]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/gc.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28         struct f2fs_sb_info *sbi = data;
29         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31         long wait_ms;
32
33         wait_ms = gc_th->min_sleep_time;
34
35         do {
36                 if (try_to_freeze())
37                         continue;
38                 else
39                         wait_event_interruptible_timeout(*wq,
40                                                 kthread_should_stop(),
41                                                 msecs_to_jiffies(wait_ms));
42                 if (kthread_should_stop())
43                         break;
44
45                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46                         increase_sleep_time(gc_th, &wait_ms);
47                         continue;
48                 }
49
50                 /*
51                  * [GC triggering condition]
52                  * 0. GC is not conducted currently.
53                  * 1. There are enough dirty segments.
54                  * 2. IO subsystem is idle by checking the # of writeback pages.
55                  * 3. IO subsystem is idle by checking the # of requests in
56                  *    bdev's request list.
57                  *
58                  * Note) We have to avoid triggering GCs frequently.
59                  * Because it is possible that some segments can be
60                  * invalidated soon after by user update or deletion.
61                  * So, I'd like to wait some time to collect dirty segments.
62                  */
63                 if (!mutex_trylock(&sbi->gc_mutex))
64                         continue;
65
66                 if (!is_idle(sbi)) {
67                         increase_sleep_time(gc_th, &wait_ms);
68                         mutex_unlock(&sbi->gc_mutex);
69                         continue;
70                 }
71
72                 if (has_enough_invalid_blocks(sbi))
73                         decrease_sleep_time(gc_th, &wait_ms);
74                 else
75                         increase_sleep_time(gc_th, &wait_ms);
76
77                 stat_inc_bggc_count(sbi);
78
79                 /* if return value is not zero, no victim was selected */
80                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
81                         wait_ms = gc_th->no_gc_sleep_time;
82
83                 trace_f2fs_background_gc(sbi->sb, wait_ms,
84                                 prefree_segments(sbi), free_segments(sbi));
85
86                 /* balancing f2fs's metadata periodically */
87                 f2fs_balance_fs_bg(sbi);
88
89         } while (!kthread_should_stop());
90         return 0;
91 }
92
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95         struct f2fs_gc_kthread *gc_th;
96         dev_t dev = sbi->sb->s_bdev->bd_dev;
97         int err = 0;
98
99         gc_th = f2fs_kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100         if (!gc_th) {
101                 err = -ENOMEM;
102                 goto out;
103         }
104
105         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108
109         gc_th->gc_idle = 0;
110
111         sbi->gc_thread = gc_th;
112         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115         if (IS_ERR(gc_th->f2fs_gc_task)) {
116                 err = PTR_ERR(gc_th->f2fs_gc_task);
117                 kfree(gc_th);
118                 sbi->gc_thread = NULL;
119         }
120 out:
121         return err;
122 }
123
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127         if (!gc_th)
128                 return;
129         kthread_stop(gc_th->f2fs_gc_task);
130         kfree(gc_th);
131         sbi->gc_thread = NULL;
132 }
133
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137
138         if (gc_th && gc_th->gc_idle) {
139                 if (gc_th->gc_idle == 1)
140                         gc_mode = GC_CB;
141                 else if (gc_th->gc_idle == 2)
142                         gc_mode = GC_GREEDY;
143         }
144         return gc_mode;
145 }
146
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148                         int type, struct victim_sel_policy *p)
149 {
150         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151
152         if (p->alloc_mode == SSR) {
153                 p->gc_mode = GC_GREEDY;
154                 p->dirty_segmap = dirty_i->dirty_segmap[type];
155                 p->max_search = dirty_i->nr_dirty[type];
156                 p->ofs_unit = 1;
157         } else {
158                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160                 p->max_search = dirty_i->nr_dirty[DIRTY];
161                 p->ofs_unit = sbi->segs_per_sec;
162         }
163
164         if (p->max_search > sbi->max_victim_search)
165                 p->max_search = sbi->max_victim_search;
166
167         p->offset = sbi->last_victim[p->gc_mode];
168 }
169
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171                                 struct victim_sel_policy *p)
172 {
173         /* SSR allocates in a segment unit */
174         if (p->alloc_mode == SSR)
175                 return sbi->blocks_per_seg;
176         if (p->gc_mode == GC_GREEDY)
177                 return sbi->blocks_per_seg * p->ofs_unit;
178         else if (p->gc_mode == GC_CB)
179                 return UINT_MAX;
180         else /* No other gc_mode */
181                 return 0;
182 }
183
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187         unsigned int secno;
188
189         /*
190          * If the gc_type is FG_GC, we can select victim segments
191          * selected by background GC before.
192          * Those segments guarantee they have small valid blocks.
193          */
194         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195                 if (sec_usage_check(sbi, secno))
196                         continue;
197                 clear_bit(secno, dirty_i->victim_secmap);
198                 return secno * sbi->segs_per_sec;
199         }
200         return NULL_SEGNO;
201 }
202
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205         struct sit_info *sit_i = SIT_I(sbi);
206         unsigned int secno = GET_SECNO(sbi, segno);
207         unsigned int start = secno * sbi->segs_per_sec;
208         unsigned long long mtime = 0;
209         unsigned int vblocks;
210         unsigned char age = 0;
211         unsigned char u;
212         unsigned int i;
213
214         for (i = 0; i < sbi->segs_per_sec; i++)
215                 mtime += get_seg_entry(sbi, start + i)->mtime;
216         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217
218         mtime = div_u64(mtime, sbi->segs_per_sec);
219         vblocks = div_u64(vblocks, sbi->segs_per_sec);
220
221         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222
223         /* Handle if the system time has changed by the user */
224         if (mtime < sit_i->min_mtime)
225                 sit_i->min_mtime = mtime;
226         if (mtime > sit_i->max_mtime)
227                 sit_i->max_mtime = mtime;
228         if (sit_i->max_mtime != sit_i->min_mtime)
229                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230                                 sit_i->max_mtime - sit_i->min_mtime);
231
232         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236                         unsigned int segno, struct victim_sel_policy *p)
237 {
238         if (p->alloc_mode == SSR)
239                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240
241         /* alloc_mode == LFS */
242         if (p->gc_mode == GC_GREEDY)
243                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244         else
245                 return get_cb_cost(sbi, segno);
246 }
247
248 static unsigned int count_bits(const unsigned long *addr,
249                                 unsigned int offset, unsigned int len)
250 {
251         unsigned int end = offset + len, sum = 0;
252
253         while (offset < end) {
254                 if (test_bit(offset++, addr))
255                         ++sum;
256         }
257         return sum;
258 }
259
260 /*
261  * This function is called from two paths.
262  * One is garbage collection and the other is SSR segment selection.
263  * When it is called during GC, it just gets a victim segment
264  * and it does not remove it from dirty seglist.
265  * When it is called from SSR segment selection, it finds a segment
266  * which has minimum valid blocks and removes it from dirty seglist.
267  */
268 static int get_victim_by_default(struct f2fs_sb_info *sbi,
269                 unsigned int *result, int gc_type, int type, char alloc_mode)
270 {
271         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
272         struct victim_sel_policy p;
273         unsigned int secno, max_cost, last_victim;
274         unsigned int last_segment = MAIN_SEGS(sbi);
275         unsigned int nsearched = 0;
276
277         mutex_lock(&dirty_i->seglist_lock);
278
279         p.alloc_mode = alloc_mode;
280         select_policy(sbi, gc_type, type, &p);
281
282         p.min_segno = NULL_SEGNO;
283         p.min_cost = max_cost = get_max_cost(sbi, &p);
284
285         if (p.max_search == 0)
286                 goto out;
287
288         last_victim = sbi->last_victim[p.gc_mode];
289         if (p.alloc_mode == LFS && gc_type == FG_GC) {
290                 p.min_segno = check_bg_victims(sbi);
291                 if (p.min_segno != NULL_SEGNO)
292                         goto got_it;
293         }
294
295         while (1) {
296                 unsigned long cost;
297                 unsigned int segno;
298
299                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
300                 if (segno >= last_segment) {
301                         if (sbi->last_victim[p.gc_mode]) {
302                                 last_segment = sbi->last_victim[p.gc_mode];
303                                 sbi->last_victim[p.gc_mode] = 0;
304                                 p.offset = 0;
305                                 continue;
306                         }
307                         break;
308                 }
309
310                 p.offset = segno + p.ofs_unit;
311                 if (p.ofs_unit > 1) {
312                         p.offset -= segno % p.ofs_unit;
313                         nsearched += count_bits(p.dirty_segmap,
314                                                 p.offset - p.ofs_unit,
315                                                 p.ofs_unit);
316                 } else {
317                         nsearched++;
318                 }
319
320
321                 secno = GET_SECNO(sbi, segno);
322
323                 if (sec_usage_check(sbi, secno))
324                         goto next;
325                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
326                         goto next;
327
328                 cost = get_gc_cost(sbi, segno, &p);
329
330                 if (p.min_cost > cost) {
331                         p.min_segno = segno;
332                         p.min_cost = cost;
333                 }
334 next:
335                 if (nsearched >= p.max_search) {
336                         if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
337                                 sbi->last_victim[p.gc_mode] = last_victim + 1;
338                         else
339                                 sbi->last_victim[p.gc_mode] = segno + 1;
340                         break;
341                 }
342         }
343         if (p.min_segno != NULL_SEGNO) {
344 got_it:
345                 if (p.alloc_mode == LFS) {
346                         secno = GET_SECNO(sbi, p.min_segno);
347                         if (gc_type == FG_GC)
348                                 sbi->cur_victim_sec = secno;
349                         else
350                                 set_bit(secno, dirty_i->victim_secmap);
351                 }
352                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
353
354                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
355                                 sbi->cur_victim_sec,
356                                 prefree_segments(sbi), free_segments(sbi));
357         }
358 out:
359         mutex_unlock(&dirty_i->seglist_lock);
360
361         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
362 }
363
364 static const struct victim_selection default_v_ops = {
365         .get_victim = get_victim_by_default,
366 };
367
368 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
369 {
370         struct inode_entry *ie;
371
372         ie = radix_tree_lookup(&gc_list->iroot, ino);
373         if (ie)
374                 return ie->inode;
375         return NULL;
376 }
377
378 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
379 {
380         struct inode_entry *new_ie;
381
382         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
383                 iput(inode);
384                 return;
385         }
386         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
387         new_ie->inode = inode;
388
389         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
390         list_add_tail(&new_ie->list, &gc_list->ilist);
391 }
392
393 static void put_gc_inode(struct gc_inode_list *gc_list)
394 {
395         struct inode_entry *ie, *next_ie;
396         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
397                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
398                 iput(ie->inode);
399                 list_del(&ie->list);
400                 kmem_cache_free(inode_entry_slab, ie);
401         }
402 }
403
404 static int check_valid_map(struct f2fs_sb_info *sbi,
405                                 unsigned int segno, int offset)
406 {
407         struct sit_info *sit_i = SIT_I(sbi);
408         struct seg_entry *sentry;
409         int ret;
410
411         mutex_lock(&sit_i->sentry_lock);
412         sentry = get_seg_entry(sbi, segno);
413         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
414         mutex_unlock(&sit_i->sentry_lock);
415         return ret;
416 }
417
418 /*
419  * This function compares node address got in summary with that in NAT.
420  * On validity, copy that node with cold status, otherwise (invalid node)
421  * ignore that.
422  */
423 static void gc_node_segment(struct f2fs_sb_info *sbi,
424                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
425 {
426         bool initial = true;
427         struct f2fs_summary *entry;
428         block_t start_addr;
429         int off;
430
431         start_addr = START_BLOCK(sbi, segno);
432
433 next_step:
434         entry = sum;
435
436         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
437                 nid_t nid = le32_to_cpu(entry->nid);
438                 struct page *node_page;
439                 struct node_info ni;
440
441                 /* stop BG_GC if there is not enough free sections. */
442                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
443                         return;
444
445                 if (check_valid_map(sbi, segno, off) == 0)
446                         continue;
447
448                 if (initial) {
449                         ra_node_page(sbi, nid);
450                         continue;
451                 }
452                 node_page = get_node_page(sbi, nid);
453                 if (IS_ERR(node_page))
454                         continue;
455
456                 /* block may become invalid during get_node_page */
457                 if (check_valid_map(sbi, segno, off) == 0) {
458                         f2fs_put_page(node_page, 1);
459                         continue;
460                 }
461
462                 get_node_info(sbi, nid, &ni);
463                 if (ni.blk_addr != start_addr + off) {
464                         f2fs_put_page(node_page, 1);
465                         continue;
466                 }
467
468                 move_node_page(node_page, gc_type);
469                 stat_inc_node_blk_count(sbi, 1, gc_type);
470         }
471
472         if (initial) {
473                 initial = false;
474                 goto next_step;
475         }
476 }
477
478 /*
479  * Calculate start block index indicating the given node offset.
480  * Be careful, caller should give this node offset only indicating direct node
481  * blocks. If any node offsets, which point the other types of node blocks such
482  * as indirect or double indirect node blocks, are given, it must be a caller's
483  * bug.
484  */
485 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
486 {
487         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
488         unsigned int bidx;
489
490         if (node_ofs == 0)
491                 return 0;
492
493         if (node_ofs <= 2) {
494                 bidx = node_ofs - 1;
495         } else if (node_ofs <= indirect_blks) {
496                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
497                 bidx = node_ofs - 2 - dec;
498         } else {
499                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
500                 bidx = node_ofs - 5 - dec;
501         }
502         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
503 }
504
505 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
506                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
507 {
508         struct page *node_page;
509         nid_t nid;
510         unsigned int ofs_in_node;
511         block_t source_blkaddr;
512
513         nid = le32_to_cpu(sum->nid);
514         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
515
516         node_page = get_node_page(sbi, nid);
517         if (IS_ERR(node_page))
518                 return false;
519
520         get_node_info(sbi, nid, dni);
521
522         if (sum->version != dni->version) {
523                 f2fs_put_page(node_page, 1);
524                 return false;
525         }
526
527         *nofs = ofs_of_node(node_page);
528         source_blkaddr = datablock_addr(node_page, ofs_in_node);
529         f2fs_put_page(node_page, 1);
530
531         if (source_blkaddr != blkaddr)
532                 return false;
533         return true;
534 }
535
536 static void move_encrypted_block(struct inode *inode, block_t bidx)
537 {
538         struct f2fs_io_info fio = {
539                 .sbi = F2FS_I_SB(inode),
540                 .type = DATA,
541                 .op = REQ_OP_READ,
542                 .op_flags = READ_SYNC,
543                 .encrypted_page = NULL,
544         };
545         struct dnode_of_data dn;
546         struct f2fs_summary sum;
547         struct node_info ni;
548         struct page *page;
549         block_t newaddr;
550         int err;
551
552         /* do not read out */
553         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
554         if (!page)
555                 return;
556
557         set_new_dnode(&dn, inode, NULL, NULL, 0);
558         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
559         if (err)
560                 goto out;
561
562         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
563                 ClearPageUptodate(page);
564                 goto put_out;
565         }
566
567         /*
568          * don't cache encrypted data into meta inode until previous dirty
569          * data were writebacked to avoid racing between GC and flush.
570          */
571         f2fs_wait_on_page_writeback(page, DATA, true);
572
573         get_node_info(fio.sbi, dn.nid, &ni);
574         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
575
576         /* read page */
577         fio.page = page;
578         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
579
580         allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
581                                                         &sum, CURSEG_COLD_DATA);
582
583         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
584                                         FGP_LOCK | FGP_CREAT, GFP_NOFS);
585         if (!fio.encrypted_page) {
586                 err = -ENOMEM;
587                 goto recover_block;
588         }
589
590         err = f2fs_submit_page_bio(&fio);
591         if (err)
592                 goto put_page_out;
593
594         /* write page */
595         lock_page(fio.encrypted_page);
596
597         if (unlikely(!PageUptodate(fio.encrypted_page))) {
598                 err = -EIO;
599                 goto put_page_out;
600         }
601         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
602                 err = -EIO;
603                 goto put_page_out;
604         }
605
606         set_page_dirty(fio.encrypted_page);
607         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
608         if (clear_page_dirty_for_io(fio.encrypted_page))
609                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
610
611         set_page_writeback(fio.encrypted_page);
612
613         /* allocate block address */
614         f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
615
616         fio.op = REQ_OP_WRITE;
617         fio.op_flags = WRITE_SYNC;
618         fio.new_blkaddr = newaddr;
619         f2fs_submit_page_mbio(&fio);
620
621         f2fs_update_data_blkaddr(&dn, newaddr);
622         set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
623         if (page->index == 0)
624                 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
625 put_page_out:
626         f2fs_put_page(fio.encrypted_page, 1);
627 recover_block:
628         if (err)
629                 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
630                                                                 true, true);
631 put_out:
632         f2fs_put_dnode(&dn);
633 out:
634         f2fs_put_page(page, 1);
635 }
636
637 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
638 {
639         struct page *page;
640
641         page = get_lock_data_page(inode, bidx, true);
642         if (IS_ERR(page))
643                 return;
644
645         if (gc_type == BG_GC) {
646                 if (PageWriteback(page))
647                         goto out;
648                 set_page_dirty(page);
649                 set_cold_data(page);
650         } else {
651                 struct f2fs_io_info fio = {
652                         .sbi = F2FS_I_SB(inode),
653                         .type = DATA,
654                         .op = REQ_OP_WRITE,
655                         .op_flags = WRITE_SYNC,
656                         .page = page,
657                         .encrypted_page = NULL,
658                 };
659                 set_page_dirty(page);
660                 f2fs_wait_on_page_writeback(page, DATA, true);
661                 if (clear_page_dirty_for_io(page))
662                         inode_dec_dirty_pages(inode);
663                 set_cold_data(page);
664                 do_write_data_page(&fio);
665                 clear_cold_data(page);
666         }
667 out:
668         f2fs_put_page(page, 1);
669 }
670
671 /*
672  * This function tries to get parent node of victim data block, and identifies
673  * data block validity. If the block is valid, copy that with cold status and
674  * modify parent node.
675  * If the parent node is not valid or the data block address is different,
676  * the victim data block is ignored.
677  */
678 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
679                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
680 {
681         struct super_block *sb = sbi->sb;
682         struct f2fs_summary *entry;
683         block_t start_addr;
684         int off;
685         int phase = 0;
686
687         start_addr = START_BLOCK(sbi, segno);
688
689 next_step:
690         entry = sum;
691
692         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
693                 struct page *data_page;
694                 struct inode *inode;
695                 struct node_info dni; /* dnode info for the data */
696                 unsigned int ofs_in_node, nofs;
697                 block_t start_bidx;
698
699                 /* stop BG_GC if there is not enough free sections. */
700                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
701                         return;
702
703                 if (check_valid_map(sbi, segno, off) == 0)
704                         continue;
705
706                 if (phase == 0) {
707                         ra_node_page(sbi, le32_to_cpu(entry->nid));
708                         continue;
709                 }
710
711                 /* Get an inode by ino with checking validity */
712                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
713                         continue;
714
715                 if (phase == 1) {
716                         ra_node_page(sbi, dni.ino);
717                         continue;
718                 }
719
720                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
721
722                 if (phase == 2) {
723                         inode = f2fs_iget(sb, dni.ino);
724                         if (IS_ERR(inode) || is_bad_inode(inode))
725                                 continue;
726
727                         /* if encrypted inode, let's go phase 3 */
728                         if (f2fs_encrypted_inode(inode) &&
729                                                 S_ISREG(inode->i_mode)) {
730                                 add_gc_inode(gc_list, inode);
731                                 continue;
732                         }
733
734                         start_bidx = start_bidx_of_node(nofs, inode);
735                         data_page = get_read_data_page(inode,
736                                         start_bidx + ofs_in_node, READA, true);
737                         if (IS_ERR(data_page)) {
738                                 iput(inode);
739                                 continue;
740                         }
741
742                         f2fs_put_page(data_page, 0);
743                         add_gc_inode(gc_list, inode);
744                         continue;
745                 }
746
747                 /* phase 3 */
748                 inode = find_gc_inode(gc_list, dni.ino);
749                 if (inode) {
750                         start_bidx = start_bidx_of_node(nofs, inode)
751                                                                 + ofs_in_node;
752                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
753                                 move_encrypted_block(inode, start_bidx);
754                         else
755                                 move_data_page(inode, start_bidx, gc_type);
756                         stat_inc_data_blk_count(sbi, 1, gc_type);
757                 }
758         }
759
760         if (++phase < 4)
761                 goto next_step;
762 }
763
764 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
765                         int gc_type)
766 {
767         struct sit_info *sit_i = SIT_I(sbi);
768         int ret;
769
770         mutex_lock(&sit_i->sentry_lock);
771         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
772                                               NO_CHECK_TYPE, LFS);
773         mutex_unlock(&sit_i->sentry_lock);
774         return ret;
775 }
776
777 static int do_garbage_collect(struct f2fs_sb_info *sbi,
778                                 unsigned int start_segno,
779                                 struct gc_inode_list *gc_list, int gc_type)
780 {
781         struct page *sum_page;
782         struct f2fs_summary_block *sum;
783         struct blk_plug plug;
784         unsigned int segno = start_segno;
785         unsigned int end_segno = start_segno + sbi->segs_per_sec;
786         int seg_freed = 0;
787         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
788                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
789
790         /* readahead multi ssa blocks those have contiguous address */
791         if (sbi->segs_per_sec > 1)
792                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
793                                         sbi->segs_per_sec, META_SSA, true);
794
795         /* reference all summary page */
796         while (segno < end_segno) {
797                 sum_page = get_sum_page(sbi, segno++);
798                 unlock_page(sum_page);
799         }
800
801         blk_start_plug(&plug);
802
803         for (segno = start_segno; segno < end_segno; segno++) {
804                 /* find segment summary of victim */
805                 sum_page = find_get_page(META_MAPPING(sbi),
806                                         GET_SUM_BLOCK(sbi, segno));
807                 f2fs_bug_on(sbi, !PageUptodate(sum_page));
808                 f2fs_put_page(sum_page, 0);
809
810                 sum = page_address(sum_page);
811                 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
812
813                 /*
814                  * this is to avoid deadlock:
815                  * - lock_page(sum_page)         - f2fs_replace_block
816                  *  - check_valid_map()            - mutex_lock(sentry_lock)
817                  *   - mutex_lock(sentry_lock)     - change_curseg()
818                  *                                  - lock_page(sum_page)
819                  */
820
821                 if (type == SUM_TYPE_NODE)
822                         gc_node_segment(sbi, sum->entries, segno, gc_type);
823                 else
824                         gc_data_segment(sbi, sum->entries, gc_list, segno,
825                                                                 gc_type);
826
827                 stat_inc_seg_count(sbi, type, gc_type);
828
829                 f2fs_put_page(sum_page, 0);
830         }
831
832         if (gc_type == FG_GC)
833                 f2fs_submit_merged_bio(sbi,
834                                 (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
835
836         blk_finish_plug(&plug);
837
838         if (gc_type == FG_GC) {
839                 while (start_segno < end_segno)
840                         if (get_valid_blocks(sbi, start_segno++, 1) == 0)
841                                 seg_freed++;
842         }
843
844         stat_inc_call_count(sbi->stat_info);
845
846         return seg_freed;
847 }
848
849 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
850 {
851         unsigned int segno;
852         int gc_type = sync ? FG_GC : BG_GC;
853         int sec_freed = 0, seg_freed;
854         int ret = -EINVAL;
855         struct cp_control cpc;
856         struct gc_inode_list gc_list = {
857                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
858                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
859         };
860
861         cpc.reason = __get_cp_reason(sbi);
862 gc_more:
863         segno = NULL_SEGNO;
864
865         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
866                 goto stop;
867         if (unlikely(f2fs_cp_error(sbi))) {
868                 ret = -EIO;
869                 goto stop;
870         }
871
872         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
873                 gc_type = FG_GC;
874                 /*
875                  * If there is no victim and no prefree segment but still not
876                  * enough free sections, we should flush dent/node blocks and do
877                  * garbage collections.
878                  */
879                 if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
880                         write_checkpoint(sbi, &cpc);
881                 else if (has_not_enough_free_secs(sbi, 0))
882                         write_checkpoint(sbi, &cpc);
883         }
884
885         if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
886                 goto stop;
887         ret = 0;
888
889         seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
890
891         if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
892                 sec_freed++;
893
894         if (gc_type == FG_GC)
895                 sbi->cur_victim_sec = NULL_SEGNO;
896
897         if (!sync) {
898                 if (has_not_enough_free_secs(sbi, sec_freed))
899                         goto gc_more;
900
901                 if (gc_type == FG_GC)
902                         write_checkpoint(sbi, &cpc);
903         }
904 stop:
905         mutex_unlock(&sbi->gc_mutex);
906
907         put_gc_inode(&gc_list);
908
909         if (sync)
910                 ret = sec_freed ? 0 : -EAGAIN;
911         return ret;
912 }
913
914 void build_gc_manager(struct f2fs_sb_info *sbi)
915 {
916         DIRTY_I(sbi)->v_ops = &default_v_ops;
917 }