]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.h
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[karo-tx-linux.git] / fs / f2fs / node.h
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE             128
22
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD       10
25
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE     64
28
29 /* return value for read_node_page */
30 #define LOCKED_PAGE     1
31
32 /*
33  * For node information
34  */
35 struct node_info {
36         nid_t nid;              /* node id */
37         nid_t ino;              /* inode number of the node's owner */
38         block_t blk_addr;       /* block address of the node */
39         unsigned char version;  /* version of the node */
40 };
41
42 struct nat_entry {
43         struct list_head list;  /* for clean or dirty nat list */
44         bool checkpointed;      /* whether it is checkpointed or not */
45         bool fsync_done;        /* whether the latest node has fsync mark */
46         struct node_info ni;    /* in-memory node information */
47 };
48
49 #define nat_get_nid(nat)                (nat->ni.nid)
50 #define nat_set_nid(nat, n)             (nat->ni.nid = n)
51 #define nat_get_blkaddr(nat)            (nat->ni.blk_addr)
52 #define nat_set_blkaddr(nat, b)         (nat->ni.blk_addr = b)
53 #define nat_get_ino(nat)                (nat->ni.ino)
54 #define nat_set_ino(nat, i)             (nat->ni.ino = i)
55 #define nat_get_version(nat)            (nat->ni.version)
56 #define nat_set_version(nat, v)         (nat->ni.version = v)
57
58 #define __set_nat_cache_dirty(nm_i, ne)                                 \
59         do {                                                            \
60                 ne->checkpointed = false;                               \
61                 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);    \
62         } while (0)
63 #define __clear_nat_cache_dirty(nm_i, ne)                               \
64         do {                                                            \
65                 ne->checkpointed = true;                                \
66                 list_move_tail(&ne->list, &nm_i->nat_entries);          \
67         } while (0)
68 #define inc_node_version(version)       (++version)
69
70 static inline void node_info_from_raw_nat(struct node_info *ni,
71                                                 struct f2fs_nat_entry *raw_ne)
72 {
73         ni->ino = le32_to_cpu(raw_ne->ino);
74         ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75         ni->version = raw_ne->version;
76 }
77
78 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
79                                                 struct node_info *ni)
80 {
81         raw_ne->ino = cpu_to_le32(ni->ino);
82         raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
83         raw_ne->version = ni->version;
84 }
85
86 enum mem_type {
87         FREE_NIDS,      /* indicates the free nid list */
88         NAT_ENTRIES,    /* indicates the cached nat entry */
89         DIRTY_DENTS     /* indicates dirty dentry pages */
90 };
91
92 /*
93  * For free nid mangement
94  */
95 enum nid_state {
96         NID_NEW,        /* newly added to free nid list */
97         NID_ALLOC       /* it is allocated */
98 };
99
100 struct free_nid {
101         struct list_head list;  /* for free node id list */
102         nid_t nid;              /* node id */
103         int state;              /* in use or not: NID_NEW or NID_ALLOC */
104 };
105
106 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
107 {
108         struct f2fs_nm_info *nm_i = NM_I(sbi);
109         struct free_nid *fnid;
110
111         if (nm_i->fcnt <= 0)
112                 return -1;
113         spin_lock(&nm_i->free_nid_list_lock);
114         fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
115         *nid = fnid->nid;
116         spin_unlock(&nm_i->free_nid_list_lock);
117         return 0;
118 }
119
120 /*
121  * inline functions
122  */
123 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
124 {
125         struct f2fs_nm_info *nm_i = NM_I(sbi);
126         memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
127 }
128
129 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
130 {
131         struct f2fs_nm_info *nm_i = NM_I(sbi);
132         pgoff_t block_off;
133         pgoff_t block_addr;
134         int seg_off;
135
136         block_off = NAT_BLOCK_OFFSET(start);
137         seg_off = block_off >> sbi->log_blocks_per_seg;
138
139         block_addr = (pgoff_t)(nm_i->nat_blkaddr +
140                 (seg_off << sbi->log_blocks_per_seg << 1) +
141                 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
142
143         if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
144                 block_addr += sbi->blocks_per_seg;
145
146         return block_addr;
147 }
148
149 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
150                                                 pgoff_t block_addr)
151 {
152         struct f2fs_nm_info *nm_i = NM_I(sbi);
153
154         block_addr -= nm_i->nat_blkaddr;
155         if ((block_addr >> sbi->log_blocks_per_seg) % 2)
156                 block_addr -= sbi->blocks_per_seg;
157         else
158                 block_addr += sbi->blocks_per_seg;
159
160         return block_addr + nm_i->nat_blkaddr;
161 }
162
163 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
164 {
165         unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
166
167         if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
168                 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
169         else
170                 f2fs_set_bit(block_off, nm_i->nat_bitmap);
171 }
172
173 static inline void fill_node_footer(struct page *page, nid_t nid,
174                                 nid_t ino, unsigned int ofs, bool reset)
175 {
176         struct f2fs_node *rn = F2FS_NODE(page);
177         if (reset)
178                 memset(rn, 0, sizeof(*rn));
179         rn->footer.nid = cpu_to_le32(nid);
180         rn->footer.ino = cpu_to_le32(ino);
181         rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
182 }
183
184 static inline void copy_node_footer(struct page *dst, struct page *src)
185 {
186         struct f2fs_node *src_rn = F2FS_NODE(src);
187         struct f2fs_node *dst_rn = F2FS_NODE(dst);
188         memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
189 }
190
191 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
192 {
193         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
194         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
195         struct f2fs_node *rn = F2FS_NODE(page);
196
197         rn->footer.cp_ver = ckpt->checkpoint_ver;
198         rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
199 }
200
201 static inline nid_t ino_of_node(struct page *node_page)
202 {
203         struct f2fs_node *rn = F2FS_NODE(node_page);
204         return le32_to_cpu(rn->footer.ino);
205 }
206
207 static inline nid_t nid_of_node(struct page *node_page)
208 {
209         struct f2fs_node *rn = F2FS_NODE(node_page);
210         return le32_to_cpu(rn->footer.nid);
211 }
212
213 static inline unsigned int ofs_of_node(struct page *node_page)
214 {
215         struct f2fs_node *rn = F2FS_NODE(node_page);
216         unsigned flag = le32_to_cpu(rn->footer.flag);
217         return flag >> OFFSET_BIT_SHIFT;
218 }
219
220 static inline unsigned long long cpver_of_node(struct page *node_page)
221 {
222         struct f2fs_node *rn = F2FS_NODE(node_page);
223         return le64_to_cpu(rn->footer.cp_ver);
224 }
225
226 static inline block_t next_blkaddr_of_node(struct page *node_page)
227 {
228         struct f2fs_node *rn = F2FS_NODE(node_page);
229         return le32_to_cpu(rn->footer.next_blkaddr);
230 }
231
232 /*
233  * f2fs assigns the following node offsets described as (num).
234  * N = NIDS_PER_BLOCK
235  *
236  *  Inode block (0)
237  *    |- direct node (1)
238  *    |- direct node (2)
239  *    |- indirect node (3)
240  *    |            `- direct node (4 => 4 + N - 1)
241  *    |- indirect node (4 + N)
242  *    |            `- direct node (5 + N => 5 + 2N - 1)
243  *    `- double indirect node (5 + 2N)
244  *                 `- indirect node (6 + 2N)
245  *                       `- direct node
246  *                 ......
247  *                 `- indirect node ((6 + 2N) + x(N + 1))
248  *                       `- direct node
249  *                 ......
250  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
251  *                       `- direct node
252  */
253 static inline bool IS_DNODE(struct page *node_page)
254 {
255         unsigned int ofs = ofs_of_node(node_page);
256
257         if (f2fs_has_xattr_block(ofs))
258                 return false;
259
260         if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
261                         ofs == 5 + 2 * NIDS_PER_BLOCK)
262                 return false;
263         if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
264                 ofs -= 6 + 2 * NIDS_PER_BLOCK;
265                 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
266                         return false;
267         }
268         return true;
269 }
270
271 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
272 {
273         struct f2fs_node *rn = F2FS_NODE(p);
274
275         f2fs_wait_on_page_writeback(p, NODE);
276
277         if (i)
278                 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
279         else
280                 rn->in.nid[off] = cpu_to_le32(nid);
281         set_page_dirty(p);
282 }
283
284 static inline nid_t get_nid(struct page *p, int off, bool i)
285 {
286         struct f2fs_node *rn = F2FS_NODE(p);
287
288         if (i)
289                 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
290         return le32_to_cpu(rn->in.nid[off]);
291 }
292
293 /*
294  * Coldness identification:
295  *  - Mark cold files in f2fs_inode_info
296  *  - Mark cold node blocks in their node footer
297  *  - Mark cold data pages in page cache
298  */
299 static inline int is_file(struct inode *inode, int type)
300 {
301         return F2FS_I(inode)->i_advise & type;
302 }
303
304 static inline void set_file(struct inode *inode, int type)
305 {
306         F2FS_I(inode)->i_advise |= type;
307 }
308
309 static inline void clear_file(struct inode *inode, int type)
310 {
311         F2FS_I(inode)->i_advise &= ~type;
312 }
313
314 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
315 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
316 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
317 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
318 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
319 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
320
321 static inline int is_cold_data(struct page *page)
322 {
323         return PageChecked(page);
324 }
325
326 static inline void set_cold_data(struct page *page)
327 {
328         SetPageChecked(page);
329 }
330
331 static inline void clear_cold_data(struct page *page)
332 {
333         ClearPageChecked(page);
334 }
335
336 static inline int is_node(struct page *page, int type)
337 {
338         struct f2fs_node *rn = F2FS_NODE(page);
339         return le32_to_cpu(rn->footer.flag) & (1 << type);
340 }
341
342 #define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
343 #define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
344 #define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
345
346 static inline void set_cold_node(struct inode *inode, struct page *page)
347 {
348         struct f2fs_node *rn = F2FS_NODE(page);
349         unsigned int flag = le32_to_cpu(rn->footer.flag);
350
351         if (S_ISDIR(inode->i_mode))
352                 flag &= ~(0x1 << COLD_BIT_SHIFT);
353         else
354                 flag |= (0x1 << COLD_BIT_SHIFT);
355         rn->footer.flag = cpu_to_le32(flag);
356 }
357
358 static inline void set_mark(struct page *page, int mark, int type)
359 {
360         struct f2fs_node *rn = F2FS_NODE(page);
361         unsigned int flag = le32_to_cpu(rn->footer.flag);
362         if (mark)
363                 flag |= (0x1 << type);
364         else
365                 flag &= ~(0x1 << type);
366         rn->footer.flag = cpu_to_le32(flag);
367 }
368 #define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
369 #define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)