]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
Merge tag 'for-f2fs-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
30 {
31         struct f2fs_nm_info *nm_i = NM_I(sbi);
32         struct sysinfo val;
33         unsigned long mem_size = 0;
34         bool res = false;
35
36         si_meminfo(&val);
37         /* give 25%, 25%, 50% memory for each components respectively */
38         if (type == FREE_NIDS) {
39                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
40                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
41         } else if (type == NAT_ENTRIES) {
42                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
43                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
44         } else if (type == DIRTY_DENTS) {
45                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
46                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
47         }
48         return res;
49 }
50
51 static void clear_node_page_dirty(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
55         unsigned int long flags;
56
57         if (PageDirty(page)) {
58                 spin_lock_irqsave(&mapping->tree_lock, flags);
59                 radix_tree_tag_clear(&mapping->page_tree,
60                                 page_index(page),
61                                 PAGECACHE_TAG_DIRTY);
62                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
63
64                 clear_page_dirty_for_io(page);
65                 dec_page_count(sbi, F2FS_DIRTY_NODES);
66         }
67         ClearPageUptodate(page);
68 }
69
70 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72         pgoff_t index = current_nat_addr(sbi, nid);
73         return get_meta_page(sbi, index);
74 }
75
76 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
77 {
78         struct page *src_page;
79         struct page *dst_page;
80         pgoff_t src_off;
81         pgoff_t dst_off;
82         void *src_addr;
83         void *dst_addr;
84         struct f2fs_nm_info *nm_i = NM_I(sbi);
85
86         src_off = current_nat_addr(sbi, nid);
87         dst_off = next_nat_addr(sbi, src_off);
88
89         /* get current nat block page with lock */
90         src_page = get_meta_page(sbi, src_off);
91
92         /* Dirty src_page means that it is already the new target NAT page. */
93         if (PageDirty(src_page))
94                 return src_page;
95
96         dst_page = grab_meta_page(sbi, dst_off);
97
98         src_addr = page_address(src_page);
99         dst_addr = page_address(dst_page);
100         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
101         set_page_dirty(dst_page);
102         f2fs_put_page(src_page, 1);
103
104         set_to_next_nat(nm_i, nid);
105
106         return dst_page;
107 }
108
109 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
110 {
111         return radix_tree_lookup(&nm_i->nat_root, n);
112 }
113
114 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
115                 nid_t start, unsigned int nr, struct nat_entry **ep)
116 {
117         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
118 }
119
120 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
121 {
122         list_del(&e->list);
123         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
124         nm_i->nat_cnt--;
125         kmem_cache_free(nat_entry_slab, e);
126 }
127
128 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130         struct f2fs_nm_info *nm_i = NM_I(sbi);
131         struct nat_entry *e;
132         int is_cp = 1;
133
134         read_lock(&nm_i->nat_tree_lock);
135         e = __lookup_nat_cache(nm_i, nid);
136         if (e && !e->checkpointed)
137                 is_cp = 0;
138         read_unlock(&nm_i->nat_tree_lock);
139         return is_cp;
140 }
141
142 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
143 {
144         struct f2fs_nm_info *nm_i = NM_I(sbi);
145         struct nat_entry *e;
146         bool fsync_done = false;
147
148         read_lock(&nm_i->nat_tree_lock);
149         e = __lookup_nat_cache(nm_i, nid);
150         if (e)
151                 fsync_done = e->fsync_done;
152         read_unlock(&nm_i->nat_tree_lock);
153         return fsync_done;
154 }
155
156 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
157 {
158         struct f2fs_nm_info *nm_i = NM_I(sbi);
159         struct nat_entry *e;
160
161         write_lock(&nm_i->nat_tree_lock);
162         e = __lookup_nat_cache(nm_i, nid);
163         if (e)
164                 e->fsync_done = false;
165         write_unlock(&nm_i->nat_tree_lock);
166 }
167
168 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
169 {
170         struct nat_entry *new;
171
172         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
173         if (!new)
174                 return NULL;
175         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
176                 kmem_cache_free(nat_entry_slab, new);
177                 return NULL;
178         }
179         memset(new, 0, sizeof(struct nat_entry));
180         nat_set_nid(new, nid);
181         new->checkpointed = true;
182         list_add_tail(&new->list, &nm_i->nat_entries);
183         nm_i->nat_cnt++;
184         return new;
185 }
186
187 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
188                                                 struct f2fs_nat_entry *ne)
189 {
190         struct nat_entry *e;
191 retry:
192         write_lock(&nm_i->nat_tree_lock);
193         e = __lookup_nat_cache(nm_i, nid);
194         if (!e) {
195                 e = grab_nat_entry(nm_i, nid);
196                 if (!e) {
197                         write_unlock(&nm_i->nat_tree_lock);
198                         goto retry;
199                 }
200                 node_info_from_raw_nat(&e->ni, ne);
201         }
202         write_unlock(&nm_i->nat_tree_lock);
203 }
204
205 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
206                         block_t new_blkaddr, bool fsync_done)
207 {
208         struct f2fs_nm_info *nm_i = NM_I(sbi);
209         struct nat_entry *e;
210 retry:
211         write_lock(&nm_i->nat_tree_lock);
212         e = __lookup_nat_cache(nm_i, ni->nid);
213         if (!e) {
214                 e = grab_nat_entry(nm_i, ni->nid);
215                 if (!e) {
216                         write_unlock(&nm_i->nat_tree_lock);
217                         goto retry;
218                 }
219                 e->ni = *ni;
220                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
221         } else if (new_blkaddr == NEW_ADDR) {
222                 /*
223                  * when nid is reallocated,
224                  * previous nat entry can be remained in nat cache.
225                  * So, reinitialize it with new information.
226                  */
227                 e->ni = *ni;
228                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
229         }
230
231         /* sanity check */
232         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
233         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
234                         new_blkaddr == NULL_ADDR);
235         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
236                         new_blkaddr == NEW_ADDR);
237         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
238                         nat_get_blkaddr(e) != NULL_ADDR &&
239                         new_blkaddr == NEW_ADDR);
240
241         /* increament version no as node is removed */
242         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
243                 unsigned char version = nat_get_version(e);
244                 nat_set_version(e, inc_node_version(version));
245         }
246
247         /* change address */
248         nat_set_blkaddr(e, new_blkaddr);
249         __set_nat_cache_dirty(nm_i, e);
250
251         /* update fsync_mark if its inode nat entry is still alive */
252         e = __lookup_nat_cache(nm_i, ni->ino);
253         if (e)
254                 e->fsync_done = fsync_done;
255         write_unlock(&nm_i->nat_tree_lock);
256 }
257
258 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
259 {
260         struct f2fs_nm_info *nm_i = NM_I(sbi);
261
262         if (available_free_memory(sbi, NAT_ENTRIES))
263                 return 0;
264
265         write_lock(&nm_i->nat_tree_lock);
266         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
267                 struct nat_entry *ne;
268                 ne = list_first_entry(&nm_i->nat_entries,
269                                         struct nat_entry, list);
270                 __del_from_nat_cache(nm_i, ne);
271                 nr_shrink--;
272         }
273         write_unlock(&nm_i->nat_tree_lock);
274         return nr_shrink;
275 }
276
277 /*
278  * This function returns always success
279  */
280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
281 {
282         struct f2fs_nm_info *nm_i = NM_I(sbi);
283         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
284         struct f2fs_summary_block *sum = curseg->sum_blk;
285         nid_t start_nid = START_NID(nid);
286         struct f2fs_nat_block *nat_blk;
287         struct page *page = NULL;
288         struct f2fs_nat_entry ne;
289         struct nat_entry *e;
290         int i;
291
292         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
293         ni->nid = nid;
294
295         /* Check nat cache */
296         read_lock(&nm_i->nat_tree_lock);
297         e = __lookup_nat_cache(nm_i, nid);
298         if (e) {
299                 ni->ino = nat_get_ino(e);
300                 ni->blk_addr = nat_get_blkaddr(e);
301                 ni->version = nat_get_version(e);
302         }
303         read_unlock(&nm_i->nat_tree_lock);
304         if (e)
305                 return;
306
307         /* Check current segment summary */
308         mutex_lock(&curseg->curseg_mutex);
309         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
310         if (i >= 0) {
311                 ne = nat_in_journal(sum, i);
312                 node_info_from_raw_nat(ni, &ne);
313         }
314         mutex_unlock(&curseg->curseg_mutex);
315         if (i >= 0)
316                 goto cache;
317
318         /* Fill node_info from nat page */
319         page = get_current_nat_page(sbi, start_nid);
320         nat_blk = (struct f2fs_nat_block *)page_address(page);
321         ne = nat_blk->entries[nid - start_nid];
322         node_info_from_raw_nat(ni, &ne);
323         f2fs_put_page(page, 1);
324 cache:
325         /* cache nat entry */
326         cache_nat_entry(NM_I(sbi), nid, &ne);
327 }
328
329 /*
330  * The maximum depth is four.
331  * Offset[0] will have raw inode offset.
332  */
333 static int get_node_path(struct f2fs_inode_info *fi, long block,
334                                 int offset[4], unsigned int noffset[4])
335 {
336         const long direct_index = ADDRS_PER_INODE(fi);
337         const long direct_blks = ADDRS_PER_BLOCK;
338         const long dptrs_per_blk = NIDS_PER_BLOCK;
339         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
340         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
341         int n = 0;
342         int level = 0;
343
344         noffset[0] = 0;
345
346         if (block < direct_index) {
347                 offset[n] = block;
348                 goto got;
349         }
350         block -= direct_index;
351         if (block < direct_blks) {
352                 offset[n++] = NODE_DIR1_BLOCK;
353                 noffset[n] = 1;
354                 offset[n] = block;
355                 level = 1;
356                 goto got;
357         }
358         block -= direct_blks;
359         if (block < direct_blks) {
360                 offset[n++] = NODE_DIR2_BLOCK;
361                 noffset[n] = 2;
362                 offset[n] = block;
363                 level = 1;
364                 goto got;
365         }
366         block -= direct_blks;
367         if (block < indirect_blks) {
368                 offset[n++] = NODE_IND1_BLOCK;
369                 noffset[n] = 3;
370                 offset[n++] = block / direct_blks;
371                 noffset[n] = 4 + offset[n - 1];
372                 offset[n] = block % direct_blks;
373                 level = 2;
374                 goto got;
375         }
376         block -= indirect_blks;
377         if (block < indirect_blks) {
378                 offset[n++] = NODE_IND2_BLOCK;
379                 noffset[n] = 4 + dptrs_per_blk;
380                 offset[n++] = block / direct_blks;
381                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
382                 offset[n] = block % direct_blks;
383                 level = 2;
384                 goto got;
385         }
386         block -= indirect_blks;
387         if (block < dindirect_blks) {
388                 offset[n++] = NODE_DIND_BLOCK;
389                 noffset[n] = 5 + (dptrs_per_blk * 2);
390                 offset[n++] = block / indirect_blks;
391                 noffset[n] = 6 + (dptrs_per_blk * 2) +
392                               offset[n - 1] * (dptrs_per_blk + 1);
393                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
394                 noffset[n] = 7 + (dptrs_per_blk * 2) +
395                               offset[n - 2] * (dptrs_per_blk + 1) +
396                               offset[n - 1];
397                 offset[n] = block % direct_blks;
398                 level = 3;
399                 goto got;
400         } else {
401                 BUG();
402         }
403 got:
404         return level;
405 }
406
407 /*
408  * Caller should call f2fs_put_dnode(dn).
409  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
410  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
411  * In the case of RDONLY_NODE, we don't need to care about mutex.
412  */
413 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
414 {
415         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
416         struct page *npage[4];
417         struct page *parent;
418         int offset[4];
419         unsigned int noffset[4];
420         nid_t nids[4];
421         int level, i;
422         int err = 0;
423
424         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
425
426         nids[0] = dn->inode->i_ino;
427         npage[0] = dn->inode_page;
428
429         if (!npage[0]) {
430                 npage[0] = get_node_page(sbi, nids[0]);
431                 if (IS_ERR(npage[0]))
432                         return PTR_ERR(npage[0]);
433         }
434         parent = npage[0];
435         if (level != 0)
436                 nids[1] = get_nid(parent, offset[0], true);
437         dn->inode_page = npage[0];
438         dn->inode_page_locked = true;
439
440         /* get indirect or direct nodes */
441         for (i = 1; i <= level; i++) {
442                 bool done = false;
443
444                 if (!nids[i] && mode == ALLOC_NODE) {
445                         /* alloc new node */
446                         if (!alloc_nid(sbi, &(nids[i]))) {
447                                 err = -ENOSPC;
448                                 goto release_pages;
449                         }
450
451                         dn->nid = nids[i];
452                         npage[i] = new_node_page(dn, noffset[i], NULL);
453                         if (IS_ERR(npage[i])) {
454                                 alloc_nid_failed(sbi, nids[i]);
455                                 err = PTR_ERR(npage[i]);
456                                 goto release_pages;
457                         }
458
459                         set_nid(parent, offset[i - 1], nids[i], i == 1);
460                         alloc_nid_done(sbi, nids[i]);
461                         done = true;
462                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
463                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
464                         if (IS_ERR(npage[i])) {
465                                 err = PTR_ERR(npage[i]);
466                                 goto release_pages;
467                         }
468                         done = true;
469                 }
470                 if (i == 1) {
471                         dn->inode_page_locked = false;
472                         unlock_page(parent);
473                 } else {
474                         f2fs_put_page(parent, 1);
475                 }
476
477                 if (!done) {
478                         npage[i] = get_node_page(sbi, nids[i]);
479                         if (IS_ERR(npage[i])) {
480                                 err = PTR_ERR(npage[i]);
481                                 f2fs_put_page(npage[0], 0);
482                                 goto release_out;
483                         }
484                 }
485                 if (i < level) {
486                         parent = npage[i];
487                         nids[i + 1] = get_nid(parent, offset[i], false);
488                 }
489         }
490         dn->nid = nids[level];
491         dn->ofs_in_node = offset[level];
492         dn->node_page = npage[level];
493         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
494         return 0;
495
496 release_pages:
497         f2fs_put_page(parent, 1);
498         if (i > 1)
499                 f2fs_put_page(npage[0], 0);
500 release_out:
501         dn->inode_page = NULL;
502         dn->node_page = NULL;
503         return err;
504 }
505
506 static void truncate_node(struct dnode_of_data *dn)
507 {
508         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
509         struct node_info ni;
510
511         get_node_info(sbi, dn->nid, &ni);
512         if (dn->inode->i_blocks == 0) {
513                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
514                 goto invalidate;
515         }
516         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
517
518         /* Deallocate node address */
519         invalidate_blocks(sbi, ni.blk_addr);
520         dec_valid_node_count(sbi, dn->inode);
521         set_node_addr(sbi, &ni, NULL_ADDR, false);
522
523         if (dn->nid == dn->inode->i_ino) {
524                 remove_orphan_inode(sbi, dn->nid);
525                 dec_valid_inode_count(sbi);
526         } else {
527                 sync_inode_page(dn);
528         }
529 invalidate:
530         clear_node_page_dirty(dn->node_page);
531         F2FS_SET_SB_DIRT(sbi);
532
533         f2fs_put_page(dn->node_page, 1);
534
535         invalidate_mapping_pages(NODE_MAPPING(sbi),
536                         dn->node_page->index, dn->node_page->index);
537
538         dn->node_page = NULL;
539         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
540 }
541
542 static int truncate_dnode(struct dnode_of_data *dn)
543 {
544         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
545         struct page *page;
546
547         if (dn->nid == 0)
548                 return 1;
549
550         /* get direct node */
551         page = get_node_page(sbi, dn->nid);
552         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
553                 return 1;
554         else if (IS_ERR(page))
555                 return PTR_ERR(page);
556
557         /* Make dnode_of_data for parameter */
558         dn->node_page = page;
559         dn->ofs_in_node = 0;
560         truncate_data_blocks(dn);
561         truncate_node(dn);
562         return 1;
563 }
564
565 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
566                                                 int ofs, int depth)
567 {
568         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
569         struct dnode_of_data rdn = *dn;
570         struct page *page;
571         struct f2fs_node *rn;
572         nid_t child_nid;
573         unsigned int child_nofs;
574         int freed = 0;
575         int i, ret;
576
577         if (dn->nid == 0)
578                 return NIDS_PER_BLOCK + 1;
579
580         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
581
582         page = get_node_page(sbi, dn->nid);
583         if (IS_ERR(page)) {
584                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
585                 return PTR_ERR(page);
586         }
587
588         rn = F2FS_NODE(page);
589         if (depth < 3) {
590                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
591                         child_nid = le32_to_cpu(rn->in.nid[i]);
592                         if (child_nid == 0)
593                                 continue;
594                         rdn.nid = child_nid;
595                         ret = truncate_dnode(&rdn);
596                         if (ret < 0)
597                                 goto out_err;
598                         set_nid(page, i, 0, false);
599                 }
600         } else {
601                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
602                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
603                         child_nid = le32_to_cpu(rn->in.nid[i]);
604                         if (child_nid == 0) {
605                                 child_nofs += NIDS_PER_BLOCK + 1;
606                                 continue;
607                         }
608                         rdn.nid = child_nid;
609                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
610                         if (ret == (NIDS_PER_BLOCK + 1)) {
611                                 set_nid(page, i, 0, false);
612                                 child_nofs += ret;
613                         } else if (ret < 0 && ret != -ENOENT) {
614                                 goto out_err;
615                         }
616                 }
617                 freed = child_nofs;
618         }
619
620         if (!ofs) {
621                 /* remove current indirect node */
622                 dn->node_page = page;
623                 truncate_node(dn);
624                 freed++;
625         } else {
626                 f2fs_put_page(page, 1);
627         }
628         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
629         return freed;
630
631 out_err:
632         f2fs_put_page(page, 1);
633         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
634         return ret;
635 }
636
637 static int truncate_partial_nodes(struct dnode_of_data *dn,
638                         struct f2fs_inode *ri, int *offset, int depth)
639 {
640         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
641         struct page *pages[2];
642         nid_t nid[3];
643         nid_t child_nid;
644         int err = 0;
645         int i;
646         int idx = depth - 2;
647
648         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
649         if (!nid[0])
650                 return 0;
651
652         /* get indirect nodes in the path */
653         for (i = 0; i < idx + 1; i++) {
654                 /* refernece count'll be increased */
655                 pages[i] = get_node_page(sbi, nid[i]);
656                 if (IS_ERR(pages[i])) {
657                         err = PTR_ERR(pages[i]);
658                         idx = i - 1;
659                         goto fail;
660                 }
661                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
662         }
663
664         /* free direct nodes linked to a partial indirect node */
665         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
666                 child_nid = get_nid(pages[idx], i, false);
667                 if (!child_nid)
668                         continue;
669                 dn->nid = child_nid;
670                 err = truncate_dnode(dn);
671                 if (err < 0)
672                         goto fail;
673                 set_nid(pages[idx], i, 0, false);
674         }
675
676         if (offset[idx + 1] == 0) {
677                 dn->node_page = pages[idx];
678                 dn->nid = nid[idx];
679                 truncate_node(dn);
680         } else {
681                 f2fs_put_page(pages[idx], 1);
682         }
683         offset[idx]++;
684         offset[idx + 1] = 0;
685         idx--;
686 fail:
687         for (i = idx; i >= 0; i--)
688                 f2fs_put_page(pages[i], 1);
689
690         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
691
692         return err;
693 }
694
695 /*
696  * All the block addresses of data and nodes should be nullified.
697  */
698 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
699 {
700         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
701         int err = 0, cont = 1;
702         int level, offset[4], noffset[4];
703         unsigned int nofs = 0;
704         struct f2fs_inode *ri;
705         struct dnode_of_data dn;
706         struct page *page;
707
708         trace_f2fs_truncate_inode_blocks_enter(inode, from);
709
710         level = get_node_path(F2FS_I(inode), from, offset, noffset);
711 restart:
712         page = get_node_page(sbi, inode->i_ino);
713         if (IS_ERR(page)) {
714                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
715                 return PTR_ERR(page);
716         }
717
718         set_new_dnode(&dn, inode, page, NULL, 0);
719         unlock_page(page);
720
721         ri = F2FS_INODE(page);
722         switch (level) {
723         case 0:
724         case 1:
725                 nofs = noffset[1];
726                 break;
727         case 2:
728                 nofs = noffset[1];
729                 if (!offset[level - 1])
730                         goto skip_partial;
731                 err = truncate_partial_nodes(&dn, ri, offset, level);
732                 if (err < 0 && err != -ENOENT)
733                         goto fail;
734                 nofs += 1 + NIDS_PER_BLOCK;
735                 break;
736         case 3:
737                 nofs = 5 + 2 * NIDS_PER_BLOCK;
738                 if (!offset[level - 1])
739                         goto skip_partial;
740                 err = truncate_partial_nodes(&dn, ri, offset, level);
741                 if (err < 0 && err != -ENOENT)
742                         goto fail;
743                 break;
744         default:
745                 BUG();
746         }
747
748 skip_partial:
749         while (cont) {
750                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
751                 switch (offset[0]) {
752                 case NODE_DIR1_BLOCK:
753                 case NODE_DIR2_BLOCK:
754                         err = truncate_dnode(&dn);
755                         break;
756
757                 case NODE_IND1_BLOCK:
758                 case NODE_IND2_BLOCK:
759                         err = truncate_nodes(&dn, nofs, offset[1], 2);
760                         break;
761
762                 case NODE_DIND_BLOCK:
763                         err = truncate_nodes(&dn, nofs, offset[1], 3);
764                         cont = 0;
765                         break;
766
767                 default:
768                         BUG();
769                 }
770                 if (err < 0 && err != -ENOENT)
771                         goto fail;
772                 if (offset[1] == 0 &&
773                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
774                         lock_page(page);
775                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
776                                 f2fs_put_page(page, 1);
777                                 goto restart;
778                         }
779                         f2fs_wait_on_page_writeback(page, NODE);
780                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
781                         set_page_dirty(page);
782                         unlock_page(page);
783                 }
784                 offset[1] = 0;
785                 offset[0]++;
786                 nofs += err;
787         }
788 fail:
789         f2fs_put_page(page, 0);
790         trace_f2fs_truncate_inode_blocks_exit(inode, err);
791         return err > 0 ? 0 : err;
792 }
793
794 int truncate_xattr_node(struct inode *inode, struct page *page)
795 {
796         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
797         nid_t nid = F2FS_I(inode)->i_xattr_nid;
798         struct dnode_of_data dn;
799         struct page *npage;
800
801         if (!nid)
802                 return 0;
803
804         npage = get_node_page(sbi, nid);
805         if (IS_ERR(npage))
806                 return PTR_ERR(npage);
807
808         F2FS_I(inode)->i_xattr_nid = 0;
809
810         /* need to do checkpoint during fsync */
811         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
812
813         set_new_dnode(&dn, inode, page, npage, nid);
814
815         if (page)
816                 dn.inode_page_locked = true;
817         truncate_node(&dn);
818         return 0;
819 }
820
821 /*
822  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
823  * f2fs_unlock_op().
824  */
825 void remove_inode_page(struct inode *inode)
826 {
827         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
828         struct page *page;
829         nid_t ino = inode->i_ino;
830         struct dnode_of_data dn;
831
832         page = get_node_page(sbi, ino);
833         if (IS_ERR(page))
834                 return;
835
836         if (truncate_xattr_node(inode, page)) {
837                 f2fs_put_page(page, 1);
838                 return;
839         }
840         /* 0 is possible, after f2fs_new_inode() is failed */
841         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
842         set_new_dnode(&dn, inode, page, page, ino);
843         truncate_node(&dn);
844 }
845
846 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
847 {
848         struct dnode_of_data dn;
849
850         /* allocate inode page for new inode */
851         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
852
853         /* caller should f2fs_put_page(page, 1); */
854         return new_node_page(&dn, 0, NULL);
855 }
856
857 struct page *new_node_page(struct dnode_of_data *dn,
858                                 unsigned int ofs, struct page *ipage)
859 {
860         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
861         struct node_info old_ni, new_ni;
862         struct page *page;
863         int err;
864
865         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
866                 return ERR_PTR(-EPERM);
867
868         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
869         if (!page)
870                 return ERR_PTR(-ENOMEM);
871
872         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
873                 err = -ENOSPC;
874                 goto fail;
875         }
876
877         get_node_info(sbi, dn->nid, &old_ni);
878
879         /* Reinitialize old_ni with new node page */
880         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
881         new_ni = old_ni;
882         new_ni.ino = dn->inode->i_ino;
883         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
884
885         f2fs_wait_on_page_writeback(page, NODE);
886         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
887         set_cold_node(dn->inode, page);
888         SetPageUptodate(page);
889         set_page_dirty(page);
890
891         if (f2fs_has_xattr_block(ofs))
892                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
893
894         dn->node_page = page;
895         if (ipage)
896                 update_inode(dn->inode, ipage);
897         else
898                 sync_inode_page(dn);
899         if (ofs == 0)
900                 inc_valid_inode_count(sbi);
901
902         return page;
903
904 fail:
905         clear_node_page_dirty(page);
906         f2fs_put_page(page, 1);
907         return ERR_PTR(err);
908 }
909
910 /*
911  * Caller should do after getting the following values.
912  * 0: f2fs_put_page(page, 0)
913  * LOCKED_PAGE: f2fs_put_page(page, 1)
914  * error: nothing
915  */
916 static int read_node_page(struct page *page, int rw)
917 {
918         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
919         struct node_info ni;
920
921         get_node_info(sbi, page->index, &ni);
922
923         if (unlikely(ni.blk_addr == NULL_ADDR)) {
924                 f2fs_put_page(page, 1);
925                 return -ENOENT;
926         }
927
928         if (PageUptodate(page))
929                 return LOCKED_PAGE;
930
931         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
932 }
933
934 /*
935  * Readahead a node page
936  */
937 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
938 {
939         struct page *apage;
940         int err;
941
942         apage = find_get_page(NODE_MAPPING(sbi), nid);
943         if (apage && PageUptodate(apage)) {
944                 f2fs_put_page(apage, 0);
945                 return;
946         }
947         f2fs_put_page(apage, 0);
948
949         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
950         if (!apage)
951                 return;
952
953         err = read_node_page(apage, READA);
954         if (err == 0)
955                 f2fs_put_page(apage, 0);
956         else if (err == LOCKED_PAGE)
957                 f2fs_put_page(apage, 1);
958 }
959
960 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
961 {
962         struct page *page;
963         int err;
964 repeat:
965         page = grab_cache_page(NODE_MAPPING(sbi), nid);
966         if (!page)
967                 return ERR_PTR(-ENOMEM);
968
969         err = read_node_page(page, READ_SYNC);
970         if (err < 0)
971                 return ERR_PTR(err);
972         else if (err == LOCKED_PAGE)
973                 goto got_it;
974
975         lock_page(page);
976         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
977                 f2fs_put_page(page, 1);
978                 return ERR_PTR(-EIO);
979         }
980         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
981                 f2fs_put_page(page, 1);
982                 goto repeat;
983         }
984 got_it:
985         return page;
986 }
987
988 /*
989  * Return a locked page for the desired node page.
990  * And, readahead MAX_RA_NODE number of node pages.
991  */
992 struct page *get_node_page_ra(struct page *parent, int start)
993 {
994         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
995         struct blk_plug plug;
996         struct page *page;
997         int err, i, end;
998         nid_t nid;
999
1000         /* First, try getting the desired direct node. */
1001         nid = get_nid(parent, start, false);
1002         if (!nid)
1003                 return ERR_PTR(-ENOENT);
1004 repeat:
1005         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1006         if (!page)
1007                 return ERR_PTR(-ENOMEM);
1008
1009         err = read_node_page(page, READ_SYNC);
1010         if (err < 0)
1011                 return ERR_PTR(err);
1012         else if (err == LOCKED_PAGE)
1013                 goto page_hit;
1014
1015         blk_start_plug(&plug);
1016
1017         /* Then, try readahead for siblings of the desired node */
1018         end = start + MAX_RA_NODE;
1019         end = min(end, NIDS_PER_BLOCK);
1020         for (i = start + 1; i < end; i++) {
1021                 nid = get_nid(parent, i, false);
1022                 if (!nid)
1023                         continue;
1024                 ra_node_page(sbi, nid);
1025         }
1026
1027         blk_finish_plug(&plug);
1028
1029         lock_page(page);
1030         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1031                 f2fs_put_page(page, 1);
1032                 goto repeat;
1033         }
1034 page_hit:
1035         if (unlikely(!PageUptodate(page))) {
1036                 f2fs_put_page(page, 1);
1037                 return ERR_PTR(-EIO);
1038         }
1039         return page;
1040 }
1041
1042 void sync_inode_page(struct dnode_of_data *dn)
1043 {
1044         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1045                 update_inode(dn->inode, dn->node_page);
1046         } else if (dn->inode_page) {
1047                 if (!dn->inode_page_locked)
1048                         lock_page(dn->inode_page);
1049                 update_inode(dn->inode, dn->inode_page);
1050                 if (!dn->inode_page_locked)
1051                         unlock_page(dn->inode_page);
1052         } else {
1053                 update_inode_page(dn->inode);
1054         }
1055 }
1056
1057 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1058                                         struct writeback_control *wbc)
1059 {
1060         pgoff_t index, end;
1061         struct pagevec pvec;
1062         int step = ino ? 2 : 0;
1063         int nwritten = 0, wrote = 0;
1064
1065         pagevec_init(&pvec, 0);
1066
1067 next_step:
1068         index = 0;
1069         end = LONG_MAX;
1070
1071         while (index <= end) {
1072                 int i, nr_pages;
1073                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1074                                 PAGECACHE_TAG_DIRTY,
1075                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1076                 if (nr_pages == 0)
1077                         break;
1078
1079                 for (i = 0; i < nr_pages; i++) {
1080                         struct page *page = pvec.pages[i];
1081
1082                         /*
1083                          * flushing sequence with step:
1084                          * 0. indirect nodes
1085                          * 1. dentry dnodes
1086                          * 2. file dnodes
1087                          */
1088                         if (step == 0 && IS_DNODE(page))
1089                                 continue;
1090                         if (step == 1 && (!IS_DNODE(page) ||
1091                                                 is_cold_node(page)))
1092                                 continue;
1093                         if (step == 2 && (!IS_DNODE(page) ||
1094                                                 !is_cold_node(page)))
1095                                 continue;
1096
1097                         /*
1098                          * If an fsync mode,
1099                          * we should not skip writing node pages.
1100                          */
1101                         if (ino && ino_of_node(page) == ino)
1102                                 lock_page(page);
1103                         else if (!trylock_page(page))
1104                                 continue;
1105
1106                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1107 continue_unlock:
1108                                 unlock_page(page);
1109                                 continue;
1110                         }
1111                         if (ino && ino_of_node(page) != ino)
1112                                 goto continue_unlock;
1113
1114                         if (!PageDirty(page)) {
1115                                 /* someone wrote it for us */
1116                                 goto continue_unlock;
1117                         }
1118
1119                         if (!clear_page_dirty_for_io(page))
1120                                 goto continue_unlock;
1121
1122                         /* called by fsync() */
1123                         if (ino && IS_DNODE(page)) {
1124                                 int mark = !is_checkpointed_node(sbi, ino);
1125                                 set_fsync_mark(page, 1);
1126                                 if (IS_INODE(page))
1127                                         set_dentry_mark(page, mark);
1128                                 nwritten++;
1129                         } else {
1130                                 set_fsync_mark(page, 0);
1131                                 set_dentry_mark(page, 0);
1132                         }
1133                         NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1134                         wrote++;
1135
1136                         if (--wbc->nr_to_write == 0)
1137                                 break;
1138                 }
1139                 pagevec_release(&pvec);
1140                 cond_resched();
1141
1142                 if (wbc->nr_to_write == 0) {
1143                         step = 2;
1144                         break;
1145                 }
1146         }
1147
1148         if (step < 2) {
1149                 step++;
1150                 goto next_step;
1151         }
1152
1153         if (wrote)
1154                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1155         return nwritten;
1156 }
1157
1158 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1159 {
1160         pgoff_t index = 0, end = LONG_MAX;
1161         struct pagevec pvec;
1162         int ret2 = 0, ret = 0;
1163
1164         pagevec_init(&pvec, 0);
1165
1166         while (index <= end) {
1167                 int i, nr_pages;
1168                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1169                                 PAGECACHE_TAG_WRITEBACK,
1170                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1171                 if (nr_pages == 0)
1172                         break;
1173
1174                 for (i = 0; i < nr_pages; i++) {
1175                         struct page *page = pvec.pages[i];
1176
1177                         /* until radix tree lookup accepts end_index */
1178                         if (unlikely(page->index > end))
1179                                 continue;
1180
1181                         if (ino && ino_of_node(page) == ino) {
1182                                 f2fs_wait_on_page_writeback(page, NODE);
1183                                 if (TestClearPageError(page))
1184                                         ret = -EIO;
1185                         }
1186                 }
1187                 pagevec_release(&pvec);
1188                 cond_resched();
1189         }
1190
1191         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1192                 ret2 = -ENOSPC;
1193         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1194                 ret2 = -EIO;
1195         if (!ret)
1196                 ret = ret2;
1197         return ret;
1198 }
1199
1200 static int f2fs_write_node_page(struct page *page,
1201                                 struct writeback_control *wbc)
1202 {
1203         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1204         nid_t nid;
1205         block_t new_addr;
1206         struct node_info ni;
1207         struct f2fs_io_info fio = {
1208                 .type = NODE,
1209                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1210         };
1211
1212         trace_f2fs_writepage(page, NODE);
1213
1214         if (unlikely(sbi->por_doing))
1215                 goto redirty_out;
1216
1217         f2fs_wait_on_page_writeback(page, NODE);
1218
1219         /* get old block addr of this node page */
1220         nid = nid_of_node(page);
1221         f2fs_bug_on(page->index != nid);
1222
1223         get_node_info(sbi, nid, &ni);
1224
1225         /* This page is already truncated */
1226         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1227                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1228                 unlock_page(page);
1229                 return 0;
1230         }
1231
1232         if (wbc->for_reclaim)
1233                 goto redirty_out;
1234
1235         mutex_lock(&sbi->node_write);
1236         set_page_writeback(page);
1237         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1238         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1239         dec_page_count(sbi, F2FS_DIRTY_NODES);
1240         mutex_unlock(&sbi->node_write);
1241         unlock_page(page);
1242         return 0;
1243
1244 redirty_out:
1245         redirty_page_for_writepage(wbc, page);
1246         return AOP_WRITEPAGE_ACTIVATE;
1247 }
1248
1249 static int f2fs_write_node_pages(struct address_space *mapping,
1250                             struct writeback_control *wbc)
1251 {
1252         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1253         long diff;
1254
1255         trace_f2fs_writepages(mapping->host, wbc, NODE);
1256
1257         /* balancing f2fs's metadata in background */
1258         f2fs_balance_fs_bg(sbi);
1259
1260         /* collect a number of dirty node pages and write together */
1261         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1262                 goto skip_write;
1263
1264         diff = nr_pages_to_write(sbi, NODE, wbc);
1265         wbc->sync_mode = WB_SYNC_NONE;
1266         sync_node_pages(sbi, 0, wbc);
1267         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1268         return 0;
1269
1270 skip_write:
1271         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1272         return 0;
1273 }
1274
1275 static int f2fs_set_node_page_dirty(struct page *page)
1276 {
1277         struct address_space *mapping = page->mapping;
1278         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1279
1280         trace_f2fs_set_page_dirty(page, NODE);
1281
1282         SetPageUptodate(page);
1283         if (!PageDirty(page)) {
1284                 __set_page_dirty_nobuffers(page);
1285                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1286                 SetPagePrivate(page);
1287                 return 1;
1288         }
1289         return 0;
1290 }
1291
1292 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1293                                       unsigned int length)
1294 {
1295         struct inode *inode = page->mapping->host;
1296         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1297         if (PageDirty(page))
1298                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1299         ClearPagePrivate(page);
1300 }
1301
1302 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1303 {
1304         ClearPagePrivate(page);
1305         return 1;
1306 }
1307
1308 /*
1309  * Structure of the f2fs node operations
1310  */
1311 const struct address_space_operations f2fs_node_aops = {
1312         .writepage      = f2fs_write_node_page,
1313         .writepages     = f2fs_write_node_pages,
1314         .set_page_dirty = f2fs_set_node_page_dirty,
1315         .invalidatepage = f2fs_invalidate_node_page,
1316         .releasepage    = f2fs_release_node_page,
1317 };
1318
1319 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1320                                                 nid_t n)
1321 {
1322         return radix_tree_lookup(&nm_i->free_nid_root, n);
1323 }
1324
1325 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1326                                                 struct free_nid *i)
1327 {
1328         list_del(&i->list);
1329         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1330 }
1331
1332 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1333 {
1334         struct f2fs_nm_info *nm_i = NM_I(sbi);
1335         struct free_nid *i;
1336         struct nat_entry *ne;
1337         bool allocated = false;
1338
1339         if (!available_free_memory(sbi, FREE_NIDS))
1340                 return -1;
1341
1342         /* 0 nid should not be used */
1343         if (unlikely(nid == 0))
1344                 return 0;
1345
1346         if (build) {
1347                 /* do not add allocated nids */
1348                 read_lock(&nm_i->nat_tree_lock);
1349                 ne = __lookup_nat_cache(nm_i, nid);
1350                 if (ne &&
1351                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1352                         allocated = true;
1353                 read_unlock(&nm_i->nat_tree_lock);
1354                 if (allocated)
1355                         return 0;
1356         }
1357
1358         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1359         i->nid = nid;
1360         i->state = NID_NEW;
1361
1362         spin_lock(&nm_i->free_nid_list_lock);
1363         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1364                 spin_unlock(&nm_i->free_nid_list_lock);
1365                 kmem_cache_free(free_nid_slab, i);
1366                 return 0;
1367         }
1368         list_add_tail(&i->list, &nm_i->free_nid_list);
1369         nm_i->fcnt++;
1370         spin_unlock(&nm_i->free_nid_list_lock);
1371         return 1;
1372 }
1373
1374 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1375 {
1376         struct free_nid *i;
1377         bool need_free = false;
1378
1379         spin_lock(&nm_i->free_nid_list_lock);
1380         i = __lookup_free_nid_list(nm_i, nid);
1381         if (i && i->state == NID_NEW) {
1382                 __del_from_free_nid_list(nm_i, i);
1383                 nm_i->fcnt--;
1384                 need_free = true;
1385         }
1386         spin_unlock(&nm_i->free_nid_list_lock);
1387
1388         if (need_free)
1389                 kmem_cache_free(free_nid_slab, i);
1390 }
1391
1392 static void scan_nat_page(struct f2fs_sb_info *sbi,
1393                         struct page *nat_page, nid_t start_nid)
1394 {
1395         struct f2fs_nm_info *nm_i = NM_I(sbi);
1396         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1397         block_t blk_addr;
1398         int i;
1399
1400         i = start_nid % NAT_ENTRY_PER_BLOCK;
1401
1402         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1403
1404                 if (unlikely(start_nid >= nm_i->max_nid))
1405                         break;
1406
1407                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1408                 f2fs_bug_on(blk_addr == NEW_ADDR);
1409                 if (blk_addr == NULL_ADDR) {
1410                         if (add_free_nid(sbi, start_nid, true) < 0)
1411                                 break;
1412                 }
1413         }
1414 }
1415
1416 static void build_free_nids(struct f2fs_sb_info *sbi)
1417 {
1418         struct f2fs_nm_info *nm_i = NM_I(sbi);
1419         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1420         struct f2fs_summary_block *sum = curseg->sum_blk;
1421         int i = 0;
1422         nid_t nid = nm_i->next_scan_nid;
1423
1424         /* Enough entries */
1425         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1426                 return;
1427
1428         /* readahead nat pages to be scanned */
1429         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1430
1431         while (1) {
1432                 struct page *page = get_current_nat_page(sbi, nid);
1433
1434                 scan_nat_page(sbi, page, nid);
1435                 f2fs_put_page(page, 1);
1436
1437                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1438                 if (unlikely(nid >= nm_i->max_nid))
1439                         nid = 0;
1440
1441                 if (i++ == FREE_NID_PAGES)
1442                         break;
1443         }
1444
1445         /* go to the next free nat pages to find free nids abundantly */
1446         nm_i->next_scan_nid = nid;
1447
1448         /* find free nids from current sum_pages */
1449         mutex_lock(&curseg->curseg_mutex);
1450         for (i = 0; i < nats_in_cursum(sum); i++) {
1451                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1452                 nid = le32_to_cpu(nid_in_journal(sum, i));
1453                 if (addr == NULL_ADDR)
1454                         add_free_nid(sbi, nid, true);
1455                 else
1456                         remove_free_nid(nm_i, nid);
1457         }
1458         mutex_unlock(&curseg->curseg_mutex);
1459 }
1460
1461 /*
1462  * If this function returns success, caller can obtain a new nid
1463  * from second parameter of this function.
1464  * The returned nid could be used ino as well as nid when inode is created.
1465  */
1466 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1467 {
1468         struct f2fs_nm_info *nm_i = NM_I(sbi);
1469         struct free_nid *i = NULL;
1470 retry:
1471         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1472                 return false;
1473
1474         spin_lock(&nm_i->free_nid_list_lock);
1475
1476         /* We should not use stale free nids created by build_free_nids */
1477         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1478                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1479                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1480                         if (i->state == NID_NEW)
1481                                 break;
1482
1483                 f2fs_bug_on(i->state != NID_NEW);
1484                 *nid = i->nid;
1485                 i->state = NID_ALLOC;
1486                 nm_i->fcnt--;
1487                 spin_unlock(&nm_i->free_nid_list_lock);
1488                 return true;
1489         }
1490         spin_unlock(&nm_i->free_nid_list_lock);
1491
1492         /* Let's scan nat pages and its caches to get free nids */
1493         mutex_lock(&nm_i->build_lock);
1494         build_free_nids(sbi);
1495         mutex_unlock(&nm_i->build_lock);
1496         goto retry;
1497 }
1498
1499 /*
1500  * alloc_nid() should be called prior to this function.
1501  */
1502 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1503 {
1504         struct f2fs_nm_info *nm_i = NM_I(sbi);
1505         struct free_nid *i;
1506
1507         spin_lock(&nm_i->free_nid_list_lock);
1508         i = __lookup_free_nid_list(nm_i, nid);
1509         f2fs_bug_on(!i || i->state != NID_ALLOC);
1510         __del_from_free_nid_list(nm_i, i);
1511         spin_unlock(&nm_i->free_nid_list_lock);
1512
1513         kmem_cache_free(free_nid_slab, i);
1514 }
1515
1516 /*
1517  * alloc_nid() should be called prior to this function.
1518  */
1519 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1520 {
1521         struct f2fs_nm_info *nm_i = NM_I(sbi);
1522         struct free_nid *i;
1523         bool need_free = false;
1524
1525         if (!nid)
1526                 return;
1527
1528         spin_lock(&nm_i->free_nid_list_lock);
1529         i = __lookup_free_nid_list(nm_i, nid);
1530         f2fs_bug_on(!i || i->state != NID_ALLOC);
1531         if (!available_free_memory(sbi, FREE_NIDS)) {
1532                 __del_from_free_nid_list(nm_i, i);
1533                 need_free = true;
1534         } else {
1535                 i->state = NID_NEW;
1536                 nm_i->fcnt++;
1537         }
1538         spin_unlock(&nm_i->free_nid_list_lock);
1539
1540         if (need_free)
1541                 kmem_cache_free(free_nid_slab, i);
1542 }
1543
1544 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1545                 struct f2fs_summary *sum, struct node_info *ni,
1546                 block_t new_blkaddr)
1547 {
1548         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1549         set_node_addr(sbi, ni, new_blkaddr, false);
1550         clear_node_page_dirty(page);
1551 }
1552
1553 static void recover_inline_xattr(struct inode *inode, struct page *page)
1554 {
1555         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1556         void *src_addr, *dst_addr;
1557         size_t inline_size;
1558         struct page *ipage;
1559         struct f2fs_inode *ri;
1560
1561         if (!f2fs_has_inline_xattr(inode))
1562                 return;
1563
1564         if (!IS_INODE(page))
1565                 return;
1566
1567         ri = F2FS_INODE(page);
1568         if (!(ri->i_inline & F2FS_INLINE_XATTR))
1569                 return;
1570
1571         ipage = get_node_page(sbi, inode->i_ino);
1572         f2fs_bug_on(IS_ERR(ipage));
1573
1574         dst_addr = inline_xattr_addr(ipage);
1575         src_addr = inline_xattr_addr(page);
1576         inline_size = inline_xattr_size(inode);
1577
1578         f2fs_wait_on_page_writeback(ipage, NODE);
1579         memcpy(dst_addr, src_addr, inline_size);
1580
1581         update_inode(inode, ipage);
1582         f2fs_put_page(ipage, 1);
1583 }
1584
1585 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1586 {
1587         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1588         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1589         nid_t new_xnid = nid_of_node(page);
1590         struct node_info ni;
1591
1592         recover_inline_xattr(inode, page);
1593
1594         if (!f2fs_has_xattr_block(ofs_of_node(page)))
1595                 return false;
1596
1597         /* 1: invalidate the previous xattr nid */
1598         if (!prev_xnid)
1599                 goto recover_xnid;
1600
1601         /* Deallocate node address */
1602         get_node_info(sbi, prev_xnid, &ni);
1603         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1604         invalidate_blocks(sbi, ni.blk_addr);
1605         dec_valid_node_count(sbi, inode);
1606         set_node_addr(sbi, &ni, NULL_ADDR, false);
1607
1608 recover_xnid:
1609         /* 2: allocate new xattr nid */
1610         if (unlikely(!inc_valid_node_count(sbi, inode)))
1611                 f2fs_bug_on(1);
1612
1613         remove_free_nid(NM_I(sbi), new_xnid);
1614         get_node_info(sbi, new_xnid, &ni);
1615         ni.ino = inode->i_ino;
1616         set_node_addr(sbi, &ni, NEW_ADDR, false);
1617         F2FS_I(inode)->i_xattr_nid = new_xnid;
1618
1619         /* 3: update xattr blkaddr */
1620         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1621         set_node_addr(sbi, &ni, blkaddr, false);
1622
1623         update_inode_page(inode);
1624         return true;
1625 }
1626
1627 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1628 {
1629         struct f2fs_inode *src, *dst;
1630         nid_t ino = ino_of_node(page);
1631         struct node_info old_ni, new_ni;
1632         struct page *ipage;
1633
1634         get_node_info(sbi, ino, &old_ni);
1635
1636         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1637                 return -EINVAL;
1638
1639         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1640         if (!ipage)
1641                 return -ENOMEM;
1642
1643         /* Should not use this inode  from free nid list */
1644         remove_free_nid(NM_I(sbi), ino);
1645
1646         SetPageUptodate(ipage);
1647         fill_node_footer(ipage, ino, ino, 0, true);
1648
1649         src = F2FS_INODE(page);
1650         dst = F2FS_INODE(ipage);
1651
1652         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1653         dst->i_size = 0;
1654         dst->i_blocks = cpu_to_le64(1);
1655         dst->i_links = cpu_to_le32(1);
1656         dst->i_xattr_nid = 0;
1657
1658         new_ni = old_ni;
1659         new_ni.ino = ino;
1660
1661         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1662                 WARN_ON(1);
1663         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1664         inc_valid_inode_count(sbi);
1665         f2fs_put_page(ipage, 1);
1666         return 0;
1667 }
1668
1669 /*
1670  * ra_sum_pages() merge contiguous pages into one bio and submit.
1671  * these pre-readed pages are alloced in bd_inode's mapping tree.
1672  */
1673 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1674                                 int start, int nrpages)
1675 {
1676         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1677         struct address_space *mapping = inode->i_mapping;
1678         int i, page_idx = start;
1679         struct f2fs_io_info fio = {
1680                 .type = META,
1681                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1682         };
1683
1684         for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1685                 /* alloc page in bd_inode for reading node summary info */
1686                 pages[i] = grab_cache_page(mapping, page_idx);
1687                 if (!pages[i])
1688                         break;
1689                 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1690         }
1691
1692         f2fs_submit_merged_bio(sbi, META, READ);
1693         return i;
1694 }
1695
1696 int restore_node_summary(struct f2fs_sb_info *sbi,
1697                         unsigned int segno, struct f2fs_summary_block *sum)
1698 {
1699         struct f2fs_node *rn;
1700         struct f2fs_summary *sum_entry;
1701         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1702         block_t addr;
1703         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1704         struct page *pages[bio_blocks];
1705         int i, idx, last_offset, nrpages, err = 0;
1706
1707         /* scan the node segment */
1708         last_offset = sbi->blocks_per_seg;
1709         addr = START_BLOCK(sbi, segno);
1710         sum_entry = &sum->entries[0];
1711
1712         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1713                 nrpages = min(last_offset - i, bio_blocks);
1714
1715                 /* read ahead node pages */
1716                 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1717                 if (!nrpages)
1718                         return -ENOMEM;
1719
1720                 for (idx = 0; idx < nrpages; idx++) {
1721                         if (err)
1722                                 goto skip;
1723
1724                         lock_page(pages[idx]);
1725                         if (unlikely(!PageUptodate(pages[idx]))) {
1726                                 err = -EIO;
1727                         } else {
1728                                 rn = F2FS_NODE(pages[idx]);
1729                                 sum_entry->nid = rn->footer.nid;
1730                                 sum_entry->version = 0;
1731                                 sum_entry->ofs_in_node = 0;
1732                                 sum_entry++;
1733                         }
1734                         unlock_page(pages[idx]);
1735 skip:
1736                         page_cache_release(pages[idx]);
1737                 }
1738
1739                 invalidate_mapping_pages(inode->i_mapping, addr,
1740                                                         addr + nrpages);
1741         }
1742         return err;
1743 }
1744
1745 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1746 {
1747         struct f2fs_nm_info *nm_i = NM_I(sbi);
1748         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1749         struct f2fs_summary_block *sum = curseg->sum_blk;
1750         int i;
1751
1752         mutex_lock(&curseg->curseg_mutex);
1753
1754         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1755                 mutex_unlock(&curseg->curseg_mutex);
1756                 return false;
1757         }
1758
1759         for (i = 0; i < nats_in_cursum(sum); i++) {
1760                 struct nat_entry *ne;
1761                 struct f2fs_nat_entry raw_ne;
1762                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1763
1764                 raw_ne = nat_in_journal(sum, i);
1765 retry:
1766                 write_lock(&nm_i->nat_tree_lock);
1767                 ne = __lookup_nat_cache(nm_i, nid);
1768                 if (ne) {
1769                         __set_nat_cache_dirty(nm_i, ne);
1770                         write_unlock(&nm_i->nat_tree_lock);
1771                         continue;
1772                 }
1773                 ne = grab_nat_entry(nm_i, nid);
1774                 if (!ne) {
1775                         write_unlock(&nm_i->nat_tree_lock);
1776                         goto retry;
1777                 }
1778                 node_info_from_raw_nat(&ne->ni, &raw_ne);
1779                 __set_nat_cache_dirty(nm_i, ne);
1780                 write_unlock(&nm_i->nat_tree_lock);
1781         }
1782         update_nats_in_cursum(sum, -i);
1783         mutex_unlock(&curseg->curseg_mutex);
1784         return true;
1785 }
1786
1787 /*
1788  * This function is called during the checkpointing process.
1789  */
1790 void flush_nat_entries(struct f2fs_sb_info *sbi)
1791 {
1792         struct f2fs_nm_info *nm_i = NM_I(sbi);
1793         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1794         struct f2fs_summary_block *sum = curseg->sum_blk;
1795         struct nat_entry *ne, *cur;
1796         struct page *page = NULL;
1797         struct f2fs_nat_block *nat_blk = NULL;
1798         nid_t start_nid = 0, end_nid = 0;
1799         bool flushed;
1800
1801         flushed = flush_nats_in_journal(sbi);
1802
1803         if (!flushed)
1804                 mutex_lock(&curseg->curseg_mutex);
1805
1806         /* 1) flush dirty nat caches */
1807         list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1808                 nid_t nid;
1809                 struct f2fs_nat_entry raw_ne;
1810                 int offset = -1;
1811
1812                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1813                         continue;
1814
1815                 nid = nat_get_nid(ne);
1816
1817                 if (flushed)
1818                         goto to_nat_page;
1819
1820                 /* if there is room for nat enries in curseg->sumpage */
1821                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1822                 if (offset >= 0) {
1823                         raw_ne = nat_in_journal(sum, offset);
1824                         goto flush_now;
1825                 }
1826 to_nat_page:
1827                 if (!page || (start_nid > nid || nid > end_nid)) {
1828                         if (page) {
1829                                 f2fs_put_page(page, 1);
1830                                 page = NULL;
1831                         }
1832                         start_nid = START_NID(nid);
1833                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1834
1835                         /*
1836                          * get nat block with dirty flag, increased reference
1837                          * count, mapped and lock
1838                          */
1839                         page = get_next_nat_page(sbi, start_nid);
1840                         nat_blk = page_address(page);
1841                 }
1842
1843                 f2fs_bug_on(!nat_blk);
1844                 raw_ne = nat_blk->entries[nid - start_nid];
1845 flush_now:
1846                 raw_nat_from_node_info(&raw_ne, &ne->ni);
1847
1848                 if (offset < 0) {
1849                         nat_blk->entries[nid - start_nid] = raw_ne;
1850                 } else {
1851                         nat_in_journal(sum, offset) = raw_ne;
1852                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1853                 }
1854
1855                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1856                                 add_free_nid(sbi, nid, false) <= 0) {
1857                         write_lock(&nm_i->nat_tree_lock);
1858                         __del_from_nat_cache(nm_i, ne);
1859                         write_unlock(&nm_i->nat_tree_lock);
1860                 } else {
1861                         write_lock(&nm_i->nat_tree_lock);
1862                         __clear_nat_cache_dirty(nm_i, ne);
1863                         write_unlock(&nm_i->nat_tree_lock);
1864                 }
1865         }
1866         if (!flushed)
1867                 mutex_unlock(&curseg->curseg_mutex);
1868         f2fs_put_page(page, 1);
1869 }
1870
1871 static int init_node_manager(struct f2fs_sb_info *sbi)
1872 {
1873         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1874         struct f2fs_nm_info *nm_i = NM_I(sbi);
1875         unsigned char *version_bitmap;
1876         unsigned int nat_segs, nat_blocks;
1877
1878         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1879
1880         /* segment_count_nat includes pair segment so divide to 2. */
1881         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1882         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1883
1884         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1885
1886         /* not used nids: 0, node, meta, (and root counted as valid node) */
1887         nm_i->available_nids = nm_i->max_nid - 3;
1888         nm_i->fcnt = 0;
1889         nm_i->nat_cnt = 0;
1890         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1891
1892         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1893         INIT_LIST_HEAD(&nm_i->free_nid_list);
1894         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1895         INIT_LIST_HEAD(&nm_i->nat_entries);
1896         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1897
1898         mutex_init(&nm_i->build_lock);
1899         spin_lock_init(&nm_i->free_nid_list_lock);
1900         rwlock_init(&nm_i->nat_tree_lock);
1901
1902         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1903         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1904         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1905         if (!version_bitmap)
1906                 return -EFAULT;
1907
1908         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1909                                         GFP_KERNEL);
1910         if (!nm_i->nat_bitmap)
1911                 return -ENOMEM;
1912         return 0;
1913 }
1914
1915 int build_node_manager(struct f2fs_sb_info *sbi)
1916 {
1917         int err;
1918
1919         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1920         if (!sbi->nm_info)
1921                 return -ENOMEM;
1922
1923         err = init_node_manager(sbi);
1924         if (err)
1925                 return err;
1926
1927         build_free_nids(sbi);
1928         return 0;
1929 }
1930
1931 void destroy_node_manager(struct f2fs_sb_info *sbi)
1932 {
1933         struct f2fs_nm_info *nm_i = NM_I(sbi);
1934         struct free_nid *i, *next_i;
1935         struct nat_entry *natvec[NATVEC_SIZE];
1936         nid_t nid = 0;
1937         unsigned int found;
1938
1939         if (!nm_i)
1940                 return;
1941
1942         /* destroy free nid list */
1943         spin_lock(&nm_i->free_nid_list_lock);
1944         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1945                 f2fs_bug_on(i->state == NID_ALLOC);
1946                 __del_from_free_nid_list(nm_i, i);
1947                 nm_i->fcnt--;
1948                 spin_unlock(&nm_i->free_nid_list_lock);
1949                 kmem_cache_free(free_nid_slab, i);
1950                 spin_lock(&nm_i->free_nid_list_lock);
1951         }
1952         f2fs_bug_on(nm_i->fcnt);
1953         spin_unlock(&nm_i->free_nid_list_lock);
1954
1955         /* destroy nat cache */
1956         write_lock(&nm_i->nat_tree_lock);
1957         while ((found = __gang_lookup_nat_cache(nm_i,
1958                                         nid, NATVEC_SIZE, natvec))) {
1959                 unsigned idx;
1960                 nid = nat_get_nid(natvec[found - 1]) + 1;
1961                 for (idx = 0; idx < found; idx++)
1962                         __del_from_nat_cache(nm_i, natvec[idx]);
1963         }
1964         f2fs_bug_on(nm_i->nat_cnt);
1965         write_unlock(&nm_i->nat_tree_lock);
1966
1967         kfree(nm_i->nat_bitmap);
1968         sbi->nm_info = NULL;
1969         kfree(nm_i);
1970 }
1971
1972 int __init create_node_manager_caches(void)
1973 {
1974         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1975                         sizeof(struct nat_entry));
1976         if (!nat_entry_slab)
1977                 return -ENOMEM;
1978
1979         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1980                         sizeof(struct free_nid));
1981         if (!free_nid_slab) {
1982                 kmem_cache_destroy(nat_entry_slab);
1983                 return -ENOMEM;
1984         }
1985         return 0;
1986 }
1987
1988 void destroy_node_manager_caches(void)
1989 {
1990         kmem_cache_destroy(free_nid_slab);
1991         kmem_cache_destroy(nat_entry_slab);
1992 }