]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40                 enum dirty_type dirty_type)
41 {
42         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43
44         /* need not be added */
45         if (IS_CURSEG(sbi, segno))
46                 return;
47
48         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49                 dirty_i->nr_dirty[dirty_type]++;
50
51         if (dirty_type == DIRTY) {
52                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53                 enum dirty_type t = DIRTY_HOT_DATA;
54
55                 dirty_type = sentry->type;
56
57                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58                         dirty_i->nr_dirty[dirty_type]++;
59
60                 /* Only one bitmap should be set */
61                 for (; t <= DIRTY_COLD_NODE; t++) {
62                         if (t == dirty_type)
63                                 continue;
64                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65                                 dirty_i->nr_dirty[t]--;
66                 }
67         }
68 }
69
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71                 enum dirty_type dirty_type)
72 {
73         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74
75         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76                 dirty_i->nr_dirty[dirty_type]--;
77
78         if (dirty_type == DIRTY) {
79                 enum dirty_type t = DIRTY_HOT_DATA;
80
81                 /* clear its dirty bitmap */
82                 for (; t <= DIRTY_COLD_NODE; t++) {
83                         if (test_and_clear_bit(segno,
84                                                 dirty_i->dirty_segmap[t])) {
85                                 dirty_i->nr_dirty[t]--;
86                                 break;
87                         }
88                 }
89
90                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
91                         clear_bit(GET_SECNO(sbi, segno),
92                                                 dirty_i->victim_secmap);
93         }
94 }
95
96 /*
97  * Should not occur error such as -ENOMEM.
98  * Adding dirty entry into seglist is not critical operation.
99  * If a given segment is one of current working segments, it won't be added.
100  */
101 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
102 {
103         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
104         unsigned short valid_blocks;
105
106         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
107                 return;
108
109         mutex_lock(&dirty_i->seglist_lock);
110
111         valid_blocks = get_valid_blocks(sbi, segno, 0);
112
113         if (valid_blocks == 0) {
114                 __locate_dirty_segment(sbi, segno, PRE);
115                 __remove_dirty_segment(sbi, segno, DIRTY);
116         } else if (valid_blocks < sbi->blocks_per_seg) {
117                 __locate_dirty_segment(sbi, segno, DIRTY);
118         } else {
119                 /* Recovery routine with SSR needs this */
120                 __remove_dirty_segment(sbi, segno, DIRTY);
121         }
122
123         mutex_unlock(&dirty_i->seglist_lock);
124 }
125
126 /*
127  * Should call clear_prefree_segments after checkpoint is done.
128  */
129 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
130 {
131         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
132         unsigned int segno = -1;
133         unsigned int total_segs = TOTAL_SEGS(sbi);
134
135         mutex_lock(&dirty_i->seglist_lock);
136         while (1) {
137                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
138                                 segno + 1);
139                 if (segno >= total_segs)
140                         break;
141                 __set_test_and_free(sbi, segno);
142         }
143         mutex_unlock(&dirty_i->seglist_lock);
144 }
145
146 void clear_prefree_segments(struct f2fs_sb_info *sbi)
147 {
148         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
149         unsigned int segno = -1;
150         unsigned int total_segs = TOTAL_SEGS(sbi);
151
152         mutex_lock(&dirty_i->seglist_lock);
153         while (1) {
154                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
155                                 segno + 1);
156                 if (segno >= total_segs)
157                         break;
158
159                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
160                         dirty_i->nr_dirty[PRE]--;
161
162                 /* Let's use trim */
163                 if (test_opt(sbi, DISCARD))
164                         blkdev_issue_discard(sbi->sb->s_bdev,
165                                         START_BLOCK(sbi, segno) <<
166                                         sbi->log_sectors_per_block,
167                                         1 << (sbi->log_sectors_per_block +
168                                                 sbi->log_blocks_per_seg),
169                                         GFP_NOFS, 0);
170         }
171         mutex_unlock(&dirty_i->seglist_lock);
172 }
173
174 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
175 {
176         struct sit_info *sit_i = SIT_I(sbi);
177         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
178                 sit_i->dirty_sentries++;
179 }
180
181 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
182                                         unsigned int segno, int modified)
183 {
184         struct seg_entry *se = get_seg_entry(sbi, segno);
185         se->type = type;
186         if (modified)
187                 __mark_sit_entry_dirty(sbi, segno);
188 }
189
190 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
191 {
192         struct seg_entry *se;
193         unsigned int segno, offset;
194         long int new_vblocks;
195
196         segno = GET_SEGNO(sbi, blkaddr);
197
198         se = get_seg_entry(sbi, segno);
199         new_vblocks = se->valid_blocks + del;
200         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
201
202         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
203                                 (new_vblocks > sbi->blocks_per_seg)));
204
205         se->valid_blocks = new_vblocks;
206         se->mtime = get_mtime(sbi);
207         SIT_I(sbi)->max_mtime = se->mtime;
208
209         /* Update valid block bitmap */
210         if (del > 0) {
211                 if (f2fs_set_bit(offset, se->cur_valid_map))
212                         BUG();
213         } else {
214                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
215                         BUG();
216         }
217         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
218                 se->ckpt_valid_blocks += del;
219
220         __mark_sit_entry_dirty(sbi, segno);
221
222         /* update total number of valid blocks to be written in ckpt area */
223         SIT_I(sbi)->written_valid_blocks += del;
224
225         if (sbi->segs_per_sec > 1)
226                 get_sec_entry(sbi, segno)->valid_blocks += del;
227 }
228
229 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
230                         block_t old_blkaddr, block_t new_blkaddr)
231 {
232         update_sit_entry(sbi, new_blkaddr, 1);
233         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
234                 update_sit_entry(sbi, old_blkaddr, -1);
235 }
236
237 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
238 {
239         unsigned int segno = GET_SEGNO(sbi, addr);
240         struct sit_info *sit_i = SIT_I(sbi);
241
242         BUG_ON(addr == NULL_ADDR);
243         if (addr == NEW_ADDR)
244                 return;
245
246         /* add it into sit main buffer */
247         mutex_lock(&sit_i->sentry_lock);
248
249         update_sit_entry(sbi, addr, -1);
250
251         /* add it into dirty seglist */
252         locate_dirty_segment(sbi, segno);
253
254         mutex_unlock(&sit_i->sentry_lock);
255 }
256
257 /*
258  * This function should be resided under the curseg_mutex lock
259  */
260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
261                                         struct f2fs_summary *sum)
262 {
263         struct curseg_info *curseg = CURSEG_I(sbi, type);
264         void *addr = curseg->sum_blk;
265         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
266         memcpy(addr, sum, sizeof(struct f2fs_summary));
267 }
268
269 /*
270  * Calculate the number of current summary pages for writing
271  */
272 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
273 {
274         int total_size_bytes = 0;
275         int valid_sum_count = 0;
276         int i, sum_space;
277
278         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
279                 if (sbi->ckpt->alloc_type[i] == SSR)
280                         valid_sum_count += sbi->blocks_per_seg;
281                 else
282                         valid_sum_count += curseg_blkoff(sbi, i);
283         }
284
285         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
286                         + sizeof(struct nat_journal) + 2
287                         + sizeof(struct sit_journal) + 2;
288         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
289         if (total_size_bytes < sum_space)
290                 return 1;
291         else if (total_size_bytes < 2 * sum_space)
292                 return 2;
293         return 3;
294 }
295
296 /*
297  * Caller should put this summary page
298  */
299 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
300 {
301         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
302 }
303
304 static void write_sum_page(struct f2fs_sb_info *sbi,
305                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
306 {
307         struct page *page = grab_meta_page(sbi, blk_addr);
308         void *kaddr = page_address(page);
309         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
310         set_page_dirty(page);
311         f2fs_put_page(page, 1);
312 }
313
314 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
315 {
316         struct curseg_info *curseg = CURSEG_I(sbi, type);
317         unsigned int segno = curseg->segno + 1;
318         struct free_segmap_info *free_i = FREE_I(sbi);
319
320         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
321                 return !test_bit(segno, free_i->free_segmap);
322         return 0;
323 }
324
325 /*
326  * Find a new segment from the free segments bitmap to right order
327  * This function should be returned with success, otherwise BUG
328  */
329 static void get_new_segment(struct f2fs_sb_info *sbi,
330                         unsigned int *newseg, bool new_sec, int dir)
331 {
332         struct free_segmap_info *free_i = FREE_I(sbi);
333         unsigned int segno, secno, zoneno;
334         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
335         unsigned int hint = *newseg / sbi->segs_per_sec;
336         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
337         unsigned int left_start = hint;
338         bool init = true;
339         int go_left = 0;
340         int i;
341
342         write_lock(&free_i->segmap_lock);
343
344         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
345                 segno = find_next_zero_bit(free_i->free_segmap,
346                                         TOTAL_SEGS(sbi), *newseg + 1);
347                 if (segno - *newseg < sbi->segs_per_sec -
348                                         (*newseg % sbi->segs_per_sec))
349                         goto got_it;
350         }
351 find_other_zone:
352         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
353         if (secno >= TOTAL_SECS(sbi)) {
354                 if (dir == ALLOC_RIGHT) {
355                         secno = find_next_zero_bit(free_i->free_secmap,
356                                                         TOTAL_SECS(sbi), 0);
357                         BUG_ON(secno >= TOTAL_SECS(sbi));
358                 } else {
359                         go_left = 1;
360                         left_start = hint - 1;
361                 }
362         }
363         if (go_left == 0)
364                 goto skip_left;
365
366         while (test_bit(left_start, free_i->free_secmap)) {
367                 if (left_start > 0) {
368                         left_start--;
369                         continue;
370                 }
371                 left_start = find_next_zero_bit(free_i->free_secmap,
372                                                         TOTAL_SECS(sbi), 0);
373                 BUG_ON(left_start >= TOTAL_SECS(sbi));
374                 break;
375         }
376         secno = left_start;
377 skip_left:
378         hint = secno;
379         segno = secno * sbi->segs_per_sec;
380         zoneno = secno / sbi->secs_per_zone;
381
382         /* give up on finding another zone */
383         if (!init)
384                 goto got_it;
385         if (sbi->secs_per_zone == 1)
386                 goto got_it;
387         if (zoneno == old_zoneno)
388                 goto got_it;
389         if (dir == ALLOC_LEFT) {
390                 if (!go_left && zoneno + 1 >= total_zones)
391                         goto got_it;
392                 if (go_left && zoneno == 0)
393                         goto got_it;
394         }
395         for (i = 0; i < NR_CURSEG_TYPE; i++)
396                 if (CURSEG_I(sbi, i)->zone == zoneno)
397                         break;
398
399         if (i < NR_CURSEG_TYPE) {
400                 /* zone is in user, try another */
401                 if (go_left)
402                         hint = zoneno * sbi->secs_per_zone - 1;
403                 else if (zoneno + 1 >= total_zones)
404                         hint = 0;
405                 else
406                         hint = (zoneno + 1) * sbi->secs_per_zone;
407                 init = false;
408                 goto find_other_zone;
409         }
410 got_it:
411         /* set it as dirty segment in free segmap */
412         BUG_ON(test_bit(segno, free_i->free_segmap));
413         __set_inuse(sbi, segno);
414         *newseg = segno;
415         write_unlock(&free_i->segmap_lock);
416 }
417
418 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
419 {
420         struct curseg_info *curseg = CURSEG_I(sbi, type);
421         struct summary_footer *sum_footer;
422
423         curseg->segno = curseg->next_segno;
424         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
425         curseg->next_blkoff = 0;
426         curseg->next_segno = NULL_SEGNO;
427
428         sum_footer = &(curseg->sum_blk->footer);
429         memset(sum_footer, 0, sizeof(struct summary_footer));
430         if (IS_DATASEG(type))
431                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
432         if (IS_NODESEG(type))
433                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
434         __set_sit_entry_type(sbi, type, curseg->segno, modified);
435 }
436
437 /*
438  * Allocate a current working segment.
439  * This function always allocates a free segment in LFS manner.
440  */
441 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
442 {
443         struct curseg_info *curseg = CURSEG_I(sbi, type);
444         unsigned int segno = curseg->segno;
445         int dir = ALLOC_LEFT;
446
447         write_sum_page(sbi, curseg->sum_blk,
448                                 GET_SUM_BLOCK(sbi, segno));
449         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
450                 dir = ALLOC_RIGHT;
451
452         if (test_opt(sbi, NOHEAP))
453                 dir = ALLOC_RIGHT;
454
455         get_new_segment(sbi, &segno, new_sec, dir);
456         curseg->next_segno = segno;
457         reset_curseg(sbi, type, 1);
458         curseg->alloc_type = LFS;
459 }
460
461 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
462                         struct curseg_info *seg, block_t start)
463 {
464         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
465         block_t ofs;
466         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
467                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
468                         && !f2fs_test_bit(ofs, se->cur_valid_map))
469                         break;
470         }
471         seg->next_blkoff = ofs;
472 }
473
474 /*
475  * If a segment is written by LFS manner, next block offset is just obtained
476  * by increasing the current block offset. However, if a segment is written by
477  * SSR manner, next block offset obtained by calling __next_free_blkoff
478  */
479 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
480                                 struct curseg_info *seg)
481 {
482         if (seg->alloc_type == SSR)
483                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
484         else
485                 seg->next_blkoff++;
486 }
487
488 /*
489  * This function always allocates a used segment (from dirty seglist) by SSR
490  * manner, so it should recover the existing segment information of valid blocks
491  */
492 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
493 {
494         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
495         struct curseg_info *curseg = CURSEG_I(sbi, type);
496         unsigned int new_segno = curseg->next_segno;
497         struct f2fs_summary_block *sum_node;
498         struct page *sum_page;
499
500         write_sum_page(sbi, curseg->sum_blk,
501                                 GET_SUM_BLOCK(sbi, curseg->segno));
502         __set_test_and_inuse(sbi, new_segno);
503
504         mutex_lock(&dirty_i->seglist_lock);
505         __remove_dirty_segment(sbi, new_segno, PRE);
506         __remove_dirty_segment(sbi, new_segno, DIRTY);
507         mutex_unlock(&dirty_i->seglist_lock);
508
509         reset_curseg(sbi, type, 1);
510         curseg->alloc_type = SSR;
511         __next_free_blkoff(sbi, curseg, 0);
512
513         if (reuse) {
514                 sum_page = get_sum_page(sbi, new_segno);
515                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
516                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
517                 f2fs_put_page(sum_page, 1);
518         }
519 }
520
521 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
522 {
523         struct curseg_info *curseg = CURSEG_I(sbi, type);
524         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
525
526         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
527                 return v_ops->get_victim(sbi,
528                                 &(curseg)->next_segno, BG_GC, type, SSR);
529
530         /* For data segments, let's do SSR more intensively */
531         for (; type >= CURSEG_HOT_DATA; type--)
532                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
533                                                 BG_GC, type, SSR))
534                         return 1;
535         return 0;
536 }
537
538 /*
539  * flush out current segment and replace it with new segment
540  * This function should be returned with success, otherwise BUG
541  */
542 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
543                                                 int type, bool force)
544 {
545         struct curseg_info *curseg = CURSEG_I(sbi, type);
546
547         if (force)
548                 new_curseg(sbi, type, true);
549         else if (type == CURSEG_WARM_NODE)
550                 new_curseg(sbi, type, false);
551         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
552                 new_curseg(sbi, type, false);
553         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
554                 change_curseg(sbi, type, true);
555         else
556                 new_curseg(sbi, type, false);
557
558         stat_inc_alloc_type(sbi, curseg);
559 }
560
561 void allocate_new_segments(struct f2fs_sb_info *sbi)
562 {
563         struct curseg_info *curseg;
564         unsigned int old_curseg;
565         int i;
566
567         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
568                 curseg = CURSEG_I(sbi, i);
569                 old_curseg = curseg->segno;
570                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
571                 locate_dirty_segment(sbi, old_curseg);
572         }
573 }
574
575 static const struct segment_allocation default_salloc_ops = {
576         .allocate_segment = allocate_segment_by_default,
577 };
578
579 static void f2fs_end_io_write(struct bio *bio, int err)
580 {
581         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
582         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
583         struct bio_private *p = bio->bi_private;
584
585         do {
586                 struct page *page = bvec->bv_page;
587
588                 if (--bvec >= bio->bi_io_vec)
589                         prefetchw(&bvec->bv_page->flags);
590                 if (!uptodate) {
591                         SetPageError(page);
592                         if (page->mapping)
593                                 set_bit(AS_EIO, &page->mapping->flags);
594                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
595                         p->sbi->sb->s_flags |= MS_RDONLY;
596                 }
597                 end_page_writeback(page);
598                 dec_page_count(p->sbi, F2FS_WRITEBACK);
599         } while (bvec >= bio->bi_io_vec);
600
601         if (p->is_sync)
602                 complete(p->wait);
603
604         if (!get_pages(p->sbi, F2FS_WRITEBACK) && p->sbi->cp_task)
605                 wake_up_process(p->sbi->cp_task);
606
607         kfree(p);
608         bio_put(bio);
609 }
610
611 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
612 {
613         struct bio *bio;
614
615         /* No failure on bio allocation */
616         bio = bio_alloc(GFP_NOIO, npages);
617         bio->bi_bdev = bdev;
618         bio->bi_private = NULL;
619
620         return bio;
621 }
622
623 static void do_submit_bio(struct f2fs_sb_info *sbi,
624                                 enum page_type type, bool sync)
625 {
626         int rw = sync ? WRITE_SYNC : WRITE;
627         enum page_type btype = type > META ? META : type;
628
629         if (type >= META_FLUSH)
630                 rw = WRITE_FLUSH_FUA;
631
632         if (btype == META)
633                 rw |= REQ_META;
634
635         if (sbi->bio[btype]) {
636                 struct bio_private *p = sbi->bio[btype]->bi_private;
637                 p->sbi = sbi;
638                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
639
640                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
641
642                 if (type == META_FLUSH) {
643                         DECLARE_COMPLETION_ONSTACK(wait);
644                         p->is_sync = true;
645                         p->wait = &wait;
646                         submit_bio(rw, sbi->bio[btype]);
647                         wait_for_completion(&wait);
648                 } else {
649                         p->is_sync = false;
650                         submit_bio(rw, sbi->bio[btype]);
651                 }
652                 sbi->bio[btype] = NULL;
653         }
654 }
655
656 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
657 {
658         down_write(&sbi->bio_sem);
659         do_submit_bio(sbi, type, sync);
660         up_write(&sbi->bio_sem);
661 }
662
663 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
664                                 block_t blk_addr, enum page_type type)
665 {
666         struct block_device *bdev = sbi->sb->s_bdev;
667         int bio_blocks;
668
669         verify_block_addr(sbi, blk_addr);
670
671         down_write(&sbi->bio_sem);
672
673         inc_page_count(sbi, F2FS_WRITEBACK);
674
675         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
676                 do_submit_bio(sbi, type, false);
677 alloc_new:
678         if (sbi->bio[type] == NULL) {
679                 struct bio_private *priv;
680 retry:
681                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
682                 if (!priv) {
683                         cond_resched();
684                         goto retry;
685                 }
686
687                 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
688                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
689                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
690                 sbi->bio[type]->bi_private = priv;
691                 /*
692                  * The end_io will be assigned at the sumbission phase.
693                  * Until then, let bio_add_page() merge consecutive IOs as much
694                  * as possible.
695                  */
696         }
697
698         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
699                                                         PAGE_CACHE_SIZE) {
700                 do_submit_bio(sbi, type, false);
701                 goto alloc_new;
702         }
703
704         sbi->last_block_in_bio[type] = blk_addr;
705
706         up_write(&sbi->bio_sem);
707         trace_f2fs_submit_write_page(page, blk_addr, type);
708 }
709
710 void f2fs_wait_on_page_writeback(struct page *page,
711                                 enum page_type type, bool sync)
712 {
713         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
714         if (PageWriteback(page)) {
715                 f2fs_submit_bio(sbi, type, sync);
716                 wait_on_page_writeback(page);
717         }
718 }
719
720 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
721 {
722         struct curseg_info *curseg = CURSEG_I(sbi, type);
723         if (curseg->next_blkoff < sbi->blocks_per_seg)
724                 return true;
725         return false;
726 }
727
728 static int __get_segment_type_2(struct page *page, enum page_type p_type)
729 {
730         if (p_type == DATA)
731                 return CURSEG_HOT_DATA;
732         else
733                 return CURSEG_HOT_NODE;
734 }
735
736 static int __get_segment_type_4(struct page *page, enum page_type p_type)
737 {
738         if (p_type == DATA) {
739                 struct inode *inode = page->mapping->host;
740
741                 if (S_ISDIR(inode->i_mode))
742                         return CURSEG_HOT_DATA;
743                 else
744                         return CURSEG_COLD_DATA;
745         } else {
746                 if (IS_DNODE(page) && !is_cold_node(page))
747                         return CURSEG_HOT_NODE;
748                 else
749                         return CURSEG_COLD_NODE;
750         }
751 }
752
753 static int __get_segment_type_6(struct page *page, enum page_type p_type)
754 {
755         if (p_type == DATA) {
756                 struct inode *inode = page->mapping->host;
757
758                 if (S_ISDIR(inode->i_mode))
759                         return CURSEG_HOT_DATA;
760                 else if (is_cold_data(page) || file_is_cold(inode))
761                         return CURSEG_COLD_DATA;
762                 else
763                         return CURSEG_WARM_DATA;
764         } else {
765                 if (IS_DNODE(page))
766                         return is_cold_node(page) ? CURSEG_WARM_NODE :
767                                                 CURSEG_HOT_NODE;
768                 else
769                         return CURSEG_COLD_NODE;
770         }
771 }
772
773 static int __get_segment_type(struct page *page, enum page_type p_type)
774 {
775         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
776         switch (sbi->active_logs) {
777         case 2:
778                 return __get_segment_type_2(page, p_type);
779         case 4:
780                 return __get_segment_type_4(page, p_type);
781         }
782         /* NR_CURSEG_TYPE(6) logs by default */
783         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
784         return __get_segment_type_6(page, p_type);
785 }
786
787 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
788                         block_t old_blkaddr, block_t *new_blkaddr,
789                         struct f2fs_summary *sum, enum page_type p_type)
790 {
791         struct sit_info *sit_i = SIT_I(sbi);
792         struct curseg_info *curseg;
793         unsigned int old_cursegno;
794         int type;
795
796         type = __get_segment_type(page, p_type);
797         curseg = CURSEG_I(sbi, type);
798
799         mutex_lock(&curseg->curseg_mutex);
800
801         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
802         old_cursegno = curseg->segno;
803
804         /*
805          * __add_sum_entry should be resided under the curseg_mutex
806          * because, this function updates a summary entry in the
807          * current summary block.
808          */
809         __add_sum_entry(sbi, type, sum);
810
811         mutex_lock(&sit_i->sentry_lock);
812         __refresh_next_blkoff(sbi, curseg);
813
814         stat_inc_alloc_type(sbi, curseg);
815
816         /*
817          * SIT information should be updated before segment allocation,
818          * since SSR needs latest valid block information.
819          */
820         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
821
822         if (!__has_curseg_space(sbi, type))
823                 sit_i->s_ops->allocate_segment(sbi, type, false);
824
825         locate_dirty_segment(sbi, old_cursegno);
826         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
827         mutex_unlock(&sit_i->sentry_lock);
828
829         if (p_type == NODE)
830                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
831
832         /* writeout dirty page into bdev */
833         submit_write_page(sbi, page, *new_blkaddr, p_type);
834
835         mutex_unlock(&curseg->curseg_mutex);
836 }
837
838 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
839 {
840         set_page_writeback(page);
841         submit_write_page(sbi, page, page->index, META);
842 }
843
844 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
845                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
846 {
847         struct f2fs_summary sum;
848         set_summary(&sum, nid, 0, 0);
849         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
850 }
851
852 void write_data_page(struct inode *inode, struct page *page,
853                 struct dnode_of_data *dn, block_t old_blkaddr,
854                 block_t *new_blkaddr)
855 {
856         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
857         struct f2fs_summary sum;
858         struct node_info ni;
859
860         BUG_ON(old_blkaddr == NULL_ADDR);
861         get_node_info(sbi, dn->nid, &ni);
862         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
863
864         do_write_page(sbi, page, old_blkaddr,
865                         new_blkaddr, &sum, DATA);
866 }
867
868 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
869                                         block_t old_blk_addr)
870 {
871         submit_write_page(sbi, page, old_blk_addr, DATA);
872 }
873
874 void recover_data_page(struct f2fs_sb_info *sbi,
875                         struct page *page, struct f2fs_summary *sum,
876                         block_t old_blkaddr, block_t new_blkaddr)
877 {
878         struct sit_info *sit_i = SIT_I(sbi);
879         struct curseg_info *curseg;
880         unsigned int segno, old_cursegno;
881         struct seg_entry *se;
882         int type;
883
884         segno = GET_SEGNO(sbi, new_blkaddr);
885         se = get_seg_entry(sbi, segno);
886         type = se->type;
887
888         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
889                 if (old_blkaddr == NULL_ADDR)
890                         type = CURSEG_COLD_DATA;
891                 else
892                         type = CURSEG_WARM_DATA;
893         }
894         curseg = CURSEG_I(sbi, type);
895
896         mutex_lock(&curseg->curseg_mutex);
897         mutex_lock(&sit_i->sentry_lock);
898
899         old_cursegno = curseg->segno;
900
901         /* change the current segment */
902         if (segno != curseg->segno) {
903                 curseg->next_segno = segno;
904                 change_curseg(sbi, type, true);
905         }
906
907         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
908                                         (sbi->blocks_per_seg - 1);
909         __add_sum_entry(sbi, type, sum);
910
911         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
912
913         locate_dirty_segment(sbi, old_cursegno);
914         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
915
916         mutex_unlock(&sit_i->sentry_lock);
917         mutex_unlock(&curseg->curseg_mutex);
918 }
919
920 void rewrite_node_page(struct f2fs_sb_info *sbi,
921                         struct page *page, struct f2fs_summary *sum,
922                         block_t old_blkaddr, block_t new_blkaddr)
923 {
924         struct sit_info *sit_i = SIT_I(sbi);
925         int type = CURSEG_WARM_NODE;
926         struct curseg_info *curseg;
927         unsigned int segno, old_cursegno;
928         block_t next_blkaddr = next_blkaddr_of_node(page);
929         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
930
931         curseg = CURSEG_I(sbi, type);
932
933         mutex_lock(&curseg->curseg_mutex);
934         mutex_lock(&sit_i->sentry_lock);
935
936         segno = GET_SEGNO(sbi, new_blkaddr);
937         old_cursegno = curseg->segno;
938
939         /* change the current segment */
940         if (segno != curseg->segno) {
941                 curseg->next_segno = segno;
942                 change_curseg(sbi, type, true);
943         }
944         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
945                                         (sbi->blocks_per_seg - 1);
946         __add_sum_entry(sbi, type, sum);
947
948         /* change the current log to the next block addr in advance */
949         if (next_segno != segno) {
950                 curseg->next_segno = next_segno;
951                 change_curseg(sbi, type, true);
952         }
953         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
954                                         (sbi->blocks_per_seg - 1);
955
956         /* rewrite node page */
957         set_page_writeback(page);
958         submit_write_page(sbi, page, new_blkaddr, NODE);
959         f2fs_submit_bio(sbi, NODE, true);
960         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
961
962         locate_dirty_segment(sbi, old_cursegno);
963         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
964
965         mutex_unlock(&sit_i->sentry_lock);
966         mutex_unlock(&curseg->curseg_mutex);
967 }
968
969 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
970 {
971         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
972         struct curseg_info *seg_i;
973         unsigned char *kaddr;
974         struct page *page;
975         block_t start;
976         int i, j, offset;
977
978         start = start_sum_block(sbi);
979
980         page = get_meta_page(sbi, start++);
981         kaddr = (unsigned char *)page_address(page);
982
983         /* Step 1: restore nat cache */
984         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
985         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
986
987         /* Step 2: restore sit cache */
988         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
989         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
990                                                 SUM_JOURNAL_SIZE);
991         offset = 2 * SUM_JOURNAL_SIZE;
992
993         /* Step 3: restore summary entries */
994         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
995                 unsigned short blk_off;
996                 unsigned int segno;
997
998                 seg_i = CURSEG_I(sbi, i);
999                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1000                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1001                 seg_i->next_segno = segno;
1002                 reset_curseg(sbi, i, 0);
1003                 seg_i->alloc_type = ckpt->alloc_type[i];
1004                 seg_i->next_blkoff = blk_off;
1005
1006                 if (seg_i->alloc_type == SSR)
1007                         blk_off = sbi->blocks_per_seg;
1008
1009                 for (j = 0; j < blk_off; j++) {
1010                         struct f2fs_summary *s;
1011                         s = (struct f2fs_summary *)(kaddr + offset);
1012                         seg_i->sum_blk->entries[j] = *s;
1013                         offset += SUMMARY_SIZE;
1014                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1015                                                 SUM_FOOTER_SIZE)
1016                                 continue;
1017
1018                         f2fs_put_page(page, 1);
1019                         page = NULL;
1020
1021                         page = get_meta_page(sbi, start++);
1022                         kaddr = (unsigned char *)page_address(page);
1023                         offset = 0;
1024                 }
1025         }
1026         f2fs_put_page(page, 1);
1027         return 0;
1028 }
1029
1030 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1031 {
1032         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1033         struct f2fs_summary_block *sum;
1034         struct curseg_info *curseg;
1035         struct page *new;
1036         unsigned short blk_off;
1037         unsigned int segno = 0;
1038         block_t blk_addr = 0;
1039
1040         /* get segment number and block addr */
1041         if (IS_DATASEG(type)) {
1042                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1043                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1044                                                         CURSEG_HOT_DATA]);
1045                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1046                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1047                 else
1048                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1049         } else {
1050                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1051                                                         CURSEG_HOT_NODE]);
1052                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1053                                                         CURSEG_HOT_NODE]);
1054                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1055                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1056                                                         type - CURSEG_HOT_NODE);
1057                 else
1058                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1059         }
1060
1061         new = get_meta_page(sbi, blk_addr);
1062         sum = (struct f2fs_summary_block *)page_address(new);
1063
1064         if (IS_NODESEG(type)) {
1065                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1066                         struct f2fs_summary *ns = &sum->entries[0];
1067                         int i;
1068                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1069                                 ns->version = 0;
1070                                 ns->ofs_in_node = 0;
1071                         }
1072                 } else {
1073                         if (restore_node_summary(sbi, segno, sum)) {
1074                                 f2fs_put_page(new, 1);
1075                                 return -EINVAL;
1076                         }
1077                 }
1078         }
1079
1080         /* set uncompleted segment to curseg */
1081         curseg = CURSEG_I(sbi, type);
1082         mutex_lock(&curseg->curseg_mutex);
1083         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1084         curseg->next_segno = segno;
1085         reset_curseg(sbi, type, 0);
1086         curseg->alloc_type = ckpt->alloc_type[type];
1087         curseg->next_blkoff = blk_off;
1088         mutex_unlock(&curseg->curseg_mutex);
1089         f2fs_put_page(new, 1);
1090         return 0;
1091 }
1092
1093 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1094 {
1095         int type = CURSEG_HOT_DATA;
1096
1097         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1098                 /* restore for compacted data summary */
1099                 if (read_compacted_summaries(sbi))
1100                         return -EINVAL;
1101                 type = CURSEG_HOT_NODE;
1102         }
1103
1104         for (; type <= CURSEG_COLD_NODE; type++)
1105                 if (read_normal_summaries(sbi, type))
1106                         return -EINVAL;
1107         return 0;
1108 }
1109
1110 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1111 {
1112         struct page *page;
1113         unsigned char *kaddr;
1114         struct f2fs_summary *summary;
1115         struct curseg_info *seg_i;
1116         int written_size = 0;
1117         int i, j;
1118
1119         page = grab_meta_page(sbi, blkaddr++);
1120         kaddr = (unsigned char *)page_address(page);
1121
1122         /* Step 1: write nat cache */
1123         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1124         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1125         written_size += SUM_JOURNAL_SIZE;
1126
1127         /* Step 2: write sit cache */
1128         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1129         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1130                                                 SUM_JOURNAL_SIZE);
1131         written_size += SUM_JOURNAL_SIZE;
1132
1133         set_page_dirty(page);
1134
1135         /* Step 3: write summary entries */
1136         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1137                 unsigned short blkoff;
1138                 seg_i = CURSEG_I(sbi, i);
1139                 if (sbi->ckpt->alloc_type[i] == SSR)
1140                         blkoff = sbi->blocks_per_seg;
1141                 else
1142                         blkoff = curseg_blkoff(sbi, i);
1143
1144                 for (j = 0; j < blkoff; j++) {
1145                         if (!page) {
1146                                 page = grab_meta_page(sbi, blkaddr++);
1147                                 kaddr = (unsigned char *)page_address(page);
1148                                 written_size = 0;
1149                         }
1150                         summary = (struct f2fs_summary *)(kaddr + written_size);
1151                         *summary = seg_i->sum_blk->entries[j];
1152                         written_size += SUMMARY_SIZE;
1153                         set_page_dirty(page);
1154
1155                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1156                                                         SUM_FOOTER_SIZE)
1157                                 continue;
1158
1159                         f2fs_put_page(page, 1);
1160                         page = NULL;
1161                 }
1162         }
1163         if (page)
1164                 f2fs_put_page(page, 1);
1165 }
1166
1167 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1168                                         block_t blkaddr, int type)
1169 {
1170         int i, end;
1171         if (IS_DATASEG(type))
1172                 end = type + NR_CURSEG_DATA_TYPE;
1173         else
1174                 end = type + NR_CURSEG_NODE_TYPE;
1175
1176         for (i = type; i < end; i++) {
1177                 struct curseg_info *sum = CURSEG_I(sbi, i);
1178                 mutex_lock(&sum->curseg_mutex);
1179                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1180                 mutex_unlock(&sum->curseg_mutex);
1181         }
1182 }
1183
1184 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1185 {
1186         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1187                 write_compacted_summaries(sbi, start_blk);
1188         else
1189                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1190 }
1191
1192 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1193 {
1194         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1195                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1196 }
1197
1198 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1199                                         unsigned int val, int alloc)
1200 {
1201         int i;
1202
1203         if (type == NAT_JOURNAL) {
1204                 for (i = 0; i < nats_in_cursum(sum); i++) {
1205                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1206                                 return i;
1207                 }
1208                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1209                         return update_nats_in_cursum(sum, 1);
1210         } else if (type == SIT_JOURNAL) {
1211                 for (i = 0; i < sits_in_cursum(sum); i++)
1212                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1213                                 return i;
1214                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1215                         return update_sits_in_cursum(sum, 1);
1216         }
1217         return -1;
1218 }
1219
1220 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1221                                         unsigned int segno)
1222 {
1223         struct sit_info *sit_i = SIT_I(sbi);
1224         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1225         block_t blk_addr = sit_i->sit_base_addr + offset;
1226
1227         check_seg_range(sbi, segno);
1228
1229         /* calculate sit block address */
1230         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1231                 blk_addr += sit_i->sit_blocks;
1232
1233         return get_meta_page(sbi, blk_addr);
1234 }
1235
1236 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1237                                         unsigned int start)
1238 {
1239         struct sit_info *sit_i = SIT_I(sbi);
1240         struct page *src_page, *dst_page;
1241         pgoff_t src_off, dst_off;
1242         void *src_addr, *dst_addr;
1243
1244         src_off = current_sit_addr(sbi, start);
1245         dst_off = next_sit_addr(sbi, src_off);
1246
1247         /* get current sit block page without lock */
1248         src_page = get_meta_page(sbi, src_off);
1249         dst_page = grab_meta_page(sbi, dst_off);
1250         BUG_ON(PageDirty(src_page));
1251
1252         src_addr = page_address(src_page);
1253         dst_addr = page_address(dst_page);
1254         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1255
1256         set_page_dirty(dst_page);
1257         f2fs_put_page(src_page, 1);
1258
1259         set_to_next_sit(sit_i, start);
1260
1261         return dst_page;
1262 }
1263
1264 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1265 {
1266         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1267         struct f2fs_summary_block *sum = curseg->sum_blk;
1268         int i;
1269
1270         /*
1271          * If the journal area in the current summary is full of sit entries,
1272          * all the sit entries will be flushed. Otherwise the sit entries
1273          * are not able to replace with newly hot sit entries.
1274          */
1275         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1276                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1277                         unsigned int segno;
1278                         segno = le32_to_cpu(segno_in_journal(sum, i));
1279                         __mark_sit_entry_dirty(sbi, segno);
1280                 }
1281                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1282                 return true;
1283         }
1284         return false;
1285 }
1286
1287 /*
1288  * CP calls this function, which flushes SIT entries including sit_journal,
1289  * and moves prefree segs to free segs.
1290  */
1291 void flush_sit_entries(struct f2fs_sb_info *sbi)
1292 {
1293         struct sit_info *sit_i = SIT_I(sbi);
1294         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1295         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1296         struct f2fs_summary_block *sum = curseg->sum_blk;
1297         unsigned long nsegs = TOTAL_SEGS(sbi);
1298         struct page *page = NULL;
1299         struct f2fs_sit_block *raw_sit = NULL;
1300         unsigned int start = 0, end = 0;
1301         unsigned int segno = -1;
1302         bool flushed;
1303
1304         mutex_lock(&curseg->curseg_mutex);
1305         mutex_lock(&sit_i->sentry_lock);
1306
1307         /*
1308          * "flushed" indicates whether sit entries in journal are flushed
1309          * to the SIT area or not.
1310          */
1311         flushed = flush_sits_in_journal(sbi);
1312
1313         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1314                 struct seg_entry *se = get_seg_entry(sbi, segno);
1315                 int sit_offset, offset;
1316
1317                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1318
1319                 if (flushed)
1320                         goto to_sit_page;
1321
1322                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1323                 if (offset >= 0) {
1324                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1325                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1326                         goto flush_done;
1327                 }
1328 to_sit_page:
1329                 if (!page || (start > segno) || (segno > end)) {
1330                         if (page) {
1331                                 f2fs_put_page(page, 1);
1332                                 page = NULL;
1333                         }
1334
1335                         start = START_SEGNO(sit_i, segno);
1336                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1337
1338                         /* read sit block that will be updated */
1339                         page = get_next_sit_page(sbi, start);
1340                         raw_sit = page_address(page);
1341                 }
1342
1343                 /* udpate entry in SIT block */
1344                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1345 flush_done:
1346                 __clear_bit(segno, bitmap);
1347                 sit_i->dirty_sentries--;
1348         }
1349         mutex_unlock(&sit_i->sentry_lock);
1350         mutex_unlock(&curseg->curseg_mutex);
1351
1352         /* writeout last modified SIT block */
1353         f2fs_put_page(page, 1);
1354
1355         set_prefree_as_free_segments(sbi);
1356 }
1357
1358 static int build_sit_info(struct f2fs_sb_info *sbi)
1359 {
1360         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1361         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1362         struct sit_info *sit_i;
1363         unsigned int sit_segs, start;
1364         char *src_bitmap, *dst_bitmap;
1365         unsigned int bitmap_size;
1366
1367         /* allocate memory for SIT information */
1368         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1369         if (!sit_i)
1370                 return -ENOMEM;
1371
1372         SM_I(sbi)->sit_info = sit_i;
1373
1374         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1375         if (!sit_i->sentries)
1376                 return -ENOMEM;
1377
1378         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1379         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1380         if (!sit_i->dirty_sentries_bitmap)
1381                 return -ENOMEM;
1382
1383         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1384                 sit_i->sentries[start].cur_valid_map
1385                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1386                 sit_i->sentries[start].ckpt_valid_map
1387                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1388                 if (!sit_i->sentries[start].cur_valid_map
1389                                 || !sit_i->sentries[start].ckpt_valid_map)
1390                         return -ENOMEM;
1391         }
1392
1393         if (sbi->segs_per_sec > 1) {
1394                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1395                                         sizeof(struct sec_entry));
1396                 if (!sit_i->sec_entries)
1397                         return -ENOMEM;
1398         }
1399
1400         /* get information related with SIT */
1401         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1402
1403         /* setup SIT bitmap from ckeckpoint pack */
1404         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1405         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1406
1407         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1408         if (!dst_bitmap)
1409                 return -ENOMEM;
1410
1411         /* init SIT information */
1412         sit_i->s_ops = &default_salloc_ops;
1413
1414         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1415         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1416         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1417         sit_i->sit_bitmap = dst_bitmap;
1418         sit_i->bitmap_size = bitmap_size;
1419         sit_i->dirty_sentries = 0;
1420         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1421         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1422         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1423         mutex_init(&sit_i->sentry_lock);
1424         return 0;
1425 }
1426
1427 static int build_free_segmap(struct f2fs_sb_info *sbi)
1428 {
1429         struct f2fs_sm_info *sm_info = SM_I(sbi);
1430         struct free_segmap_info *free_i;
1431         unsigned int bitmap_size, sec_bitmap_size;
1432
1433         /* allocate memory for free segmap information */
1434         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1435         if (!free_i)
1436                 return -ENOMEM;
1437
1438         SM_I(sbi)->free_info = free_i;
1439
1440         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1441         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1442         if (!free_i->free_segmap)
1443                 return -ENOMEM;
1444
1445         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1446         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1447         if (!free_i->free_secmap)
1448                 return -ENOMEM;
1449
1450         /* set all segments as dirty temporarily */
1451         memset(free_i->free_segmap, 0xff, bitmap_size);
1452         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1453
1454         /* init free segmap information */
1455         free_i->start_segno =
1456                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1457         free_i->free_segments = 0;
1458         free_i->free_sections = 0;
1459         rwlock_init(&free_i->segmap_lock);
1460         return 0;
1461 }
1462
1463 static int build_curseg(struct f2fs_sb_info *sbi)
1464 {
1465         struct curseg_info *array;
1466         int i;
1467
1468         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1469         if (!array)
1470                 return -ENOMEM;
1471
1472         SM_I(sbi)->curseg_array = array;
1473
1474         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1475                 mutex_init(&array[i].curseg_mutex);
1476                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1477                 if (!array[i].sum_blk)
1478                         return -ENOMEM;
1479                 array[i].segno = NULL_SEGNO;
1480                 array[i].next_blkoff = 0;
1481         }
1482         return restore_curseg_summaries(sbi);
1483 }
1484
1485 static void build_sit_entries(struct f2fs_sb_info *sbi)
1486 {
1487         struct sit_info *sit_i = SIT_I(sbi);
1488         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1489         struct f2fs_summary_block *sum = curseg->sum_blk;
1490         unsigned int start;
1491
1492         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1493                 struct seg_entry *se = &sit_i->sentries[start];
1494                 struct f2fs_sit_block *sit_blk;
1495                 struct f2fs_sit_entry sit;
1496                 struct page *page;
1497                 int i;
1498
1499                 mutex_lock(&curseg->curseg_mutex);
1500                 for (i = 0; i < sits_in_cursum(sum); i++) {
1501                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1502                                 sit = sit_in_journal(sum, i);
1503                                 mutex_unlock(&curseg->curseg_mutex);
1504                                 goto got_it;
1505                         }
1506                 }
1507                 mutex_unlock(&curseg->curseg_mutex);
1508                 page = get_current_sit_page(sbi, start);
1509                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1510                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1511                 f2fs_put_page(page, 1);
1512 got_it:
1513                 check_block_count(sbi, start, &sit);
1514                 seg_info_from_raw_sit(se, &sit);
1515                 if (sbi->segs_per_sec > 1) {
1516                         struct sec_entry *e = get_sec_entry(sbi, start);
1517                         e->valid_blocks += se->valid_blocks;
1518                 }
1519         }
1520 }
1521
1522 static void init_free_segmap(struct f2fs_sb_info *sbi)
1523 {
1524         unsigned int start;
1525         int type;
1526
1527         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1528                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1529                 if (!sentry->valid_blocks)
1530                         __set_free(sbi, start);
1531         }
1532
1533         /* set use the current segments */
1534         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1535                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1536                 __set_test_and_inuse(sbi, curseg_t->segno);
1537         }
1538 }
1539
1540 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1541 {
1542         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1543         struct free_segmap_info *free_i = FREE_I(sbi);
1544         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1545         unsigned short valid_blocks;
1546
1547         while (1) {
1548                 /* find dirty segment based on free segmap */
1549                 segno = find_next_inuse(free_i, total_segs, offset);
1550                 if (segno >= total_segs)
1551                         break;
1552                 offset = segno + 1;
1553                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1554                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1555                         continue;
1556                 mutex_lock(&dirty_i->seglist_lock);
1557                 __locate_dirty_segment(sbi, segno, DIRTY);
1558                 mutex_unlock(&dirty_i->seglist_lock);
1559         }
1560 }
1561
1562 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1563 {
1564         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1565         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1566
1567         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1568         if (!dirty_i->victim_secmap)
1569                 return -ENOMEM;
1570         return 0;
1571 }
1572
1573 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1574 {
1575         struct dirty_seglist_info *dirty_i;
1576         unsigned int bitmap_size, i;
1577
1578         /* allocate memory for dirty segments list information */
1579         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1580         if (!dirty_i)
1581                 return -ENOMEM;
1582
1583         SM_I(sbi)->dirty_info = dirty_i;
1584         mutex_init(&dirty_i->seglist_lock);
1585
1586         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1587
1588         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1589                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1590                 if (!dirty_i->dirty_segmap[i])
1591                         return -ENOMEM;
1592         }
1593
1594         init_dirty_segmap(sbi);
1595         return init_victim_secmap(sbi);
1596 }
1597
1598 /*
1599  * Update min, max modified time for cost-benefit GC algorithm
1600  */
1601 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1602 {
1603         struct sit_info *sit_i = SIT_I(sbi);
1604         unsigned int segno;
1605
1606         mutex_lock(&sit_i->sentry_lock);
1607
1608         sit_i->min_mtime = LLONG_MAX;
1609
1610         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1611                 unsigned int i;
1612                 unsigned long long mtime = 0;
1613
1614                 for (i = 0; i < sbi->segs_per_sec; i++)
1615                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1616
1617                 mtime = div_u64(mtime, sbi->segs_per_sec);
1618
1619                 if (sit_i->min_mtime > mtime)
1620                         sit_i->min_mtime = mtime;
1621         }
1622         sit_i->max_mtime = get_mtime(sbi);
1623         mutex_unlock(&sit_i->sentry_lock);
1624 }
1625
1626 int build_segment_manager(struct f2fs_sb_info *sbi)
1627 {
1628         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1629         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1630         struct f2fs_sm_info *sm_info;
1631         int err;
1632
1633         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1634         if (!sm_info)
1635                 return -ENOMEM;
1636
1637         /* init sm info */
1638         sbi->sm_info = sm_info;
1639         INIT_LIST_HEAD(&sm_info->wblist_head);
1640         spin_lock_init(&sm_info->wblist_lock);
1641         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1642         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1643         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1644         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1645         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1646         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1647         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1648
1649         err = build_sit_info(sbi);
1650         if (err)
1651                 return err;
1652         err = build_free_segmap(sbi);
1653         if (err)
1654                 return err;
1655         err = build_curseg(sbi);
1656         if (err)
1657                 return err;
1658
1659         /* reinit free segmap based on SIT */
1660         build_sit_entries(sbi);
1661
1662         init_free_segmap(sbi);
1663         err = build_dirty_segmap(sbi);
1664         if (err)
1665                 return err;
1666
1667         init_min_max_mtime(sbi);
1668         return 0;
1669 }
1670
1671 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1672                 enum dirty_type dirty_type)
1673 {
1674         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1675
1676         mutex_lock(&dirty_i->seglist_lock);
1677         kfree(dirty_i->dirty_segmap[dirty_type]);
1678         dirty_i->nr_dirty[dirty_type] = 0;
1679         mutex_unlock(&dirty_i->seglist_lock);
1680 }
1681
1682 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1683 {
1684         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1685         kfree(dirty_i->victim_secmap);
1686 }
1687
1688 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1689 {
1690         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1691         int i;
1692
1693         if (!dirty_i)
1694                 return;
1695
1696         /* discard pre-free/dirty segments list */
1697         for (i = 0; i < NR_DIRTY_TYPE; i++)
1698                 discard_dirty_segmap(sbi, i);
1699
1700         destroy_victim_secmap(sbi);
1701         SM_I(sbi)->dirty_info = NULL;
1702         kfree(dirty_i);
1703 }
1704
1705 static void destroy_curseg(struct f2fs_sb_info *sbi)
1706 {
1707         struct curseg_info *array = SM_I(sbi)->curseg_array;
1708         int i;
1709
1710         if (!array)
1711                 return;
1712         SM_I(sbi)->curseg_array = NULL;
1713         for (i = 0; i < NR_CURSEG_TYPE; i++)
1714                 kfree(array[i].sum_blk);
1715         kfree(array);
1716 }
1717
1718 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1719 {
1720         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1721         if (!free_i)
1722                 return;
1723         SM_I(sbi)->free_info = NULL;
1724         kfree(free_i->free_segmap);
1725         kfree(free_i->free_secmap);
1726         kfree(free_i);
1727 }
1728
1729 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1730 {
1731         struct sit_info *sit_i = SIT_I(sbi);
1732         unsigned int start;
1733
1734         if (!sit_i)
1735                 return;
1736
1737         if (sit_i->sentries) {
1738                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1739                         kfree(sit_i->sentries[start].cur_valid_map);
1740                         kfree(sit_i->sentries[start].ckpt_valid_map);
1741                 }
1742         }
1743         vfree(sit_i->sentries);
1744         vfree(sit_i->sec_entries);
1745         kfree(sit_i->dirty_sentries_bitmap);
1746
1747         SM_I(sbi)->sit_info = NULL;
1748         kfree(sit_i->sit_bitmap);
1749         kfree(sit_i);
1750 }
1751
1752 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1753 {
1754         struct f2fs_sm_info *sm_info = SM_I(sbi);
1755         destroy_dirty_segmap(sbi);
1756         destroy_curseg(sbi);
1757         destroy_free_segmap(sbi);
1758         destroy_sit_info(sbi);
1759         sbi->sm_info = NULL;
1760         kfree(sm_info);
1761 }