->m_pblk, status);
1852                 if (ret != 0)
1853                         retval = ret;
1854         }
1855
1856 out_unlock:
1857         up_read((&EXT4_I(inode)->i_data_sem));
1858
1859         return retval;
1860 }
1861
1862 /*
1863  * This is a special get_block_t callback which is used by
1864  * ext4_da_write_begin().  It will either return mapped block or
1865  * reserve space for a single block.
1866  *
1867  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1868  * We also have b_blocknr = -1 and b_bdev initialized properly
1869  *
1870  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1871  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1872  * initialized properly.
1873  */
1874 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1875                            struct buffer_head *bh, int create)
1876 {
1877         struct ext4_map_blocks map;
1878         int ret = 0;
1879
1880         BUG_ON(create == 0);
1881         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1882
1883         map.m_lblk = iblock;
1884         map.m_len = 1;
1885
1886         /*
1887          * first, we need to know whether the block is allocated already
1888          * preallocated blocks are unmapped but should treated
1889          * the same as allocated blocks.
1890          */
1891         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1892         if (ret <= 0)
1893                 return ret;
1894
1895         map_bh(bh, inode->i_sb, map.m_pblk);
1896         ext4_update_bh_state(bh, map.m_flags);
1897
1898         if (buffer_unwritten(bh)) {
1899                 /* A delayed write to unwritten bh should be marked
1900                  * new and mapped.  Mapped ensures that we don't do
1901                  * get_block multiple times when we write to the same
1902                  * offset and new ensures that we do proper zero out
1903                  * for partial write.
1904                  */
1905                 set_buffer_new(bh);
1906                 set_buffer_mapped(bh);
1907         }
1908         return 0;
1909 }
1910
1911 static int bget_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913         get_bh(bh);
1914         return 0;
1915 }
1916
1917 static int bput_one(handle_t *handle, struct buffer_head *bh)
1918 {
1919         put_bh(bh);
1920         return 0;
1921 }
1922
1923 static int __ext4_journalled_writepage(struct page *page,
1924                                        unsigned int len)
1925 {
1926         struct address_space *mapping = page->mapping;
1927         struct inode *inode = mapping->host;
1928         struct buffer_head *page_bufs = NULL;
1929         handle_t *handle = NULL;
1930         int ret = 0, err = 0;
1931         int inline_data = ext4_has_inline_data(inode);
1932         struct buffer_head *inode_bh = NULL;
1933
1934         ClearPageChecked(page);
1935
1936         if (inline_data) {
1937                 BUG_ON(page->index != 0);
1938                 BUG_ON(len > ext4_get_max_inline_size(inode));
1939                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1940                 if (inode_bh == NULL)
1941                         goto out;
1942         } else {
1943                 page_bufs = page_buffers(page);
1944                 if (!page_bufs) {
1945                         BUG();
1946                         goto out;
1947                 }
1948                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1949                                        NULL, bget_one);
1950         }
1951         /*
1952          * We need to release the page lock before we start the
1953          * journal, so grab a reference so the page won't disappear
1954          * out from under us.
1955          */
1956         get_page(page);
1957         unlock_page(page);
1958
1959         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1960                                     ext4_writepage_trans_blocks(inode));
1961         if (IS_ERR(handle)) {
1962                 ret = PTR_ERR(handle);
1963                 put_page(page);
1964                 goto out_no_pagelock;
1965         }
1966         BUG_ON(!ext4_handle_valid(handle));
1967
1968         lock_page(page);
1969         put_page(page);
1970         if (page->mapping != mapping) {
1971                 /* The page got truncated from under us */
1972                 ext4_journal_stop(handle);
1973                 ret = 0;
1974                 goto out;
1975         }
1976
1977         if (inline_data) {
1978                 BUFFER_TRACE(inode_bh, "get write access");
1979                 ret = ext4_journal_get_write_access(handle, inode_bh);
1980
1981                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1982
1983         } else {
1984                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1985                                              do_journal_get_write_access);
1986
1987                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1988                                              write_end_fn);
1989         }
1990         if (ret == 0)
1991                 ret = err;
1992         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1993         err = ext4_journal_stop(handle);
1994         if (!ret)
1995                 ret = err;
1996
1997         if (!ext4_has_inline_data(inode))
1998                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1999                                        NULL, bput_one);
2000         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2001 out:
2002         unlock_page(page);
2003 out_no_pagelock:
2004         brelse(inode_bh);
2005         return ret;
2006 }
2007
2008 /*
2009  * Note that we don't need to start a transaction unless we're journaling data
2010  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2011  * need to file the inode to the transaction's list in ordered mode because if
2012  * we are writing back data added by write(), the inode is already there and if
2013  * we are writing back data modified via mmap(), no one guarantees in which
2014  * transaction the data will hit the disk. In case we are journaling data, we
2015  * cannot start transaction directly because transaction start ranks above page
2016  * lock so we have to do some magic.
2017  *
2018  * This function can get called via...
2019  *   - ext4_writepages after taking page lock (have journal handle)
2020  *   - journal_submit_inode_data_buffers (no journal handle)
2021  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2022  *   - grab_page_cache when doing write_begin (have journal handle)
2023  *
2024  * We don't do any block allocation in this function. If we have page with
2025  * multiple blocks we need to write those buffer_heads that are mapped. This
2026  * is important for mmaped based write. So if we do with blocksize 1K
2027  * truncate(f, 1024);
2028  * a = mmap(f, 0, 4096);
2029  * a[0] = 'a';
2030  * truncate(f, 4096);
2031  * we have in the page first buffer_head mapped via page_mkwrite call back
2032  * but other buffer_heads would be unmapped but dirty (dirty done via the
2033  * do_wp_page). So writepage should write the first block. If we modify
2034  * the mmap area beyond 1024 we will again get a page_fault and the
2035  * page_mkwrite callback will do the block allocation and mark the
2036  * buffer_heads mapped.
2037  *
2038  * We redirty the page if we have any buffer_heads that is either delay or
2039  * unwritten in the page.
2040  *
2041  * We can get recursively called as show below.
2042  *
2043  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2044  *              ext4_writepage()
2045  *
2046  * But since we don't do any block allocation we should not deadlock.
2047  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2048  */
2049 static int ext4_writepage(struct page *page,
2050                           struct writeback_control *wbc)
2051 {
2052         int ret = 0;
2053         loff_t size;
2054         unsigned int len;
2055         struct buffer_head *page_bufs = NULL;
2056         struct inode *inode = page->mapping->host;
2057         struct ext4_io_submit io_submit;
2058         bool keep_towrite = false;
2059
2060         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2061                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2062                 unlock_page(page);
2063                 return -EIO;
2064         }
2065
2066         trace_ext4_writepage(page);
2067         size = i_size_read(inode);
2068         if (page->index == size >> PAGE_SHIFT)
2069                 len = size & ~PAGE_MASK;
2070         else
2071                 len = PAGE_SIZE;
2072
2073         page_bufs = page_buffers(page);
2074         /*
2075          * We cannot do block allocation or other extent handling in this
2076          * function. If there are buffers needing that, we have to redirty
2077          * the page. But we may reach here when we do a journal commit via
2078          * journal_submit_inode_data_buffers() and in that case we must write
2079          * allocated buffers to achieve data=ordered mode guarantees.
2080          *
2081          * Also, if there is only one buffer per page (the fs block
2082          * size == the page size), if one buffer needs block
2083          * allocation or needs to modify the extent tree to clear the
2084          * unwritten flag, we know that the page can't be written at
2085          * all, so we might as well refuse the write immediately.
2086          * Unfortunately if the block size != page size, we can't as
2087          * easily detect this case using ext4_walk_page_buffers(), but
2088          * for the extremely common case, this is an optimization that
2089          * skips a useless round trip through ext4_bio_write_page().
2090          */
2091         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2092                                    ext4_bh_delay_or_unwritten)) {
2093                 redirty_page_for_writepage(wbc, page);
2094                 if ((current->flags & PF_MEMALLOC) ||
2095                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2096                         /*
2097                          * For memory cleaning there's no point in writing only
2098                          * some buffers. So just bail out. Warn if we came here
2099                          * from direct reclaim.
2100                          */
2101                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2102                                                         == PF_MEMALLOC);
2103                         unlock_page(page);
2104                         return 0;
2105                 }
2106                 keep_towrite = true;
2107         }
2108
2109         if (PageChecked(page) && ext4_should_journal_data(inode))
2110                 /*
2111                  * It's mmapped pagecache.  Add buffers and journal it.  There
2112                  * doesn't seem much point in redirtying the page here.
2113                  */
2114                 return __ext4_journalled_writepage(page, len);
2115
2116         ext4_io_submit_init(&io_submit, wbc);
2117         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2118         if (!io_submit.io_end) {
2119                 redirty_page_for_writepage(wbc, page);
2120                 unlock_page(page);
2121                 return -ENOMEM;
2122         }
2123         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2124         ext4_io_submit(&io_submit);
2125         /* Drop io_end reference we got from init */
2126         ext4_put_io_end_defer(io_submit.io_end);
2127         return ret;
2128 }
2129
2130 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2131 {
2132         int len;
2133         loff_t size;
2134         int err;
2135
2136         BUG_ON(page->index != mpd->first_page);
2137         clear_page_dirty_for_io(page);
2138         /*
2139          * We have to be very careful here!  Nothing protects writeback path
2140          * against i_size changes and the page can be writeably mapped into
2141          * page tables. So an application can be growing i_size and writing
2142          * data through mmap while writeback runs. clear_page_dirty_for_io()
2143          * write-protects our page in page tables and the page cannot get
2144          * written to again until we release page lock. So only after
2145          * clear_page_dirty_for_io() we are safe to sample i_size for
2146          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2147          * on the barrier provided by TestClearPageDirty in
2148          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2149          * after page tables are updated.
2150          */
2151         size = i_size_read(mpd->inode);
2152         if (page->index == size >> PAGE_SHIFT)
2153                 len = size & ~PAGE_MASK;
2154         else
2155                 len = PAGE_SIZE;
2156         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2157         if (!err)
2158                 mpd->wbc->nr_to_write--;
2159         mpd->first_page++;
2160
2161         return err;
2162 }
2163
2164 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2165
2166 /*
2167  * mballoc gives us at most this number of blocks...
2168  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2169  * The rest of mballoc seems to handle chunks up to full group size.
2170  */
2171 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2172
2173 /*
2174  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2175  *
2176  * @mpd - extent of blocks
2177  * @lblk - logical number of the block in the file
2178  * @bh - buffer head we want to add to the extent
2179  *
2180  * The function is used to collect contig. blocks in the same state. If the
2181  * buffer doesn't require mapping for writeback and we haven't started the
2182  * extent of buffers to map yet, the function returns 'true' immediately - the
2183  * caller can write the buffer right away. Otherwise the function returns true
2184  * if the block has been added to the extent, false if the block couldn't be
2185  * added.
2186  */
2187 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2188                                    struct buffer_head *bh)
2189 {
2190         struct ext4_map_blocks *map = &mpd->map;
2191
2192         /* Buffer that doesn't need mapping for writeback? */
2193         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2194             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2195                 /* So far no extent to map => we write the buffer right away */
2196                 if (map->m_len == 0)
2197                         return true;
2198                 return false;
2199         }
2200
2201         /* First block in the extent? */
2202         if (map->m_len == 0) {
2203                 /* We cannot map unless handle is started... */
2204                 if (!mpd->do_map)
2205                         return false;
2206                 map->m_lblk = lblk;
2207                 map->m_len = 1;
2208                 map->m_flags = bh->b_state & BH_FLAGS;
2209                 return true;
2210         }
2211
2212         /* Don't go larger than mballoc is willing to allocate */
2213         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2214                 return false;
2215
2216         /* Can we merge the block to our big extent? */
2217         if (lblk == map->m_lblk + map->m_len &&
2218             (bh->b_state & BH_FLAGS) == map->m_flags) {
2219                 map->m_len++;
2220                 return true;
2221         }
2222         return false;
2223 }
2224
2225 /*
2226  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2227  *
2228  * @mpd - extent of blocks for mapping
2229  * @head - the first buffer in the page
2230  * @bh - buffer we should start processing from
2231  * @lblk - logical number of the block in the file corresponding to @bh
2232  *
2233  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2234  * the page for IO if all buffers in this page were mapped and there's no
2235  * accumulated extent of buffers to map or add buffers in the page to the
2236  * extent of buffers to map. The function returns 1 if the caller can continue
2237  * by processing the next page, 0 if it should stop adding buffers to the
2238  * extent to map because we cannot extend it anymore. It can also return value
2239  * < 0 in case of error during IO submission.
2240  */
2241 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2242                                    struct buffer_head *head,
2243                                    struct buffer_head *bh,
2244                                    ext4_lblk_t lblk)
2245 {
2246         struct inode *inode = mpd->inode;
2247         int err;
2248         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2249                                                         >> inode->i_blkbits;
2250
2251         do {
2252                 BUG_ON(buffer_locked(bh));
2253
2254                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2255                         /* Found extent to map? */
2256                         if (mpd->map.m_len)
2257                                 return 0;
2258                         /* Buffer needs mapping and handle is not started? */
2259                         if (!mpd->do_map)
2260                                 return 0;
2261                         /* Everything mapped so far and we hit EOF */
2262                         break;
2263                 }
2264         } while (lblk++, (bh = bh->b_this_page) != head);
2265         /* So far everything mapped? Submit the page for IO. */
2266         if (mpd->map.m_len == 0) {
2267                 err = mpage_submit_page(mpd, head->b_page);
2268                 if (err < 0)
2269                         return err;
2270         }
2271         return lblk < blocks;
2272 }
2273
2274 /*
2275  * mpage_map_buffers - update buffers corresponding to changed extent and
2276  *                     submit fully mapped pages for IO
2277  *
2278  * @mpd - description of extent to map, on return next extent to map
2279  *
2280  * Scan buffers corresponding to changed extent (we expect corresponding pages
2281  * to be already locked) and update buffer state according to new extent state.
2282  * We map delalloc buffers to their physical location, clear unwritten bits,
2283  * and mark buffers as uninit when we perform writes to unwritten extents
2284  * and do extent conversion after IO is finished. If the last page is not fully
2285  * mapped, we update @map to the next extent in the last page that needs
2286  * mapping. Otherwise we submit the page for IO.
2287  */
2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2289 {
2290         struct pagevec pvec;
2291         int nr_pages, i;
2292         struct inode *inode = mpd->inode;
2293         struct buffer_head *head, *bh;
2294         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2295         pgoff_t start, end;
2296         ext4_lblk_t lblk;
2297         sector_t pblock;
2298         int err;
2299
2300         start = mpd->map.m_lblk >> bpp_bits;
2301         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2302         lblk = start << bpp_bits;
2303         pblock = mpd->map.m_pblk;
2304
2305         pagevec_init(&pvec, 0);
2306         while (start <= end) {
2307                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2308                                           PAGEVEC_SIZE);
2309                 if (nr_pages == 0)
2310                         break;
2311                 for (i = 0; i < nr_pages; i++) {
2312                         struct page *page = pvec.pages[i];
2313
2314                         if (page->index > end)
2315                                 break;
2316                         /* Up to 'end' pages must be contiguous */
2317                         BUG_ON(page->index != start);
2318                         bh = head = page_buffers(page);
2319                         do {
2320                                 if (lblk < mpd->map.m_lblk)
2321                                         continue;
2322                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2323                                         /*
2324                                          * Buffer after end of mapped extent.
2325                                          * Find next buffer in the page to map.
2326                                          */
2327                                         mpd->map.m_len = 0;
2328                                         mpd->map.m_flags = 0;
2329                                         /*
2330                                          * FIXME: If dioread_nolock supports
2331                                          * blocksize < pagesize, we need to make
2332                                          * sure we add size mapped so far to
2333                                          * io_end->size as the following call
2334                                          * can submit the page for IO.
2335                                          */
2336                                         err = mpage_process_page_bufs(mpd, head,
2337                                                                       bh, lblk);
2338                                         pagevec_release(&pvec);
2339                                         if (err > 0)
2340                                                 err = 0;
2341                                         return err;
2342                                 }
2343                                 if (buffer_delay(bh)) {
2344                                         clear_buffer_delay(bh);
2345                                         bh->b_blocknr = pblock++;
2346                                 }
2347                                 clear_buffer_unwritten(bh);
2348                         } while (lblk++, (bh = bh->b_this_page) != head);
2349
2350                         /*
2351                          * FIXME: This is going to break if dioread_nolock
2352                          * supports blocksize < pagesize as we will try to
2353                          * convert potentially unmapped parts of inode.
2354                          */
2355                         mpd->io_submit.io_end->size += PAGE_SIZE;
2356                         /* Page fully mapped - let IO run! */
2357                         err = mpage_submit_page(mpd, page);
2358                         if (err < 0) {
2359                                 pagevec_release(&pvec);
2360                                 return err;
2361                         }
2362                         start++;
2363                 }
2364                 pagevec_release(&pvec);
2365         }
2366         /* Extent fully mapped and matches with page boundary. We are done. */
2367         mpd->map.m_len = 0;
2368         mpd->map.m_flags = 0;
2369         return 0;
2370 }
2371
2372 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2373 {
2374         struct inode *inode = mpd->inode;
2375         struct ext4_map_blocks *map = &mpd->map;
2376         int get_blocks_flags;
2377         int err, dioread_nolock;
2378
2379         trace_ext4_da_write_pages_extent(inode, map);
2380         /*
2381          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2382          * to convert an unwritten extent to be initialized (in the case
2383          * where we have written into one or more preallocated blocks).  It is
2384          * possible that we're going to need more metadata blocks than
2385          * previously reserved. However we must not fail because we're in
2386          * writeback and there is nothing we can do about it so it might result
2387          * in data loss.  So use reserved blocks to allocate metadata if
2388          * possible.
2389          *
2390          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2391          * the blocks in question are delalloc blocks.  This indicates
2392          * that the blocks and quotas has already been checked when
2393          * the data was copied into the page cache.
2394          */
2395         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2396                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2397                            EXT4_GET_BLOCKS_IO_SUBMIT;
2398         dioread_nolock = ext4_should_dioread_nolock(inode);
2399         if (dioread_nolock)
2400                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2401         if (map->m_flags & (1 << BH_Delay))
2402                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2403
2404         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2405         if (err < 0)
2406                 return err;
2407         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2408                 if (!mpd->io_submit.io_end->handle &&
2409                     ext4_handle_valid(handle)) {
2410                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2411                         handle->h_rsv_handle = NULL;
2412                 }
2413                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2414         }
2415
2416         BUG_ON(map->m_len == 0);
2417         if (map->m_flags & EXT4_MAP_NEW) {
2418                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2419                                    map->m_len);
2420         }
2421         return 0;
2422 }
2423
2424 /*
2425  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2426  *                               mpd->len and submit pages underlying it for IO
2427  *
2428  * @handle - handle for journal operations
2429  * @mpd - extent to map
2430  * @give_up_on_write - we set this to true iff there is a fatal error and there
2431  *                     is no hope of writing the data. The caller should discard
2432  *                     dirty pages to avoid infinite loops.
2433  *
2434  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2435  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2436  * them to initialized or split the described range from larger unwritten
2437  * extent. Note that we need not map all the described range since allocation
2438  * can return less blocks or the range is covered by more unwritten extents. We
2439  * cannot map more because we are limited by reserved transaction credits. On
2440  * the other hand we always make sure that the last touched page is fully
2441  * mapped so that it can be written out (and thus forward progress is
2442  * guaranteed). After mapping we submit all mapped pages for IO.
2443  */
2444 static int mpage_map_and_submit_extent(handle_t *handle,
2445                                        struct mpage_da_data *mpd,
2446                                        bool *give_up_on_write)
2447 {
2448         struct inode *inode = mpd->inode;
2449         struct ext4_map_blocks *map = &mpd->map;
2450         int err;
2451         loff_t disksize;
2452         int progress = 0;
2453
2454         mpd->io_submit.io_end->offset =
2455                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2456         do {
2457                 err = mpage_map_one_extent(handle, mpd);
2458                 if (err < 0) {
2459                         struct super_block *sb = inode->i_sb;
2460
2461                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2462                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2463                                 goto invalidate_dirty_pages;
2464                         /*
2465                          * Let the uper layers retry transient errors.
2466                          * In the case of ENOSPC, if ext4_count_free_blocks()
2467                          * is non-zero, a commit should free up blocks.
2468                          */
2469                         if ((err == -ENOMEM) ||
2470                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2471                                 if (progress)
2472                                         goto update_disksize;
2473                                 return err;
2474                         }
2475                         ext4_msg(sb, KERN_CRIT,
2476                                  "Delayed block allocation failed for "
2477                                  "inode %lu at logical offset %llu with"
2478                                  " max blocks %u with error %d",
2479                                  inode->i_ino,
2480                                  (unsigned long long)map->m_lblk,
2481                                  (unsigned)map->m_len, -err);
2482                         ext4_msg(sb, KERN_CRIT,
2483                                  "This should not happen!! Data will "
2484                                  "be lost\n");
2485                         if (err == -ENOSPC)
2486                                 ext4_print_free_blocks(inode);
2487                 invalidate_dirty_pages:
2488                         *give_up_on_write = true;
2489                         return err;
2490                 }
2491                 progress = 1;
2492                 /*
2493                  * Update buffer state, submit mapped pages, and get us new
2494                  * extent to map
2495                  */
2496                 err = mpage_map_and_submit_buffers(mpd);
2497                 if (err < 0)
2498                         goto update_disksize;
2499         } while (map->m_len);
2500
2501 update_disksize:
2502         /*
2503          * Update on-disk size after IO is submitted.  Races with
2504          * truncate are avoided by checking i_size under i_data_sem.
2505          */
2506         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2507         if (disksize > EXT4_I(inode)->i_disksize) {
2508                 int err2;
2509                 loff_t i_size;
2510
2511                 down_write(&EXT4_I(inode)->i_data_sem);
2512                 i_size = i_size_read(inode);
2513                 if (disksize > i_size)
2514                         disksize = i_size;
2515                 if (disksize > EXT4_I(inode)->i_disksize)
2516                         EXT4_I(inode)->i_disksize = disksize;
2517                 up_write(&EXT4_I(inode)->i_data_sem);
2518                 err2 = ext4_mark_inode_dirty(handle, inode);
2519                 if (err2)
2520                         ext4_error(inode->i_sb,
2521                                    "Failed to mark inode %lu dirty",
2522                                    inode->i_ino);
2523                 if (!err)
2524                         err = err2;
2525         }
2526         return err;
2527 }
2528
2529 /*
2530  * Calculate the total number of credits to reserve for one writepages
2531  * iteration. This is called from ext4_writepages(). We map an extent of
2532  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534  * bpp - 1 blocks in bpp different extents.
2535  */
2536 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537 {
2538         int bpp = ext4_journal_blocks_per_page(inode);
2539
2540         return ext4_meta_trans_blocks(inode,
2541                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2542 }
2543
2544 /*
2545  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546  *                               and underlying extent to map
2547  *
2548  * @mpd - where to look for pages
2549  *
2550  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551  * IO immediately. When we find a page which isn't mapped we start accumulating
2552  * extent of buffers underlying these pages that needs mapping (formed by
2553  * either delayed or unwritten buffers). We also lock the pages containing
2554  * these buffers. The extent found is returned in @mpd structure (starting at
2555  * mpd->lblk with length mpd->len blocks).
2556  *
2557  * Note that this function can attach bios to one io_end structure which are
2558  * neither logically nor physically contiguous. Although it may seem as an
2559  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560  * case as we need to track IO to all buffers underlying a page in one io_end.
2561  */
2562 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563 {
2564         struct address_space *mapping = mpd->inode->i_mapping;
2565         struct pagevec pvec;
2566         unsigned int nr_pages;
2567         long left = mpd->wbc->nr_to_write;
2568         pgoff_t index = mpd->first_page;
2569         pgoff_t end = mpd->last_page;
2570         int tag;
2571         int i, err = 0;
2572         int blkbits = mpd->inode->i_blkbits;
2573         ext4_lblk_t lblk;
2574         struct buffer_head *head;
2575
2576         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577                 tag = PAGECACHE_TAG_TOWRITE;
2578         else
2579                 tag = PAGECACHE_TAG_DIRTY;
2580
2581         pagevec_init(&pvec, 0);
2582         mpd->map.m_len = 0;
2583         mpd->next_page = index;
2584         while (index <= end) {
2585                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2586                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2587                 if (nr_pages == 0)
2588                         goto out;
2589
2590                 for (i = 0; i < nr_pages; i++) {
2591                         struct page *page = pvec.pages[i];
2592
2593                         /*
2594                          * At this point, the page may be truncated or
2595                          * invalidated (changing page->mapping to NULL), or
2596                          * even swizzled back from swapper_space to tmpfs file
2597                          * mapping. However, page->index will not change
2598                          * because we have a reference on the page.
2599                          */
2600                         if (page->index > end)
2601                                 goto out;
2602
2603                         /*
2604                          * Accumulated enough dirty pages? This doesn't apply
2605                          * to WB_SYNC_ALL mode. For integrity sync we have to
2606                          * keep going because someone may be concurrently
2607                          * dirtying pages, and we might have synced a lot of
2608                          * newly appeared dirty pages, but have not synced all
2609                          * of the old dirty pages.
2610                          */
2611                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2612                                 goto out;
2613
2614                         /* If we can't merge this page, we are done. */
2615                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2616                                 goto out;
2617
2618                         lock_page(page);
2619                         /*
2620                          * If the page is no longer dirty, or its mapping no
2621                          * longer corresponds to inode we are writing (which
2622                          * means it has been truncated or invalidated), or the
2623                          * page is already under writeback and we are not doing
2624                          * a data integrity writeback, skip the page
2625                          */
2626                         if (!PageDirty(page) ||
2627                             (PageWriteback(page) &&
2628                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2629                             unlikely(page->mapping != mapping)) {
2630                                 unlock_page(page);
2631                                 continue;
2632                         }
2633
2634                         wait_on_page_writeback(page);
2635                         BUG_ON(PageWriteback(page));
2636
2637                         if (mpd->map.m_len == 0)
2638                                 mpd->first_page = page->index;
2639                         mpd->next_page = page->index + 1;
2640                         /* Add all dirty buffers to mpd */
2641                         lblk = ((ext4_lblk_t)page->index) <<
2642                                 (PAGE_SHIFT - blkbits);
2643                         head = page_buffers(page);
2644                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2645                         if (err <= 0)
2646                                 goto out;
2647                         err = 0;
2648                         left--;
2649                 }
2650                 pagevec_release(&pvec);
2651                 cond_resched();
2652         }
2653         return 0;
2654 out:
2655         pagevec_release(&pvec);
2656         return err;
2657 }
2658
2659 static int __writepage(struct page *page, struct writeback_control *wbc,
2660                        void *data)
2661 {
2662         struct address_space *mapping = data;
2663         int ret = ext4_writepage(page, wbc);
2664         mapping_set_error(mapping, ret);
2665         return ret;
2666 }
2667
2668 static int ext4_writepages(struct address_space *mapping,
2669                            struct writeback_control *wbc)
2670 {
2671         pgoff_t writeback_index = 0;
2672         long nr_to_write = wbc->nr_to_write;
2673         int range_whole = 0;
2674         int cycled = 1;
2675         handle_t *handle = NULL;
2676         struct mpage_da_data mpd;
2677         struct inode *inode = mapping->host;
2678         int needed_blocks, rsv_blocks = 0, ret = 0;
2679         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2680         bool done;
2681         struct blk_plug plug;
2682         bool give_up_on_write = false;
2683
2684         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2685                 return -EIO;
2686
2687         percpu_down_read(&sbi->s_journal_flag_rwsem);
2688         trace_ext4_writepages(inode, wbc);
2689
2690         if (dax_mapping(mapping)) {
2691                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2692                                                   wbc);
2693                 goto out_writepages;
2694         }
2695
2696         /*
2697          * No pages to write? This is mainly a kludge to avoid starting
2698          * a transaction for special inodes like journal inode on last iput()
2699          * because that could violate lock ordering on umount
2700          */
2701         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2702                 goto out_writepages;
2703
2704         if (ext4_should_journal_data(inode)) {
2705                 struct blk_plug plug;
2706
2707                 blk_start_plug(&plug);
2708                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2709                 blk_finish_plug(&plug);
2710                 goto out_writepages;
2711         }
2712
2713         /*
2714          * If the filesystem has aborted, it is read-only, so return
2715          * right away instead of dumping stack traces later on that
2716          * will obscure the real source of the problem.  We test
2717          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2718          * the latter could be true if the filesystem is mounted
2719          * read-only, and in that case, ext4_writepages should
2720          * *never* be called, so if that ever happens, we would want
2721          * the stack trace.
2722          */
2723         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2724                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2725                 ret = -EROFS;
2726                 goto out_writepages;
2727         }
2728
2729         if (ext4_should_dioread_nolock(inode)) {
2730                 /*
2731                  * We may need to convert up to one extent per block in
2732                  * the page and we may dirty the inode.
2733                  */
2734                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2735         }
2736
2737         /*
2738          * If we have inline data and arrive here, it means that
2739          * we will soon create the block for the 1st page, so
2740          * we'd better clear the inline data here.
2741          */
2742         if (ext4_has_inline_data(inode)) {
2743                 /* Just inode will be modified... */
2744                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2745                 if (IS_ERR(handle)) {
2746                         ret = PTR_ERR(handle);
2747                         goto out_writepages;
2748                 }
2749                 BUG_ON(ext4_test_inode_state(inode,
2750                                 EXT4_STATE_MAY_INLINE_DATA));
2751                 ext4_destroy_inline_data(handle, inode);
2752                 ext4_journal_stop(handle);
2753         }
2754
2755         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2756                 range_whole = 1;
2757
2758         if (wbc->range_cyclic) {
2759                 writeback_index = mapping->writeback_index;
2760                 if (writeback_index)
2761                         cycled = 0;
2762                 mpd.first_page = writeback_index;
2763                 mpd.last_page = -1;
2764         } else {
2765                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2766                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2767         }
2768
2769         mpd.inode = inode;
2770         mpd.wbc = wbc;
2771         ext4_io_submit_init(&mpd.io_submit, wbc);
2772 retry:
2773         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2774                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2775         done = false;
2776         blk_start_plug(&plug);
2777
2778         /*
2779          * First writeback pages that don't need mapping - we can avoid
2780          * starting a transaction unnecessarily and also avoid being blocked
2781          * in the block layer on device congestion while having transaction
2782          * started.
2783          */
2784         mpd.do_map = 0;
2785         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2786         if (!mpd.io_submit.io_end) {
2787                 ret = -ENOMEM;
2788                 goto unplug;
2789         }
2790         ret = mpage_prepare_extent_to_map(&mpd);
2791         /* Submit prepared bio */
2792         ext4_io_submit(&mpd.io_submit);
2793         ext4_put_io_end_defer(mpd.io_submit.io_end);
2794         mpd.io_submit.io_end = NULL;
2795         /* Unlock pages we didn't use */
2796         mpage_release_unused_pages(&mpd, false);
2797         if (ret < 0)
2798                 goto unplug;
2799
2800         while (!done && mpd.first_page <= mpd.last_page) {
2801                 /* For each extent of pages we use new io_end */
2802                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803                 if (!mpd.io_submit.io_end) {
2804                         ret = -ENOMEM;
2805                         break;
2806                 }
2807
2808                 /*
2809                  * We have two constraints: We find one extent to map and we
2810                  * must always write out whole page (makes a difference when
2811                  * blocksize < pagesize) so that we don't block on IO when we
2812                  * try to write out the rest of the page. Journalled mode is
2813                  * not supported by delalloc.
2814                  */
2815                 BUG_ON(ext4_should_journal_data(inode));
2816                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2817
2818                 /* start a new transaction */
2819                 handle = ext4_journal_start_with_reserve(inode,
2820                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2821                 if (IS_ERR(handle)) {
2822                         ret = PTR_ERR(handle);
2823                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2824                                "%ld pages, ino %lu; err %d", __func__,
2825                                 wbc->nr_to_write, inode->i_ino, ret);
2826                         /* Release allocated io_end */
2827                         ext4_put_io_end(mpd.io_submit.io_end);
2828                         mpd.io_submit.io_end = NULL;
2829                         break;
2830                 }
2831                 mpd.do_map = 1;
2832
2833                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2834                 ret = mpage_prepare_extent_to_map(&mpd);
2835                 if (!ret) {
2836                         if (mpd.map.m_len)
2837                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2838                                         &give_up_on_write);
2839                         else {
2840                                 /*
2841                                  * We scanned the whole range (or exhausted
2842                                  * nr_to_write), submitted what was mapped and
2843                                  * didn't find anything needing mapping. We are
2844                                  * done.
2845                                  */
2846                                 done = true;
2847                         }
2848                 }
2849                 /*
2850                  * Caution: If the handle is synchronous,
2851                  * ext4_journal_stop() can wait for transaction commit
2852                  * to finish which may depend on writeback of pages to
2853                  * complete or on page lock to be released.  In that
2854                  * case, we have to wait until after after we have
2855                  * submitted all the IO, released page locks we hold,
2856                  * and dropped io_end reference (for extent conversion
2857                  * to be able to complete) before stopping the handle.
2858                  */
2859                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2860                         ext4_journal_stop(handle);
2861                         handle = NULL;
2862                         mpd.do_map = 0;
2863                 }
2864                 /* Submit prepared bio */
2865                 ext4_io_submit(&mpd.io_submit);
2866                 /* Unlock pages we didn't use */
2867                 mpage_release_unused_pages(&mpd, give_up_on_write);
2868                 /*
2869                  * Drop our io_end reference we got from init. We have
2870                  * to be careful and use deferred io_end finishing if
2871                  * we are still holding the transaction as we can
2872                  * release the last reference to io_end which may end
2873                  * up doing unwritten extent conversion.
2874                  */
2875                 if (handle) {
2876                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2877                         ext4_journal_stop(handle);
2878                 } else
2879                         ext4_put_io_end(mpd.io_submit.io_end);
2880                 mpd.io_submit.io_end = NULL;
2881
2882                 if (ret == -ENOSPC && sbi->s_journal) {
2883                         /*
2884                          * Commit the transaction which would
2885                          * free blocks released in the transaction
2886                          * and try again
2887                          */
2888                         jbd2_journal_force_commit_nested(sbi->s_journal);
2889                         ret = 0;
2890                         continue;
2891                 }
2892                 /* Fatal error - ENOMEM, EIO... */
2893                 if (ret)
2894                         break;
2895         }
2896 unplug:
2897         blk_finish_plug(&plug);
2898         if (!ret && !cycled && wbc->nr_to_write > 0) {
2899                 cycled = 1;
2900                 mpd.last_page = writeback_index - 1;
2901                 mpd.first_page = 0;
2902                 goto retry;
2903         }
2904
2905         /* Update index */
2906         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2907                 /*
2908                  * Set the writeback_index so that range_cyclic
2909                  * mode will write it back later
2910                  */
2911                 mapping->writeback_index = mpd.first_page;
2912
2913 out_writepages:
2914         trace_ext4_writepages_result(inode, wbc, ret,
2915                                      nr_to_write - wbc->nr_to_write);
2916         percpu_up_read(&sbi->s_journal_flag_rwsem);
2917         return ret;
2918 }
2919
2920 static int ext4_nonda_switch(struct super_block *sb)
2921 {
2922         s64 free_clusters, dirty_clusters;
2923         struct ext4_sb_info *sbi = EXT4_SB(sb);
2924
2925         /*
2926          * switch to non delalloc mode if we are running low
2927          * on free block. The free block accounting via percpu
2928          * counters can get slightly wrong with percpu_counter_batch getting
2929          * accumulated on each CPU without updating global counters
2930          * Delalloc need an accurate free block accounting. So switch
2931          * to non delalloc when we are near to error range.
2932          */
2933         free_clusters =
2934                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2935         dirty_clusters =
2936                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2937         /*
2938          * Start pushing delalloc when 1/2 of free blocks are dirty.
2939          */
2940         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2941                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2942
2943         if (2 * free_clusters < 3 * dirty_clusters ||
2944             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2945                 /*
2946                  * free block count is less than 150% of dirty blocks
2947                  * or free blocks is less than watermark
2948                  */
2949                 return 1;
2950         }
2951         return 0;
2952 }
2953
2954 /* We always reserve for an inode update; the superblock could be there too */
2955 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2956 {
2957         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2958                 return 1;
2959
2960         if (pos + len <= 0x7fffffffULL)
2961                 return 1;
2962
2963         /* We might need to update the superblock to set LARGE_FILE */
2964         return 2;
2965 }
2966
2967 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2968                                loff_t pos, unsigned len, unsigned flags,
2969                                struct page **pagep, void **fsdata)
2970 {
2971         int ret, retries = 0;
2972         struct page *page;
2973         pgoff_t index;
2974         struct inode *inode = mapping->host;
2975         handle_t *handle;
2976
2977         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2978                 return -EIO;
2979
2980         index = pos >> PAGE_SHIFT;
2981
2982         if (ext4_nonda_switch(inode->i_sb) ||
2983             S_ISLNK(inode->i_mode)) {
2984                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2985                 return ext4_write_begin(file, mapping, pos,
2986                                         len, flags, pagep, fsdata);
2987         }
2988         *fsdata = (void *)0;
2989         trace_ext4_da_write_begin(inode, pos, len, flags);
2990
2991         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2992                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2993                                                       pos, len, flags,
2994                                                       pagep, fsdata);
2995                 if (ret < 0)
2996                         return ret;
2997                 if (ret == 1)
2998                         return 0;
2999         }
3000
3001         /*
3002          * grab_cache_page_write_begin() can take a long time if the
3003          * system is thrashing due to memory pressure, or if the page
3004          * is being written back.  So grab it first before we start
3005          * the transaction handle.  This also allows us to allocate
3006          * the page (if needed) without using GFP_NOFS.
3007          */
3008 retry_grab:
3009         page = grab_cache_page_write_begin(mapping, index, flags);
3010         if (!page)
3011                 return -ENOMEM;
3012         unlock_page(page);
3013
3014         /*
3015          * With delayed allocation, we don't log the i_disksize update
3016          * if there is delayed block allocation. But we still need
3017          * to journalling the i_disksize update if writes to the end
3018          * of file which has an already mapped buffer.
3019          */
3020 retry_journal:
3021         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3022                                 ext4_da_write_credits(inode, pos, len));
3023         if (IS_ERR(handle)) {
3024                 put_page(page);
3025                 return PTR_ERR(handle);
3026         }
3027
3028         lock_page(page);
3029         if (page->mapping != mapping) {
3030                 /* The page got truncated from under us */
3031                 unlock_page(page);
3032                 put_page(page);
3033                 ext4_journal_stop(handle);
3034                 goto retry_grab;
3035         }
3036         /* In case writeback began while the page was unlocked */
3037         wait_for_stable_page(page);
3038
3039 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3040         ret = ext4_block_write_begin(page, pos, len,
3041                                      ext4_da_get_block_prep);
3042 #else
3043         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3044 #endif
3045         if (ret < 0) {
3046                 unlock_page(page);
3047                 ext4_journal_stop(handle);
3048                 /*
3049                  * block_write_begin may have instantiated a few blocks
3050                  * outside i_size.  Trim these off again. Don't need
3051                  * i_size_read because we hold i_mutex.
3052                  */
3053                 if (pos + len > inode->i_size)
3054                         ext4_truncate_failed_write(inode);
3055
3056                 if (ret == -ENOSPC &&
3057                     ext4_should_retry_alloc(inode->i_sb, &retries))
3058                         goto retry_journal;
3059
3060                 put_page(page);
3061                 return ret;
3062         }
3063
3064         *pagep = page;
3065         return ret;
3066 }
3067
3068 /*
3069  * Check if we should update i_disksize
3070  * when write to the end of file but not require block allocation
3071  */
3072 static int ext4_da_should_update_i_disksize(struct page *page,
3073                                             unsigned long offset)
3074 {
3075         struct buffer_head *bh;
3076         struct inode *inode = page->mapping->host;
3077         unsigned int idx;
3078         int i;
3079
3080         bh = page_buffers(page);
3081         idx = offset >> inode->i_blkbits;
3082
3083         for (i = 0; i < idx; i++)
3084                 bh = bh->b_this_page;
3085
3086         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3087                 return 0;
3088         return 1;
3089 }
3090
3091 static int ext4_da_write_end(struct file *file,
3092                              struct address_space *mapping,
3093                              loff_t pos, unsigned len, unsigned copied,
3094                              struct page *page, void *fsdata)
3095 {
3096         struct inode *inode = mapping->host;
3097         int ret = 0, ret2;
3098         handle_t *handle = ext4_journal_current_handle();
3099         loff_t new_i_size;
3100         unsigned long start, end;
3101         int write_mode = (int)(unsigned long)fsdata;
3102
3103         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3104                 return ext4_write_end(file, mapping, pos,
3105                                       len, copied, page, fsdata);
3106
3107         trace_ext4_da_write_end(inode, pos, len, copied);
3108         start = pos & (PAGE_SIZE - 1);
3109         end = start + copied - 1;
3110
3111         /*
3112          * generic_write_end() will run mark_inode_dirty() if i_size
3113          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3114          * into that.
3115          */
3116         new_i_size = pos + copied;
3117         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3118                 if (ext4_has_inline_data(inode) ||
3119                     ext4_da_should_update_i_disksize(page, end)) {
3120                         ext4_update_i_disksize(inode, new_i_size);
3121                         /* We need to mark inode dirty even if
3122                          * new_i_size is less that inode->i_size
3123                          * bu greater than i_disksize.(hint delalloc)
3124                          */
3125                         ext4_mark_inode_dirty(handle, inode);
3126                 }
3127         }
3128
3129         if (write_mode != CONVERT_INLINE_DATA &&
3130             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3131             ext4_has_inline_data(inode))
3132                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3133                                                      page);
3134         else
3135                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3136                                                         page, fsdata);
3137
3138         copied = ret2;
3139         if (ret2 < 0)
3140                 ret = ret2;
3141         ret2 = ext4_journal_stop(handle);
3142         if (!ret)
3143                 ret = ret2;
3144
3145         return ret ? ret : copied;
3146 }
3147
3148 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3149                                    unsigned int length)
3150 {
3151         /*
3152          * Drop reserved blocks
3153          */
3154         BUG_ON(!PageLocked(page));
3155         if (!page_has_buffers(page))
3156                 goto out;
3157
3158         ext4_da_page_release_reservation(page, offset, length);
3159
3160 out:
3161         ext4_invalidatepage(page, offset, length);
3162
3163         return;
3164 }
3165
3166 /*
3167  * Force all delayed allocation blocks to be allocated for a given inode.
3168  */
3169 int ext4_alloc_da_blocks(struct inode *inode)
3170 {
3171         trace_ext4_alloc_da_blocks(inode);
3172
3173         if (!EXT4_I(inode)->i_reserved_data_blocks)
3174                 return 0;
3175
3176         /*
3177          * We do something simple for now.  The filemap_flush() will
3178          * also start triggering a write of the data blocks, which is
3179          * not strictly speaking necessary (and for users of
3180          * laptop_mode, not even desirable).  However, to do otherwise
3181          * would require replicating code paths in:
3182          *
3183          * ext4_writepages() ->
3184          *    write_cache_pages() ---> (via passed in callback function)
3185          *        __mpage_da_writepage() -->
3186          *           mpage_add_bh_to_extent()
3187          *           mpage_da_map_blocks()
3188          *
3189          * The problem is that write_cache_pages(), located in
3190          * mm/page-writeback.c, marks pages clean in preparation for
3191          * doing I/O, which is not desirable if we're not planning on
3192          * doing I/O at all.
3193          *
3194          * We could call write_cache_pages(), and then redirty all of
3195          * the pages by calling redirty_page_for_writepage() but that
3196          * would be ugly in the extreme.  So instead we would need to
3197          * replicate parts of the code in the above functions,
3198          * simplifying them because we wouldn't actually intend to
3199          * write out the pages, but rather only collect contiguous
3200          * logical block extents, call the multi-block allocator, and
3201          * then update the buffer heads with the block allocations.
3202          *
3203          * For now, though, we'll cheat by calling filemap_flush(),
3204          * which will map the blocks, and start the I/O, but not
3205          * actually wait for the I/O to complete.
3206          */
3207         return filemap_flush(inode->i_mapping);
3208 }
3209
3210 /*
3211  * bmap() is special.  It gets used by applications such as lilo and by
3212  * the swapper to find the on-disk block of a specific piece of data.
3213  *
3214  * Naturally, this is dangerous if the block concerned is still in the
3215  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3216  * filesystem and enables swap, then they may get a nasty shock when the
3217  * data getting swapped to that swapfile suddenly gets overwritten by
3218  * the original zero's written out previously to the journal and
3219  * awaiting writeback in the kernel's buffer cache.
3220  *
3221  * So, if we see any bmap calls here on a modified, data-journaled file,
3222  * take extra steps to flush any blocks which might be in the cache.
3223  */
3224 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3225 {
3226         struct inode *inode = mapping->host;
3227         journal_t *journal;
3228         int err;
3229
3230         /*
3231          * We can get here for an inline file via the FIBMAP ioctl
3232          */
3233         if (ext4_has_inline_data(inode))
3234                 return 0;
3235
3236         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3237                         test_opt(inode->i_sb, DELALLOC)) {
3238                 /*
3239                  * With delalloc we want to sync the file
3240                  * so that we can make sure we allocate
3241                  * blocks for file
3242                  */
3243                 filemap_write_and_wait(mapping);
3244         }
3245
3246         if (EXT4_JOURNAL(inode) &&
3247             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3248                 /*
3249                  * This is a REALLY heavyweight approach, but the use of
3250                  * bmap on dirty files is expected to be extremely rare:
3251                  * only if we run lilo or swapon on a freshly made file
3252                  * do we expect this to happen.
3253                  *
3254                  * (bmap requires CAP_SYS_RAWIO so this does not
3255                  * represent an unprivileged user DOS attack --- we'd be
3256                  * in trouble if mortal users could trigger this path at
3257                  * will.)
3258                  *
3259                  * NB. EXT4_STATE_JDATA is not set on files other than
3260                  * regular files.  If somebody wants to bmap a directory
3261                  * or symlink and gets confused because the buffer
3262                  * hasn't yet been flushed to disk, they deserve
3263                  * everything they get.
3264                  */
3265
3266                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3267                 journal = EXT4_JOURNAL(inode);
3268                 jbd2_journal_lock_updates(journal);
3269                 err = jbd2_journal_flush(journal);
3270                 jbd2_journal_unlock_updates(journal);
3271
3272                 if (err)
3273                         return 0;
3274         }
3275
3276         return generic_block_bmap(mapping, block, ext4_get_block);
3277 }
3278
3279 static int ext4_readpage(struct file *file, struct page *page)
3280 {
3281         int ret = -EAGAIN;
3282         struct inode *inode = page->mapping->host;
3283
3284         trace_ext4_readpage(page);
3285
3286         if (ext4_has_inline_data(inode))
3287                 ret = ext4_readpage_inline(inode, page);
3288
3289         if (ret == -EAGAIN)
3290                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3291
3292         return ret;
3293 }
3294
3295 static int
3296 ext4_readpages(struct file *file, struct address_space *mapping,
3297                 struct list_head *pages, unsigned nr_pages)
3298 {
3299         struct inode *inode = mapping->host;
3300
3301         /* If the file has inline data, no need to do readpages. */
3302         if (ext4_has_inline_data(inode))
3303                 return 0;
3304
3305         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3306 }
3307
3308 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3309                                 unsigned int length)
3310 {
3311         trace_ext4_invalidatepage(page, offset, length);
3312
3313         /* No journalling happens on data buffers when this function is used */
3314         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3315
3316         block_invalidatepage(page, offset, length);
3317 }
3318
3319 static int __ext4_journalled_invalidatepage(struct page *page,
3320                                             unsigned int offset,
3321                                             unsigned int length)
3322 {
3323         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3324
3325         trace_ext4_journalled_invalidatepage(page, offset, length);
3326
3327         /*
3328          * If it's a full truncate we just forget about the pending dirtying
3329          */
3330         if (offset == 0 && length == PAGE_SIZE)
3331                 ClearPageChecked(page);
3332
3333         return jbd2_journal_invalidatepage(journal, page, offset, length);
3334 }
3335
3336 /* Wrapper for aops... */
3337 static void ext4_journalled_invalidatepage(struct page *page,
3338                                            unsigned int offset,
3339                                            unsigned int length)
3340 {
3341         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3342 }
3343
3344 static int ext4_releasepage(struct page *page, gfp_t wait)
3345 {
3346         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3347
3348         trace_ext4_releasepage(page);
3349
3350         /* Page has dirty journalled data -> cannot release */
3351         if (PageChecked(page))
3352                 return 0;
3353         if (journal)
3354                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355         else
3356                 return try_to_free_buffers(page);
3357 }
3358
3359 #ifdef CONFIG_FS_DAX
3360 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3361                             unsigned flags, struct iomap *iomap)
3362 {
3363         struct block_device *bdev;
3364         unsigned int blkbits = inode->i_blkbits;
3365         unsigned long first_block = offset >> blkbits;
3366         unsigned long last_block = (offset + length - 1) >> blkbits;
3367         struct ext4_map_blocks map;
3368         int ret;
3369
3370         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3371                 return -ERANGE;
3372
3373         map.m_lblk = first_block;
3374         map.m_len = last_block - first_block + 1;
3375
3376         if (!(flags & IOMAP_WRITE)) {
3377                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3378         } else {
3379                 int dio_credits;
3380                 handle_t *handle;
3381                 int retries = 0;
3382
3383                 /* Trim mapping request to maximum we can map at once for DIO */
3384                 if (map.m_len > DIO_MAX_BLOCKS)
3385                         map.m_len = DIO_MAX_BLOCKS;
3386                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3387 retry:
3388                 /*
3389                  * Either we allocate blocks and then we don't get unwritten
3390                  * extent so we have reserved enough credits, or the blocks
3391                  * are already allocated and unwritten and in that case
3392                  * extent conversion fits in the credits as well.
3393                  */
3394                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3395                                             dio_credits);
3396                 if (IS_ERR(handle))
3397                         return PTR_ERR(handle);
3398
3399                 ret = ext4_map_blocks(handle, inode, &map,
3400                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3401                 if (ret < 0) {
3402                         ext4_journal_stop(handle);
3403                         if (ret == -ENOSPC &&
3404                             ext4_should_retry_alloc(inode->i_sb, &retries))
3405                                 goto retry;
3406                         return ret;
3407                 }
3408
3409                 /*
3410                  * If we added blocks beyond i_size, we need to make sure they
3411                  * will get truncated if we crash before updating i_size in
3412                  * ext4_iomap_end(). For faults we don't need to do that (and
3413                  * even cannot because for orphan list operations inode_lock is
3414                  * required) - if we happen to instantiate block beyond i_size,
3415                  * it is because we race with truncate which has already added
3416                  * the inode to the orphan list.
3417                  */
3418                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3419                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3420                         int err;
3421
3422                         err = ext4_orphan_add(handle, inode);
3423                         if (err < 0) {
3424                                 ext4_journal_stop(handle);
3425                                 return err;
3426                         }
3427                 }
3428                 ext4_journal_stop(handle);
3429         }
3430
3431         iomap->flags = 0;
3432         bdev = inode->i_sb->s_bdev;
3433         iomap->bdev = bdev;
3434         if (blk_queue_dax(bdev->bd_queue))
3435                 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3436         else
3437                 iomap->dax_dev = NULL;
3438         iomap->offset = first_block << blkbits;
3439
3440         if (ret == 0) {
3441                 iomap->type = IOMAP_HOLE;
3442                 iomap->blkno = IOMAP_NULL_BLOCK;
3443                 iomap->length = (u64)map.m_len << blkbits;
3444         } else {
3445                 if (map.m_flags & EXT4_MAP_MAPPED) {
3446                         iomap->type = IOMAP_MAPPED;
3447                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3448                         iomap->type = IOMAP_UNWRITTEN;
3449                 } else {
3450                         WARN_ON_ONCE(1);
3451                         return -EIO;
3452                 }
3453                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3454                 iomap->length = (u64)map.m_len << blkbits;
3455         }
3456
3457         if (map.m_flags & EXT4_MAP_NEW)
3458                 iomap->flags |= IOMAP_F_NEW;
3459         return 0;
3460 }
3461
3462 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3463                           ssize_t written, unsigned flags, struct iomap *iomap)
3464 {
3465         int ret = 0;
3466         handle_t *handle;
3467         int blkbits = inode->i_blkbits;
3468         bool truncate = false;
3469
3470         fs_put_dax(iomap->dax_dev);
3471         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3472                 return 0;
3473
3474         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3475         if (IS_ERR(handle)) {
3476                 ret = PTR_ERR(handle);
3477                 goto orphan_del;
3478         }
3479         if (ext4_update_inode_size(inode, offset + written))
3480                 ext4_mark_inode_dirty(handle, inode);
3481         /*
3482          * We may need to truncate allocated but not written blocks beyond EOF.
3483          */
3484         if (iomap->offset + iomap->length > 
3485             ALIGN(inode->i_size, 1 << blkbits)) {
3486                 ext4_lblk_t written_blk, end_blk;
3487
3488                 written_blk = (offset + written) >> blkbits;
3489                 end_blk = (offset + length) >> blkbits;
3490                 if (written_blk < end_blk && ext4_can_truncate(inode))
3491                         truncate = true;
3492         }
3493         /*
3494          * Remove inode from orphan list if we were extending a inode and
3495          * everything went fine.
3496          */
3497         if (!truncate && inode->i_nlink &&
3498             !list_empty(&EXT4_I(inode)->i_orphan))
3499                 ext4_orphan_del(handle, inode);
3500         ext4_journal_stop(handle);
3501         if (truncate) {
3502                 ext4_truncate_failed_write(inode);
3503 orphan_del:
3504                 /*
3505                  * If truncate failed early the inode might still be on the
3506                  * orphan list; we need to make sure the inode is removed from
3507                  * the orphan list in that case.
3508                  */
3509                 if (inode->i_nlink)
3510                         ext4_orphan_del(NULL, inode);
3511         }
3512         return ret;
3513 }
3514
3515 const struct iomap_ops ext4_iomap_ops = {
3516         .iomap_begin            = ext4_iomap_begin,
3517         .iomap_end              = ext4_iomap_end,
3518 };
3519
3520 #endif
3521
3522 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3523                             ssize_t size, void *private)
3524 {
3525         ext4_io_end_t *io_end = private;
3526
3527         /* if not async direct IO just return */
3528         if (!io_end)
3529                 return 0;
3530
3531         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3532                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3533                   io_end, io_end->inode->i_ino, iocb, offset, size);
3534
3535         /*
3536          * Error during AIO DIO. We cannot convert unwritten extents as the
3537          * data was not written. Just clear the unwritten flag and drop io_end.
3538          */
3539         if (size <= 0) {
3540                 ext4_clear_io_unwritten_flag(io_end);
3541                 size = 0;
3542         }
3543         io_end->offset = offset;
3544         io_end->size = size;
3545         ext4_put_io_end(io_end);
3546
3547         return 0;
3548 }
3549
3550 /*
3551  * Handling of direct IO writes.
3552  *
3553  * For ext4 extent files, ext4 will do direct-io write even to holes,
3554  * preallocated extents, and those write extend the file, no need to
3555  * fall back to buffered IO.
3556  *
3557  * For holes, we fallocate those blocks, mark them as unwritten
3558  * If those blocks were preallocated, we mark sure they are split, but
3559  * still keep the range to write as unwritten.
3560  *
3561  * The unwritten extents will be converted to written when DIO is completed.
3562  * For async direct IO, since the IO may still pending when return, we
3563  * set up an end_io call back function, which will do the conversion
3564  * when async direct IO completed.
3565  *
3566  * If the O_DIRECT write will extend the file then add this inode to the
3567  * orphan list.  So recovery will truncate it back to the original size
3568  * if the machine crashes during the write.
3569  *
3570  */
3571 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3572 {
3573         struct file *file = iocb->ki_filp;
3574         struct inode *inode = file->f_mapping->host;
3575         struct ext4_inode_info *ei = EXT4_I(inode);
3576         ssize_t ret;
3577         loff_t offset = iocb->ki_pos;
3578         size_t count = iov_iter_count(iter);
3579         int overwrite = 0;
3580         get_block_t *get_block_func = NULL;
3581         int dio_flags = 0;
3582         loff_t final_size = offset + count;
3583         int orphan = 0;
3584         handle_t *handle;
3585
3586         if (final_size > inode->i_size) {
3587                 /* Credits for sb + inode write */
3588                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3589                 if (IS_ERR(handle)) {
3590                         ret = PTR_ERR(handle);
3591                         goto out;
3592                 }
3593                 ret = ext4_orphan_add(handle, inode);
3594                 if (ret) {
3595                         ext4_journal_stop(handle);
3596                         goto out;
3597                 }
3598                 orphan = 1;
3599                 ei->i_disksize = inode->i_size;
3600                 ext4_journal_stop(handle);
3601         }
3602
3603         BUG_ON(iocb->private == NULL);
3604
3605         /*
3606          * Make all waiters for direct IO properly wait also for extent
3607          * conversion. This also disallows race between truncate() and
3608          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3609          */
3610         inode_dio_begin(inode);
3611
3612         /* If we do a overwrite dio, i_mutex locking can be released */
3613         overwrite = *((int *)iocb->private);
3614
3615         if (overwrite)
3616                 inode_unlock(inode);
3617
3618         /*
3619          * For extent mapped files we could direct write to holes and fallocate.
3620          *
3621          * Allocated blocks to fill the hole are marked as unwritten to prevent
3622          * parallel buffered read to expose the stale data before DIO complete
3623          * the data IO.
3624          *
3625          * As to previously fallocated extents, ext4 get_block will just simply
3626          * mark the buffer mapped but still keep the extents unwritten.
3627          *
3628          * For non AIO case, we will convert those unwritten extents to written
3629          * after return back from blockdev_direct_IO. That way we save us from
3630          * allocating io_end structure and also the overhead of offloading
3631          * the extent convertion to a workqueue.
3632          *
3633          * For async DIO, the conversion needs to be deferred when the
3634          * IO is completed. The ext4 end_io callback function will be
3635          * called to take care of the conversion work.  Here for async
3636          * case, we allocate an io_end structure to hook to the iocb.
3637          */
3638         iocb->private = NULL;
3639         if (overwrite)
3640                 get_block_func = ext4_dio_get_block_overwrite;
3641         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3642                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3643                 get_block_func = ext4_dio_get_block;
3644                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3645         } else if (is_sync_kiocb(iocb)) {
3646                 get_block_func = ext4_dio_get_block_unwritten_sync;
3647                 dio_flags = DIO_LOCKING;
3648         } else {
3649                 get_block_func = ext4_dio_get_block_unwritten_async;
3650                 dio_flags = DIO_LOCKING;
3651         }
3652         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3653                                    get_block_func, ext4_end_io_dio, NULL,
3654                                    dio_flags);
3655
3656         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3657                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3658                 int err;
3659                 /*
3660                  * for non AIO case, since the IO is already
3661                  * completed, we could do the conversion right here
3662                  */
3663                 err = ext4_convert_unwritten_extents(NULL, inode,
3664                                                      offset, ret);
3665                 if (err < 0)
3666                         ret = err;
3667                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3668         }
3669
3670         inode_dio_end(inode);
3671         /* take i_mutex locking again if we do a ovewrite dio */
3672         if (overwrite)
3673                 inode_lock(inode);
3674
3675         if (ret < 0 && final_size > inode->i_size)
3676                 ext4_truncate_failed_write(inode);
3677
3678         /* Handle extending of i_size after direct IO write */
3679         if (orphan) {
3680                 int err;
3681
3682                 /* Credits for sb + inode write */
3683                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3684                 if (IS_ERR(handle)) {
3685                         /* This is really bad luck. We've written the data
3686                          * but cannot extend i_size. Bail out and pretend
3687                          * the write failed... */
3688                         ret = PTR_ERR(handle);
3689                         if (inode->i_nlink)
3690                                 ext4_orphan_del(NULL, inode);
3691
3692                         goto out;
3693                 }
3694                 if (inode->i_nlink)
3695                         ext4_orphan_del(handle, inode);
3696                 if (ret > 0) {
3697                         loff_t end = offset + ret;
3698                         if (end > inode->i_size) {
3699                                 ei->i_disksize = end;
3700                                 i_size_write(inode, end);
3701                                 /*
3702                                  * We're going to return a positive `ret'
3703                                  * here due to non-zero-length I/O, so there's
3704                                  * no way of reporting error returns from
3705                                  * ext4_mark_inode_dirty() to userspace.  So
3706                                  * ignore it.
3707                                  */
3708                                 ext4_mark_inode_dirty(handle, inode);
3709                         }
3710                 }
3711                 err = ext4_journal_stop(handle);
3712                 if (ret == 0)
3713                         ret = err;
3714         }
3715 out:
3716         return ret;
3717 }
3718
3719 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3720 {
3721         struct address_space *mapping = iocb->ki_filp->f_mapping;
3722         struct inode *inode = mapping->host;
3723         size_t count = iov_iter_count(iter);
3724         ssize_t ret;
3725
3726         /*
3727          * Shared inode_lock is enough for us - it protects against concurrent
3728          * writes & truncates and since we take care of writing back page cache,
3729          * we are protected against page writeback as well.
3730          */
3731         inode_lock_shared(inode);
3732         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3733                                            iocb->ki_pos + count - 1);
3734         if (ret)
3735                 goto out_unlock;
3736         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3737                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3738 out_unlock:
3739         inode_unlock_shared(inode);
3740         return ret;
3741 }
3742
3743 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3744 {
3745         struct file *file = iocb->ki_filp;
3746         struct inode *inode = file->f_mapping->host;
3747         size_t count = iov_iter_count(iter);
3748         loff_t offset = iocb->ki_pos;
3749         ssize_t ret;
3750
3751 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3752         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3753                 return 0;
3754 #endif
3755
3756         /*
3757          * If we are doing data journalling we don't support O_DIRECT
3758          */
3759         if (ext4_should_journal_data(inode))
3760                 return 0;
3761
3762         /* Let buffer I/O handle the inline data case. */
3763         if (ext4_has_inline_data(inode))
3764                 return 0;
3765
3766         /* DAX uses iomap path now */
3767         if (WARN_ON_ONCE(IS_DAX(inode)))
3768                 return 0;
3769
3770         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3771         if (iov_iter_rw(iter) == READ)
3772                 ret = ext4_direct_IO_read(iocb, iter);
3773         else
3774                 ret = ext4_direct_IO_write(iocb, iter);
3775         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3776         return ret;
3777 }
3778
3779 /*
3780  * Pages can be marked dirty completely asynchronously from ext4's journalling
3781  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3782  * much here because ->set_page_dirty is called under VFS locks.  The page is
3783  * not necessarily locked.
3784  *
3785  * We cannot just dirty the page and leave attached buffers clean, because the
3786  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3787  * or jbddirty because all the journalling code will explode.
3788  *
3789  * So what we do is to mark the page "pending dirty" and next time writepage
3790  * is called, propagate that into the buffers appropriately.
3791  */
3792 static int ext4_journalled_set_page_dirty(struct page *page)
3793 {
3794         SetPageChecked(page);
3795         return __set_page_dirty_nobuffers(page);
3796 }
3797
3798 static int ext4_set_page_dirty(struct page *page)
3799 {
3800         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3801         WARN_ON_ONCE(!page_has_buffers(page));
3802         return __set_page_dirty_buffers(page);
3803 }
3804
3805 static const struct address_space_operations ext4_aops = {
3806         .readpage               = ext4_readpage,
3807         .readpages              = ext4_readpages,
3808         .writepage              = ext4_writepage,
3809         .writepages             = ext4_writepages,
3810         .write_begin            = ext4_write_begin,
3811         .write_end              = ext4_write_end,
3812         .set_page_dirty         = ext4_set_page_dirty,
3813         .bmap                   = ext4_bmap,
3814         .invalidatepage         = ext4_invalidatepage,
3815         .releasepage            = ext4_releasepage,
3816         .direct_IO              = ext4_direct_IO,
3817         .migratepage            = buffer_migrate_page,
3818         .is_partially_uptodate  = block_is_partially_uptodate,
3819         .error_remove_page      = generic_error_remove_page,
3820 };
3821
3822 static const struct address_space_operations ext4_journalled_aops = {
3823         .readpage               = ext4_readpage,
3824         .readpages              = ext4_readpages,
3825         .writepage              = ext4_writepage,
3826         .writepages             = ext4_writepages,
3827         .write_begin            = ext4_write_begin,
3828         .write_end              = ext4_journalled_write_end,
3829         .set_page_dirty         = ext4_journalled_set_page_dirty,
3830         .bmap                   = ext4_bmap,
3831         .invalidatepage         = ext4_journalled_invalidatepage,
3832         .releasepage            = ext4_releasepage,
3833         .direct_IO              = ext4_direct_IO,
3834         .is_partially_uptodate  = block_is_partially_uptodate,
3835         .error_remove_page      = generic_error_remove_page,
3836 };
3837
3838 static const struct address_space_operations ext4_da_aops = {
3839         .readpage               = ext4_readpage,
3840         .readpages              = ext4_readpages,
3841         .writepage              = ext4_writepage,
3842         .writepages             = ext4_writepages,
3843         .write_begin            = ext4_da_write_begin,
3844         .write_end              = ext4_da_write_end,
3845         .set_page_dirty         = ext4_set_page_dirty,
3846         .bmap                   = ext4_bmap,
3847         .invalidatepage         = ext4_da_invalidatepage,
3848         .releasepage            = ext4_releasepage,
3849         .direct_IO              = ext4_direct_IO,
3850         .migratepage            = buffer_migrate_page,
3851         .is_partially_uptodate  = block_is_partially_uptodate,
3852         .error_remove_page      = generic_error_remove_page,
3853 };
3854
3855 void ext4_set_aops(struct inode *inode)
3856 {
3857         switch (ext4_inode_journal_mode(inode)) {
3858         case EXT4_INODE_ORDERED_DATA_MODE:
3859         case EXT4_INODE_WRITEBACK_DATA_MODE:
3860                 break;
3861         case EXT4_INODE_JOURNAL_DATA_MODE:
3862                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3863                 return;
3864         default:
3865                 BUG();
3866         }
3867         if (test_opt(inode->i_sb, DELALLOC))
3868                 inode->i_mapping->a_ops = &ext4_da_aops;
3869         else
3870                 inode->i_mapping->a_ops = &ext4_aops;
3871 }
3872
3873 static int __ext4_block_zero_page_range(handle_t *handle,
3874                 struct address_space *mapping, loff_t from, loff_t length)
3875 {
3876         ext4_fsblk_t index = from >> PAGE_SHIFT;
3877         unsigned offset = from & (PAGE_SIZE-1);
3878         unsigned blocksize, pos;
3879         ext4_lblk_t iblock;
3880         struct inode *inode = mapping->host;
3881         struct buffer_head *bh;
3882         struct page *page;
3883         int err = 0;
3884
3885         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3886                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3887         if (!page)
3888                 return -ENOMEM;
3889
3890         blocksize = inode->i_sb->s_blocksize;
3891
3892         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3893
3894         if (!page_has_buffers(page))
3895                 create_empty_buffers(page, blocksize, 0);
3896
3897         /* Find the buffer that contains "offset" */
3898         bh = page_buffers(page);
3899         pos = blocksize;
3900         while (offset >= pos) {
3901                 bh = bh->b_this_page;
3902                 iblock++;
3903                 pos += blocksize;
3904         }
3905         if (buffer_freed(bh)) {
3906                 BUFFER_TRACE(bh, "freed: skip");
3907                 goto unlock;
3908         }
3909         if (!buffer_mapped(bh)) {
3910                 BUFFER_TRACE(bh, "unmapped");
3911                 ext4_get_block(inode, iblock, bh, 0);
3912                 /* unmapped? It's a hole - nothing to do */
3913                 if (!buffer_mapped(bh)) {
3914                         BUFFER_TRACE(bh, "still unmapped");
3915                         goto unlock;
3916                 }
3917         }
3918
3919         /* Ok, it's mapped. Make sure it's up-to-date */
3920         if (PageUptodate(page))
3921                 set_buffer_uptodate(bh);
3922
3923         if (!buffer_uptodate(bh)) {
3924                 err = -EIO;
3925                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3926                 wait_on_buffer(bh);
3927                 /* Uhhuh. Read error. Complain and punt. */
3928                 if (!buffer_uptodate(bh))
3929                         goto unlock;
3930                 if (S_ISREG(inode->i_mode) &&
3931                     ext4_encrypted_inode(inode)) {
3932                         /* We expect the key to be set. */
3933                         BUG_ON(!fscrypt_has_encryption_key(inode));
3934                         BUG_ON(blocksize != PAGE_SIZE);
3935                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3936                                                 page, PAGE_SIZE, 0, page->index));
3937                 }
3938         }
3939         if (ext4_should_journal_data(inode)) {
3940                 BUFFER_TRACE(bh, "get write access");
3941                 err = ext4_journal_get_write_access(handle, bh);
3942                 if (err)
3943                         goto unlock;
3944         }
3945         zero_user(page, offset, length);
3946         BUFFER_TRACE(bh, "zeroed end of block");
3947
3948         if (ext4_should_journal_data(inode)) {
3949                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3950         } else {
3951                 err = 0;
3952                 mark_buffer_dirty(bh);
3953                 if (ext4_should_order_data(inode))
3954                         err = ext4_jbd2_inode_add_write(handle, inode);
3955         }
3956
3957 unlock:
3958         unlock_page(page);
3959         put_page(page);
3960         return err;
3961 }
3962
3963 /*
3964  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965  * starting from file offset 'from'.  The range to be zero'd must
3966  * be contained with in one block.  If the specified range exceeds
3967  * the end of the block it will be shortened to end of the block
3968  * that cooresponds to 'from'
3969  */
3970 static int ext4_block_zero_page_range(handle_t *handle,
3971                 struct address_space *mapping, loff_t from, loff_t length)
3972 {
3973         struct inode *inode = mapping->host;
3974         unsigned offset = from & (PAGE_SIZE-1);
3975         unsigned blocksize = inode->i_sb->s_blocksize;
3976         unsigned max = blocksize - (offset & (blocksize - 1));
3977
3978         /*
3979          * correct length if it does not fall between
3980          * 'from' and the end of the block
3981          */
3982         if (length > max || length < 0)
3983                 length = max;
3984
3985         if (IS_DAX(inode)) {
3986                 return iomap_zero_range(inode, from, length, NULL,
3987                                         &ext4_iomap_ops);
3988         }
3989         return __ext4_block_zero_page_range(handle, mapping, from, length);
3990 }
3991
3992 /*
3993  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3994  * up to the end of the block which corresponds to `from'.
3995  * This required during truncate. We need to physically zero the tail end
3996  * of that block so it doesn't yield old data if the file is later grown.
3997  */
3998 static int ext4_block_truncate_page(handle_t *handle,
3999                 struct address_space *mapping, loff_t from)
4000 {
4001         unsigned offset = from & (PAGE_SIZE-1);
4002         unsigned length;
4003         unsigned blocksize;
4004         struct inode *inode = mapping->host;
4005
4006         /* If we are processing an encrypted inode during orphan list handling */
4007         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4008                 return 0;
4009
4010         blocksize = inode->i_sb->s_blocksize;
4011         length = blocksize - (offset & (blocksize - 1));
4012
4013         return ext4_block_zero_page_range(handle, mapping, from, length);
4014 }
4015
4016 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4017                              loff_t lstart, loff_t length)
4018 {
4019         struct super_block *sb = inode->i_sb;
4020         struct address_space *mapping = inode->i_mapping;
4021         unsigned partial_start, partial_end;
4022         ext4_fsblk_t start, end;
4023         loff_t byte_end = (lstart + length - 1);
4024         int err = 0;
4025
4026         partial_start = lstart & (sb->s_blocksize - 1);
4027         partial_end = byte_end & (sb->s_blocksize - 1);
4028
4029         start = lstart >> sb->s_blocksize_bits;
4030         end = byte_end >> sb->s_blocksize_bits;
4031
4032         /* Handle partial zero within the single block */
4033         if (start == end &&
4034             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4035                 err = ext4_block_zero_page_range(handle, mapping,
4036                                                  lstart, length);
4037                 return err;
4038         }
4039         /* Handle partial zero out on the start of the range */
4040         if (partial_start) {
4041                 err = ext4_block_zero_page_range(handle, mapping,
4042                                                  lstart, sb->s_blocksize);
4043                 if (err)
4044                         return err;
4045         }
4046         /* Handle partial zero out on the end of the range */
4047         if (partial_end != sb->s_blocksize - 1)
4048                 err = ext4_block_zero_page_range(handle, mapping,
4049                                                  byte_end - partial_end,
4050                                                  partial_end + 1);
4051         return err;
4052 }
4053
4054 int ext4_can_truncate(struct inode *inode)
4055 {
4056         if (S_ISREG(inode->i_mode))
4057                 return 1;
4058         if (S_ISDIR(inode->i_mode))
4059                 return 1;
4060         if (S_ISLNK(inode->i_mode))
4061                 return !ext4_inode_is_fast_symlink(inode);
4062         return 0;
4063 }
4064
4065 /*
4066  * We have to make sure i_disksize gets properly updated before we truncate
4067  * page cache due to hole punching or zero range. Otherwise i_disksize update
4068  * can get lost as it may have been postponed to submission of writeback but
4069  * that will never happen after we truncate page cache.
4070  */
4071 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4072                                       loff_t len)
4073 {
4074         handle_t *handle;
4075         loff_t size = i_size_read(inode);
4076
4077         WARN_ON(!inode_is_locked(inode));
4078         if (offset > size || offset + len < size)
4079                 return 0;
4080
4081         if (EXT4_I(inode)->i_disksize >= size)
4082                 return 0;
4083
4084         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4085         if (IS_ERR(handle))
4086                 return PTR_ERR(handle);
4087         ext4_update_i_disksize(inode, size);
4088         ext4_mark_inode_dirty(handle, inode);
4089         ext4_journal_stop(handle);
4090
4091         return 0;
4092 }
4093
4094 /*
4095  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4096  * associated with the given offset and length
4097  *
4098  * @inode:  File inode
4099  * @offset: The offset where the hole will begin
4100  * @len:    The length of the hole
4101  *
4102  * Returns: 0 on success or negative on failure
4103  */
4104
4105 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4106 {
4107         struct super_block *sb = inode->i_sb;
4108         ext4_lblk_t first_block, stop_block;
4109         struct address_space *mapping = inode->i_mapping;
4110         loff_t first_block_offset, last_block_offset;
4111         handle_t *handle;
4112         unsigned int credits;
4113         int ret = 0;
4114
4115         if (!S_ISREG(inode->i_mode))
4116                 return -EOPNOTSUPP;
4117
4118         trace_ext4_punch_hole(inode, offset, length, 0);
4119
4120         /*
4121          * Write out all dirty pages to avoid race conditions
4122          * Then release them.
4123          */
4124         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4125                 ret = filemap_write_and_wait_range(mapping, offset,
4126                                                    offset + length - 1);
4127                 if (ret)
4128                         return ret;
4129         }
4130
4131         inode_lock(inode);
4132
4133         /* No need to punch hole beyond i_size */
4134         if (offset >= inode->i_size)
4135                 goto out_mutex;
4136
4137         /*
4138          * If the hole extends beyond i_size, set the hole
4139          * to end after the page that contains i_size
4140          */
4141         if (offset + length > inode->i_size) {
4142                 length = inode->i_size +
4143                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4144                    offset;
4145         }
4146
4147         if (offset & (sb->s_blocksize - 1) ||
4148             (offset + length) & (sb->s_blocksize - 1)) {
4149                 /*
4150                  * Attach jinode to inode for jbd2 if we do any zeroing of
4151                  * partial block
4152                  */
4153                 ret = ext4_inode_attach_jinode(inode);
4154                 if (ret < 0)
4155                         goto out_mutex;
4156
4157         }
4158
4159         /* Wait all existing dio workers, newcomers will block on i_mutex */
4160         ext4_inode_block_unlocked_dio(inode);
4161         inode_dio_wait(inode);
4162
4163         /*
4164          * Prevent page faults from reinstantiating pages we have released from
4165          * page cache.
4166          */
4167         down_write(&EXT4_I(inode)->i_mmap_sem);
4168         first_block_offset = round_up(offset, sb->s_blocksize);
4169         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4170
4171         /* Now release the pages and zero block aligned part of pages*/
4172         if (last_block_offset > first_block_offset) {
4173                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4174                 if (ret)
4175                         goto out_dio;
4176                 truncate_pagecache_range(inode, first_block_offset,
4177                                          last_block_offset);
4178         }
4179
4180         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4181                 credits = ext4_writepage_trans_blocks(inode);
4182         else
4183                 credits = ext4_blocks_for_truncate(inode);
4184         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4185         if (IS_ERR(handle)) {
4186                 ret = PTR_ERR(handle);
4187                 ext4_std_error(sb, ret);
4188                 goto out_dio;
4189         }
4190
4191         ret = ext4_zero_partial_blocks(handle, inode, offset,
4192                                        length);
4193         if (ret)
4194                 goto out_stop;
4195
4196         first_block = (offset + sb->s_blocksize - 1) >>
4197                 EXT4_BLOCK_SIZE_BITS(sb);
4198         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4199
4200         /* If there are no blocks to remove, return now */
4201         if (first_block >= stop_block)
4202                 goto out_stop;
4203
4204         down_write(&EXT4_I(inode)->i_data_sem);
4205         ext4_discard_preallocations(inode);
4206
4207         ret = ext4_es_remove_extent(inode, first_block,
4208                                     stop_block - first_block);
4209         if (ret) {
4210                 up_write(&EXT4_I(inode)->i_data_sem);
4211                 goto out_stop;
4212         }
4213
4214         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4215                 ret = ext4_ext_remove_space(inode, first_block,
4216                                             stop_block - 1);
4217         else
4218                 ret = ext4_ind_remove_space(handle, inode, first_block,
4219                                             stop_block);
4220
4221         up_write(&EXT4_I(inode)->i_data_sem);
4222         if (IS_SYNC(inode))
4223                 ext4_handle_sync(handle);
4224
4225         inode->i_mtime = inode->i_ctime = current_time(inode);
4226         ext4_mark_inode_dirty(handle, inode);
4227         if (ret >= 0)
4228                 ext4_update_inode_fsync_trans(handle, inode, 1);
4229 out_stop:
4230         ext4_journal_stop(handle);
4231 out_dio:
4232         up_write(&EXT4_I(inode)->i_mmap_sem);
4233         ext4_inode_resume_unlocked_dio(inode);
4234 out_mutex:
4235         inode_unlock(inode);
4236         return ret;
4237 }
4238
4239 int ext4_inode_attach_jinode(struct inode *inode)
4240 {
4241         struct ext4_inode_info *ei = EXT4_I(inode);
4242         struct jbd2_inode *jinode;
4243
4244         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4245                 return 0;
4246
4247         jinode = jbd2_alloc_inode(GFP_KERNEL);
4248         spin_lock(&inode->i_lock);
4249         if (!ei->jinode) {
4250                 if (!jinode) {
4251                         spin_unlock(&inode->i_lock);
4252                         return -ENOMEM;
4253                 }
4254                 ei->jinode = jinode;
4255                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4256                 jinode = NULL;
4257         }
4258         spin_unlock(&inode->i_lock);
4259         if (unlikely(jinode != NULL))
4260                 jbd2_free_inode(jinode);
4261         return 0;
4262 }
4263
4264 /*
4265  * ext4_truncate()
4266  *
4267  * We block out ext4_get_block() block instantiations across the entire
4268  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4269  * simultaneously on behalf of the same inode.
4270  *
4271  * As we work through the truncate and commit bits of it to the journal there
4272  * is one core, guiding principle: the file's tree must always be consistent on
4273  * disk.  We must be able to restart the truncate after a crash.
4274  *
4275  * The file's tree may be transiently inconsistent in memory (although it
4276  * probably isn't), but whenever we close off and commit a journal transaction,
4277  * the contents of (the filesystem + the journal) must be consistent and
4278  * restartable.  It's pretty simple, really: bottom up, right to left (although
4279  * left-to-right works OK too).
4280  *
4281  * Note that at recovery time, journal replay occurs *before* the restart of
4282  * truncate against the orphan inode list.
4283  *
4284  * The committed inode has the new, desired i_size (which is the same as
4285  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4286  * that this inode's truncate did not complete and it will again call
4287  * ext4_truncate() to have another go.  So there will be instantiated blocks
4288  * to the right of the truncation point in a crashed ext4 filesystem.  But
4289  * that's fine - as long as they are linked from the inode, the post-crash
4290  * ext4_truncate() run will find them and release them.
4291  */
4292 int ext4_truncate(struct inode *inode)
4293 {
4294         struct ext4_inode_info *ei = EXT4_I(inode);
4295         unsigned int credits;
4296         int err = 0;
4297         handle_t *handle;
4298         struct address_space *mapping = inode->i_mapping;
4299
4300         /*
4301          * There is a possibility that we're either freeing the inode
4302          * or it's a completely new inode. In those cases we might not
4303          * have i_mutex locked because it's not necessary.
4304          */
4305         if (!(inode->i_state & (I_NEW|I_FREEING)))
4306                 WARN_ON(!inode_is_locked(inode));
4307         trace_ext4_truncate_enter(inode);
4308
4309         if (!ext4_can_truncate(inode))
4310                 return 0;
4311
4312         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4313
4314         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4315                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4316
4317         if (ext4_has_inline_data(inode)) {
4318                 int has_inline = 1;
4319
4320                 err = ext4_inline_data_truncate(inode, &has_inline);
4321                 if (err)
4322                         return err;
4323                 if (has_inline)
4324                         return 0;
4325         }
4326
4327         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4328         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4329                 if (ext4_inode_attach_jinode(inode) < 0)
4330                         return 0;
4331         }
4332
4333         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4334                 credits = ext4_writepage_trans_blocks(inode);
4335         else
4336                 credits = ext4_blocks_for_truncate(inode);
4337
4338         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4339         if (IS_ERR(handle))
4340                 return PTR_ERR(handle);
4341
4342         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4343                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4344
4345         /*
4346          * We add the inode to the orphan list, so that if this
4347          * truncate spans multiple transactions, and we crash, we will
4348          * resume the truncate when the filesystem recovers.  It also
4349          * marks the inode dirty, to catch the new size.
4350          *
4351          * Implication: the file must always be in a sane, consistent
4352          * truncatable state while each transaction commits.
4353          */
4354         err = ext4_orphan_add(handle, inode);
4355         if (err)
4356                 goto out_stop;
4357
4358         down_write(&EXT4_I(inode)->i_data_sem);
4359
4360         ext4_discard_preallocations(inode);
4361
4362         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363                 err = ext4_ext_truncate(handle, inode);
4364         else
4365                 ext4_ind_truncate(handle, inode);
4366
4367         up_write(&ei->i_data_sem);
4368         if (err)
4369                 goto out_stop;
4370
4371         if (IS_SYNC(inode))
4372                 ext4_handle_sync(handle);
4373
4374 out_stop:
4375         /*
4376          * If this was a simple ftruncate() and the file will remain alive,
4377          * then we need to clear up the orphan record which we created above.
4378          * However, if this was a real unlink then we were called by
4379          * ext4_evict_inode(), and we allow that function to clean up the
4380          * orphan info for us.
4381          */
4382         if (inode->i_nlink)
4383                 ext4_orphan_del(handle, inode);
4384
4385         inode->i_mtime = inode->i_ctime = current_time(inode);
4386         ext4_mark_inode_dirty(handle, inode);
4387         ext4_journal_stop(handle);
4388
4389         trace_ext4_truncate_exit(inode);
4390         return err;
4391 }
4392
4393 /*
4394  * ext4_get_inode_loc returns with an extra refcount against the inode's
4395  * underlying buffer_head on success. If 'in_mem' is true, we have all
4396  * data in memory that is needed to recreate the on-disk version of this
4397  * inode.
4398  */
4399 static int __ext4_get_inode_loc(struct inode *inode,
4400                                 struct ext4_iloc *iloc, int in_mem)
4401 {
4402         struct ext4_group_desc  *gdp;
4403         struct buffer_head      *bh;
4404         struct super_block      *sb = inode->i_sb;
4405         ext4_fsblk_t            block;
4406         int                     inodes_per_block, inode_offset;
4407
4408         iloc->bh = NULL;
4409         if (!ext4_valid_inum(sb, inode->i_ino))
4410                 return -EFSCORRUPTED;
4411
4412         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4413         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4414         if (!gdp)
4415                 return -EIO;
4416
4417         /*
4418          * Figure out the offset within the block group inode table
4419          */
4420         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4421         inode_offset = ((inode->i_ino - 1) %
4422                         EXT4_INODES_PER_GROUP(sb));
4423         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4424         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4425
4426         bh = sb_getblk(sb, block);
4427         if (unlikely(!bh))
4428                 return -ENOMEM;
4429         if (!buffer_uptodate(bh)) {
4430                 lock_buffer(bh);
4431
4432                 /*
4433                  * If the buffer has the write error flag, we have failed
4434                  * to write out another inode in the same block.  In this
4435                  * case, we don't have to read the block because we may
4436                  * read the old inode data successfully.
4437                  */
4438                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4439                         set_buffer_uptodate(bh);
4440
4441                 if (buffer_uptodate(bh)) {
4442                         /* someone brought it uptodate while we waited */
4443                         unlock_buffer(bh);
4444                         goto has_buffer;
4445                 }
4446
4447                 /*
4448                  * If we have all information of the inode in memory and this
4449                  * is the only valid inode in the block, we need not read the
4450                  * block.
4451                  */
4452                 if (in_mem) {
4453                         struct buffer_head *bitmap_bh;
4454                         int i, start;
4455
4456                         start = inode_offset & ~(inodes_per_block - 1);
4457
4458                         /* Is the inode bitmap in cache? */
4459                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4460                         if (unlikely(!bitmap_bh))
4461                                 goto make_io;
4462
4463                         /*
4464                          * If the inode bitmap isn't in cache then the
4465                          * optimisation may end up performing two reads instead
4466                          * of one, so skip it.
4467                          */
4468                         if (!buffer_uptodate(bitmap_bh)) {
4469                                 brelse(bitmap_bh);
4470                                 goto make_io;
4471                         }
4472                         for (i = start; i < start + inodes_per_block; i++) {
4473                                 if (i == inode_offset)
4474                                         continue;
4475                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4476                                         break;
4477                         }
4478                         brelse(bitmap_bh);
4479                         if (i == start + inodes_per_block) {
4480                                 /* all other inodes are free, so skip I/O */
4481                                 memset(bh->b_data, 0, bh->b_size);
4482                                 set_buffer_uptodate(bh);
4483                                 unlock_buffer(bh);
4484                                 goto has_buffer;
4485                         }
4486                 }
4487
4488 make_io:
4489                 /*
4490                  * If we need to do any I/O, try to pre-readahead extra
4491                  * blocks from the inode table.
4492                  */
4493                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4494                         ext4_fsblk_t b, end, table;
4495                         unsigned num;
4496                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4497
4498                         table = ext4_inode_table(sb, gdp);
4499                         /* s_inode_readahead_blks is always a power of 2 */
4500                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4501                         if (table > b)
4502                                 b = table;
4503                         end = b + ra_blks;
4504                         num = EXT4_INODES_PER_GROUP(sb);
4505                         if (ext4_has_group_desc_csum(sb))
4506                                 num -= ext4_itable_unused_count(sb, gdp);
4507                         table += num / inodes_per_block;
4508                         if (end > table)
4509                                 end = table;
4510                         while (b <= end)
4511                                 sb_breadahead(sb, b++);
4512                 }
4513
4514                 /*
4515                  * There are other valid inodes in the buffer, this inode
4516                  * has in-inode xattrs, or we don't have this inode in memory.
4517                  * Read the block from disk.
4518                  */
4519                 trace_ext4_load_inode(inode);
4520                 get_bh(bh);
4521                 bh->b_end_io = end_buffer_read_sync;
4522                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4523                 wait_on_buffer(bh);
4524                 if (!buffer_uptodate(bh)) {
4525                         EXT4_ERROR_INODE_BLOCK(inode, block,
4526                                                "unable to read itable block");
4527                         brelse(bh);
4528                         return -EIO;
4529                 }
4530         }
4531 has_buffer:
4532         iloc->bh = bh;
4533         return 0;
4534 }
4535
4536 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4537 {
4538         /* We have all inode data except xattrs in memory here. */
4539         return __ext4_get_inode_loc(inode, iloc,
4540                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4541 }
4542
4543 void ext4_set_inode_flags(struct inode *inode)
4544 {
4545         unsigned int flags = EXT4_I(inode)->i_flags;
4546         unsigned int new_fl = 0;
4547
4548         if (flags & EXT4_SYNC_FL)
4549                 new_fl |= S_SYNC;
4550         if (flags & EXT4_APPEND_FL)
4551                 new_fl |= S_APPEND;
4552         if (flags & EXT4_IMMUTABLE_FL)
4553                 new_fl |= S_IMMUTABLE;
4554         if (flags & EXT4_NOATIME_FL)
4555                 new_fl |= S_NOATIME;
4556         if (flags & EXT4_DIRSYNC_FL)
4557                 new_fl |= S_DIRSYNC;
4558         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4559             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4560             !ext4_encrypted_inode(inode))
4561                 new_fl |= S_DAX;
4562         inode_set_flags(inode, new_fl,
4563                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4564 }
4565
4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567                                   struct ext4_inode_info *ei)
4568 {
4569         blkcnt_t i_blocks ;
4570         struct inode *inode = &(ei->vfs_inode);
4571         struct super_block *sb = inode->i_sb;
4572
4573         if (ext4_has_feature_huge_file(sb)) {
4574                 /* we are using combined 48 bit field */
4575                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576                                         le32_to_cpu(raw_inode->i_blocks_lo);
4577                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578                         /* i_blocks represent file system block size */
4579                         return i_blocks  << (inode->i_blkbits - 9);
4580                 } else {
4581                         return i_blocks;
4582                 }
4583         } else {
4584                 return le32_to_cpu(raw_inode->i_blocks_lo);
4585         }
4586 }
4587
4588 static inline void ext4_iget_extra_inode(struct inode *inode,
4589                                          struct ext4_inode *raw_inode,
4590                                          struct ext4_inode_info *ei)
4591 {
4592         __le32 *magic = (void *)raw_inode +
4593                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4595             EXT4_INODE_SIZE(inode->i_sb) &&
4596             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4598                 ext4_find_inline_data_nolock(inode);
4599         } else
4600                 EXT4_I(inode)->i_inline_off = 0;
4601 }
4602
4603 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4604 {
4605         if (!ext4_has_feature_project(inode->i_sb))
4606                 return -EOPNOTSUPP;
4607         *projid = EXT4_I(inode)->i_projid;
4608         return 0;
4609 }
4610
4611 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4612 {
4613         struct ext4_iloc iloc;
4614         struct ext4_inode *raw_inode;
4615         struct ext4_inode_info *ei;
4616         struct inode *inode;
4617         journal_t *journal = EXT4_SB(sb)->s_journal;
4618         long ret;
4619         loff_t size;
4620         int block;
4621         uid_t i_uid;
4622         gid_t i_gid;
4623         projid_t i_projid;
4624
4625         inode = iget_locked(sb, ino);
4626         if (!inode)
4627                 return ERR_PTR(-ENOMEM);
4628         if (!(inode->i_state & I_NEW))
4629                 return inode;
4630
4631         ei = EXT4_I(inode);
4632         iloc.bh = NULL;
4633
4634         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4635         if (ret < 0)
4636                 goto bad_inode;
4637         raw_inode = ext4_raw_inode(&iloc);
4638
4639         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4640                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4641                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4642                         EXT4_INODE_SIZE(inode->i_sb) ||
4643                     (ei->i_extra_isize & 3)) {
4644                         EXT4_ERROR_INODE(inode,
4645                                          "bad extra_isize %u (inode size %u)",
4646                                          ei->i_extra_isize,
4647                                          EXT4_INODE_SIZE(inode->i_sb));
4648                         ret = -EFSCORRUPTED;
4649                         goto bad_inode;
4650                 }
4651         } else
4652                 ei->i_extra_isize = 0;
4653
4654         /* Precompute checksum seed for inode metadata */
4655         if (ext4_has_metadata_csum(sb)) {
4656                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4657                 __u32 csum;
4658                 __le32 inum = cpu_to_le32(inode->i_ino);
4659                 __le32 gen = raw_inode->i_generation;
4660                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4661                                    sizeof(inum));
4662                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4663                                               sizeof(gen));
4664         }
4665
4666         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4667                 EXT4_ERROR_INODE(inode, "checksum invalid");
4668                 ret = -EFSBADCRC;
4669                 goto bad_inode;
4670         }
4671
4672         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4673         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4674         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4675         if (ext4_has_feature_project(sb) &&
4676             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4677             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4678                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4679         else
4680                 i_projid = EXT4_DEF_PROJID;
4681
4682         if (!(test_opt(inode->i_sb, NO_UID32))) {
4683                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4684                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4685         }
4686         i_uid_write(inode, i_uid);
4687         i_gid_write(inode, i_gid);
4688         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4689         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4690
4691         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4692         ei->i_inline_off = 0;
4693         ei->i_dir_start_lookup = 0;
4694         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4695         /* We now have enough fields to check if the inode was active or not.
4696          * This is needed because nfsd might try to access dead inodes
4697          * the test is that same one that e2fsck uses
4698          * NeilBrown 1999oct15
4699          */
4700         if (inode->i_nlink == 0) {
4701                 if ((inode->i_mode == 0 ||
4702                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4703                     ino != EXT4_BOOT_LOADER_INO) {
4704                         /* this inode is deleted */
4705                         ret = -ESTALE;
4706                         goto bad_inode;
4707                 }
4708                 /* The only unlinked inodes we let through here have
4709                  * valid i_mode and are being read by the orphan
4710                  * recovery code: that's fine, we're about to complete
4711                  * the process of deleting those.
4712                  * OR it is the EXT4_BOOT_LOADER_INO which is
4713                  * not initialized on a new filesystem. */
4714         }
4715         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4716         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4717         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4718         if (ext4_has_feature_64bit(sb))
4719                 ei->i_file_acl |=
4720                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4721         inode->i_size = ext4_isize(sb, raw_inode);
4722         if ((size = i_size_read(inode)) < 0) {
4723                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4724                 ret = -EFSCORRUPTED;
4725                 goto bad_inode;
4726         }
4727         ei->i_disksize = inode->i_size;
4728 #ifdef CONFIG_QUOTA
4729         ei->i_reserved_quota = 0;
4730 #endif
4731         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4732         ei->i_block_group = iloc.block_group;
4733         ei->i_last_alloc_group = ~0;
4734         /*
4735          * NOTE! The in-memory inode i_data array is in little-endian order
4736          * even on big-endian machines: we do NOT byteswap the block numbers!
4737          */
4738         for (block = 0; block < EXT4_N_BLOCKS; block++)
4739                 ei->i_data[block] = raw_inode->i_block[block];
4740         INIT_LIST_HEAD(&ei->i_orphan);
4741
4742         /*
4743          * Set transaction id's of transactions that have to be committed
4744          * to finish f[data]sync. We set them to currently running transaction
4745          * as we cannot be sure that the inode or some of its metadata isn't
4746          * part of the transaction - the inode could have been reclaimed and
4747          * now it is reread from disk.
4748          */
4749         if (journal) {
4750                 transaction_t *transaction;
4751                 tid_t tid;
4752
4753                 read_lock(&journal->j_state_lock);
4754                 if (journal->j_running_transaction)
4755                         transaction = journal->j_running_transaction;
4756                 else
4757                         transaction = journal->j_committing_transaction;
4758                 if (transaction)
4759                         tid = transaction->t_tid;
4760                 else
4761                         tid = journal->j_commit_sequence;
4762                 read_unlock(&journal->j_state_lock);
4763                 ei->i_sync_tid = tid;
4764                 ei->i_datasync_tid = tid;
4765         }
4766
4767         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4768                 if (ei->i_extra_isize == 0) {
4769                         /* The extra space is currently unused. Use it. */
4770                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4771                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4772                                             EXT4_GOOD_OLD_INODE_SIZE;
4773                 } else {
4774                         ext4_iget_extra_inode(inode, raw_inode, ei);
4775                 }
4776         }
4777
4778         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4779         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4780         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4781         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4782
4783         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4784                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4785                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4786                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4787                                 inode->i_version |=
4788                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4789                 }
4790         }
4791
4792         ret = 0;
4793         if (ei->i_file_acl &&
4794             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4795                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4796                                  ei->i_file_acl);
4797                 ret = -EFSCORRUPTED;
4798                 goto bad_inode;
4799         } else if (!ext4_has_inline_data(inode)) {
4800                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4801                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4802                             (S_ISLNK(inode->i_mode) &&
4803                              !ext4_inode_is_fast_symlink(inode))))
4804                                 /* Validate extent which is part of inode */
4805                                 ret = ext4_ext_check_inode(inode);
4806                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4807                            (S_ISLNK(inode->i_mode) &&
4808                             !ext4_inode_is_fast_symlink(inode))) {
4809                         /* Validate block references which are part of inode */
4810                         ret = ext4_ind_check_inode(inode);
4811                 }
4812         }
4813         if (ret)
4814                 goto bad_inode;
4815
4816         if (S_ISREG(inode->i_mode)) {
4817                 inode->i_op = &ext4_file_inode_operations;
4818                 inode->i_fop = &ext4_file_operations;
4819                 ext4_set_aops(inode);
4820         } else if (S_ISDIR(inode->i_mode)) {
4821                 inode->i_op = &ext4_dir_inode_operations;
4822                 inode->i_fop = &ext4_dir_operations;
4823         } else if (S_ISLNK(inode->i_mode)) {
4824                 if (ext4_encrypted_inode(inode)) {
4825                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4826                         ext4_set_aops(inode);
4827                 } else if (ext4_inode_is_fast_symlink(inode)) {
4828                         inode->i_link = (char *)ei->i_data;
4829                         inode->i_op = &ext4_fast_symlink_inode_operations;
4830                         nd_terminate_link(ei->i_data, inode->i_size,
4831                                 sizeof(ei->i_data) - 1);
4832                 } else {
4833                         inode->i_op = &ext4_symlink_inode_operations;
4834                         ext4_set_aops(inode);
4835                 }
4836                 inode_nohighmem(inode);
4837         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4838               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4839                 inode->i_op = &ext4_special_inode_operations;
4840                 if (raw_inode->i_block[0])
4841                         init_special_inode(inode, inode->i_mode,
4842                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4843                 else
4844                         init_special_inode(inode, inode->i_mode,
4845                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4846         } else if (ino == EXT4_BOOT_LOADER_INO) {
4847                 make_bad_inode(inode);
4848         } else {
4849                 ret = -EFSCORRUPTED;
4850                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4851                 goto bad_inode;
4852         }
4853         brelse(iloc.bh);
4854         ext4_set_inode_flags(inode);
4855
4856         if (ei->i_flags & EXT4_EA_INODE_FL) {
4857                 ext4_xattr_inode_set_class(inode);
4858
4859                 inode_lock(inode);
4860                 inode->i_flags |= S_NOQUOTA;
4861                 inode_unlock(inode);
4862         }
4863
4864         unlock_new_inode(inode);
4865         return inode;
4866
4867 bad_inode:
4868         brelse(iloc.bh);
4869         iget_failed(inode);
4870         return ERR_PTR(ret);
4871 }
4872
4873 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4874 {
4875         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4876                 return ERR_PTR(-EFSCORRUPTED);
4877         return ext4_iget(sb, ino);
4878 }
4879
4880 static int ext4_inode_blocks_set(handle_t *handle,
4881                                 struct ext4_inode *raw_inode,
4882                                 struct ext4_inode_info *ei)
4883 {
4884         struct inode *inode = &(ei->vfs_inode);
4885         u64 i_blocks = inode->i_blocks;
4886         struct super_block *sb = inode->i_sb;
4887
4888         if (i_blocks <= ~0U) {
4889                 /*
4890                  * i_blocks can be represented in a 32 bit variable
4891                  * as multiple of 512 bytes
4892                  */
4893                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4894                 raw_inode->i_blocks_high = 0;
4895                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4896                 return 0;
4897         }
4898         if (!ext4_has_feature_huge_file(sb))
4899                 return -EFBIG;
4900
4901         if (i_blocks <= 0xffffffffffffULL) {
4902                 /*
4903                  * i_blocks can be represented in a 48 bit variable
4904                  * as multiple of 512 bytes
4905                  */
4906                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4907                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4908                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4909         } else {
4910                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4911                 /* i_block is stored in file system block size */
4912                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4913                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4914                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4915         }
4916         return 0;
4917 }
4918
4919 struct other_inode {
4920         unsigned long           orig_ino;
4921         struct ext4_inode       *raw_inode;
4922 };
4923
4924 static int other_inode_match(struct inode * inode, unsigned long ino,
4925                              void *data)
4926 {
4927         struct other_inode *oi = (struct other_inode *) data;
4928
4929         if ((inode->i_ino != ino) ||
4930             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4931                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4932             ((inode->i_state & I_DIRTY_TIME) == 0))
4933                 return 0;
4934         spin_lock(&inode->i_lock);
4935         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4936                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4937             (inode->i_state & I_DIRTY_TIME)) {
4938                 struct ext4_inode_info  *ei = EXT4_I(inode);
4939
4940                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4941                 spin_unlock(&inode->i_lock);
4942
4943                 spin_lock(&ei->i_raw_lock);
4944                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4945                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4946                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4947                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4948                 spin_unlock(&ei->i_raw_lock);
4949                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4950                 return -1;
4951         }
4952         spin_unlock(&inode->i_lock);
4953         return -1;
4954 }
4955
4956 /*
4957  * Opportunistically update the other time fields for other inodes in
4958  * the same inode table block.
4959  */
4960 static void ext4_update_other_inodes_time(struct super_block *sb,
4961                                           unsigned long orig_ino, char *buf)
4962 {
4963         struct other_inode oi;
4964         unsigned long ino;
4965         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4966         int inode_size = EXT4_INODE_SIZE(sb);
4967
4968         oi.orig_ino = orig_ino;
4969         /*
4970          * Calculate the first inode in the inode table block.  Inode
4971          * numbers are one-based.  That is, the first inode in a block
4972          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4973          */
4974         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4975         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4976                 if (ino == orig_ino)
4977                         continue;
4978                 oi.raw_inode = (struct ext4_inode *) buf;
4979                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4980         }
4981 }
4982
4983 /*
4984  * Post the struct inode info into an on-disk inode location in the
4985  * buffer-cache.  This gobbles the caller's reference to the
4986  * buffer_head in the inode location struct.
4987  *
4988  * The caller must have write access to iloc->bh.
4989  */
4990 static int ext4_do_update_inode(handle_t *handle,
4991                                 struct inode *inode,
4992                                 struct ext4_iloc *iloc)
4993 {
4994         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4995         struct ext4_inode_info *ei = EXT4_I(inode);
4996         struct buffer_head *bh = iloc->bh;
4997         struct super_block *sb = inode->i_sb;
4998         int err = 0, rc, block;
4999         int need_datasync = 0, set_large_file = 0;
5000         uid_t i_uid;
5001         gid_t i_gid;
5002         projid_t i_projid;
5003
5004         spin_lock(&ei->i_raw_lock);
5005
5006         /* For fields not tracked in the in-memory inode,
5007          * initialise them to zero for new inodes. */
5008         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5009                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5010
5011         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5012         i_uid = i_uid_read(inode);
5013         i_gid = i_gid_read(inode);
5014         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5015         if (!(test_opt(inode->i_sb, NO_UID32))) {
5016                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5017                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5018 /*
5019  * Fix up interoperability with old kernels. Otherwise, old inodes get
5020  * re-used with the upper 16 bits of the uid/gid intact
5021  */
5022                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5023                         raw_inode->i_uid_high = 0;
5024                         raw_inode->i_gid_high = 0;
5025                 } else {
5026                         raw_inode->i_uid_high =
5027                                 cpu_to_le16(high_16_bits(i_uid));
5028                         raw_inode->i_gid_high =
5029                                 cpu_to_le16(high_16_bits(i_gid));
5030                 }
5031         } else {
5032                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5033                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5034                 raw_inode->i_uid_high = 0;
5035                 raw_inode->i_gid_high = 0;
5036         }
5037         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5038
5039         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5040         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5041         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5042         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5043
5044         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5045         if (err) {
5046                 spin_unlock(&ei->i_raw_lock);
5047                 goto out_brelse;
5048         }
5049         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5050         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5051         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5052                 raw_inode->i_file_acl_high =
5053                         cpu_to_le16(ei->i_file_acl >> 32);
5054         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5055         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5056                 ext4_isize_set(raw_inode, ei->i_disksize);
5057                 need_datasync = 1;
5058         }
5059         if (ei->i_disksize > 0x7fffffffULL) {
5060                 if (!ext4_has_feature_large_file(sb) ||
5061                                 EXT4_SB(sb)->s_es->s_rev_level ==
5062                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5063                         set_large_file = 1;
5064         }
5065         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5066         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5067                 if (old_valid_dev(inode->i_rdev)) {
5068                         raw_inode->i_block[0] =
5069                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5070                         raw_inode->i_block[1] = 0;
5071                 } else {
5072                         raw_inode->i_block[0] = 0;
5073                         raw_inode->i_block[1] =
5074                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5075                         raw_inode->i_block[2] = 0;
5076                 }
5077         } else if (!ext4_has_inline_data(inode)) {
5078                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5079                         raw_inode->i_block[block] = ei->i_data[block];
5080         }
5081
5082         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5083                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5084                 if (ei->i_extra_isize) {
5085                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5086                                 raw_inode->i_version_hi =
5087                                         cpu_to_le32(inode->i_version >> 32);
5088                         raw_inode->i_extra_isize =
5089                                 cpu_to_le16(ei->i_extra_isize);
5090                 }
5091         }
5092
5093         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5094                i_projid != EXT4_DEF_PROJID);
5095
5096         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5097             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5098                 raw_inode->i_projid = cpu_to_le32(i_projid);
5099
5100         ext4_inode_csum_set(inode, raw_inode, ei);
5101         spin_unlock(&ei->i_raw_lock);
5102         if (inode->i_sb->s_flags & MS_LAZYTIME)
5103                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5104                                               bh->b_data);
5105
5106         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5107         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5108         if (!err)
5109                 err = rc;
5110         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5111         if (set_large_file) {
5112                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5113                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5114                 if (err)
5115                         goto out_brelse;
5116                 ext4_update_dynamic_rev(sb);
5117                 ext4_set_feature_large_file(sb);
5118                 ext4_handle_sync(handle);
5119                 err = ext4_handle_dirty_super(handle, sb);
5120         }
5121         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5122 out_brelse:
5123         brelse(bh);
5124         ext4_std_error(inode->i_sb, err);
5125         return err;
5126 }
5127
5128 /*
5129  * ext4_write_inode()
5130  *
5131  * We are called from a few places:
5132  *
5133  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5134  *   Here, there will be no transaction running. We wait for any running
5135  *   transaction to commit.
5136  *
5137  * - Within flush work (sys_sync(), kupdate and such).
5138  *   We wait on commit, if told to.
5139  *
5140  * - Within iput_final() -> write_inode_now()
5141  *   We wait on commit, if told to.
5142  *
5143  * In all cases it is actually safe for us to return without doing anything,
5144  * because the inode has been copied into a raw inode buffer in
5145  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5146  * writeback.
5147  *
5148  * Note that we are absolutely dependent upon all inode dirtiers doing the
5149  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5150  * which we are interested.
5151  *
5152  * It would be a bug for them to not do this.  The code:
5153  *
5154  *      mark_inode_dirty(inode)
5155  *      stuff();
5156  *      inode->i_size = expr;
5157  *
5158  * is in error because write_inode() could occur while `stuff()' is running,
5159  * and the new i_size will be lost.  Plus the inode will no longer be on the
5160  * superblock's dirty inode list.
5161  */
5162 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5163 {
5164         int err;
5165
5166         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5167                 return 0;
5168
5169         if (EXT4_SB(inode->i_sb)->s_journal) {
5170                 if (ext4_journal_current_handle()) {
5171                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5172                         dump_stack();
5173                         return -EIO;
5174                 }
5175
5176                 /*
5177                  * No need to force transaction in WB_SYNC_NONE mode. Also
5178                  * ext4_sync_fs() will force the commit after everything is
5179                  * written.
5180                  */
5181                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5182                         return 0;
5183
5184                 err = ext4_force_commit(inode->i_sb);
5185         } else {
5186                 struct ext4_iloc iloc;
5187
5188                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5189                 if (err)
5190                         return err;
5191                 /*
5192                  * sync(2) will flush the whole buffer cache. No need to do
5193                  * it here separately for each inode.
5194                  */
5195                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5196                         sync_dirty_buffer(iloc.bh);
5197                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5198                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5199                                          "IO error syncing inode");
5200                         err = -EIO;
5201                 }
5202                 brelse(iloc.bh);
5203         }
5204         return err;
5205 }
5206
5207 /*
5208  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5209  * buffers that are attached to a page stradding i_size and are undergoing
5210  * commit. In that case we have to wait for commit to finish and try again.
5211  */
5212 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5213 {
5214         struct page *page;
5215         unsigned offset;
5216         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5217         tid_t commit_tid = 0;
5218         int ret;
5219
5220         offset = inode->i_size & (PAGE_SIZE - 1);
5221         /*
5222          * All buffers in the last page remain valid? Then there's nothing to
5223          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5224          * blocksize case
5225          */
5226         if (offset > PAGE_SIZE - i_blocksize(inode))
5227                 return;
5228         while (1) {
5229                 page = find_lock_page(inode->i_mapping,
5230                                       inode->i_size >> PAGE_SHIFT);
5231                 if (!page)
5232                         return;
5233                 ret = __ext4_journalled_invalidatepage(page, offset,
5234                                                 PAGE_SIZE - offset);
5235                 unlock_page(page);
5236                 put_page(page);
5237                 if (ret != -EBUSY)
5238                         return;
5239                 commit_tid = 0;
5240                 read_lock(&journal->j_state_lock);
5241                 if (journal->j_committing_transaction)
5242                         commit_tid = journal->j_committing_transaction->t_tid;
5243                 read_unlock(&journal->j_state_lock);
5244                 if (commit_tid)
5245                         jbd2_log_wait_commit(journal, commit_tid);
5246         }
5247 }
5248
5249 /*
5250  * ext4_setattr()
5251  *
5252  * Called from notify_change.
5253  *
5254  * We want to trap VFS attempts to truncate the file as soon as
5255  * possible.  In particular, we want to make sure that when the VFS
5256  * shrinks i_size, we put the inode on the orphan list and modify
5257  * i_disksize immediately, so that during the subsequent flushing of
5258  * dirty pages and freeing of disk blocks, we can guarantee that any
5259  * commit will leave the blocks being flushed in an unused state on
5260  * disk.  (On recovery, the inode will get truncated and the blocks will
5261  * be freed, so we have a strong guarantee that no future commit will
5262  * leave these blocks visible to the user.)
5263  *
5264  * Another thing we have to assure is that if we are in ordered mode
5265  * and inode is still attached to the committing transaction, we must
5266  * we start writeout of all the dirty pages which are being truncated.
5267  * This way we are sure that all the data written in the previous
5268  * transaction are already on disk (truncate waits for pages under
5269  * writeback).
5270  *
5271  * Called with inode->i_mutex down.
5272  */
5273 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5274 {
5275         struct inode *inode = d_inode(dentry);
5276         int error, rc = 0;
5277         int orphan = 0;
5278         const unsigned int ia_valid = attr->ia_valid;
5279
5280         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5281                 return -EIO;
5282
5283         error = setattr_prepare(dentry, attr);
5284         if (error)
5285                 return error;
5286
5287         if (is_quota_modification(inode, attr)) {
5288                 error = dquot_initialize(inode);
5289                 if (error)
5290                         return error;
5291         }
5292         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5293             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5294                 handle_t *handle;
5295
5296                 /* (user+group)*(old+new) structure, inode write (sb,
5297                  * inode block, ? - but truncate inode update has it) */
5298                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5299                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5300                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5301                 if (IS_ERR(handle)) {
5302                         error = PTR_ERR(handle);
5303                         goto err_out;
5304                 }
5305
5306                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5307                  * counts xattr inode references.
5308                  */
5309                 down_read(&EXT4_I(inode)->xattr_sem);
5310                 error = dquot_transfer(inode, attr);
5311                 up_read(&EXT4_I(inode)->xattr_sem);
5312
5313                 if (error) {
5314                         ext4_journal_stop(handle);
5315                         return error;
5316                 }
5317                 /* Update corresponding info in inode so that everything is in
5318                  * one transaction */
5319                 if (attr->ia_valid & ATTR_UID)
5320                         inode->i_uid = attr->ia_uid;
5321                 if (attr->ia_valid & ATTR_GID)
5322                         inode->i_gid = attr->ia_gid;
5323                 error = ext4_mark_inode_dirty(handle, inode);
5324                 ext4_journal_stop(handle);
5325         }
5326
5327         if (attr->ia_valid & ATTR_SIZE) {
5328                 handle_t *handle;
5329                 loff_t oldsize = inode->i_size;
5330                 int shrink = (attr->ia_size <= inode->i_size);
5331
5332                 if (ext4_encrypted_inode(inode)) {
5333                         error = fscrypt_get_encryption_info(inode);
5334                         if (error)
5335                                 return error;
5336                         if (!fscrypt_has_encryption_key(inode))
5337                                 return -ENOKEY;
5338                 }
5339
5340                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5341                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5342
5343                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5344                                 return -EFBIG;
5345                 }
5346                 if (!S_ISREG(inode->i_mode))
5347                         return -EINVAL;
5348
5349                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5350                         inode_inc_iversion(inode);
5351
5352                 if (ext4_should_order_data(inode) &&
5353                     (attr->ia_size < inode->i_size)) {
5354                         error = ext4_begin_ordered_truncate(inode,
5355                                                             attr->ia_size);
5356                         if (error)
5357                                 goto err_out;
5358                 }
5359                 if (attr->ia_size != inode->i_size) {
5360                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5361                         if (IS_ERR(handle)) {
5362                                 error = PTR_ERR(handle);
5363                                 goto err_out;
5364                         }
5365                         if (ext4_handle_valid(handle) && shrink) {
5366                                 error = ext4_orphan_add(handle, inode);
5367                                 orphan = 1;
5368                         }
5369                         /*
5370                          * Update c/mtime on truncate up, ext4_truncate() will
5371                          * update c/mtime in shrink case below
5372                          */
5373                         if (!shrink) {
5374                                 inode->i_mtime = current_time(inode);
5375                                 inode->i_ctime = inode->i_mtime;
5376                         }
5377                         down_write(&EXT4_I(inode)->i_data_sem);
5378                         EXT4_I(inode)->i_disksize = attr->ia_size;
5379                         rc = ext4_mark_inode_dirty(handle, inode);
5380                         if (!error)
5381                                 error = rc;
5382                         /*
5383                          * We have to update i_size under i_data_sem together
5384                          * with i_disksize to avoid races with writeback code
5385                          * running ext4_wb_update_i_disksize().
5386                          */
5387                         if (!error)
5388                                 i_size_write(inode, attr->ia_size);
5389                         up_write(&EXT4_I(inode)->i_data_sem);
5390                         ext4_journal_stop(handle);
5391                         if (error) {
5392                                 if (orphan)
5393                                         ext4_orphan_del(NULL, inode);
5394                                 goto err_out;
5395                         }
5396                 }
5397                 if (!shrink)
5398                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5399
5400                 /*
5401                  * Blocks are going to be removed from the inode. Wait
5402                  * for dio in flight.  Temporarily disable
5403                  * dioread_nolock to prevent livelock.
5404                  */
5405                 if (orphan) {
5406                         if (!ext4_should_journal_data(inode)) {
5407                                 ext4_inode_block_unlocked_dio(inode);
5408                                 inode_dio_wait(inode);
5409                                 ext4_inode_resume_unlocked_dio(inode);
5410                         } else
5411                                 ext4_wait_for_tail_page_commit(inode);
5412                 }
5413                 down_write(&EXT4_I(inode)->i_mmap_sem);
5414                 /*
5415                  * Truncate pagecache after we've waited for commit
5416                  * in data=journal mode to make pages freeable.
5417                  */
5418                 truncate_pagecache(inode, inode->i_size);
5419                 if (shrink) {
5420                         rc = ext4_truncate(inode);
5421                         if (rc)
5422                                 error = rc;
5423                 }
5424                 up_write(&EXT4_I(inode)->i_mmap_sem);
5425         }
5426
5427         if (!error) {
5428                 setattr_copy(inode, attr);
5429                 mark_inode_dirty(inode);
5430         }
5431
5432         /*
5433          * If the call to ext4_truncate failed to get a transaction handle at
5434          * all, we need to clean up the in-core orphan list manually.
5435          */
5436         if (orphan && inode->i_nlink)
5437                 ext4_orphan_del(NULL, inode);
5438
5439         if (!error && (ia_valid & ATTR_MODE))
5440                 rc = posix_acl_chmod(inode, inode->i_mode);
5441
5442 err_out:
5443         ext4_std_error(inode->i_sb, error);
5444         if (!error)
5445                 error = rc;
5446         return error;
5447 }
5448
5449 int ext4_getattr(const struct path *path, struct kstat *stat,
5450                  u32 request_mask, unsigned int query_flags)
5451 {
5452         struct inode *inode = d_inode(path->dentry);
5453         struct ext4_inode *raw_inode;
5454         struct ext4_inode_info *ei = EXT4_I(inode);
5455         unsigned int flags;
5456
5457         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5458                 stat->result_mask |= STATX_BTIME;
5459                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5460                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5461         }
5462
5463         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5464         if (flags & EXT4_APPEND_FL)
5465                 stat->attributes |= STATX_ATTR_APPEND;
5466         if (flags & EXT4_COMPR_FL)
5467                 stat->attributes |= STATX_ATTR_COMPRESSED;
5468         if (flags & EXT4_ENCRYPT_FL)
5469                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5470         if (flags & EXT4_IMMUTABLE_FL)
5471                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5472         if (flags & EXT4_NODUMP_FL)
5473                 stat->attributes |= STATX_ATTR_NODUMP;
5474
5475         stat->attributes_mask |= (STATX_ATTR_APPEND |
5476                                   STATX_ATTR_COMPRESSED |
5477                                   STATX_ATTR_ENCRYPTED |
5478                                   STATX_ATTR_IMMUTABLE |
5479                                   STATX_ATTR_NODUMP);
5480
5481         generic_fillattr(inode, stat);
5482         return 0;
5483 }
5484
5485 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5486                       u32 request_mask, unsigned int query_flags)
5487 {
5488         struct inode *inode = d_inode(path->dentry);
5489         u64 delalloc_blocks;
5490
5491         ext4_getattr(path, stat, request_mask, query_flags);
5492
5493         /*
5494          * If there is inline data in the inode, the inode will normally not
5495          * have data blocks allocated (it may have an external xattr block).
5496          * Report at least one sector for such files, so tools like tar, rsync,
5497          * others don't incorrectly think the file is completely sparse.
5498          */
5499         if (unlikely(ext4_has_inline_data(inode)))
5500                 stat->blocks += (stat->size + 511) >> 9;
5501
5502         /*
5503          * We can't update i_blocks if the block allocation is delayed
5504          * otherwise in the case of system crash before the real block
5505          * allocation is done, we will have i_blocks inconsistent with
5506          * on-disk file blocks.
5507          * We always keep i_blocks updated together with real
5508          * allocation. But to not confuse with user, stat
5509          * will return the blocks that include the delayed allocation
5510          * blocks for this file.
5511          */
5512         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5513                                    EXT4_I(inode)->i_reserved_data_blocks);
5514         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5515         return 0;
5516 }
5517
5518 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5519                                    int pextents)
5520 {
5521         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5522                 return ext4_ind_trans_blocks(inode, lblocks);
5523         return ext4_ext_index_trans_blocks(inode, pextents);
5524 }
5525
5526 /*
5527  * Account for index blocks, block groups bitmaps and block group
5528  * descriptor blocks if modify datablocks and index blocks
5529  * worse case, the indexs blocks spread over different block groups
5530  *
5531  * If datablocks are discontiguous, they are possible to spread over
5532  * different block groups too. If they are contiguous, with flexbg,
5533  * they could still across block group boundary.
5534  *
5535  * Also account for superblock, inode, quota and xattr blocks
5536  */
5537 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5538                                   int pextents)
5539 {
5540         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5541         int gdpblocks;
5542         int idxblocks;
5543         int ret = 0;
5544
5545         /*
5546          * How many index blocks need to touch to map @lblocks logical blocks
5547          * to @pextents physical extents?
5548          */
5549         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5550
5551         ret = idxblocks;
5552
5553         /*
5554          * Now let's see how many group bitmaps and group descriptors need
5555          * to account
5556          */
5557         groups = idxblocks + pextents;
5558         gdpblocks = groups;
5559         if (groups > ngroups)
5560                 groups = ngroups;
5561         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5562                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5563
5564         /* bitmaps and block group descriptor blocks */
5565         ret += groups + gdpblocks;
5566
5567         /* Blocks for super block, inode, quota and xattr blocks */
5568         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5569
5570         return ret;
5571 }
5572
5573 /*
5574  * Calculate the total number of credits to reserve to fit
5575  * the modification of a single pages into a single transaction,
5576  * which may include multiple chunks of block allocations.
5577  *
5578  * This could be called via ext4_write_begin()
5579  *
5580  * We need to consider the worse case, when
5581  * one new block per extent.
5582  */
5583 int ext4_writepage_trans_blocks(struct inode *inode)
5584 {
5585         int bpp = ext4_journal_blocks_per_page(inode);
5586         int ret;
5587
5588         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5589
5590         /* Account for data blocks for journalled mode */
5591         if (ext4_should_journal_data(inode))
5592                 ret += bpp;
5593         return ret;
5594 }
5595
5596 /*
5597  * Calculate the journal credits for a chunk of data modification.
5598  *
5599  * This is called from DIO, fallocate or whoever calling
5600  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5601  *
5602  * journal buffers for data blocks are not included here, as DIO
5603  * and fallocate do no need to journal data buffers.
5604  */
5605 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5606 {
5607         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5608 }
5609
5610 /*
5611  * The caller must have previously called ext4_reserve_inode_write().
5612  * Give this, we know that the caller already has write access to iloc->bh.
5613  */
5614 int ext4_mark_iloc_dirty(handle_t *handle,
5615                          struct inode *inode, struct ext4_iloc *iloc)
5616 {
5617         int err = 0;
5618
5619         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620                 return -EIO;
5621
5622         if (IS_I_VERSION(inode))
5623                 inode_inc_iversion(inode);
5624
5625         /* the do_update_inode consumes one bh->b_count */
5626         get_bh(iloc->bh);
5627
5628         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629         err = ext4_do_update_inode(handle, inode, iloc);
5630         put_bh(iloc->bh);
5631         return err;
5632 }
5633
5634 /*
5635  * On success, We end up with an outstanding reference count against
5636  * iloc->bh.  This _must_ be cleaned up later.
5637  */
5638
5639 int
5640 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5641                          struct ext4_iloc *iloc)
5642 {
5643         int err;
5644
5645         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5646                 return -EIO;
5647
5648         err = ext4_get_inode_loc(inode, iloc);
5649         if (!err) {
5650                 BUFFER_TRACE(iloc->bh, "get_write_access");
5651                 err = ext4_journal_get_write_access(handle, iloc->bh);
5652                 if (err) {
5653                         brelse(iloc->bh);
5654                         iloc->bh = NULL;
5655                 }
5656         }
5657         ext4_std_error(inode->i_sb, err);
5658         return err;
5659 }
5660
5661 /*
5662  * Expand an inode by new_extra_isize bytes.
5663  * Returns 0 on success or negative error number on failure.
5664  */
5665 static int ext4_expand_extra_isize(struct inode *inode,
5666                                    unsigned int new_extra_isize,
5667                                    struct ext4_iloc iloc,
5668                                    handle_t *handle)
5669 {
5670         struct ext4_inode *raw_inode;
5671         struct ext4_xattr_ibody_header *header;
5672
5673         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5674                 return 0;
5675
5676         raw_inode = ext4_raw_inode(&iloc);
5677
5678         header = IHDR(inode, raw_inode);
5679
5680         /* No extended attributes present */
5681         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5682             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5683                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5684                        EXT4_I(inode)->i_extra_isize, 0,
5685                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5686                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5687                 return 0;
5688         }
5689
5690         /* try to expand with EAs present */
5691         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5692                                           raw_inode, handle);
5693 }
5694
5695 /*
5696  * What we do here is to mark the in-core inode as clean with respect to inode
5697  * dirtiness (it may still be data-dirty).
5698  * This means that the in-core inode may be reaped by prune_icache
5699  * without having to perform any I/O.  This is a very good thing,
5700  * because *any* task may call prune_icache - even ones which
5701  * have a transaction open against a different journal.
5702  *
5703  * Is this cheating?  Not really.  Sure, we haven't written the
5704  * inode out, but prune_icache isn't a user-visible syncing function.
5705  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5706  * we start and wait on commits.
5707  */
5708 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5709 {
5710         struct ext4_iloc iloc;
5711         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5712         static unsigned int mnt_count;
5713         int err, ret;
5714
5715         might_sleep();
5716         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5717         err = ext4_reserve_inode_write(handle, inode, &iloc);
5718         if (err)
5719                 return err;
5720         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5721             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5722                 /*
5723                  * In nojournal mode, we can immediately attempt to expand
5724                  * the inode.  When journaled, we first need to obtain extra
5725                  * buffer credits since we may write into the EA block
5726                  * with this same handle. If journal_extend fails, then it will
5727                  * only result in a minor loss of functionality for that inode.
5728                  * If this is felt to be critical, then e2fsck should be run to
5729                  * force a large enough s_min_extra_isize.
5730                  */
5731                 if (!ext4_handle_valid(handle) ||
5732                     jbd2_journal_extend(handle,
5733                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5734                         ret = ext4_expand_extra_isize(inode,
5735                                                       sbi->s_want_extra_isize,
5736                                                       iloc, handle);
5737                         if (ret) {
5738                                 if (mnt_count !=
5739                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5740                                         ext4_warning(inode->i_sb,
5741                                         "Unable to expand inode %lu. Delete"
5742                                         " some EAs or run e2fsck.",
5743                                         inode->i_ino);
5744                                         mnt_count =
5745                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5746                                 }
5747                         }
5748                 }
5749         }
5750         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5751 }
5752
5753 /*
5754  * ext4_dirty_inode() is called from __mark_inode_dirty()
5755  *
5756  * We're really interested in the case where a file is being extended.
5757  * i_size has been changed by generic_commit_write() and we thus need
5758  * to include the updated inode in the current transaction.
5759  *
5760  * Also, dquot_alloc_block() will always dirty the inode when blocks
5761  * are allocated to the file.
5762  *
5763  * If the inode is marked synchronous, we don't honour that here - doing
5764  * so would cause a commit on atime updates, which we don't bother doing.
5765  * We handle synchronous inodes at the highest possible level.
5766  *
5767  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5768  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5769  * to copy into the on-disk inode structure are the timestamp files.
5770  */
5771 void ext4_dirty_inode(struct inode *inode, int flags)
5772 {
5773         handle_t *handle;
5774
5775         if (flags == I_DIRTY_TIME)
5776                 return;
5777         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5778         if (IS_ERR(handle))
5779                 goto out;
5780
5781         ext4_mark_inode_dirty(handle, inode);
5782
5783         ext4_journal_stop(handle);
5784 out:
5785         return;
5786 }
5787
5788 #if 0
5789 /*
5790  * Bind an inode's backing buffer_head into this transaction, to prevent
5791  * it from being flushed to disk early.  Unlike
5792  * ext4_reserve_inode_write, this leaves behind no bh reference and
5793  * returns no iloc structure, so the caller needs to repeat the iloc
5794  * lookup to mark the inode dirty later.
5795  */
5796 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5797 {
5798         struct ext4_iloc iloc;
5799
5800         int err = 0;
5801         if (handle) {
5802                 err = ext4_get_inode_loc(inode, &iloc);
5803                 if (!err) {
5804                         BUFFER_TRACE(iloc.bh, "get_write_access");
5805                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5806                         if (!err)
5807                                 err = ext4_handle_dirty_metadata(handle,
5808                                                                  NULL,
5809                                                                  iloc.bh);
5810                         brelse(iloc.bh);
5811                 }
5812         }
5813         ext4_std_error(inode->i_sb, err);
5814         return err;
5815 }
5816 #endif
5817
5818 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5819 {
5820         journal_t *journal;
5821         handle_t *handle;
5822         int err;
5823         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5824
5825         /*
5826          * We have to be very careful here: changing a data block's
5827          * journaling status dynamically is dangerous.  If we write a
5828          * data block to the journal, change the status and then delete
5829          * that block, we risk forgetting to revoke the old log record
5830          * from the journal and so a subsequent replay can corrupt data.
5831          * So, first we make sure that the journal is empty and that
5832          * nobody is changing anything.
5833          */
5834
5835         journal = EXT4_JOURNAL(inode);
5836         if (!journal)
5837                 return 0;
5838         if (is_journal_aborted(journal))
5839                 return -EROFS;
5840
5841         /* Wait for all existing dio workers */
5842         ext4_inode_block_unlocked_dio(inode);
5843         inode_dio_wait(inode);
5844
5845         /*
5846          * Before flushing the journal and switching inode's aops, we have
5847          * to flush all dirty data the inode has. There can be outstanding
5848          * delayed allocations, there can be unwritten extents created by
5849          * fallocate or buffered writes in dioread_nolock mode covered by
5850          * dirty data which can be converted only after flushing the dirty
5851          * data (and journalled aops don't know how to handle these cases).
5852          */
5853         if (val) {
5854                 down_write(&EXT4_I(inode)->i_mmap_sem);
5855                 err = filemap_write_and_wait(inode->i_mapping);
5856                 if (err < 0) {
5857                         up_write(&EXT4_I(inode)->i_mmap_sem);
5858                         ext4_inode_resume_unlocked_dio(inode);
5859                         return err;
5860                 }
5861         }
5862
5863         percpu_down_write(&sbi->s_journal_flag_rwsem);
5864         jbd2_journal_lock_updates(journal);
5865
5866         /*
5867          * OK, there are no updates running now, and all cached data is
5868          * synced to disk.  We are now in a completely consistent state
5869          * which doesn't have anything in the journal, and we know that
5870          * no filesystem updates are running, so it is safe to modify
5871          * the inode's in-core data-journaling state flag now.
5872          */
5873
5874         if (val)
5875                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5876         else {
5877                 err = jbd2_journal_flush(journal);
5878                 if (err < 0) {
5879                         jbd2_journal_unlock_updates(journal);
5880                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5881                         ext4_inode_resume_unlocked_dio(inode);
5882                         return err;
5883                 }
5884                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5885         }
5886         ext4_set_aops(inode);
5887         /*
5888          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5889          * E.g. S_DAX may get cleared / set.
5890          */
5891         ext4_set_inode_flags(inode);
5892
5893         jbd2_journal_unlock_updates(journal);
5894         percpu_up_write(&sbi->s_journal_flag_rwsem);
5895
5896         if (val)
5897                 up_write(&EXT4_I(inode)->i_mmap_sem);
5898         ext4_inode_resume_unlocked_dio(inode);
5899
5900         /* Finally we can mark the inode as dirty. */
5901
5902         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5903         if (IS_ERR(handle))
5904                 return PTR_ERR(handle);
5905
5906         err = ext4_mark_inode_dirty(handle, inode);
5907         ext4_handle_sync(handle);
5908         ext4_journal_stop(handle);
5909         ext4_std_error(inode->i_sb, err);
5910
5911         return err;
5912 }
5913
5914 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5915 {
5916         return !buffer_mapped(bh);
5917 }
5918
5919 int ext4_page_mkwrite(struct vm_fault *vmf)
5920 {
5921         struct vm_area_struct *vma = vmf->vma;
5922         struct page *page = vmf->page;
5923         loff_t size;
5924         unsigned long len;
5925         int ret;
5926         struct file *file = vma->vm_file;
5927         struct inode *inode = file_inode(file);
5928         struct address_space *mapping = inode->i_mapping;
5929         handle_t *handle;
5930         get_block_t *get_block;
5931         int retries = 0;
5932
5933         sb_start_pagefault(inode->i_sb);
5934         file_update_time(vma->vm_file);
5935
5936         down_read(&EXT4_I(inode)->i_mmap_sem);
5937
5938         ret = ext4_convert_inline_data(inode);
5939         if (ret)
5940                 goto out_ret;
5941
5942         /* Delalloc case is easy... */
5943         if (test_opt(inode->i_sb, DELALLOC) &&
5944             !ext4_should_journal_data(inode) &&
5945             !ext4_nonda_switch(inode->i_sb)) {
5946                 do {
5947                         ret = block_page_mkwrite(vma, vmf,
5948                                                    ext4_da_get_block_prep);
5949                 } while (ret == -ENOSPC &&
5950                        ext4_should_retry_alloc(inode->i_sb, &retries));
5951                 goto out_ret;
5952         }
5953
5954         lock_page(page);
5955         size = i_size_read(inode);
5956         /* Page got truncated from under us? */
5957         if (page->mapping != mapping || page_offset(page) > size) {
5958                 unlock_page(page);
5959                 ret = VM_FAULT_NOPAGE;
5960                 goto out;
5961         }
5962
5963         if (page->index == size >> PAGE_SHIFT)
5964                 len = size & ~PAGE_MASK;
5965         else
5966                 len = PAGE_SIZE;
5967         /*
5968          * Return if we have all the buffers mapped. This avoids the need to do
5969          * journal_start/journal_stop which can block and take a long time
5970          */
5971         if (page_has_buffers(page)) {
5972                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5973                                             0, len, NULL,
5974                                             ext4_bh_unmapped)) {
5975                         /* Wait so that we don't change page under IO */
5976                         wait_for_stable_page(page);
5977                         ret = VM_FAULT_LOCKED;
5978                         goto out;
5979                 }
5980         }
5981         unlock_page(page);
5982         /* OK, we need to fill the hole... */
5983         if (ext4_should_dioread_nolock(inode))
5984                 get_block = ext4_get_block_unwritten;
5985         else
5986                 get_block = ext4_get_block;
5987 retry_alloc:
5988         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5989                                     ext4_writepage_trans_blocks(inode));
5990         if (IS_ERR(handle)) {
5991                 ret = VM_FAULT_SIGBUS;
5992                 goto out;
5993         }
5994         ret = block_page_mkwrite(vma, vmf, get_block);
5995         if (!ret && ext4_should_journal_data(inode)) {
5996                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5997                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5998                         unlock_page(page);
5999                         ret = VM_FAULT_SIGBUS;
6000                         ext4_journal_stop(handle);
6001                         goto out;
6002                 }
6003                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6004         }
6005         ext4_journal_stop(handle);
6006         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6007                 goto retry_alloc;
6008 out_ret:
6009         ret = block_page_mkwrite_return(ret);
6010 out:
6011         up_read(&EXT4_I(inode)->i_mmap_sem);
6012         sb_end_pagefault(inode->i_sb);
6013         return ret;
6014 }
6015
6016 int ext4_filemap_fault(struct vm_fault *vmf)
6017 {
6018         struct inode *inode = file_inode(vmf->vma->vm_file);
6019         int err;
6020
6021         down_read(&EXT4_I(inode)->i_mmap_sem);
6022         err = filemap_fault(vmf);
6023         up_read(&EXT4_I(inode)->i_mmap_sem);
6024
6025         return err;
6026 }
6027
6028 /*
6029  * Find the first extent at or after @lblk in an inode that is not a hole.
6030  * Search for @map_len blocks at most. The extent is returned in @result.
6031  *
6032  * The function returns 1 if we found an extent. The function returns 0 in
6033  * case there is no extent at or after @lblk and in that case also sets
6034  * @result->es_len to 0. In case of error, the error code is returned.
6035  */
6036 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6037                          unsigned int map_len, struct extent_status *result)
6038 {
6039         struct ext4_map_blocks map;
6040         struct extent_status es = {};
6041         int ret;
6042
6043         map.m_lblk = lblk;
6044         map.m_len = map_len;
6045
6046         /*
6047          * For non-extent based files this loop may iterate several times since
6048          * we do not determine full hole size.
6049          */
6050         while (map.m_len > 0) {
6051                 ret = ext4_map_blocks(NULL, inode, &map, 0);
6052                 if (ret < 0)
6053                         return ret;
6054                 /* There's extent covering m_lblk? Just return it. */
6055                 if (ret > 0) {
6056                         int status;
6057
6058                         ext4_es_store_pblock(result, map.m_pblk);
6059                         result->es_lblk = map.m_lblk;
6060                         result->es_len = map.m_len;
6061                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
6062                                 status = EXTENT_STATUS_UNWRITTEN;
6063                         else
6064                                 status = EXTENT_STATUS_WRITTEN;
6065                         ext4_es_store_status(result, status);
6066                         return 1;
6067                 }
6068                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6069                                                   map.m_lblk + map.m_len - 1,
6070                                                   &es);
6071                 /* Is delalloc data before next block in extent tree? */
6072                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6073                         ext4_lblk_t offset = 0;
6074
6075                         if (es.es_lblk < lblk)
6076                                 offset = lblk - es.es_lblk;
6077                         result->es_lblk = es.es_lblk + offset;
6078                         ext4_es_store_pblock(result,
6079                                              ext4_es_pblock(&es) + offset);
6080                         result->es_len = es.es_len - offset;
6081                         ext4_es_store_status(result, ext4_es_status(&es));
6082
6083                         return 1;
6084                 }
6085                 /* There's a hole at m_lblk, advance us after it */
6086                 map.m_lblk += map.m_len;
6087                 map_len -= map.m_len;
6088                 map.m_len = map_len;
6089                 cond_resched();
6090         }
6091         result->es_len = 0;
6092         return 0;
6093 }