]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49                                                         PAGE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55         } else if (type == DIRTY_DENTS) {
56                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57                         return false;
58                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60         } else if (type == INO_ENTRIES) {
61                 int i;
62
63                 for (i = 0; i <= UPDATE_INO; i++)
64                         mem_size += (sbi->im[i].ino_num *
65                                 sizeof(struct ino_entry)) >> PAGE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67         } else if (type == EXTENT_CACHE) {
68                 mem_size = (atomic_read(&sbi->total_ext_tree) *
69                                 sizeof(struct extent_tree) +
70                                 atomic_read(&sbi->total_ext_node) *
71                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73         } else {
74                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75                         return true;
76         }
77         return res;
78 }
79
80 static void clear_node_page_dirty(struct page *page)
81 {
82         struct address_space *mapping = page->mapping;
83         unsigned int long flags;
84
85         if (PageDirty(page)) {
86                 spin_lock_irqsave(&mapping->tree_lock, flags);
87                 radix_tree_tag_clear(&mapping->page_tree,
88                                 page_index(page),
89                                 PAGECACHE_TAG_DIRTY);
90                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92                 clear_page_dirty_for_io(page);
93                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94         }
95         ClearPageUptodate(page);
96 }
97
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100         pgoff_t index = current_nat_addr(sbi, nid);
101         return get_meta_page(sbi, index);
102 }
103
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106         struct page *src_page;
107         struct page *dst_page;
108         pgoff_t src_off;
109         pgoff_t dst_off;
110         void *src_addr;
111         void *dst_addr;
112         struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114         src_off = current_nat_addr(sbi, nid);
115         dst_off = next_nat_addr(sbi, src_off);
116
117         /* get current nat block page with lock */
118         src_page = get_meta_page(sbi, src_off);
119         dst_page = grab_meta_page(sbi, dst_off);
120         f2fs_bug_on(sbi, PageDirty(src_page));
121
122         src_addr = page_address(src_page);
123         dst_addr = page_address(dst_page);
124         memcpy(dst_addr, src_addr, PAGE_SIZE);
125         set_page_dirty(dst_page);
126         f2fs_put_page(src_page, 1);
127
128         set_to_next_nat(nm_i, nid);
129
130         return dst_page;
131 }
132
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135         return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139                 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146         list_del(&e->list);
147         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148         nm_i->nat_cnt--;
149         kmem_cache_free(nat_entry_slab, e);
150 }
151
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153                                                 struct nat_entry *ne)
154 {
155         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156         struct nat_entry_set *head;
157
158         if (get_nat_flag(ne, IS_DIRTY))
159                 return;
160
161         head = radix_tree_lookup(&nm_i->nat_set_root, set);
162         if (!head) {
163                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165                 INIT_LIST_HEAD(&head->entry_list);
166                 INIT_LIST_HEAD(&head->set_list);
167                 head->set = set;
168                 head->entry_cnt = 0;
169                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170         }
171         list_move_tail(&ne->list, &head->entry_list);
172         nm_i->dirty_nat_cnt++;
173         head->entry_cnt++;
174         set_nat_flag(ne, IS_DIRTY, true);
175 }
176
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178                                                 struct nat_entry *ne)
179 {
180         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181         struct nat_entry_set *head;
182
183         head = radix_tree_lookup(&nm_i->nat_set_root, set);
184         if (head) {
185                 list_move_tail(&ne->list, &nm_i->nat_entries);
186                 set_nat_flag(ne, IS_DIRTY, false);
187                 head->entry_cnt--;
188                 nm_i->dirty_nat_cnt--;
189         }
190 }
191
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196                                                         start, nr);
197 }
198
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201         struct f2fs_nm_info *nm_i = NM_I(sbi);
202         struct nat_entry *e;
203         bool need = false;
204
205         down_read(&nm_i->nat_tree_lock);
206         e = __lookup_nat_cache(nm_i, nid);
207         if (e) {
208                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
210                         need = true;
211         }
212         up_read(&nm_i->nat_tree_lock);
213         return need;
214 }
215
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218         struct f2fs_nm_info *nm_i = NM_I(sbi);
219         struct nat_entry *e;
220         bool is_cp = true;
221
222         down_read(&nm_i->nat_tree_lock);
223         e = __lookup_nat_cache(nm_i, nid);
224         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225                 is_cp = false;
226         up_read(&nm_i->nat_tree_lock);
227         return is_cp;
228 }
229
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232         struct f2fs_nm_info *nm_i = NM_I(sbi);
233         struct nat_entry *e;
234         bool need_update = true;
235
236         down_read(&nm_i->nat_tree_lock);
237         e = __lookup_nat_cache(nm_i, ino);
238         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239                         (get_nat_flag(e, IS_CHECKPOINTED) ||
240                          get_nat_flag(e, HAS_FSYNCED_INODE)))
241                 need_update = false;
242         up_read(&nm_i->nat_tree_lock);
243         return need_update;
244 }
245
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248         struct nat_entry *new;
249
250         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252         memset(new, 0, sizeof(struct nat_entry));
253         nat_set_nid(new, nid);
254         nat_reset_flag(new);
255         list_add_tail(&new->list, &nm_i->nat_entries);
256         nm_i->nat_cnt++;
257         return new;
258 }
259
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261                                                 struct f2fs_nat_entry *ne)
262 {
263         struct f2fs_nm_info *nm_i = NM_I(sbi);
264         struct nat_entry *e;
265
266         e = __lookup_nat_cache(nm_i, nid);
267         if (!e) {
268                 e = grab_nat_entry(nm_i, nid);
269                 node_info_from_raw_nat(&e->ni, ne);
270         } else {
271                 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272                                 nat_get_blkaddr(e) != ne->block_addr ||
273                                 nat_get_version(e) != ne->version);
274         }
275 }
276
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278                         block_t new_blkaddr, bool fsync_done)
279 {
280         struct f2fs_nm_info *nm_i = NM_I(sbi);
281         struct nat_entry *e;
282
283         down_write(&nm_i->nat_tree_lock);
284         e = __lookup_nat_cache(nm_i, ni->nid);
285         if (!e) {
286                 e = grab_nat_entry(nm_i, ni->nid);
287                 copy_node_info(&e->ni, ni);
288                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289         } else if (new_blkaddr == NEW_ADDR) {
290                 /*
291                  * when nid is reallocated,
292                  * previous nat entry can be remained in nat cache.
293                  * So, reinitialize it with new information.
294                  */
295                 copy_node_info(&e->ni, ni);
296                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297         }
298
299         /* sanity check */
300         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302                         new_blkaddr == NULL_ADDR);
303         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304                         new_blkaddr == NEW_ADDR);
305         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306                         nat_get_blkaddr(e) != NULL_ADDR &&
307                         new_blkaddr == NEW_ADDR);
308
309         /* increment version no as node is removed */
310         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311                 unsigned char version = nat_get_version(e);
312                 nat_set_version(e, inc_node_version(version));
313
314                 /* in order to reuse the nid */
315                 if (nm_i->next_scan_nid > ni->nid)
316                         nm_i->next_scan_nid = ni->nid;
317         }
318
319         /* change address */
320         nat_set_blkaddr(e, new_blkaddr);
321         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322                 set_nat_flag(e, IS_CHECKPOINTED, false);
323         __set_nat_cache_dirty(nm_i, e);
324
325         /* update fsync_mark if its inode nat entry is still alive */
326         if (ni->nid != ni->ino)
327                 e = __lookup_nat_cache(nm_i, ni->ino);
328         if (e) {
329                 if (fsync_done && ni->nid == ni->ino)
330                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
331                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332         }
333         up_write(&nm_i->nat_tree_lock);
334 }
335
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338         struct f2fs_nm_info *nm_i = NM_I(sbi);
339         int nr = nr_shrink;
340
341         if (!down_write_trylock(&nm_i->nat_tree_lock))
342                 return 0;
343
344         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345                 struct nat_entry *ne;
346                 ne = list_first_entry(&nm_i->nat_entries,
347                                         struct nat_entry, list);
348                 __del_from_nat_cache(nm_i, ne);
349                 nr_shrink--;
350         }
351         up_write(&nm_i->nat_tree_lock);
352         return nr - nr_shrink;
353 }
354
355 /*
356  * This function always returns success
357  */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360         struct f2fs_nm_info *nm_i = NM_I(sbi);
361         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362         struct f2fs_journal *journal = curseg->journal;
363         nid_t start_nid = START_NID(nid);
364         struct f2fs_nat_block *nat_blk;
365         struct page *page = NULL;
366         struct f2fs_nat_entry ne;
367         struct nat_entry *e;
368         int i;
369
370         ni->nid = nid;
371
372         /* Check nat cache */
373         down_read(&nm_i->nat_tree_lock);
374         e = __lookup_nat_cache(nm_i, nid);
375         if (e) {
376                 ni->ino = nat_get_ino(e);
377                 ni->blk_addr = nat_get_blkaddr(e);
378                 ni->version = nat_get_version(e);
379                 up_read(&nm_i->nat_tree_lock);
380                 return;
381         }
382
383         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384
385         /* Check current segment summary */
386         down_read(&curseg->journal_rwsem);
387         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388         if (i >= 0) {
389                 ne = nat_in_journal(journal, i);
390                 node_info_from_raw_nat(ni, &ne);
391         }
392         up_read(&curseg->journal_rwsem);
393         if (i >= 0)
394                 goto cache;
395
396         /* Fill node_info from nat page */
397         page = get_current_nat_page(sbi, start_nid);
398         nat_blk = (struct f2fs_nat_block *)page_address(page);
399         ne = nat_blk->entries[nid - start_nid];
400         node_info_from_raw_nat(ni, &ne);
401         f2fs_put_page(page, 1);
402 cache:
403         up_read(&nm_i->nat_tree_lock);
404         /* cache nat entry */
405         down_write(&nm_i->nat_tree_lock);
406         cache_nat_entry(sbi, nid, &ne);
407         up_write(&nm_i->nat_tree_lock);
408 }
409
410 /*
411  * readahead MAX_RA_NODE number of node pages.
412  */
413 static void ra_node_pages(struct page *parent, int start, int n)
414 {
415         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
416         struct blk_plug plug;
417         int i, end;
418         nid_t nid;
419
420         blk_start_plug(&plug);
421
422         /* Then, try readahead for siblings of the desired node */
423         end = start + n;
424         end = min(end, NIDS_PER_BLOCK);
425         for (i = start; i < end; i++) {
426                 nid = get_nid(parent, i, false);
427                 ra_node_page(sbi, nid);
428         }
429
430         blk_finish_plug(&plug);
431 }
432
433 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
434 {
435         const long direct_index = ADDRS_PER_INODE(dn->inode);
436         const long direct_blks = ADDRS_PER_BLOCK;
437         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
438         unsigned int skipped_unit = ADDRS_PER_BLOCK;
439         int cur_level = dn->cur_level;
440         int max_level = dn->max_level;
441         pgoff_t base = 0;
442
443         if (!dn->max_level)
444                 return pgofs + 1;
445
446         while (max_level-- > cur_level)
447                 skipped_unit *= NIDS_PER_BLOCK;
448
449         switch (dn->max_level) {
450         case 3:
451                 base += 2 * indirect_blks;
452         case 2:
453                 base += 2 * direct_blks;
454         case 1:
455                 base += direct_index;
456                 break;
457         default:
458                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
459         }
460
461         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
462 }
463
464 /*
465  * The maximum depth is four.
466  * Offset[0] will have raw inode offset.
467  */
468 static int get_node_path(struct inode *inode, long block,
469                                 int offset[4], unsigned int noffset[4])
470 {
471         const long direct_index = ADDRS_PER_INODE(inode);
472         const long direct_blks = ADDRS_PER_BLOCK;
473         const long dptrs_per_blk = NIDS_PER_BLOCK;
474         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
475         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
476         int n = 0;
477         int level = 0;
478
479         noffset[0] = 0;
480
481         if (block < direct_index) {
482                 offset[n] = block;
483                 goto got;
484         }
485         block -= direct_index;
486         if (block < direct_blks) {
487                 offset[n++] = NODE_DIR1_BLOCK;
488                 noffset[n] = 1;
489                 offset[n] = block;
490                 level = 1;
491                 goto got;
492         }
493         block -= direct_blks;
494         if (block < direct_blks) {
495                 offset[n++] = NODE_DIR2_BLOCK;
496                 noffset[n] = 2;
497                 offset[n] = block;
498                 level = 1;
499                 goto got;
500         }
501         block -= direct_blks;
502         if (block < indirect_blks) {
503                 offset[n++] = NODE_IND1_BLOCK;
504                 noffset[n] = 3;
505                 offset[n++] = block / direct_blks;
506                 noffset[n] = 4 + offset[n - 1];
507                 offset[n] = block % direct_blks;
508                 level = 2;
509                 goto got;
510         }
511         block -= indirect_blks;
512         if (block < indirect_blks) {
513                 offset[n++] = NODE_IND2_BLOCK;
514                 noffset[n] = 4 + dptrs_per_blk;
515                 offset[n++] = block / direct_blks;
516                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
517                 offset[n] = block % direct_blks;
518                 level = 2;
519                 goto got;
520         }
521         block -= indirect_blks;
522         if (block < dindirect_blks) {
523                 offset[n++] = NODE_DIND_BLOCK;
524                 noffset[n] = 5 + (dptrs_per_blk * 2);
525                 offset[n++] = block / indirect_blks;
526                 noffset[n] = 6 + (dptrs_per_blk * 2) +
527                               offset[n - 1] * (dptrs_per_blk + 1);
528                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
529                 noffset[n] = 7 + (dptrs_per_blk * 2) +
530                               offset[n - 2] * (dptrs_per_blk + 1) +
531                               offset[n - 1];
532                 offset[n] = block % direct_blks;
533                 level = 3;
534                 goto got;
535         } else {
536                 BUG();
537         }
538 got:
539         return level;
540 }
541
542 /*
543  * Caller should call f2fs_put_dnode(dn).
544  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
545  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
546  * In the case of RDONLY_NODE, we don't need to care about mutex.
547  */
548 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
549 {
550         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
551         struct page *npage[4];
552         struct page *parent = NULL;
553         int offset[4];
554         unsigned int noffset[4];
555         nid_t nids[4];
556         int level, i = 0;
557         int err = 0;
558
559         level = get_node_path(dn->inode, index, offset, noffset);
560
561         nids[0] = dn->inode->i_ino;
562         npage[0] = dn->inode_page;
563
564         if (!npage[0]) {
565                 npage[0] = get_node_page(sbi, nids[0]);
566                 if (IS_ERR(npage[0]))
567                         return PTR_ERR(npage[0]);
568         }
569
570         /* if inline_data is set, should not report any block indices */
571         if (f2fs_has_inline_data(dn->inode) && index) {
572                 err = -ENOENT;
573                 f2fs_put_page(npage[0], 1);
574                 goto release_out;
575         }
576
577         parent = npage[0];
578         if (level != 0)
579                 nids[1] = get_nid(parent, offset[0], true);
580         dn->inode_page = npage[0];
581         dn->inode_page_locked = true;
582
583         /* get indirect or direct nodes */
584         for (i = 1; i <= level; i++) {
585                 bool done = false;
586
587                 if (!nids[i] && mode == ALLOC_NODE) {
588                         /* alloc new node */
589                         if (!alloc_nid(sbi, &(nids[i]))) {
590                                 err = -ENOSPC;
591                                 goto release_pages;
592                         }
593
594                         dn->nid = nids[i];
595                         npage[i] = new_node_page(dn, noffset[i], NULL);
596                         if (IS_ERR(npage[i])) {
597                                 alloc_nid_failed(sbi, nids[i]);
598                                 err = PTR_ERR(npage[i]);
599                                 goto release_pages;
600                         }
601
602                         set_nid(parent, offset[i - 1], nids[i], i == 1);
603                         alloc_nid_done(sbi, nids[i]);
604                         done = true;
605                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
606                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
607                         if (IS_ERR(npage[i])) {
608                                 err = PTR_ERR(npage[i]);
609                                 goto release_pages;
610                         }
611                         done = true;
612                 }
613                 if (i == 1) {
614                         dn->inode_page_locked = false;
615                         unlock_page(parent);
616                 } else {
617                         f2fs_put_page(parent, 1);
618                 }
619
620                 if (!done) {
621                         npage[i] = get_node_page(sbi, nids[i]);
622                         if (IS_ERR(npage[i])) {
623                                 err = PTR_ERR(npage[i]);
624                                 f2fs_put_page(npage[0], 0);
625                                 goto release_out;
626                         }
627                 }
628                 if (i < level) {
629                         parent = npage[i];
630                         nids[i + 1] = get_nid(parent, offset[i], false);
631                 }
632         }
633         dn->nid = nids[level];
634         dn->ofs_in_node = offset[level];
635         dn->node_page = npage[level];
636         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
637         return 0;
638
639 release_pages:
640         f2fs_put_page(parent, 1);
641         if (i > 1)
642                 f2fs_put_page(npage[0], 0);
643 release_out:
644         dn->inode_page = NULL;
645         dn->node_page = NULL;
646         if (err == -ENOENT) {
647                 dn->cur_level = i;
648                 dn->max_level = level;
649         }
650         return err;
651 }
652
653 static void truncate_node(struct dnode_of_data *dn)
654 {
655         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
656         struct node_info ni;
657
658         get_node_info(sbi, dn->nid, &ni);
659         if (dn->inode->i_blocks == 0) {
660                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
661                 goto invalidate;
662         }
663         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
664
665         /* Deallocate node address */
666         invalidate_blocks(sbi, ni.blk_addr);
667         dec_valid_node_count(sbi, dn->inode);
668         set_node_addr(sbi, &ni, NULL_ADDR, false);
669
670         if (dn->nid == dn->inode->i_ino) {
671                 remove_orphan_inode(sbi, dn->nid);
672                 dec_valid_inode_count(sbi);
673         } else {
674                 sync_inode_page(dn);
675         }
676 invalidate:
677         clear_node_page_dirty(dn->node_page);
678         set_sbi_flag(sbi, SBI_IS_DIRTY);
679
680         f2fs_put_page(dn->node_page, 1);
681
682         invalidate_mapping_pages(NODE_MAPPING(sbi),
683                         dn->node_page->index, dn->node_page->index);
684
685         dn->node_page = NULL;
686         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
687 }
688
689 static int truncate_dnode(struct dnode_of_data *dn)
690 {
691         struct page *page;
692
693         if (dn->nid == 0)
694                 return 1;
695
696         /* get direct node */
697         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
698         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
699                 return 1;
700         else if (IS_ERR(page))
701                 return PTR_ERR(page);
702
703         /* Make dnode_of_data for parameter */
704         dn->node_page = page;
705         dn->ofs_in_node = 0;
706         truncate_data_blocks(dn);
707         truncate_node(dn);
708         return 1;
709 }
710
711 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
712                                                 int ofs, int depth)
713 {
714         struct dnode_of_data rdn = *dn;
715         struct page *page;
716         struct f2fs_node *rn;
717         nid_t child_nid;
718         unsigned int child_nofs;
719         int freed = 0;
720         int i, ret;
721
722         if (dn->nid == 0)
723                 return NIDS_PER_BLOCK + 1;
724
725         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
726
727         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
728         if (IS_ERR(page)) {
729                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
730                 return PTR_ERR(page);
731         }
732
733         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
734
735         rn = F2FS_NODE(page);
736         if (depth < 3) {
737                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
738                         child_nid = le32_to_cpu(rn->in.nid[i]);
739                         if (child_nid == 0)
740                                 continue;
741                         rdn.nid = child_nid;
742                         ret = truncate_dnode(&rdn);
743                         if (ret < 0)
744                                 goto out_err;
745                         if (set_nid(page, i, 0, false))
746                                 dn->node_changed = true;
747                 }
748         } else {
749                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
750                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
751                         child_nid = le32_to_cpu(rn->in.nid[i]);
752                         if (child_nid == 0) {
753                                 child_nofs += NIDS_PER_BLOCK + 1;
754                                 continue;
755                         }
756                         rdn.nid = child_nid;
757                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
758                         if (ret == (NIDS_PER_BLOCK + 1)) {
759                                 if (set_nid(page, i, 0, false))
760                                         dn->node_changed = true;
761                                 child_nofs += ret;
762                         } else if (ret < 0 && ret != -ENOENT) {
763                                 goto out_err;
764                         }
765                 }
766                 freed = child_nofs;
767         }
768
769         if (!ofs) {
770                 /* remove current indirect node */
771                 dn->node_page = page;
772                 truncate_node(dn);
773                 freed++;
774         } else {
775                 f2fs_put_page(page, 1);
776         }
777         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
778         return freed;
779
780 out_err:
781         f2fs_put_page(page, 1);
782         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
783         return ret;
784 }
785
786 static int truncate_partial_nodes(struct dnode_of_data *dn,
787                         struct f2fs_inode *ri, int *offset, int depth)
788 {
789         struct page *pages[2];
790         nid_t nid[3];
791         nid_t child_nid;
792         int err = 0;
793         int i;
794         int idx = depth - 2;
795
796         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
797         if (!nid[0])
798                 return 0;
799
800         /* get indirect nodes in the path */
801         for (i = 0; i < idx + 1; i++) {
802                 /* reference count'll be increased */
803                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
804                 if (IS_ERR(pages[i])) {
805                         err = PTR_ERR(pages[i]);
806                         idx = i - 1;
807                         goto fail;
808                 }
809                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
810         }
811
812         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
813
814         /* free direct nodes linked to a partial indirect node */
815         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
816                 child_nid = get_nid(pages[idx], i, false);
817                 if (!child_nid)
818                         continue;
819                 dn->nid = child_nid;
820                 err = truncate_dnode(dn);
821                 if (err < 0)
822                         goto fail;
823                 if (set_nid(pages[idx], i, 0, false))
824                         dn->node_changed = true;
825         }
826
827         if (offset[idx + 1] == 0) {
828                 dn->node_page = pages[idx];
829                 dn->nid = nid[idx];
830                 truncate_node(dn);
831         } else {
832                 f2fs_put_page(pages[idx], 1);
833         }
834         offset[idx]++;
835         offset[idx + 1] = 0;
836         idx--;
837 fail:
838         for (i = idx; i >= 0; i--)
839                 f2fs_put_page(pages[i], 1);
840
841         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
842
843         return err;
844 }
845
846 /*
847  * All the block addresses of data and nodes should be nullified.
848  */
849 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
850 {
851         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
852         int err = 0, cont = 1;
853         int level, offset[4], noffset[4];
854         unsigned int nofs = 0;
855         struct f2fs_inode *ri;
856         struct dnode_of_data dn;
857         struct page *page;
858
859         trace_f2fs_truncate_inode_blocks_enter(inode, from);
860
861         level = get_node_path(inode, from, offset, noffset);
862
863         page = get_node_page(sbi, inode->i_ino);
864         if (IS_ERR(page)) {
865                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
866                 return PTR_ERR(page);
867         }
868
869         set_new_dnode(&dn, inode, page, NULL, 0);
870         unlock_page(page);
871
872         ri = F2FS_INODE(page);
873         switch (level) {
874         case 0:
875         case 1:
876                 nofs = noffset[1];
877                 break;
878         case 2:
879                 nofs = noffset[1];
880                 if (!offset[level - 1])
881                         goto skip_partial;
882                 err = truncate_partial_nodes(&dn, ri, offset, level);
883                 if (err < 0 && err != -ENOENT)
884                         goto fail;
885                 nofs += 1 + NIDS_PER_BLOCK;
886                 break;
887         case 3:
888                 nofs = 5 + 2 * NIDS_PER_BLOCK;
889                 if (!offset[level - 1])
890                         goto skip_partial;
891                 err = truncate_partial_nodes(&dn, ri, offset, level);
892                 if (err < 0 && err != -ENOENT)
893                         goto fail;
894                 break;
895         default:
896                 BUG();
897         }
898
899 skip_partial:
900         while (cont) {
901                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
902                 switch (offset[0]) {
903                 case NODE_DIR1_BLOCK:
904                 case NODE_DIR2_BLOCK:
905                         err = truncate_dnode(&dn);
906                         break;
907
908                 case NODE_IND1_BLOCK:
909                 case NODE_IND2_BLOCK:
910                         err = truncate_nodes(&dn, nofs, offset[1], 2);
911                         break;
912
913                 case NODE_DIND_BLOCK:
914                         err = truncate_nodes(&dn, nofs, offset[1], 3);
915                         cont = 0;
916                         break;
917
918                 default:
919                         BUG();
920                 }
921                 if (err < 0 && err != -ENOENT)
922                         goto fail;
923                 if (offset[1] == 0 &&
924                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
925                         lock_page(page);
926                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
927                         f2fs_wait_on_page_writeback(page, NODE, true);
928                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
929                         set_page_dirty(page);
930                         unlock_page(page);
931                 }
932                 offset[1] = 0;
933                 offset[0]++;
934                 nofs += err;
935         }
936 fail:
937         f2fs_put_page(page, 0);
938         trace_f2fs_truncate_inode_blocks_exit(inode, err);
939         return err > 0 ? 0 : err;
940 }
941
942 int truncate_xattr_node(struct inode *inode, struct page *page)
943 {
944         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
945         nid_t nid = F2FS_I(inode)->i_xattr_nid;
946         struct dnode_of_data dn;
947         struct page *npage;
948
949         if (!nid)
950                 return 0;
951
952         npage = get_node_page(sbi, nid);
953         if (IS_ERR(npage))
954                 return PTR_ERR(npage);
955
956         F2FS_I(inode)->i_xattr_nid = 0;
957
958         /* need to do checkpoint during fsync */
959         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
960
961         set_new_dnode(&dn, inode, page, npage, nid);
962
963         if (page)
964                 dn.inode_page_locked = true;
965         truncate_node(&dn);
966         return 0;
967 }
968
969 /*
970  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
971  * f2fs_unlock_op().
972  */
973 int remove_inode_page(struct inode *inode)
974 {
975         struct dnode_of_data dn;
976         int err;
977
978         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
979         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
980         if (err)
981                 return err;
982
983         err = truncate_xattr_node(inode, dn.inode_page);
984         if (err) {
985                 f2fs_put_dnode(&dn);
986                 return err;
987         }
988
989         /* remove potential inline_data blocks */
990         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
991                                 S_ISLNK(inode->i_mode))
992                 truncate_data_blocks_range(&dn, 1);
993
994         /* 0 is possible, after f2fs_new_inode() has failed */
995         f2fs_bug_on(F2FS_I_SB(inode),
996                         inode->i_blocks != 0 && inode->i_blocks != 1);
997
998         /* will put inode & node pages */
999         truncate_node(&dn);
1000         return 0;
1001 }
1002
1003 struct page *new_inode_page(struct inode *inode)
1004 {
1005         struct dnode_of_data dn;
1006
1007         /* allocate inode page for new inode */
1008         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1009
1010         /* caller should f2fs_put_page(page, 1); */
1011         return new_node_page(&dn, 0, NULL);
1012 }
1013
1014 struct page *new_node_page(struct dnode_of_data *dn,
1015                                 unsigned int ofs, struct page *ipage)
1016 {
1017         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1018         struct node_info old_ni, new_ni;
1019         struct page *page;
1020         int err;
1021
1022         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1023                 return ERR_PTR(-EPERM);
1024
1025         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1026         if (!page)
1027                 return ERR_PTR(-ENOMEM);
1028
1029         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1030                 err = -ENOSPC;
1031                 goto fail;
1032         }
1033
1034         get_node_info(sbi, dn->nid, &old_ni);
1035
1036         /* Reinitialize old_ni with new node page */
1037         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1038         new_ni = old_ni;
1039         new_ni.ino = dn->inode->i_ino;
1040         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1041
1042         f2fs_wait_on_page_writeback(page, NODE, true);
1043         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1044         set_cold_node(dn->inode, page);
1045         SetPageUptodate(page);
1046         if (set_page_dirty(page))
1047                 dn->node_changed = true;
1048
1049         if (f2fs_has_xattr_block(ofs))
1050                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1051
1052         dn->node_page = page;
1053         if (ipage)
1054                 update_inode(dn->inode, ipage);
1055         else
1056                 sync_inode_page(dn);
1057         if (ofs == 0)
1058                 inc_valid_inode_count(sbi);
1059
1060         return page;
1061
1062 fail:
1063         clear_node_page_dirty(page);
1064         f2fs_put_page(page, 1);
1065         return ERR_PTR(err);
1066 }
1067
1068 /*
1069  * Caller should do after getting the following values.
1070  * 0: f2fs_put_page(page, 0)
1071  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1072  */
1073 static int read_node_page(struct page *page, int op_flags)
1074 {
1075         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1076         struct node_info ni;
1077         struct f2fs_io_info fio = {
1078                 .sbi = sbi,
1079                 .type = NODE,
1080                 .op = REQ_OP_READ,
1081                 .op_flags = op_flags,
1082                 .page = page,
1083                 .encrypted_page = NULL,
1084         };
1085
1086         get_node_info(sbi, page->index, &ni);
1087
1088         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1089                 ClearPageUptodate(page);
1090                 return -ENOENT;
1091         }
1092
1093         if (PageUptodate(page))
1094                 return LOCKED_PAGE;
1095
1096         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1097         return f2fs_submit_page_bio(&fio);
1098 }
1099
1100 /*
1101  * Readahead a node page
1102  */
1103 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1104 {
1105         struct page *apage;
1106         int err;
1107
1108         if (!nid)
1109                 return;
1110         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1111
1112         rcu_read_lock();
1113         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1114         rcu_read_unlock();
1115         if (apage)
1116                 return;
1117
1118         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1119         if (!apage)
1120                 return;
1121
1122         err = read_node_page(apage, READA);
1123         f2fs_put_page(apage, err ? 1 : 0);
1124 }
1125
1126 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1127                                         struct page *parent, int start)
1128 {
1129         struct page *page;
1130         int err;
1131
1132         if (!nid)
1133                 return ERR_PTR(-ENOENT);
1134         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1135 repeat:
1136         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1137         if (!page)
1138                 return ERR_PTR(-ENOMEM);
1139
1140         err = read_node_page(page, READ_SYNC);
1141         if (err < 0) {
1142                 f2fs_put_page(page, 1);
1143                 return ERR_PTR(err);
1144         } else if (err == LOCKED_PAGE) {
1145                 goto page_hit;
1146         }
1147
1148         if (parent)
1149                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1150
1151         lock_page(page);
1152
1153         if (unlikely(!PageUptodate(page))) {
1154                 f2fs_put_page(page, 1);
1155                 return ERR_PTR(-EIO);
1156         }
1157         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1158                 f2fs_put_page(page, 1);
1159                 goto repeat;
1160         }
1161 page_hit:
1162         f2fs_bug_on(sbi, nid != nid_of_node(page));
1163         return page;
1164 }
1165
1166 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1167 {
1168         return __get_node_page(sbi, nid, NULL, 0);
1169 }
1170
1171 struct page *get_node_page_ra(struct page *parent, int start)
1172 {
1173         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1174         nid_t nid = get_nid(parent, start, false);
1175
1176         return __get_node_page(sbi, nid, parent, start);
1177 }
1178
1179 void sync_inode_page(struct dnode_of_data *dn)
1180 {
1181         int ret = 0;
1182
1183         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1184                 ret = update_inode(dn->inode, dn->node_page);
1185         } else if (dn->inode_page) {
1186                 if (!dn->inode_page_locked)
1187                         lock_page(dn->inode_page);
1188                 ret = update_inode(dn->inode, dn->inode_page);
1189                 if (!dn->inode_page_locked)
1190                         unlock_page(dn->inode_page);
1191         } else {
1192                 ret = update_inode_page(dn->inode);
1193         }
1194         dn->node_changed = ret ? true: false;
1195 }
1196
1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1198 {
1199         struct inode *inode;
1200         struct page *page;
1201         int ret;
1202
1203         /* should flush inline_data before evict_inode */
1204         inode = ilookup(sbi->sb, ino);
1205         if (!inode)
1206                 return;
1207
1208         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1209         if (!page)
1210                 goto iput_out;
1211
1212         if (!PageUptodate(page))
1213                 goto page_out;
1214
1215         if (!PageDirty(page))
1216                 goto page_out;
1217
1218         if (!clear_page_dirty_for_io(page))
1219                 goto page_out;
1220
1221         ret = f2fs_write_inline_data(inode, page);
1222         inode_dec_dirty_pages(inode);
1223         if (ret)
1224                 set_page_dirty(page);
1225 page_out:
1226         f2fs_put_page(page, 1);
1227 iput_out:
1228         iput(inode);
1229 }
1230
1231 void move_node_page(struct page *node_page, int gc_type)
1232 {
1233         if (gc_type == FG_GC) {
1234                 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1235                 struct writeback_control wbc = {
1236                         .sync_mode = WB_SYNC_ALL,
1237                         .nr_to_write = 1,
1238                         .for_reclaim = 0,
1239                 };
1240
1241                 set_page_dirty(node_page);
1242                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1243
1244                 f2fs_bug_on(sbi, PageWriteback(node_page));
1245                 if (!clear_page_dirty_for_io(node_page))
1246                         goto out_page;
1247
1248                 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1249                         unlock_page(node_page);
1250                 goto release_page;
1251         } else {
1252                 /* set page dirty and write it */
1253                 if (!PageWriteback(node_page))
1254                         set_page_dirty(node_page);
1255         }
1256 out_page:
1257         unlock_page(node_page);
1258 release_page:
1259         f2fs_put_page(node_page, 0);
1260 }
1261
1262 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1263 {
1264         pgoff_t index, end;
1265         struct pagevec pvec;
1266         struct page *last_page = NULL;
1267
1268         pagevec_init(&pvec, 0);
1269         index = 0;
1270         end = ULONG_MAX;
1271
1272         while (index <= end) {
1273                 int i, nr_pages;
1274                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1275                                 PAGECACHE_TAG_DIRTY,
1276                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1277                 if (nr_pages == 0)
1278                         break;
1279
1280                 for (i = 0; i < nr_pages; i++) {
1281                         struct page *page = pvec.pages[i];
1282
1283                         if (unlikely(f2fs_cp_error(sbi))) {
1284                                 f2fs_put_page(last_page, 0);
1285                                 pagevec_release(&pvec);
1286                                 return ERR_PTR(-EIO);
1287                         }
1288
1289                         if (!IS_DNODE(page) || !is_cold_node(page))
1290                                 continue;
1291                         if (ino_of_node(page) != ino)
1292                                 continue;
1293
1294                         lock_page(page);
1295
1296                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1297 continue_unlock:
1298                                 unlock_page(page);
1299                                 continue;
1300                         }
1301                         if (ino_of_node(page) != ino)
1302                                 goto continue_unlock;
1303
1304                         if (!PageDirty(page)) {
1305                                 /* someone wrote it for us */
1306                                 goto continue_unlock;
1307                         }
1308
1309                         if (last_page)
1310                                 f2fs_put_page(last_page, 0);
1311
1312                         get_page(page);
1313                         last_page = page;
1314                         unlock_page(page);
1315                 }
1316                 pagevec_release(&pvec);
1317                 cond_resched();
1318         }
1319         return last_page;
1320 }
1321
1322 int fsync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1323                         struct writeback_control *wbc, bool atomic)
1324 {
1325         pgoff_t index, end;
1326         struct pagevec pvec;
1327         int ret = 0;
1328         struct page *last_page = NULL;
1329         bool marked = false;
1330
1331         if (atomic) {
1332                 last_page = last_fsync_dnode(sbi, ino);
1333                 if (IS_ERR_OR_NULL(last_page))
1334                         return PTR_ERR_OR_ZERO(last_page);
1335         }
1336 retry:
1337         pagevec_init(&pvec, 0);
1338         index = 0;
1339         end = ULONG_MAX;
1340
1341         while (index <= end) {
1342                 int i, nr_pages;
1343                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1344                                 PAGECACHE_TAG_DIRTY,
1345                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1346                 if (nr_pages == 0)
1347                         break;
1348
1349                 for (i = 0; i < nr_pages; i++) {
1350                         struct page *page = pvec.pages[i];
1351
1352                         if (unlikely(f2fs_cp_error(sbi))) {
1353                                 f2fs_put_page(last_page, 0);
1354                                 pagevec_release(&pvec);
1355                                 return -EIO;
1356                         }
1357
1358                         if (!IS_DNODE(page) || !is_cold_node(page))
1359                                 continue;
1360                         if (ino_of_node(page) != ino)
1361                                 continue;
1362
1363                         lock_page(page);
1364
1365                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1366 continue_unlock:
1367                                 unlock_page(page);
1368                                 continue;
1369                         }
1370                         if (ino_of_node(page) != ino)
1371                                 goto continue_unlock;
1372
1373                         if (!PageDirty(page) && page != last_page) {
1374                                 /* someone wrote it for us */
1375                                 goto continue_unlock;
1376                         }
1377
1378                         f2fs_wait_on_page_writeback(page, NODE, true);
1379                         BUG_ON(PageWriteback(page));
1380
1381                         if (!atomic || page == last_page) {
1382                                 set_fsync_mark(page, 1);
1383                                 if (IS_INODE(page))
1384                                         set_dentry_mark(page,
1385                                                 need_dentry_mark(sbi, ino));
1386                                 /*  may be written by other thread */
1387                                 if (!PageDirty(page))
1388                                         set_page_dirty(page);
1389                         }
1390
1391                         if (!clear_page_dirty_for_io(page))
1392                                 goto continue_unlock;
1393
1394                         ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1395                         if (ret) {
1396                                 unlock_page(page);
1397                                 f2fs_put_page(last_page, 0);
1398                                 break;
1399                         }
1400                         if (page == last_page) {
1401                                 f2fs_put_page(page, 0);
1402                                 marked = true;
1403                                 break;
1404                         }
1405                 }
1406                 pagevec_release(&pvec);
1407                 cond_resched();
1408
1409                 if (ret || marked)
1410                         break;
1411         }
1412         if (!ret && atomic && !marked) {
1413                 f2fs_msg(sbi->sb, KERN_DEBUG,
1414                         "Retry to write fsync mark: ino=%u, idx=%lx",
1415                                         ino, last_page->index);
1416                 lock_page(last_page);
1417                 set_page_dirty(last_page);
1418                 unlock_page(last_page);
1419                 goto retry;
1420         }
1421         return ret ? -EIO: 0;
1422 }
1423
1424 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1425 {
1426         pgoff_t index, end;
1427         struct pagevec pvec;
1428         int step = 0;
1429         int nwritten = 0;
1430
1431         pagevec_init(&pvec, 0);
1432
1433 next_step:
1434         index = 0;
1435         end = ULONG_MAX;
1436
1437         while (index <= end) {
1438                 int i, nr_pages;
1439                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1440                                 PAGECACHE_TAG_DIRTY,
1441                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1442                 if (nr_pages == 0)
1443                         break;
1444
1445                 for (i = 0; i < nr_pages; i++) {
1446                         struct page *page = pvec.pages[i];
1447
1448                         if (unlikely(f2fs_cp_error(sbi))) {
1449                                 pagevec_release(&pvec);
1450                                 return -EIO;
1451                         }
1452
1453                         /*
1454                          * flushing sequence with step:
1455                          * 0. indirect nodes
1456                          * 1. dentry dnodes
1457                          * 2. file dnodes
1458                          */
1459                         if (step == 0 && IS_DNODE(page))
1460                                 continue;
1461                         if (step == 1 && (!IS_DNODE(page) ||
1462                                                 is_cold_node(page)))
1463                                 continue;
1464                         if (step == 2 && (!IS_DNODE(page) ||
1465                                                 !is_cold_node(page)))
1466                                 continue;
1467 lock_node:
1468                         if (!trylock_page(page))
1469                                 continue;
1470
1471                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1472 continue_unlock:
1473                                 unlock_page(page);
1474                                 continue;
1475                         }
1476
1477                         if (!PageDirty(page)) {
1478                                 /* someone wrote it for us */
1479                                 goto continue_unlock;
1480                         }
1481
1482                         /* flush inline_data */
1483                         if (is_inline_node(page)) {
1484                                 clear_inline_node(page);
1485                                 unlock_page(page);
1486                                 flush_inline_data(sbi, ino_of_node(page));
1487                                 goto lock_node;
1488                         }
1489
1490                         f2fs_wait_on_page_writeback(page, NODE, true);
1491
1492                         BUG_ON(PageWriteback(page));
1493                         if (!clear_page_dirty_for_io(page))
1494                                 goto continue_unlock;
1495
1496                         set_fsync_mark(page, 0);
1497                         set_dentry_mark(page, 0);
1498
1499                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1500                                 unlock_page(page);
1501
1502                         if (--wbc->nr_to_write == 0)
1503                                 break;
1504                 }
1505                 pagevec_release(&pvec);
1506                 cond_resched();
1507
1508                 if (wbc->nr_to_write == 0) {
1509                         step = 2;
1510                         break;
1511                 }
1512         }
1513
1514         if (step < 2) {
1515                 step++;
1516                 goto next_step;
1517         }
1518         return nwritten;
1519 }
1520
1521 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1522 {
1523         pgoff_t index = 0, end = ULONG_MAX;
1524         struct pagevec pvec;
1525         int ret2 = 0, ret = 0;
1526
1527         pagevec_init(&pvec, 0);
1528
1529         while (index <= end) {
1530                 int i, nr_pages;
1531                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1532                                 PAGECACHE_TAG_WRITEBACK,
1533                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1534                 if (nr_pages == 0)
1535                         break;
1536
1537                 for (i = 0; i < nr_pages; i++) {
1538                         struct page *page = pvec.pages[i];
1539
1540                         /* until radix tree lookup accepts end_index */
1541                         if (unlikely(page->index > end))
1542                                 continue;
1543
1544                         if (ino && ino_of_node(page) == ino) {
1545                                 f2fs_wait_on_page_writeback(page, NODE, true);
1546                                 if (TestClearPageError(page))
1547                                         ret = -EIO;
1548                         }
1549                 }
1550                 pagevec_release(&pvec);
1551                 cond_resched();
1552         }
1553
1554         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1555                 ret2 = -ENOSPC;
1556         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1557                 ret2 = -EIO;
1558         if (!ret)
1559                 ret = ret2;
1560         return ret;
1561 }
1562
1563 static int f2fs_write_node_page(struct page *page,
1564                                 struct writeback_control *wbc)
1565 {
1566         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1567         nid_t nid;
1568         struct node_info ni;
1569         struct f2fs_io_info fio = {
1570                 .sbi = sbi,
1571                 .type = NODE,
1572                 .op = REQ_OP_WRITE,
1573                 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1574                 .page = page,
1575                 .encrypted_page = NULL,
1576         };
1577
1578         trace_f2fs_writepage(page, NODE);
1579
1580         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1581                 goto redirty_out;
1582         if (unlikely(f2fs_cp_error(sbi)))
1583                 goto redirty_out;
1584
1585         /* get old block addr of this node page */
1586         nid = nid_of_node(page);
1587         f2fs_bug_on(sbi, page->index != nid);
1588
1589         if (wbc->for_reclaim) {
1590                 if (!down_read_trylock(&sbi->node_write))
1591                         goto redirty_out;
1592         } else {
1593                 down_read(&sbi->node_write);
1594         }
1595
1596         get_node_info(sbi, nid, &ni);
1597
1598         /* This page is already truncated */
1599         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1600                 ClearPageUptodate(page);
1601                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1602                 up_read(&sbi->node_write);
1603                 unlock_page(page);
1604                 return 0;
1605         }
1606
1607         set_page_writeback(page);
1608         fio.old_blkaddr = ni.blk_addr;
1609         write_node_page(nid, &fio);
1610         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1611         dec_page_count(sbi, F2FS_DIRTY_NODES);
1612         up_read(&sbi->node_write);
1613
1614         if (wbc->for_reclaim)
1615                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1616
1617         unlock_page(page);
1618
1619         if (unlikely(f2fs_cp_error(sbi)))
1620                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1621
1622         return 0;
1623
1624 redirty_out:
1625         redirty_page_for_writepage(wbc, page);
1626         return AOP_WRITEPAGE_ACTIVATE;
1627 }
1628
1629 static int f2fs_write_node_pages(struct address_space *mapping,
1630                             struct writeback_control *wbc)
1631 {
1632         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1633         long diff;
1634
1635         /* balancing f2fs's metadata in background */
1636         f2fs_balance_fs_bg(sbi);
1637
1638         /* collect a number of dirty node pages and write together */
1639         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1640                 goto skip_write;
1641
1642         trace_f2fs_writepages(mapping->host, wbc, NODE);
1643
1644         diff = nr_pages_to_write(sbi, NODE, wbc);
1645         wbc->sync_mode = WB_SYNC_NONE;
1646         sync_node_pages(sbi, wbc);
1647         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1648         return 0;
1649
1650 skip_write:
1651         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1652         trace_f2fs_writepages(mapping->host, wbc, NODE);
1653         return 0;
1654 }
1655
1656 static int f2fs_set_node_page_dirty(struct page *page)
1657 {
1658         trace_f2fs_set_page_dirty(page, NODE);
1659
1660         SetPageUptodate(page);
1661         if (!PageDirty(page)) {
1662                 __set_page_dirty_nobuffers(page);
1663                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1664                 SetPagePrivate(page);
1665                 f2fs_trace_pid(page);
1666                 return 1;
1667         }
1668         return 0;
1669 }
1670
1671 /*
1672  * Structure of the f2fs node operations
1673  */
1674 const struct address_space_operations f2fs_node_aops = {
1675         .writepage      = f2fs_write_node_page,
1676         .writepages     = f2fs_write_node_pages,
1677         .set_page_dirty = f2fs_set_node_page_dirty,
1678         .invalidatepage = f2fs_invalidate_page,
1679         .releasepage    = f2fs_release_page,
1680 };
1681
1682 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1683                                                 nid_t n)
1684 {
1685         return radix_tree_lookup(&nm_i->free_nid_root, n);
1686 }
1687
1688 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1689                                                 struct free_nid *i)
1690 {
1691         list_del(&i->list);
1692         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1693 }
1694
1695 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1696 {
1697         struct f2fs_nm_info *nm_i = NM_I(sbi);
1698         struct free_nid *i;
1699         struct nat_entry *ne;
1700
1701         if (!available_free_memory(sbi, FREE_NIDS))
1702                 return -1;
1703
1704         /* 0 nid should not be used */
1705         if (unlikely(nid == 0))
1706                 return 0;
1707
1708         if (build) {
1709                 /* do not add allocated nids */
1710                 ne = __lookup_nat_cache(nm_i, nid);
1711                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1712                                 nat_get_blkaddr(ne) != NULL_ADDR))
1713                         return 0;
1714         }
1715
1716         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1717         i->nid = nid;
1718         i->state = NID_NEW;
1719
1720         if (radix_tree_preload(GFP_NOFS)) {
1721                 kmem_cache_free(free_nid_slab, i);
1722                 return 0;
1723         }
1724
1725         spin_lock(&nm_i->free_nid_list_lock);
1726         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1727                 spin_unlock(&nm_i->free_nid_list_lock);
1728                 radix_tree_preload_end();
1729                 kmem_cache_free(free_nid_slab, i);
1730                 return 0;
1731         }
1732         list_add_tail(&i->list, &nm_i->free_nid_list);
1733         nm_i->fcnt++;
1734         spin_unlock(&nm_i->free_nid_list_lock);
1735         radix_tree_preload_end();
1736         return 1;
1737 }
1738
1739 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1740 {
1741         struct free_nid *i;
1742         bool need_free = false;
1743
1744         spin_lock(&nm_i->free_nid_list_lock);
1745         i = __lookup_free_nid_list(nm_i, nid);
1746         if (i && i->state == NID_NEW) {
1747                 __del_from_free_nid_list(nm_i, i);
1748                 nm_i->fcnt--;
1749                 need_free = true;
1750         }
1751         spin_unlock(&nm_i->free_nid_list_lock);
1752
1753         if (need_free)
1754                 kmem_cache_free(free_nid_slab, i);
1755 }
1756
1757 static void scan_nat_page(struct f2fs_sb_info *sbi,
1758                         struct page *nat_page, nid_t start_nid)
1759 {
1760         struct f2fs_nm_info *nm_i = NM_I(sbi);
1761         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1762         block_t blk_addr;
1763         int i;
1764
1765         i = start_nid % NAT_ENTRY_PER_BLOCK;
1766
1767         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1768
1769                 if (unlikely(start_nid >= nm_i->max_nid))
1770                         break;
1771
1772                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1773                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1774                 if (blk_addr == NULL_ADDR) {
1775                         if (add_free_nid(sbi, start_nid, true) < 0)
1776                                 break;
1777                 }
1778         }
1779 }
1780
1781 static void build_free_nids(struct f2fs_sb_info *sbi)
1782 {
1783         struct f2fs_nm_info *nm_i = NM_I(sbi);
1784         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1785         struct f2fs_journal *journal = curseg->journal;
1786         int i = 0;
1787         nid_t nid = nm_i->next_scan_nid;
1788
1789         /* Enough entries */
1790         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1791                 return;
1792
1793         /* readahead nat pages to be scanned */
1794         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1795                                                         META_NAT, true);
1796
1797         down_read(&nm_i->nat_tree_lock);
1798
1799         while (1) {
1800                 struct page *page = get_current_nat_page(sbi, nid);
1801
1802                 scan_nat_page(sbi, page, nid);
1803                 f2fs_put_page(page, 1);
1804
1805                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1806                 if (unlikely(nid >= nm_i->max_nid))
1807                         nid = 0;
1808
1809                 if (++i >= FREE_NID_PAGES)
1810                         break;
1811         }
1812
1813         /* go to the next free nat pages to find free nids abundantly */
1814         nm_i->next_scan_nid = nid;
1815
1816         /* find free nids from current sum_pages */
1817         down_read(&curseg->journal_rwsem);
1818         for (i = 0; i < nats_in_cursum(journal); i++) {
1819                 block_t addr;
1820
1821                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1822                 nid = le32_to_cpu(nid_in_journal(journal, i));
1823                 if (addr == NULL_ADDR)
1824                         add_free_nid(sbi, nid, true);
1825                 else
1826                         remove_free_nid(nm_i, nid);
1827         }
1828         up_read(&curseg->journal_rwsem);
1829         up_read(&nm_i->nat_tree_lock);
1830
1831         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1832                                         nm_i->ra_nid_pages, META_NAT, false);
1833 }
1834
1835 /*
1836  * If this function returns success, caller can obtain a new nid
1837  * from second parameter of this function.
1838  * The returned nid could be used ino as well as nid when inode is created.
1839  */
1840 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1841 {
1842         struct f2fs_nm_info *nm_i = NM_I(sbi);
1843         struct free_nid *i = NULL;
1844 retry:
1845 #ifdef CONFIG_F2FS_FAULT_INJECTION
1846         if (time_to_inject(FAULT_ALLOC_NID))
1847                 return false;
1848 #endif
1849         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1850                 return false;
1851
1852         spin_lock(&nm_i->free_nid_list_lock);
1853
1854         /* We should not use stale free nids created by build_free_nids */
1855         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1856                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1857                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1858                         if (i->state == NID_NEW)
1859                                 break;
1860
1861                 f2fs_bug_on(sbi, i->state != NID_NEW);
1862                 *nid = i->nid;
1863                 i->state = NID_ALLOC;
1864                 nm_i->fcnt--;
1865                 spin_unlock(&nm_i->free_nid_list_lock);
1866                 return true;
1867         }
1868         spin_unlock(&nm_i->free_nid_list_lock);
1869
1870         /* Let's scan nat pages and its caches to get free nids */
1871         mutex_lock(&nm_i->build_lock);
1872         build_free_nids(sbi);
1873         mutex_unlock(&nm_i->build_lock);
1874         goto retry;
1875 }
1876
1877 /*
1878  * alloc_nid() should be called prior to this function.
1879  */
1880 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1881 {
1882         struct f2fs_nm_info *nm_i = NM_I(sbi);
1883         struct free_nid *i;
1884
1885         spin_lock(&nm_i->free_nid_list_lock);
1886         i = __lookup_free_nid_list(nm_i, nid);
1887         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1888         __del_from_free_nid_list(nm_i, i);
1889         spin_unlock(&nm_i->free_nid_list_lock);
1890
1891         kmem_cache_free(free_nid_slab, i);
1892 }
1893
1894 /*
1895  * alloc_nid() should be called prior to this function.
1896  */
1897 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1898 {
1899         struct f2fs_nm_info *nm_i = NM_I(sbi);
1900         struct free_nid *i;
1901         bool need_free = false;
1902
1903         if (!nid)
1904                 return;
1905
1906         spin_lock(&nm_i->free_nid_list_lock);
1907         i = __lookup_free_nid_list(nm_i, nid);
1908         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1909         if (!available_free_memory(sbi, FREE_NIDS)) {
1910                 __del_from_free_nid_list(nm_i, i);
1911                 need_free = true;
1912         } else {
1913                 i->state = NID_NEW;
1914                 nm_i->fcnt++;
1915         }
1916         spin_unlock(&nm_i->free_nid_list_lock);
1917
1918         if (need_free)
1919                 kmem_cache_free(free_nid_slab, i);
1920 }
1921
1922 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1923 {
1924         struct f2fs_nm_info *nm_i = NM_I(sbi);
1925         struct free_nid *i, *next;
1926         int nr = nr_shrink;
1927
1928         if (!mutex_trylock(&nm_i->build_lock))
1929                 return 0;
1930
1931         spin_lock(&nm_i->free_nid_list_lock);
1932         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1933                 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1934                         break;
1935                 if (i->state == NID_ALLOC)
1936                         continue;
1937                 __del_from_free_nid_list(nm_i, i);
1938                 kmem_cache_free(free_nid_slab, i);
1939                 nm_i->fcnt--;
1940                 nr_shrink--;
1941         }
1942         spin_unlock(&nm_i->free_nid_list_lock);
1943         mutex_unlock(&nm_i->build_lock);
1944
1945         return nr - nr_shrink;
1946 }
1947
1948 void recover_inline_xattr(struct inode *inode, struct page *page)
1949 {
1950         void *src_addr, *dst_addr;
1951         size_t inline_size;
1952         struct page *ipage;
1953         struct f2fs_inode *ri;
1954
1955         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1956         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1957
1958         ri = F2FS_INODE(page);
1959         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1960                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1961                 goto update_inode;
1962         }
1963
1964         dst_addr = inline_xattr_addr(ipage);
1965         src_addr = inline_xattr_addr(page);
1966         inline_size = inline_xattr_size(inode);
1967
1968         f2fs_wait_on_page_writeback(ipage, NODE, true);
1969         memcpy(dst_addr, src_addr, inline_size);
1970 update_inode:
1971         update_inode(inode, ipage);
1972         f2fs_put_page(ipage, 1);
1973 }
1974
1975 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1976 {
1977         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1978         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1979         nid_t new_xnid = nid_of_node(page);
1980         struct node_info ni;
1981
1982         /* 1: invalidate the previous xattr nid */
1983         if (!prev_xnid)
1984                 goto recover_xnid;
1985
1986         /* Deallocate node address */
1987         get_node_info(sbi, prev_xnid, &ni);
1988         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1989         invalidate_blocks(sbi, ni.blk_addr);
1990         dec_valid_node_count(sbi, inode);
1991         set_node_addr(sbi, &ni, NULL_ADDR, false);
1992
1993 recover_xnid:
1994         /* 2: allocate new xattr nid */
1995         if (unlikely(!inc_valid_node_count(sbi, inode)))
1996                 f2fs_bug_on(sbi, 1);
1997
1998         remove_free_nid(NM_I(sbi), new_xnid);
1999         get_node_info(sbi, new_xnid, &ni);
2000         ni.ino = inode->i_ino;
2001         set_node_addr(sbi, &ni, NEW_ADDR, false);
2002         F2FS_I(inode)->i_xattr_nid = new_xnid;
2003
2004         /* 3: update xattr blkaddr */
2005         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2006         set_node_addr(sbi, &ni, blkaddr, false);
2007
2008         update_inode_page(inode);
2009 }
2010
2011 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2012 {
2013         struct f2fs_inode *src, *dst;
2014         nid_t ino = ino_of_node(page);
2015         struct node_info old_ni, new_ni;
2016         struct page *ipage;
2017
2018         get_node_info(sbi, ino, &old_ni);
2019
2020         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2021                 return -EINVAL;
2022
2023         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2024         if (!ipage)
2025                 return -ENOMEM;
2026
2027         /* Should not use this inode from free nid list */
2028         remove_free_nid(NM_I(sbi), ino);
2029
2030         SetPageUptodate(ipage);
2031         fill_node_footer(ipage, ino, ino, 0, true);
2032
2033         src = F2FS_INODE(page);
2034         dst = F2FS_INODE(ipage);
2035
2036         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2037         dst->i_size = 0;
2038         dst->i_blocks = cpu_to_le64(1);
2039         dst->i_links = cpu_to_le32(1);
2040         dst->i_xattr_nid = 0;
2041         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2042
2043         new_ni = old_ni;
2044         new_ni.ino = ino;
2045
2046         if (unlikely(!inc_valid_node_count(sbi, NULL)))
2047                 WARN_ON(1);
2048         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2049         inc_valid_inode_count(sbi);
2050         set_page_dirty(ipage);
2051         f2fs_put_page(ipage, 1);
2052         return 0;
2053 }
2054
2055 int restore_node_summary(struct f2fs_sb_info *sbi,
2056                         unsigned int segno, struct f2fs_summary_block *sum)
2057 {
2058         struct f2fs_node *rn;
2059         struct f2fs_summary *sum_entry;
2060         block_t addr;
2061         int bio_blocks = MAX_BIO_BLOCKS(sbi);
2062         int i, idx, last_offset, nrpages;
2063
2064         /* scan the node segment */
2065         last_offset = sbi->blocks_per_seg;
2066         addr = START_BLOCK(sbi, segno);
2067         sum_entry = &sum->entries[0];
2068
2069         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2070                 nrpages = min(last_offset - i, bio_blocks);
2071
2072                 /* readahead node pages */
2073                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2074
2075                 for (idx = addr; idx < addr + nrpages; idx++) {
2076                         struct page *page = get_tmp_page(sbi, idx);
2077
2078                         rn = F2FS_NODE(page);
2079                         sum_entry->nid = rn->footer.nid;
2080                         sum_entry->version = 0;
2081                         sum_entry->ofs_in_node = 0;
2082                         sum_entry++;
2083                         f2fs_put_page(page, 1);
2084                 }
2085
2086                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2087                                                         addr + nrpages);
2088         }
2089         return 0;
2090 }
2091
2092 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2093 {
2094         struct f2fs_nm_info *nm_i = NM_I(sbi);
2095         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2096         struct f2fs_journal *journal = curseg->journal;
2097         int i;
2098
2099         down_write(&curseg->journal_rwsem);
2100         for (i = 0; i < nats_in_cursum(journal); i++) {
2101                 struct nat_entry *ne;
2102                 struct f2fs_nat_entry raw_ne;
2103                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2104
2105                 raw_ne = nat_in_journal(journal, i);
2106
2107                 ne = __lookup_nat_cache(nm_i, nid);
2108                 if (!ne) {
2109                         ne = grab_nat_entry(nm_i, nid);
2110                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2111                 }
2112                 __set_nat_cache_dirty(nm_i, ne);
2113         }
2114         update_nats_in_cursum(journal, -i);
2115         up_write(&curseg->journal_rwsem);
2116 }
2117
2118 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2119                                                 struct list_head *head, int max)
2120 {
2121         struct nat_entry_set *cur;
2122
2123         if (nes->entry_cnt >= max)
2124                 goto add_out;
2125
2126         list_for_each_entry(cur, head, set_list) {
2127                 if (cur->entry_cnt >= nes->entry_cnt) {
2128                         list_add(&nes->set_list, cur->set_list.prev);
2129                         return;
2130                 }
2131         }
2132 add_out:
2133         list_add_tail(&nes->set_list, head);
2134 }
2135
2136 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2137                                         struct nat_entry_set *set)
2138 {
2139         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2140         struct f2fs_journal *journal = curseg->journal;
2141         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2142         bool to_journal = true;
2143         struct f2fs_nat_block *nat_blk;
2144         struct nat_entry *ne, *cur;
2145         struct page *page = NULL;
2146
2147         /*
2148          * there are two steps to flush nat entries:
2149          * #1, flush nat entries to journal in current hot data summary block.
2150          * #2, flush nat entries to nat page.
2151          */
2152         if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2153                 to_journal = false;
2154
2155         if (to_journal) {
2156                 down_write(&curseg->journal_rwsem);
2157         } else {
2158                 page = get_next_nat_page(sbi, start_nid);
2159                 nat_blk = page_address(page);
2160                 f2fs_bug_on(sbi, !nat_blk);
2161         }
2162
2163         /* flush dirty nats in nat entry set */
2164         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2165                 struct f2fs_nat_entry *raw_ne;
2166                 nid_t nid = nat_get_nid(ne);
2167                 int offset;
2168
2169                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2170                         continue;
2171
2172                 if (to_journal) {
2173                         offset = lookup_journal_in_cursum(journal,
2174                                                         NAT_JOURNAL, nid, 1);
2175                         f2fs_bug_on(sbi, offset < 0);
2176                         raw_ne = &nat_in_journal(journal, offset);
2177                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2178                 } else {
2179                         raw_ne = &nat_blk->entries[nid - start_nid];
2180                 }
2181                 raw_nat_from_node_info(raw_ne, &ne->ni);
2182                 nat_reset_flag(ne);
2183                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2184                 if (nat_get_blkaddr(ne) == NULL_ADDR)
2185                         add_free_nid(sbi, nid, false);
2186         }
2187
2188         if (to_journal)
2189                 up_write(&curseg->journal_rwsem);
2190         else
2191                 f2fs_put_page(page, 1);
2192
2193         f2fs_bug_on(sbi, set->entry_cnt);
2194
2195         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2196         kmem_cache_free(nat_entry_set_slab, set);
2197 }
2198
2199 /*
2200  * This function is called during the checkpointing process.
2201  */
2202 void flush_nat_entries(struct f2fs_sb_info *sbi)
2203 {
2204         struct f2fs_nm_info *nm_i = NM_I(sbi);
2205         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2206         struct f2fs_journal *journal = curseg->journal;
2207         struct nat_entry_set *setvec[SETVEC_SIZE];
2208         struct nat_entry_set *set, *tmp;
2209         unsigned int found;
2210         nid_t set_idx = 0;
2211         LIST_HEAD(sets);
2212
2213         if (!nm_i->dirty_nat_cnt)
2214                 return;
2215
2216         down_write(&nm_i->nat_tree_lock);
2217
2218         /*
2219          * if there are no enough space in journal to store dirty nat
2220          * entries, remove all entries from journal and merge them
2221          * into nat entry set.
2222          */
2223         if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2224                 remove_nats_in_journal(sbi);
2225
2226         while ((found = __gang_lookup_nat_set(nm_i,
2227                                         set_idx, SETVEC_SIZE, setvec))) {
2228                 unsigned idx;
2229                 set_idx = setvec[found - 1]->set + 1;
2230                 for (idx = 0; idx < found; idx++)
2231                         __adjust_nat_entry_set(setvec[idx], &sets,
2232                                                 MAX_NAT_JENTRIES(journal));
2233         }
2234
2235         /* flush dirty nats in nat entry set */
2236         list_for_each_entry_safe(set, tmp, &sets, set_list)
2237                 __flush_nat_entry_set(sbi, set);
2238
2239         up_write(&nm_i->nat_tree_lock);
2240
2241         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2242 }
2243
2244 static int init_node_manager(struct f2fs_sb_info *sbi)
2245 {
2246         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2247         struct f2fs_nm_info *nm_i = NM_I(sbi);
2248         unsigned char *version_bitmap;
2249         unsigned int nat_segs, nat_blocks;
2250
2251         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2252
2253         /* segment_count_nat includes pair segment so divide to 2. */
2254         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2255         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2256
2257         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2258
2259         /* not used nids: 0, node, meta, (and root counted as valid node) */
2260         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2261         nm_i->fcnt = 0;
2262         nm_i->nat_cnt = 0;
2263         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2264         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2265         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2266
2267         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2268         INIT_LIST_HEAD(&nm_i->free_nid_list);
2269         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2270         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2271         INIT_LIST_HEAD(&nm_i->nat_entries);
2272
2273         mutex_init(&nm_i->build_lock);
2274         spin_lock_init(&nm_i->free_nid_list_lock);
2275         init_rwsem(&nm_i->nat_tree_lock);
2276
2277         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2278         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2279         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2280         if (!version_bitmap)
2281                 return -EFAULT;
2282
2283         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2284                                         GFP_KERNEL);
2285         if (!nm_i->nat_bitmap)
2286                 return -ENOMEM;
2287         return 0;
2288 }
2289
2290 int build_node_manager(struct f2fs_sb_info *sbi)
2291 {
2292         int err;
2293
2294         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2295         if (!sbi->nm_info)
2296                 return -ENOMEM;
2297
2298         err = init_node_manager(sbi);
2299         if (err)
2300                 return err;
2301
2302         build_free_nids(sbi);
2303         return 0;
2304 }
2305
2306 void destroy_node_manager(struct f2fs_sb_info *sbi)
2307 {
2308         struct f2fs_nm_info *nm_i = NM_I(sbi);
2309         struct free_nid *i, *next_i;
2310         struct nat_entry *natvec[NATVEC_SIZE];
2311         struct nat_entry_set *setvec[SETVEC_SIZE];
2312         nid_t nid = 0;
2313         unsigned int found;
2314
2315         if (!nm_i)
2316                 return;
2317
2318         /* destroy free nid list */
2319         spin_lock(&nm_i->free_nid_list_lock);
2320         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2321                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2322                 __del_from_free_nid_list(nm_i, i);
2323                 nm_i->fcnt--;
2324                 spin_unlock(&nm_i->free_nid_list_lock);
2325                 kmem_cache_free(free_nid_slab, i);
2326                 spin_lock(&nm_i->free_nid_list_lock);
2327         }
2328         f2fs_bug_on(sbi, nm_i->fcnt);
2329         spin_unlock(&nm_i->free_nid_list_lock);
2330
2331         /* destroy nat cache */
2332         down_write(&nm_i->nat_tree_lock);
2333         while ((found = __gang_lookup_nat_cache(nm_i,
2334                                         nid, NATVEC_SIZE, natvec))) {
2335                 unsigned idx;
2336
2337                 nid = nat_get_nid(natvec[found - 1]) + 1;
2338                 for (idx = 0; idx < found; idx++)
2339                         __del_from_nat_cache(nm_i, natvec[idx]);
2340         }
2341         f2fs_bug_on(sbi, nm_i->nat_cnt);
2342
2343         /* destroy nat set cache */
2344         nid = 0;
2345         while ((found = __gang_lookup_nat_set(nm_i,
2346                                         nid, SETVEC_SIZE, setvec))) {
2347                 unsigned idx;
2348
2349                 nid = setvec[found - 1]->set + 1;
2350                 for (idx = 0; idx < found; idx++) {
2351                         /* entry_cnt is not zero, when cp_error was occurred */
2352                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2353                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2354                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2355                 }
2356         }
2357         up_write(&nm_i->nat_tree_lock);
2358
2359         kfree(nm_i->nat_bitmap);
2360         sbi->nm_info = NULL;
2361         kfree(nm_i);
2362 }
2363
2364 int __init create_node_manager_caches(void)
2365 {
2366         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2367                         sizeof(struct nat_entry));
2368         if (!nat_entry_slab)
2369                 goto fail;
2370
2371         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2372                         sizeof(struct free_nid));
2373         if (!free_nid_slab)
2374                 goto destroy_nat_entry;
2375
2376         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2377                         sizeof(struct nat_entry_set));
2378         if (!nat_entry_set_slab)
2379                 goto destroy_free_nid;
2380         return 0;
2381
2382 destroy_free_nid:
2383         kmem_cache_destroy(free_nid_slab);
2384 destroy_nat_entry:
2385         kmem_cache_destroy(nat_entry_slab);
2386 fail:
2387         return -ENOMEM;
2388 }
2389
2390 void destroy_node_manager_caches(void)
2391 {
2392         kmem_cache_destroy(nat_entry_set_slab);
2393         kmem_cache_destroy(free_nid_slab);
2394         kmem_cache_destroy(nat_entry_slab);
2395 }