]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
Merge tag 'iio-fixes-for-3.16e' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 #ifdef CONFIG_JBD_DEBUG
94 void __jbd_debug(int level, const char *file, const char *func,
95                  unsigned int line, const char *fmt, ...)
96 {
97         struct va_format vaf;
98         va_list args;
99
100         if (level > journal_enable_debug)
101                 return;
102         va_start(args, fmt);
103         vaf.fmt = fmt;
104         vaf.va = &args;
105         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
106         va_end(args);
107 }
108 EXPORT_SYMBOL(__jbd_debug);
109 #endif
110
111 /*
112  * Helper function used to manage commit timeouts
113  */
114
115 static void commit_timeout(unsigned long __data)
116 {
117         struct task_struct * p = (struct task_struct *) __data;
118
119         wake_up_process(p);
120 }
121
122 /*
123  * kjournald: The main thread function used to manage a logging device
124  * journal.
125  *
126  * This kernel thread is responsible for two things:
127  *
128  * 1) COMMIT:  Every so often we need to commit the current state of the
129  *    filesystem to disk.  The journal thread is responsible for writing
130  *    all of the metadata buffers to disk.
131  *
132  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
133  *    of the data in that part of the log has been rewritten elsewhere on
134  *    the disk.  Flushing these old buffers to reclaim space in the log is
135  *    known as checkpointing, and this thread is responsible for that job.
136  */
137
138 static int kjournald(void *arg)
139 {
140         journal_t *journal = arg;
141         transaction_t *transaction;
142
143         /*
144          * Set up an interval timer which can be used to trigger a commit wakeup
145          * after the commit interval expires
146          */
147         setup_timer(&journal->j_commit_timer, commit_timeout,
148                         (unsigned long)current);
149
150         set_freezable();
151
152         /* Record that the journal thread is running */
153         journal->j_task = current;
154         wake_up(&journal->j_wait_done_commit);
155
156         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
157                         journal->j_commit_interval / HZ);
158
159         /*
160          * And now, wait forever for commit wakeup events.
161          */
162         spin_lock(&journal->j_state_lock);
163
164 loop:
165         if (journal->j_flags & JFS_UNMOUNT)
166                 goto end_loop;
167
168         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
169                 journal->j_commit_sequence, journal->j_commit_request);
170
171         if (journal->j_commit_sequence != journal->j_commit_request) {
172                 jbd_debug(1, "OK, requests differ\n");
173                 spin_unlock(&journal->j_state_lock);
174                 del_timer_sync(&journal->j_commit_timer);
175                 journal_commit_transaction(journal);
176                 spin_lock(&journal->j_state_lock);
177                 goto loop;
178         }
179
180         wake_up(&journal->j_wait_done_commit);
181         if (freezing(current)) {
182                 /*
183                  * The simpler the better. Flushing journal isn't a
184                  * good idea, because that depends on threads that may
185                  * be already stopped.
186                  */
187                 jbd_debug(1, "Now suspending kjournald\n");
188                 spin_unlock(&journal->j_state_lock);
189                 try_to_freeze();
190                 spin_lock(&journal->j_state_lock);
191         } else {
192                 /*
193                  * We assume on resume that commits are already there,
194                  * so we don't sleep
195                  */
196                 DEFINE_WAIT(wait);
197                 int should_sleep = 1;
198
199                 prepare_to_wait(&journal->j_wait_commit, &wait,
200                                 TASK_INTERRUPTIBLE);
201                 if (journal->j_commit_sequence != journal->j_commit_request)
202                         should_sleep = 0;
203                 transaction = journal->j_running_transaction;
204                 if (transaction && time_after_eq(jiffies,
205                                                 transaction->t_expires))
206                         should_sleep = 0;
207                 if (journal->j_flags & JFS_UNMOUNT)
208                         should_sleep = 0;
209                 if (should_sleep) {
210                         spin_unlock(&journal->j_state_lock);
211                         schedule();
212                         spin_lock(&journal->j_state_lock);
213                 }
214                 finish_wait(&journal->j_wait_commit, &wait);
215         }
216
217         jbd_debug(1, "kjournald wakes\n");
218
219         /*
220          * Were we woken up by a commit wakeup event?
221          */
222         transaction = journal->j_running_transaction;
223         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
224                 journal->j_commit_request = transaction->t_tid;
225                 jbd_debug(1, "woke because of timeout\n");
226         }
227         goto loop;
228
229 end_loop:
230         spin_unlock(&journal->j_state_lock);
231         del_timer_sync(&journal->j_commit_timer);
232         journal->j_task = NULL;
233         wake_up(&journal->j_wait_done_commit);
234         jbd_debug(1, "Journal thread exiting.\n");
235         return 0;
236 }
237
238 static int journal_start_thread(journal_t *journal)
239 {
240         struct task_struct *t;
241
242         t = kthread_run(kjournald, journal, "kjournald");
243         if (IS_ERR(t))
244                 return PTR_ERR(t);
245
246         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
247         return 0;
248 }
249
250 static void journal_kill_thread(journal_t *journal)
251 {
252         spin_lock(&journal->j_state_lock);
253         journal->j_flags |= JFS_UNMOUNT;
254
255         while (journal->j_task) {
256                 wake_up(&journal->j_wait_commit);
257                 spin_unlock(&journal->j_state_lock);
258                 wait_event(journal->j_wait_done_commit,
259                                 journal->j_task == NULL);
260                 spin_lock(&journal->j_state_lock);
261         }
262         spin_unlock(&journal->j_state_lock);
263 }
264
265 /*
266  * journal_write_metadata_buffer: write a metadata buffer to the journal.
267  *
268  * Writes a metadata buffer to a given disk block.  The actual IO is not
269  * performed but a new buffer_head is constructed which labels the data
270  * to be written with the correct destination disk block.
271  *
272  * Any magic-number escaping which needs to be done will cause a
273  * copy-out here.  If the buffer happens to start with the
274  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
275  * magic number is only written to the log for descripter blocks.  In
276  * this case, we copy the data and replace the first word with 0, and we
277  * return a result code which indicates that this buffer needs to be
278  * marked as an escaped buffer in the corresponding log descriptor
279  * block.  The missing word can then be restored when the block is read
280  * during recovery.
281  *
282  * If the source buffer has already been modified by a new transaction
283  * since we took the last commit snapshot, we use the frozen copy of
284  * that data for IO.  If we end up using the existing buffer_head's data
285  * for the write, then we *have* to lock the buffer to prevent anyone
286  * else from using and possibly modifying it while the IO is in
287  * progress.
288  *
289  * The function returns a pointer to the buffer_heads to be used for IO.
290  *
291  * We assume that the journal has already been locked in this function.
292  *
293  * Return value:
294  *  <0: Error
295  * >=0: Finished OK
296  *
297  * On success:
298  * Bit 0 set == escape performed on the data
299  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
300  */
301
302 int journal_write_metadata_buffer(transaction_t *transaction,
303                                   struct journal_head  *jh_in,
304                                   struct journal_head **jh_out,
305                                   unsigned int blocknr)
306 {
307         int need_copy_out = 0;
308         int done_copy_out = 0;
309         int do_escape = 0;
310         char *mapped_data;
311         struct buffer_head *new_bh;
312         struct journal_head *new_jh;
313         struct page *new_page;
314         unsigned int new_offset;
315         struct buffer_head *bh_in = jh2bh(jh_in);
316         journal_t *journal = transaction->t_journal;
317
318         /*
319          * The buffer really shouldn't be locked: only the current committing
320          * transaction is allowed to write it, so nobody else is allowed
321          * to do any IO.
322          *
323          * akpm: except if we're journalling data, and write() output is
324          * also part of a shared mapping, and another thread has
325          * decided to launch a writepage() against this buffer.
326          */
327         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
328
329         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
330         /* keep subsequent assertions sane */
331         atomic_set(&new_bh->b_count, 1);
332         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
333
334         /*
335          * If a new transaction has already done a buffer copy-out, then
336          * we use that version of the data for the commit.
337          */
338         jbd_lock_bh_state(bh_in);
339 repeat:
340         if (jh_in->b_frozen_data) {
341                 done_copy_out = 1;
342                 new_page = virt_to_page(jh_in->b_frozen_data);
343                 new_offset = offset_in_page(jh_in->b_frozen_data);
344         } else {
345                 new_page = jh2bh(jh_in)->b_page;
346                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
347         }
348
349         mapped_data = kmap_atomic(new_page);
350         /*
351          * Check for escaping
352          */
353         if (*((__be32 *)(mapped_data + new_offset)) ==
354                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
355                 need_copy_out = 1;
356                 do_escape = 1;
357         }
358         kunmap_atomic(mapped_data);
359
360         /*
361          * Do we need to do a data copy?
362          */
363         if (need_copy_out && !done_copy_out) {
364                 char *tmp;
365
366                 jbd_unlock_bh_state(bh_in);
367                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
368                 jbd_lock_bh_state(bh_in);
369                 if (jh_in->b_frozen_data) {
370                         jbd_free(tmp, bh_in->b_size);
371                         goto repeat;
372                 }
373
374                 jh_in->b_frozen_data = tmp;
375                 mapped_data = kmap_atomic(new_page);
376                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
377                 kunmap_atomic(mapped_data);
378
379                 new_page = virt_to_page(tmp);
380                 new_offset = offset_in_page(tmp);
381                 done_copy_out = 1;
382         }
383
384         /*
385          * Did we need to do an escaping?  Now we've done all the
386          * copying, we can finally do so.
387          */
388         if (do_escape) {
389                 mapped_data = kmap_atomic(new_page);
390                 *((unsigned int *)(mapped_data + new_offset)) = 0;
391                 kunmap_atomic(mapped_data);
392         }
393
394         set_bh_page(new_bh, new_page, new_offset);
395         new_jh->b_transaction = NULL;
396         new_bh->b_size = jh2bh(jh_in)->b_size;
397         new_bh->b_bdev = transaction->t_journal->j_dev;
398         new_bh->b_blocknr = blocknr;
399         set_buffer_mapped(new_bh);
400         set_buffer_dirty(new_bh);
401
402         *jh_out = new_jh;
403
404         /*
405          * The to-be-written buffer needs to get moved to the io queue,
406          * and the original buffer whose contents we are shadowing or
407          * copying is moved to the transaction's shadow queue.
408          */
409         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
410         spin_lock(&journal->j_list_lock);
411         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
412         spin_unlock(&journal->j_list_lock);
413         jbd_unlock_bh_state(bh_in);
414
415         JBUFFER_TRACE(new_jh, "file as BJ_IO");
416         journal_file_buffer(new_jh, transaction, BJ_IO);
417
418         return do_escape | (done_copy_out << 1);
419 }
420
421 /*
422  * Allocation code for the journal file.  Manage the space left in the
423  * journal, so that we can begin checkpointing when appropriate.
424  */
425
426 /*
427  * __log_space_left: Return the number of free blocks left in the journal.
428  *
429  * Called with the journal already locked.
430  *
431  * Called under j_state_lock
432  */
433
434 int __log_space_left(journal_t *journal)
435 {
436         int left = journal->j_free;
437
438         assert_spin_locked(&journal->j_state_lock);
439
440         /*
441          * Be pessimistic here about the number of those free blocks which
442          * might be required for log descriptor control blocks.
443          */
444
445 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
446
447         left -= MIN_LOG_RESERVED_BLOCKS;
448
449         if (left <= 0)
450                 return 0;
451         left -= (left >> 3);
452         return left;
453 }
454
455 /*
456  * Called under j_state_lock.  Returns true if a transaction commit was started.
457  */
458 int __log_start_commit(journal_t *journal, tid_t target)
459 {
460         /*
461          * The only transaction we can possibly wait upon is the
462          * currently running transaction (if it exists).  Otherwise,
463          * the target tid must be an old one.
464          */
465         if (journal->j_commit_request != target &&
466             journal->j_running_transaction &&
467             journal->j_running_transaction->t_tid == target) {
468                 /*
469                  * We want a new commit: OK, mark the request and wakeup the
470                  * commit thread.  We do _not_ do the commit ourselves.
471                  */
472
473                 journal->j_commit_request = target;
474                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
475                           journal->j_commit_request,
476                           journal->j_commit_sequence);
477                 wake_up(&journal->j_wait_commit);
478                 return 1;
479         } else if (!tid_geq(journal->j_commit_request, target))
480                 /* This should never happen, but if it does, preserve
481                    the evidence before kjournald goes into a loop and
482                    increments j_commit_sequence beyond all recognition. */
483                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
484                     journal->j_commit_request, journal->j_commit_sequence,
485                     target, journal->j_running_transaction ?
486                     journal->j_running_transaction->t_tid : 0);
487         return 0;
488 }
489
490 int log_start_commit(journal_t *journal, tid_t tid)
491 {
492         int ret;
493
494         spin_lock(&journal->j_state_lock);
495         ret = __log_start_commit(journal, tid);
496         spin_unlock(&journal->j_state_lock);
497         return ret;
498 }
499
500 /*
501  * Force and wait upon a commit if the calling process is not within
502  * transaction.  This is used for forcing out undo-protected data which contains
503  * bitmaps, when the fs is running out of space.
504  *
505  * We can only force the running transaction if we don't have an active handle;
506  * otherwise, we will deadlock.
507  *
508  * Returns true if a transaction was started.
509  */
510 int journal_force_commit_nested(journal_t *journal)
511 {
512         transaction_t *transaction = NULL;
513         tid_t tid;
514
515         spin_lock(&journal->j_state_lock);
516         if (journal->j_running_transaction && !current->journal_info) {
517                 transaction = journal->j_running_transaction;
518                 __log_start_commit(journal, transaction->t_tid);
519         } else if (journal->j_committing_transaction)
520                 transaction = journal->j_committing_transaction;
521
522         if (!transaction) {
523                 spin_unlock(&journal->j_state_lock);
524                 return 0;       /* Nothing to retry */
525         }
526
527         tid = transaction->t_tid;
528         spin_unlock(&journal->j_state_lock);
529         log_wait_commit(journal, tid);
530         return 1;
531 }
532
533 /*
534  * Start a commit of the current running transaction (if any).  Returns true
535  * if a transaction is going to be committed (or is currently already
536  * committing), and fills its tid in at *ptid
537  */
538 int journal_start_commit(journal_t *journal, tid_t *ptid)
539 {
540         int ret = 0;
541
542         spin_lock(&journal->j_state_lock);
543         if (journal->j_running_transaction) {
544                 tid_t tid = journal->j_running_transaction->t_tid;
545
546                 __log_start_commit(journal, tid);
547                 /* There's a running transaction and we've just made sure
548                  * it's commit has been scheduled. */
549                 if (ptid)
550                         *ptid = tid;
551                 ret = 1;
552         } else if (journal->j_committing_transaction) {
553                 /*
554                  * If commit has been started, then we have to wait for
555                  * completion of that transaction.
556                  */
557                 if (ptid)
558                         *ptid = journal->j_committing_transaction->t_tid;
559                 ret = 1;
560         }
561         spin_unlock(&journal->j_state_lock);
562         return ret;
563 }
564
565 /*
566  * Wait for a specified commit to complete.
567  * The caller may not hold the journal lock.
568  */
569 int log_wait_commit(journal_t *journal, tid_t tid)
570 {
571         int err = 0;
572
573 #ifdef CONFIG_JBD_DEBUG
574         spin_lock(&journal->j_state_lock);
575         if (!tid_geq(journal->j_commit_request, tid)) {
576                 printk(KERN_ERR
577                        "%s: error: j_commit_request=%d, tid=%d\n",
578                        __func__, journal->j_commit_request, tid);
579         }
580         spin_unlock(&journal->j_state_lock);
581 #endif
582         spin_lock(&journal->j_state_lock);
583         /*
584          * Not running or committing trans? Must be already committed. This
585          * saves us from waiting for a *long* time when tid overflows.
586          */
587         if (!((journal->j_running_transaction &&
588                journal->j_running_transaction->t_tid == tid) ||
589               (journal->j_committing_transaction &&
590                journal->j_committing_transaction->t_tid == tid)))
591                 goto out_unlock;
592
593         if (!tid_geq(journal->j_commit_waited, tid))
594                 journal->j_commit_waited = tid;
595         while (tid_gt(tid, journal->j_commit_sequence)) {
596                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
597                                   tid, journal->j_commit_sequence);
598                 wake_up(&journal->j_wait_commit);
599                 spin_unlock(&journal->j_state_lock);
600                 wait_event(journal->j_wait_done_commit,
601                                 !tid_gt(tid, journal->j_commit_sequence));
602                 spin_lock(&journal->j_state_lock);
603         }
604 out_unlock:
605         spin_unlock(&journal->j_state_lock);
606
607         if (unlikely(is_journal_aborted(journal)))
608                 err = -EIO;
609         return err;
610 }
611
612 /*
613  * Return 1 if a given transaction has not yet sent barrier request
614  * connected with a transaction commit. If 0 is returned, transaction
615  * may or may not have sent the barrier. Used to avoid sending barrier
616  * twice in common cases.
617  */
618 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
619 {
620         int ret = 0;
621         transaction_t *commit_trans;
622
623         if (!(journal->j_flags & JFS_BARRIER))
624                 return 0;
625         spin_lock(&journal->j_state_lock);
626         /* Transaction already committed? */
627         if (tid_geq(journal->j_commit_sequence, tid))
628                 goto out;
629         /*
630          * Transaction is being committed and we already proceeded to
631          * writing commit record?
632          */
633         commit_trans = journal->j_committing_transaction;
634         if (commit_trans && commit_trans->t_tid == tid &&
635             commit_trans->t_state >= T_COMMIT_RECORD)
636                 goto out;
637         ret = 1;
638 out:
639         spin_unlock(&journal->j_state_lock);
640         return ret;
641 }
642 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
643
644 /*
645  * Log buffer allocation routines:
646  */
647
648 int journal_next_log_block(journal_t *journal, unsigned int *retp)
649 {
650         unsigned int blocknr;
651
652         spin_lock(&journal->j_state_lock);
653         J_ASSERT(journal->j_free > 1);
654
655         blocknr = journal->j_head;
656         journal->j_head++;
657         journal->j_free--;
658         if (journal->j_head == journal->j_last)
659                 journal->j_head = journal->j_first;
660         spin_unlock(&journal->j_state_lock);
661         return journal_bmap(journal, blocknr, retp);
662 }
663
664 /*
665  * Conversion of logical to physical block numbers for the journal
666  *
667  * On external journals the journal blocks are identity-mapped, so
668  * this is a no-op.  If needed, we can use j_blk_offset - everything is
669  * ready.
670  */
671 int journal_bmap(journal_t *journal, unsigned int blocknr,
672                  unsigned int *retp)
673 {
674         int err = 0;
675         unsigned int ret;
676
677         if (journal->j_inode) {
678                 ret = bmap(journal->j_inode, blocknr);
679                 if (ret)
680                         *retp = ret;
681                 else {
682                         char b[BDEVNAME_SIZE];
683
684                         printk(KERN_ALERT "%s: journal block not found "
685                                         "at offset %u on %s\n",
686                                 __func__,
687                                 blocknr,
688                                 bdevname(journal->j_dev, b));
689                         err = -EIO;
690                         __journal_abort_soft(journal, err);
691                 }
692         } else {
693                 *retp = blocknr; /* +journal->j_blk_offset */
694         }
695         return err;
696 }
697
698 /*
699  * We play buffer_head aliasing tricks to write data/metadata blocks to
700  * the journal without copying their contents, but for journal
701  * descriptor blocks we do need to generate bona fide buffers.
702  *
703  * After the caller of journal_get_descriptor_buffer() has finished modifying
704  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
705  * But we don't bother doing that, so there will be coherency problems with
706  * mmaps of blockdevs which hold live JBD-controlled filesystems.
707  */
708 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
709 {
710         struct buffer_head *bh;
711         unsigned int blocknr;
712         int err;
713
714         err = journal_next_log_block(journal, &blocknr);
715
716         if (err)
717                 return NULL;
718
719         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
720         if (!bh)
721                 return NULL;
722         lock_buffer(bh);
723         memset(bh->b_data, 0, journal->j_blocksize);
724         set_buffer_uptodate(bh);
725         unlock_buffer(bh);
726         BUFFER_TRACE(bh, "return this buffer");
727         return journal_add_journal_head(bh);
728 }
729
730 /*
731  * Management for journal control blocks: functions to create and
732  * destroy journal_t structures, and to initialise and read existing
733  * journal blocks from disk.  */
734
735 /* First: create and setup a journal_t object in memory.  We initialise
736  * very few fields yet: that has to wait until we have created the
737  * journal structures from from scratch, or loaded them from disk. */
738
739 static journal_t * journal_init_common (void)
740 {
741         journal_t *journal;
742         int err;
743
744         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
745         if (!journal)
746                 goto fail;
747
748         init_waitqueue_head(&journal->j_wait_transaction_locked);
749         init_waitqueue_head(&journal->j_wait_logspace);
750         init_waitqueue_head(&journal->j_wait_done_commit);
751         init_waitqueue_head(&journal->j_wait_checkpoint);
752         init_waitqueue_head(&journal->j_wait_commit);
753         init_waitqueue_head(&journal->j_wait_updates);
754         mutex_init(&journal->j_checkpoint_mutex);
755         spin_lock_init(&journal->j_revoke_lock);
756         spin_lock_init(&journal->j_list_lock);
757         spin_lock_init(&journal->j_state_lock);
758
759         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
760
761         /* The journal is marked for error until we succeed with recovery! */
762         journal->j_flags = JFS_ABORT;
763
764         /* Set up a default-sized revoke table for the new mount. */
765         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
766         if (err) {
767                 kfree(journal);
768                 goto fail;
769         }
770         return journal;
771 fail:
772         return NULL;
773 }
774
775 /* journal_init_dev and journal_init_inode:
776  *
777  * Create a journal structure assigned some fixed set of disk blocks to
778  * the journal.  We don't actually touch those disk blocks yet, but we
779  * need to set up all of the mapping information to tell the journaling
780  * system where the journal blocks are.
781  *
782  */
783
784 /**
785  *  journal_t * journal_init_dev() - creates and initialises a journal structure
786  *  @bdev: Block device on which to create the journal
787  *  @fs_dev: Device which hold journalled filesystem for this journal.
788  *  @start: Block nr Start of journal.
789  *  @len:  Length of the journal in blocks.
790  *  @blocksize: blocksize of journalling device
791  *
792  *  Returns: a newly created journal_t *
793  *
794  *  journal_init_dev creates a journal which maps a fixed contiguous
795  *  range of blocks on an arbitrary block device.
796  *
797  */
798 journal_t * journal_init_dev(struct block_device *bdev,
799                         struct block_device *fs_dev,
800                         int start, int len, int blocksize)
801 {
802         journal_t *journal = journal_init_common();
803         struct buffer_head *bh;
804         int n;
805
806         if (!journal)
807                 return NULL;
808
809         /* journal descriptor can store up to n blocks -bzzz */
810         journal->j_blocksize = blocksize;
811         n = journal->j_blocksize / sizeof(journal_block_tag_t);
812         journal->j_wbufsize = n;
813         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
814         if (!journal->j_wbuf) {
815                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
816                         __func__);
817                 goto out_err;
818         }
819         journal->j_dev = bdev;
820         journal->j_fs_dev = fs_dev;
821         journal->j_blk_offset = start;
822         journal->j_maxlen = len;
823
824         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
825         if (!bh) {
826                 printk(KERN_ERR
827                        "%s: Cannot get buffer for journal superblock\n",
828                        __func__);
829                 goto out_err;
830         }
831         journal->j_sb_buffer = bh;
832         journal->j_superblock = (journal_superblock_t *)bh->b_data;
833
834         return journal;
835 out_err:
836         kfree(journal->j_wbuf);
837         kfree(journal);
838         return NULL;
839 }
840
841 /**
842  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
843  *  @inode: An inode to create the journal in
844  *
845  * journal_init_inode creates a journal which maps an on-disk inode as
846  * the journal.  The inode must exist already, must support bmap() and
847  * must have all data blocks preallocated.
848  */
849 journal_t * journal_init_inode (struct inode *inode)
850 {
851         struct buffer_head *bh;
852         journal_t *journal = journal_init_common();
853         int err;
854         int n;
855         unsigned int blocknr;
856
857         if (!journal)
858                 return NULL;
859
860         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
861         journal->j_inode = inode;
862         jbd_debug(1,
863                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
864                   journal, inode->i_sb->s_id, inode->i_ino,
865                   (long long) inode->i_size,
866                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
867
868         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
869         journal->j_blocksize = inode->i_sb->s_blocksize;
870
871         /* journal descriptor can store up to n blocks -bzzz */
872         n = journal->j_blocksize / sizeof(journal_block_tag_t);
873         journal->j_wbufsize = n;
874         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
875         if (!journal->j_wbuf) {
876                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
877                         __func__);
878                 goto out_err;
879         }
880
881         err = journal_bmap(journal, 0, &blocknr);
882         /* If that failed, give up */
883         if (err) {
884                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
885                        __func__);
886                 goto out_err;
887         }
888
889         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
890         if (!bh) {
891                 printk(KERN_ERR
892                        "%s: Cannot get buffer for journal superblock\n",
893                        __func__);
894                 goto out_err;
895         }
896         journal->j_sb_buffer = bh;
897         journal->j_superblock = (journal_superblock_t *)bh->b_data;
898
899         return journal;
900 out_err:
901         kfree(journal->j_wbuf);
902         kfree(journal);
903         return NULL;
904 }
905
906 /*
907  * If the journal init or create aborts, we need to mark the journal
908  * superblock as being NULL to prevent the journal destroy from writing
909  * back a bogus superblock.
910  */
911 static void journal_fail_superblock (journal_t *journal)
912 {
913         struct buffer_head *bh = journal->j_sb_buffer;
914         brelse(bh);
915         journal->j_sb_buffer = NULL;
916 }
917
918 /*
919  * Given a journal_t structure, initialise the various fields for
920  * startup of a new journaling session.  We use this both when creating
921  * a journal, and after recovering an old journal to reset it for
922  * subsequent use.
923  */
924
925 static int journal_reset(journal_t *journal)
926 {
927         journal_superblock_t *sb = journal->j_superblock;
928         unsigned int first, last;
929
930         first = be32_to_cpu(sb->s_first);
931         last = be32_to_cpu(sb->s_maxlen);
932         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
933                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
934                        first, last);
935                 journal_fail_superblock(journal);
936                 return -EINVAL;
937         }
938
939         journal->j_first = first;
940         journal->j_last = last;
941
942         journal->j_head = first;
943         journal->j_tail = first;
944         journal->j_free = last - first;
945
946         journal->j_tail_sequence = journal->j_transaction_sequence;
947         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
948         journal->j_commit_request = journal->j_commit_sequence;
949
950         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
951
952         /*
953          * As a special case, if the on-disk copy is already marked as needing
954          * no recovery (s_start == 0), then we can safely defer the superblock
955          * update until the next commit by setting JFS_FLUSHED.  This avoids
956          * attempting a write to a potential-readonly device.
957          */
958         if (sb->s_start == 0) {
959                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
960                         "(start %u, seq %d, errno %d)\n",
961                         journal->j_tail, journal->j_tail_sequence,
962                         journal->j_errno);
963                 journal->j_flags |= JFS_FLUSHED;
964         } else {
965                 /* Lock here to make assertions happy... */
966                 mutex_lock(&journal->j_checkpoint_mutex);
967                 /*
968                  * Update log tail information. We use WRITE_FUA since new
969                  * transaction will start reusing journal space and so we
970                  * must make sure information about current log tail is on
971                  * disk before that.
972                  */
973                 journal_update_sb_log_tail(journal,
974                                            journal->j_tail_sequence,
975                                            journal->j_tail,
976                                            WRITE_FUA);
977                 mutex_unlock(&journal->j_checkpoint_mutex);
978         }
979         return journal_start_thread(journal);
980 }
981
982 /**
983  * int journal_create() - Initialise the new journal file
984  * @journal: Journal to create. This structure must have been initialised
985  *
986  * Given a journal_t structure which tells us which disk blocks we can
987  * use, create a new journal superblock and initialise all of the
988  * journal fields from scratch.
989  **/
990 int journal_create(journal_t *journal)
991 {
992         unsigned int blocknr;
993         struct buffer_head *bh;
994         journal_superblock_t *sb;
995         int i, err;
996
997         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
998                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
999                         journal->j_maxlen);
1000                 journal_fail_superblock(journal);
1001                 return -EINVAL;
1002         }
1003
1004         if (journal->j_inode == NULL) {
1005                 /*
1006                  * We don't know what block to start at!
1007                  */
1008                 printk(KERN_EMERG
1009                        "%s: creation of journal on external device!\n",
1010                        __func__);
1011                 BUG();
1012         }
1013
1014         /* Zero out the entire journal on disk.  We cannot afford to
1015            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1016         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1017         for (i = 0; i < journal->j_maxlen; i++) {
1018                 err = journal_bmap(journal, i, &blocknr);
1019                 if (err)
1020                         return err;
1021                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1022                 if (unlikely(!bh))
1023                         return -ENOMEM;
1024                 lock_buffer(bh);
1025                 memset (bh->b_data, 0, journal->j_blocksize);
1026                 BUFFER_TRACE(bh, "marking dirty");
1027                 mark_buffer_dirty(bh);
1028                 BUFFER_TRACE(bh, "marking uptodate");
1029                 set_buffer_uptodate(bh);
1030                 unlock_buffer(bh);
1031                 __brelse(bh);
1032         }
1033
1034         sync_blockdev(journal->j_dev);
1035         jbd_debug(1, "JBD: journal cleared.\n");
1036
1037         /* OK, fill in the initial static fields in the new superblock */
1038         sb = journal->j_superblock;
1039
1040         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1041         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1042
1043         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1044         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1045         sb->s_first     = cpu_to_be32(1);
1046
1047         journal->j_transaction_sequence = 1;
1048
1049         journal->j_flags &= ~JFS_ABORT;
1050         journal->j_format_version = 2;
1051
1052         return journal_reset(journal);
1053 }
1054
1055 static void journal_write_superblock(journal_t *journal, int write_op)
1056 {
1057         struct buffer_head *bh = journal->j_sb_buffer;
1058         int ret;
1059
1060         trace_journal_write_superblock(journal, write_op);
1061         if (!(journal->j_flags & JFS_BARRIER))
1062                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1063         lock_buffer(bh);
1064         if (buffer_write_io_error(bh)) {
1065                 char b[BDEVNAME_SIZE];
1066                 /*
1067                  * Oh, dear.  A previous attempt to write the journal
1068                  * superblock failed.  This could happen because the
1069                  * USB device was yanked out.  Or it could happen to
1070                  * be a transient write error and maybe the block will
1071                  * be remapped.  Nothing we can do but to retry the
1072                  * write and hope for the best.
1073                  */
1074                 printk(KERN_ERR "JBD: previous I/O error detected "
1075                        "for journal superblock update for %s.\n",
1076                        journal_dev_name(journal, b));
1077                 clear_buffer_write_io_error(bh);
1078                 set_buffer_uptodate(bh);
1079         }
1080
1081         get_bh(bh);
1082         bh->b_end_io = end_buffer_write_sync;
1083         ret = submit_bh(write_op, bh);
1084         wait_on_buffer(bh);
1085         if (buffer_write_io_error(bh)) {
1086                 clear_buffer_write_io_error(bh);
1087                 set_buffer_uptodate(bh);
1088                 ret = -EIO;
1089         }
1090         if (ret) {
1091                 char b[BDEVNAME_SIZE];
1092                 printk(KERN_ERR "JBD: Error %d detected "
1093                        "when updating journal superblock for %s.\n",
1094                        ret, journal_dev_name(journal, b));
1095         }
1096 }
1097
1098 /**
1099  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1100  * @journal: The journal to update.
1101  * @tail_tid: TID of the new transaction at the tail of the log
1102  * @tail_block: The first block of the transaction at the tail of the log
1103  * @write_op: With which operation should we write the journal sb
1104  *
1105  * Update a journal's superblock information about log tail and write it to
1106  * disk, waiting for the IO to complete.
1107  */
1108 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1109                                 unsigned int tail_block, int write_op)
1110 {
1111         journal_superblock_t *sb = journal->j_superblock;
1112
1113         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114         jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1115                   tail_block, tail_tid);
1116
1117         sb->s_sequence = cpu_to_be32(tail_tid);
1118         sb->s_start    = cpu_to_be32(tail_block);
1119
1120         journal_write_superblock(journal, write_op);
1121
1122         /* Log is no longer empty */
1123         spin_lock(&journal->j_state_lock);
1124         WARN_ON(!sb->s_sequence);
1125         journal->j_flags &= ~JFS_FLUSHED;
1126         spin_unlock(&journal->j_state_lock);
1127 }
1128
1129 /**
1130  * mark_journal_empty() - Mark on disk journal as empty.
1131  * @journal: The journal to update.
1132  *
1133  * Update a journal's dynamic superblock fields to show that journal is empty.
1134  * Write updated superblock to disk waiting for IO to complete.
1135  */
1136 static void mark_journal_empty(journal_t *journal)
1137 {
1138         journal_superblock_t *sb = journal->j_superblock;
1139
1140         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1141         spin_lock(&journal->j_state_lock);
1142         /* Is it already empty? */
1143         if (sb->s_start == 0) {
1144                 spin_unlock(&journal->j_state_lock);
1145                 return;
1146         }
1147         jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1148                   journal->j_tail_sequence);
1149
1150         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1151         sb->s_start    = cpu_to_be32(0);
1152         spin_unlock(&journal->j_state_lock);
1153
1154         journal_write_superblock(journal, WRITE_FUA);
1155
1156         spin_lock(&journal->j_state_lock);
1157         /* Log is empty */
1158         journal->j_flags |= JFS_FLUSHED;
1159         spin_unlock(&journal->j_state_lock);
1160 }
1161
1162 /**
1163  * journal_update_sb_errno() - Update error in the journal.
1164  * @journal: The journal to update.
1165  *
1166  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1167  * to complete.
1168  */
1169 static void journal_update_sb_errno(journal_t *journal)
1170 {
1171         journal_superblock_t *sb = journal->j_superblock;
1172
1173         spin_lock(&journal->j_state_lock);
1174         jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1175                   journal->j_errno);
1176         sb->s_errno = cpu_to_be32(journal->j_errno);
1177         spin_unlock(&journal->j_state_lock);
1178
1179         journal_write_superblock(journal, WRITE_SYNC);
1180 }
1181
1182 /*
1183  * Read the superblock for a given journal, performing initial
1184  * validation of the format.
1185  */
1186
1187 static int journal_get_superblock(journal_t *journal)
1188 {
1189         struct buffer_head *bh;
1190         journal_superblock_t *sb;
1191         int err = -EIO;
1192
1193         bh = journal->j_sb_buffer;
1194
1195         J_ASSERT(bh != NULL);
1196         if (!buffer_uptodate(bh)) {
1197                 ll_rw_block(READ, 1, &bh);
1198                 wait_on_buffer(bh);
1199                 if (!buffer_uptodate(bh)) {
1200                         printk (KERN_ERR
1201                                 "JBD: IO error reading journal superblock\n");
1202                         goto out;
1203                 }
1204         }
1205
1206         sb = journal->j_superblock;
1207
1208         err = -EINVAL;
1209
1210         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1211             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1212                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1213                 goto out;
1214         }
1215
1216         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1217         case JFS_SUPERBLOCK_V1:
1218                 journal->j_format_version = 1;
1219                 break;
1220         case JFS_SUPERBLOCK_V2:
1221                 journal->j_format_version = 2;
1222                 break;
1223         default:
1224                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1225                 goto out;
1226         }
1227
1228         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1229                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1230         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1231                 printk (KERN_WARNING "JBD: journal file too short\n");
1232                 goto out;
1233         }
1234
1235         if (be32_to_cpu(sb->s_first) == 0 ||
1236             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1237                 printk(KERN_WARNING
1238                         "JBD: Invalid start block of journal: %u\n",
1239                         be32_to_cpu(sb->s_first));
1240                 goto out;
1241         }
1242
1243         return 0;
1244
1245 out:
1246         journal_fail_superblock(journal);
1247         return err;
1248 }
1249
1250 /*
1251  * Load the on-disk journal superblock and read the key fields into the
1252  * journal_t.
1253  */
1254
1255 static int load_superblock(journal_t *journal)
1256 {
1257         int err;
1258         journal_superblock_t *sb;
1259
1260         err = journal_get_superblock(journal);
1261         if (err)
1262                 return err;
1263
1264         sb = journal->j_superblock;
1265
1266         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1267         journal->j_tail = be32_to_cpu(sb->s_start);
1268         journal->j_first = be32_to_cpu(sb->s_first);
1269         journal->j_last = be32_to_cpu(sb->s_maxlen);
1270         journal->j_errno = be32_to_cpu(sb->s_errno);
1271
1272         return 0;
1273 }
1274
1275
1276 /**
1277  * int journal_load() - Read journal from disk.
1278  * @journal: Journal to act on.
1279  *
1280  * Given a journal_t structure which tells us which disk blocks contain
1281  * a journal, read the journal from disk to initialise the in-memory
1282  * structures.
1283  */
1284 int journal_load(journal_t *journal)
1285 {
1286         int err;
1287         journal_superblock_t *sb;
1288
1289         err = load_superblock(journal);
1290         if (err)
1291                 return err;
1292
1293         sb = journal->j_superblock;
1294         /* If this is a V2 superblock, then we have to check the
1295          * features flags on it. */
1296
1297         if (journal->j_format_version >= 2) {
1298                 if ((sb->s_feature_ro_compat &
1299                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1300                     (sb->s_feature_incompat &
1301                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1302                         printk (KERN_WARNING
1303                                 "JBD: Unrecognised features on journal\n");
1304                         return -EINVAL;
1305                 }
1306         }
1307
1308         /* Let the recovery code check whether it needs to recover any
1309          * data from the journal. */
1310         if (journal_recover(journal))
1311                 goto recovery_error;
1312
1313         /* OK, we've finished with the dynamic journal bits:
1314          * reinitialise the dynamic contents of the superblock in memory
1315          * and reset them on disk. */
1316         if (journal_reset(journal))
1317                 goto recovery_error;
1318
1319         journal->j_flags &= ~JFS_ABORT;
1320         journal->j_flags |= JFS_LOADED;
1321         return 0;
1322
1323 recovery_error:
1324         printk (KERN_WARNING "JBD: recovery failed\n");
1325         return -EIO;
1326 }
1327
1328 /**
1329  * void journal_destroy() - Release a journal_t structure.
1330  * @journal: Journal to act on.
1331  *
1332  * Release a journal_t structure once it is no longer in use by the
1333  * journaled object.
1334  * Return <0 if we couldn't clean up the journal.
1335  */
1336 int journal_destroy(journal_t *journal)
1337 {
1338         int err = 0;
1339
1340         
1341         /* Wait for the commit thread to wake up and die. */
1342         journal_kill_thread(journal);
1343
1344         /* Force a final log commit */
1345         if (journal->j_running_transaction)
1346                 journal_commit_transaction(journal);
1347
1348         /* Force any old transactions to disk */
1349
1350         /* We cannot race with anybody but must keep assertions happy */
1351         mutex_lock(&journal->j_checkpoint_mutex);
1352         /* Totally anal locking here... */
1353         spin_lock(&journal->j_list_lock);
1354         while (journal->j_checkpoint_transactions != NULL) {
1355                 spin_unlock(&journal->j_list_lock);
1356                 log_do_checkpoint(journal);
1357                 spin_lock(&journal->j_list_lock);
1358         }
1359
1360         J_ASSERT(journal->j_running_transaction == NULL);
1361         J_ASSERT(journal->j_committing_transaction == NULL);
1362         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1363         spin_unlock(&journal->j_list_lock);
1364
1365         if (journal->j_sb_buffer) {
1366                 if (!is_journal_aborted(journal)) {
1367                         journal->j_tail_sequence =
1368                                 ++journal->j_transaction_sequence;
1369                         mark_journal_empty(journal);
1370                 } else
1371                         err = -EIO;
1372                 brelse(journal->j_sb_buffer);
1373         }
1374         mutex_unlock(&journal->j_checkpoint_mutex);
1375
1376         if (journal->j_inode)
1377                 iput(journal->j_inode);
1378         if (journal->j_revoke)
1379                 journal_destroy_revoke(journal);
1380         kfree(journal->j_wbuf);
1381         kfree(journal);
1382
1383         return err;
1384 }
1385
1386
1387 /**
1388  *int journal_check_used_features () - Check if features specified are used.
1389  * @journal: Journal to check.
1390  * @compat: bitmask of compatible features
1391  * @ro: bitmask of features that force read-only mount
1392  * @incompat: bitmask of incompatible features
1393  *
1394  * Check whether the journal uses all of a given set of
1395  * features.  Return true (non-zero) if it does.
1396  **/
1397
1398 int journal_check_used_features (journal_t *journal, unsigned long compat,
1399                                  unsigned long ro, unsigned long incompat)
1400 {
1401         journal_superblock_t *sb;
1402
1403         if (!compat && !ro && !incompat)
1404                 return 1;
1405         if (journal->j_format_version == 1)
1406                 return 0;
1407
1408         sb = journal->j_superblock;
1409
1410         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1411             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1412             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1413                 return 1;
1414
1415         return 0;
1416 }
1417
1418 /**
1419  * int journal_check_available_features() - Check feature set in journalling layer
1420  * @journal: Journal to check.
1421  * @compat: bitmask of compatible features
1422  * @ro: bitmask of features that force read-only mount
1423  * @incompat: bitmask of incompatible features
1424  *
1425  * Check whether the journaling code supports the use of
1426  * all of a given set of features on this journal.  Return true
1427  * (non-zero) if it can. */
1428
1429 int journal_check_available_features (journal_t *journal, unsigned long compat,
1430                                       unsigned long ro, unsigned long incompat)
1431 {
1432         if (!compat && !ro && !incompat)
1433                 return 1;
1434
1435         /* We can support any known requested features iff the
1436          * superblock is in version 2.  Otherwise we fail to support any
1437          * extended sb features. */
1438
1439         if (journal->j_format_version != 2)
1440                 return 0;
1441
1442         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1443             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1444             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1445                 return 1;
1446
1447         return 0;
1448 }
1449
1450 /**
1451  * int journal_set_features () - Mark a given journal feature in the superblock
1452  * @journal: Journal to act on.
1453  * @compat: bitmask of compatible features
1454  * @ro: bitmask of features that force read-only mount
1455  * @incompat: bitmask of incompatible features
1456  *
1457  * Mark a given journal feature as present on the
1458  * superblock.  Returns true if the requested features could be set.
1459  *
1460  */
1461
1462 int journal_set_features (journal_t *journal, unsigned long compat,
1463                           unsigned long ro, unsigned long incompat)
1464 {
1465         journal_superblock_t *sb;
1466
1467         if (journal_check_used_features(journal, compat, ro, incompat))
1468                 return 1;
1469
1470         if (!journal_check_available_features(journal, compat, ro, incompat))
1471                 return 0;
1472
1473         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1474                   compat, ro, incompat);
1475
1476         sb = journal->j_superblock;
1477
1478         sb->s_feature_compat    |= cpu_to_be32(compat);
1479         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1480         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1481
1482         return 1;
1483 }
1484
1485
1486 /**
1487  * int journal_update_format () - Update on-disk journal structure.
1488  * @journal: Journal to act on.
1489  *
1490  * Given an initialised but unloaded journal struct, poke about in the
1491  * on-disk structure to update it to the most recent supported version.
1492  */
1493 int journal_update_format (journal_t *journal)
1494 {
1495         journal_superblock_t *sb;
1496         int err;
1497
1498         err = journal_get_superblock(journal);
1499         if (err)
1500                 return err;
1501
1502         sb = journal->j_superblock;
1503
1504         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1505         case JFS_SUPERBLOCK_V2:
1506                 return 0;
1507         case JFS_SUPERBLOCK_V1:
1508                 return journal_convert_superblock_v1(journal, sb);
1509         default:
1510                 break;
1511         }
1512         return -EINVAL;
1513 }
1514
1515 static int journal_convert_superblock_v1(journal_t *journal,
1516                                          journal_superblock_t *sb)
1517 {
1518         int offset, blocksize;
1519         struct buffer_head *bh;
1520
1521         printk(KERN_WARNING
1522                 "JBD: Converting superblock from version 1 to 2.\n");
1523
1524         /* Pre-initialise new fields to zero */
1525         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1526         blocksize = be32_to_cpu(sb->s_blocksize);
1527         memset(&sb->s_feature_compat, 0, blocksize-offset);
1528
1529         sb->s_nr_users = cpu_to_be32(1);
1530         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1531         journal->j_format_version = 2;
1532
1533         bh = journal->j_sb_buffer;
1534         BUFFER_TRACE(bh, "marking dirty");
1535         mark_buffer_dirty(bh);
1536         sync_dirty_buffer(bh);
1537         return 0;
1538 }
1539
1540
1541 /**
1542  * int journal_flush () - Flush journal
1543  * @journal: Journal to act on.
1544  *
1545  * Flush all data for a given journal to disk and empty the journal.
1546  * Filesystems can use this when remounting readonly to ensure that
1547  * recovery does not need to happen on remount.
1548  */
1549
1550 int journal_flush(journal_t *journal)
1551 {
1552         int err = 0;
1553         transaction_t *transaction = NULL;
1554
1555         spin_lock(&journal->j_state_lock);
1556
1557         /* Force everything buffered to the log... */
1558         if (journal->j_running_transaction) {
1559                 transaction = journal->j_running_transaction;
1560                 __log_start_commit(journal, transaction->t_tid);
1561         } else if (journal->j_committing_transaction)
1562                 transaction = journal->j_committing_transaction;
1563
1564         /* Wait for the log commit to complete... */
1565         if (transaction) {
1566                 tid_t tid = transaction->t_tid;
1567
1568                 spin_unlock(&journal->j_state_lock);
1569                 log_wait_commit(journal, tid);
1570         } else {
1571                 spin_unlock(&journal->j_state_lock);
1572         }
1573
1574         /* ...and flush everything in the log out to disk. */
1575         spin_lock(&journal->j_list_lock);
1576         while (!err && journal->j_checkpoint_transactions != NULL) {
1577                 spin_unlock(&journal->j_list_lock);
1578                 mutex_lock(&journal->j_checkpoint_mutex);
1579                 err = log_do_checkpoint(journal);
1580                 mutex_unlock(&journal->j_checkpoint_mutex);
1581                 spin_lock(&journal->j_list_lock);
1582         }
1583         spin_unlock(&journal->j_list_lock);
1584
1585         if (is_journal_aborted(journal))
1586                 return -EIO;
1587
1588         mutex_lock(&journal->j_checkpoint_mutex);
1589         cleanup_journal_tail(journal);
1590
1591         /* Finally, mark the journal as really needing no recovery.
1592          * This sets s_start==0 in the underlying superblock, which is
1593          * the magic code for a fully-recovered superblock.  Any future
1594          * commits of data to the journal will restore the current
1595          * s_start value. */
1596         mark_journal_empty(journal);
1597         mutex_unlock(&journal->j_checkpoint_mutex);
1598         spin_lock(&journal->j_state_lock);
1599         J_ASSERT(!journal->j_running_transaction);
1600         J_ASSERT(!journal->j_committing_transaction);
1601         J_ASSERT(!journal->j_checkpoint_transactions);
1602         J_ASSERT(journal->j_head == journal->j_tail);
1603         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1604         spin_unlock(&journal->j_state_lock);
1605         return 0;
1606 }
1607
1608 /**
1609  * int journal_wipe() - Wipe journal contents
1610  * @journal: Journal to act on.
1611  * @write: flag (see below)
1612  *
1613  * Wipe out all of the contents of a journal, safely.  This will produce
1614  * a warning if the journal contains any valid recovery information.
1615  * Must be called between journal_init_*() and journal_load().
1616  *
1617  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1618  * we merely suppress recovery.
1619  */
1620
1621 int journal_wipe(journal_t *journal, int write)
1622 {
1623         int err = 0;
1624
1625         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1626
1627         err = load_superblock(journal);
1628         if (err)
1629                 return err;
1630
1631         if (!journal->j_tail)
1632                 goto no_recovery;
1633
1634         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635                 write ? "Clearing" : "Ignoring");
1636
1637         err = journal_skip_recovery(journal);
1638         if (write) {
1639                 /* Lock to make assertions happy... */
1640                 mutex_lock(&journal->j_checkpoint_mutex);
1641                 mark_journal_empty(journal);
1642                 mutex_unlock(&journal->j_checkpoint_mutex);
1643         }
1644
1645  no_recovery:
1646         return err;
1647 }
1648
1649 /*
1650  * journal_dev_name: format a character string to describe on what
1651  * device this journal is present.
1652  */
1653
1654 static const char *journal_dev_name(journal_t *journal, char *buffer)
1655 {
1656         struct block_device *bdev;
1657
1658         if (journal->j_inode)
1659                 bdev = journal->j_inode->i_sb->s_bdev;
1660         else
1661                 bdev = journal->j_dev;
1662
1663         return bdevname(bdev, buffer);
1664 }
1665
1666 /*
1667  * Journal abort has very specific semantics, which we describe
1668  * for journal abort.
1669  *
1670  * Two internal function, which provide abort to te jbd layer
1671  * itself are here.
1672  */
1673
1674 /*
1675  * Quick version for internal journal use (doesn't lock the journal).
1676  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1677  * and don't attempt to make any other journal updates.
1678  */
1679 static void __journal_abort_hard(journal_t *journal)
1680 {
1681         transaction_t *transaction;
1682         char b[BDEVNAME_SIZE];
1683
1684         if (journal->j_flags & JFS_ABORT)
1685                 return;
1686
1687         printk(KERN_ERR "Aborting journal on device %s.\n",
1688                 journal_dev_name(journal, b));
1689
1690         spin_lock(&journal->j_state_lock);
1691         journal->j_flags |= JFS_ABORT;
1692         transaction = journal->j_running_transaction;
1693         if (transaction)
1694                 __log_start_commit(journal, transaction->t_tid);
1695         spin_unlock(&journal->j_state_lock);
1696 }
1697
1698 /* Soft abort: record the abort error status in the journal superblock,
1699  * but don't do any other IO. */
1700 static void __journal_abort_soft (journal_t *journal, int errno)
1701 {
1702         if (journal->j_flags & JFS_ABORT)
1703                 return;
1704
1705         if (!journal->j_errno)
1706                 journal->j_errno = errno;
1707
1708         __journal_abort_hard(journal);
1709
1710         if (errno)
1711                 journal_update_sb_errno(journal);
1712 }
1713
1714 /**
1715  * void journal_abort () - Shutdown the journal immediately.
1716  * @journal: the journal to shutdown.
1717  * @errno:   an error number to record in the journal indicating
1718  *           the reason for the shutdown.
1719  *
1720  * Perform a complete, immediate shutdown of the ENTIRE
1721  * journal (not of a single transaction).  This operation cannot be
1722  * undone without closing and reopening the journal.
1723  *
1724  * The journal_abort function is intended to support higher level error
1725  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1726  * mode.
1727  *
1728  * Journal abort has very specific semantics.  Any existing dirty,
1729  * unjournaled buffers in the main filesystem will still be written to
1730  * disk by bdflush, but the journaling mechanism will be suspended
1731  * immediately and no further transaction commits will be honoured.
1732  *
1733  * Any dirty, journaled buffers will be written back to disk without
1734  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1735  * filesystem, but we _do_ attempt to leave as much data as possible
1736  * behind for fsck to use for cleanup.
1737  *
1738  * Any attempt to get a new transaction handle on a journal which is in
1739  * ABORT state will just result in an -EROFS error return.  A
1740  * journal_stop on an existing handle will return -EIO if we have
1741  * entered abort state during the update.
1742  *
1743  * Recursive transactions are not disturbed by journal abort until the
1744  * final journal_stop, which will receive the -EIO error.
1745  *
1746  * Finally, the journal_abort call allows the caller to supply an errno
1747  * which will be recorded (if possible) in the journal superblock.  This
1748  * allows a client to record failure conditions in the middle of a
1749  * transaction without having to complete the transaction to record the
1750  * failure to disk.  ext3_error, for example, now uses this
1751  * functionality.
1752  *
1753  * Errors which originate from within the journaling layer will NOT
1754  * supply an errno; a null errno implies that absolutely no further
1755  * writes are done to the journal (unless there are any already in
1756  * progress).
1757  *
1758  */
1759
1760 void journal_abort(journal_t *journal, int errno)
1761 {
1762         __journal_abort_soft(journal, errno);
1763 }
1764
1765 /**
1766  * int journal_errno () - returns the journal's error state.
1767  * @journal: journal to examine.
1768  *
1769  * This is the errno numbet set with journal_abort(), the last
1770  * time the journal was mounted - if the journal was stopped
1771  * without calling abort this will be 0.
1772  *
1773  * If the journal has been aborted on this mount time -EROFS will
1774  * be returned.
1775  */
1776 int journal_errno(journal_t *journal)
1777 {
1778         int err;
1779
1780         spin_lock(&journal->j_state_lock);
1781         if (journal->j_flags & JFS_ABORT)
1782                 err = -EROFS;
1783         else
1784                 err = journal->j_errno;
1785         spin_unlock(&journal->j_state_lock);
1786         return err;
1787 }
1788
1789 /**
1790  * int journal_clear_err () - clears the journal's error state
1791  * @journal: journal to act on.
1792  *
1793  * An error must be cleared or Acked to take a FS out of readonly
1794  * mode.
1795  */
1796 int journal_clear_err(journal_t *journal)
1797 {
1798         int err = 0;
1799
1800         spin_lock(&journal->j_state_lock);
1801         if (journal->j_flags & JFS_ABORT)
1802                 err = -EROFS;
1803         else
1804                 journal->j_errno = 0;
1805         spin_unlock(&journal->j_state_lock);
1806         return err;
1807 }
1808
1809 /**
1810  * void journal_ack_err() - Ack journal err.
1811  * @journal: journal to act on.
1812  *
1813  * An error must be cleared or Acked to take a FS out of readonly
1814  * mode.
1815  */
1816 void journal_ack_err(journal_t *journal)
1817 {
1818         spin_lock(&journal->j_state_lock);
1819         if (journal->j_errno)
1820                 journal->j_flags |= JFS_ACK_ERR;
1821         spin_unlock(&journal->j_state_lock);
1822 }
1823
1824 int journal_blocks_per_page(struct inode *inode)
1825 {
1826         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1827 }
1828
1829 /*
1830  * Journal_head storage management
1831  */
1832 static struct kmem_cache *journal_head_cache;
1833 #ifdef CONFIG_JBD_DEBUG
1834 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1835 #endif
1836
1837 static int journal_init_journal_head_cache(void)
1838 {
1839         int retval;
1840
1841         J_ASSERT(journal_head_cache == NULL);
1842         journal_head_cache = kmem_cache_create("journal_head",
1843                                 sizeof(struct journal_head),
1844                                 0,              /* offset */
1845                                 SLAB_TEMPORARY, /* flags */
1846                                 NULL);          /* ctor */
1847         retval = 0;
1848         if (!journal_head_cache) {
1849                 retval = -ENOMEM;
1850                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1851         }
1852         return retval;
1853 }
1854
1855 static void journal_destroy_journal_head_cache(void)
1856 {
1857         if (journal_head_cache) {
1858                 kmem_cache_destroy(journal_head_cache);
1859                 journal_head_cache = NULL;
1860         }
1861 }
1862
1863 /*
1864  * journal_head splicing and dicing
1865  */
1866 static struct journal_head *journal_alloc_journal_head(void)
1867 {
1868         struct journal_head *ret;
1869
1870 #ifdef CONFIG_JBD_DEBUG
1871         atomic_inc(&nr_journal_heads);
1872 #endif
1873         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1874         if (ret == NULL) {
1875                 jbd_debug(1, "out of memory for journal_head\n");
1876                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1877                                    __func__);
1878
1879                 while (ret == NULL) {
1880                         yield();
1881                         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1882                 }
1883         }
1884         return ret;
1885 }
1886
1887 static void journal_free_journal_head(struct journal_head *jh)
1888 {
1889 #ifdef CONFIG_JBD_DEBUG
1890         atomic_dec(&nr_journal_heads);
1891         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1892 #endif
1893         kmem_cache_free(journal_head_cache, jh);
1894 }
1895
1896 /*
1897  * A journal_head is attached to a buffer_head whenever JBD has an
1898  * interest in the buffer.
1899  *
1900  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1901  * is set.  This bit is tested in core kernel code where we need to take
1902  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1903  * there.
1904  *
1905  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1906  *
1907  * When a buffer has its BH_JBD bit set it is immune from being released by
1908  * core kernel code, mainly via ->b_count.
1909  *
1910  * A journal_head is detached from its buffer_head when the journal_head's
1911  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1912  * transaction (b_cp_transaction) hold their references to b_jcount.
1913  *
1914  * Various places in the kernel want to attach a journal_head to a buffer_head
1915  * _before_ attaching the journal_head to a transaction.  To protect the
1916  * journal_head in this situation, journal_add_journal_head elevates the
1917  * journal_head's b_jcount refcount by one.  The caller must call
1918  * journal_put_journal_head() to undo this.
1919  *
1920  * So the typical usage would be:
1921  *
1922  *      (Attach a journal_head if needed.  Increments b_jcount)
1923  *      struct journal_head *jh = journal_add_journal_head(bh);
1924  *      ...
1925  *      (Get another reference for transaction)
1926  *      journal_grab_journal_head(bh);
1927  *      jh->b_transaction = xxx;
1928  *      (Put original reference)
1929  *      journal_put_journal_head(jh);
1930  */
1931
1932 /*
1933  * Give a buffer_head a journal_head.
1934  *
1935  * May sleep.
1936  */
1937 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1938 {
1939         struct journal_head *jh;
1940         struct journal_head *new_jh = NULL;
1941
1942 repeat:
1943         if (!buffer_jbd(bh))
1944                 new_jh = journal_alloc_journal_head();
1945
1946         jbd_lock_bh_journal_head(bh);
1947         if (buffer_jbd(bh)) {
1948                 jh = bh2jh(bh);
1949         } else {
1950                 J_ASSERT_BH(bh,
1951                         (atomic_read(&bh->b_count) > 0) ||
1952                         (bh->b_page && bh->b_page->mapping));
1953
1954                 if (!new_jh) {
1955                         jbd_unlock_bh_journal_head(bh);
1956                         goto repeat;
1957                 }
1958
1959                 jh = new_jh;
1960                 new_jh = NULL;          /* We consumed it */
1961                 set_buffer_jbd(bh);
1962                 bh->b_private = jh;
1963                 jh->b_bh = bh;
1964                 get_bh(bh);
1965                 BUFFER_TRACE(bh, "added journal_head");
1966         }
1967         jh->b_jcount++;
1968         jbd_unlock_bh_journal_head(bh);
1969         if (new_jh)
1970                 journal_free_journal_head(new_jh);
1971         return bh->b_private;
1972 }
1973
1974 /*
1975  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1976  * having a journal_head, return NULL
1977  */
1978 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1979 {
1980         struct journal_head *jh = NULL;
1981
1982         jbd_lock_bh_journal_head(bh);
1983         if (buffer_jbd(bh)) {
1984                 jh = bh2jh(bh);
1985                 jh->b_jcount++;
1986         }
1987         jbd_unlock_bh_journal_head(bh);
1988         return jh;
1989 }
1990
1991 static void __journal_remove_journal_head(struct buffer_head *bh)
1992 {
1993         struct journal_head *jh = bh2jh(bh);
1994
1995         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1996         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1997         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1998         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1999         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2000         J_ASSERT_BH(bh, buffer_jbd(bh));
2001         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2002         BUFFER_TRACE(bh, "remove journal_head");
2003         if (jh->b_frozen_data) {
2004                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2005                 jbd_free(jh->b_frozen_data, bh->b_size);
2006         }
2007         if (jh->b_committed_data) {
2008                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2009                 jbd_free(jh->b_committed_data, bh->b_size);
2010         }
2011         bh->b_private = NULL;
2012         jh->b_bh = NULL;        /* debug, really */
2013         clear_buffer_jbd(bh);
2014         journal_free_journal_head(jh);
2015 }
2016
2017 /*
2018  * Drop a reference on the passed journal_head.  If it fell to zero then
2019  * release the journal_head from the buffer_head.
2020  */
2021 void journal_put_journal_head(struct journal_head *jh)
2022 {
2023         struct buffer_head *bh = jh2bh(jh);
2024
2025         jbd_lock_bh_journal_head(bh);
2026         J_ASSERT_JH(jh, jh->b_jcount > 0);
2027         --jh->b_jcount;
2028         if (!jh->b_jcount) {
2029                 __journal_remove_journal_head(bh);
2030                 jbd_unlock_bh_journal_head(bh);
2031                 __brelse(bh);
2032         } else
2033                 jbd_unlock_bh_journal_head(bh);
2034 }
2035
2036 /*
2037  * debugfs tunables
2038  */
2039 #ifdef CONFIG_JBD_DEBUG
2040
2041 u8 journal_enable_debug __read_mostly;
2042 EXPORT_SYMBOL(journal_enable_debug);
2043
2044 static struct dentry *jbd_debugfs_dir;
2045 static struct dentry *jbd_debug;
2046
2047 static void __init jbd_create_debugfs_entry(void)
2048 {
2049         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2050         if (jbd_debugfs_dir)
2051                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2052                                                jbd_debugfs_dir,
2053                                                &journal_enable_debug);
2054 }
2055
2056 static void __exit jbd_remove_debugfs_entry(void)
2057 {
2058         debugfs_remove(jbd_debug);
2059         debugfs_remove(jbd_debugfs_dir);
2060 }
2061
2062 #else
2063
2064 static inline void jbd_create_debugfs_entry(void)
2065 {
2066 }
2067
2068 static inline void jbd_remove_debugfs_entry(void)
2069 {
2070 }
2071
2072 #endif
2073
2074 struct kmem_cache *jbd_handle_cache;
2075
2076 static int __init journal_init_handle_cache(void)
2077 {
2078         jbd_handle_cache = kmem_cache_create("journal_handle",
2079                                 sizeof(handle_t),
2080                                 0,              /* offset */
2081                                 SLAB_TEMPORARY, /* flags */
2082                                 NULL);          /* ctor */
2083         if (jbd_handle_cache == NULL) {
2084                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2085                 return -ENOMEM;
2086         }
2087         return 0;
2088 }
2089
2090 static void journal_destroy_handle_cache(void)
2091 {
2092         if (jbd_handle_cache)
2093                 kmem_cache_destroy(jbd_handle_cache);
2094 }
2095
2096 /*
2097  * Module startup and shutdown
2098  */
2099
2100 static int __init journal_init_caches(void)
2101 {
2102         int ret;
2103
2104         ret = journal_init_revoke_caches();
2105         if (ret == 0)
2106                 ret = journal_init_journal_head_cache();
2107         if (ret == 0)
2108                 ret = journal_init_handle_cache();
2109         return ret;
2110 }
2111
2112 static void journal_destroy_caches(void)
2113 {
2114         journal_destroy_revoke_caches();
2115         journal_destroy_journal_head_cache();
2116         journal_destroy_handle_cache();
2117 }
2118
2119 static int __init journal_init(void)
2120 {
2121         int ret;
2122
2123         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2124
2125         ret = journal_init_caches();
2126         if (ret != 0)
2127                 journal_destroy_caches();
2128         jbd_create_debugfs_entry();
2129         return ret;
2130 }
2131
2132 static void __exit journal_exit(void)
2133 {
2134 #ifdef CONFIG_JBD_DEBUG
2135         int n = atomic_read(&nr_journal_heads);
2136         if (n)
2137                 printk(KERN_ERR "JBD: leaked %d journal_heads!\n", n);
2138 #endif
2139         jbd_remove_debugfs_entry();
2140         journal_destroy_caches();
2141 }
2142
2143 MODULE_LICENSE("GPL");
2144 module_init(journal_init);
2145 module_exit(journal_exit);
2146