]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         /* Record that the journal thread is running */
133         journal->j_task = current;
134         wake_up(&journal->j_wait_done_commit);
135
136         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
137                         journal->j_commit_interval / HZ);
138
139         /*
140          * And now, wait forever for commit wakeup events.
141          */
142         spin_lock(&journal->j_state_lock);
143
144 loop:
145         if (journal->j_flags & JFS_UNMOUNT)
146                 goto end_loop;
147
148         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149                 journal->j_commit_sequence, journal->j_commit_request);
150
151         if (journal->j_commit_sequence != journal->j_commit_request) {
152                 jbd_debug(1, "OK, requests differ\n");
153                 spin_unlock(&journal->j_state_lock);
154                 del_timer_sync(&journal->j_commit_timer);
155                 journal_commit_transaction(journal);
156                 spin_lock(&journal->j_state_lock);
157                 goto loop;
158         }
159
160         wake_up(&journal->j_wait_done_commit);
161         if (freezing(current)) {
162                 /*
163                  * The simpler the better. Flushing journal isn't a
164                  * good idea, because that depends on threads that may
165                  * be already stopped.
166                  */
167                 jbd_debug(1, "Now suspending kjournald\n");
168                 spin_unlock(&journal->j_state_lock);
169                 try_to_freeze();
170                 spin_lock(&journal->j_state_lock);
171         } else {
172                 /*
173                  * We assume on resume that commits are already there,
174                  * so we don't sleep
175                  */
176                 DEFINE_WAIT(wait);
177                 int should_sleep = 1;
178
179                 prepare_to_wait(&journal->j_wait_commit, &wait,
180                                 TASK_INTERRUPTIBLE);
181                 if (journal->j_commit_sequence != journal->j_commit_request)
182                         should_sleep = 0;
183                 transaction = journal->j_running_transaction;
184                 if (transaction && time_after_eq(jiffies,
185                                                 transaction->t_expires))
186                         should_sleep = 0;
187                 if (journal->j_flags & JFS_UNMOUNT)
188                         should_sleep = 0;
189                 if (should_sleep) {
190                         spin_unlock(&journal->j_state_lock);
191                         schedule();
192                         spin_lock(&journal->j_state_lock);
193                 }
194                 finish_wait(&journal->j_wait_commit, &wait);
195         }
196
197         jbd_debug(1, "kjournald wakes\n");
198
199         /*
200          * Were we woken up by a commit wakeup event?
201          */
202         transaction = journal->j_running_transaction;
203         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204                 journal->j_commit_request = transaction->t_tid;
205                 jbd_debug(1, "woke because of timeout\n");
206         }
207         goto loop;
208
209 end_loop:
210         spin_unlock(&journal->j_state_lock);
211         del_timer_sync(&journal->j_commit_timer);
212         journal->j_task = NULL;
213         wake_up(&journal->j_wait_done_commit);
214         jbd_debug(1, "Journal thread exiting.\n");
215         return 0;
216 }
217
218 static int journal_start_thread(journal_t *journal)
219 {
220         struct task_struct *t;
221
222         t = kthread_run(kjournald, journal, "kjournald");
223         if (IS_ERR(t))
224                 return PTR_ERR(t);
225
226         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227         return 0;
228 }
229
230 static void journal_kill_thread(journal_t *journal)
231 {
232         spin_lock(&journal->j_state_lock);
233         journal->j_flags |= JFS_UNMOUNT;
234
235         while (journal->j_task) {
236                 wake_up(&journal->j_wait_commit);
237                 spin_unlock(&journal->j_state_lock);
238                 wait_event(journal->j_wait_done_commit,
239                                 journal->j_task == NULL);
240                 spin_lock(&journal->j_state_lock);
241         }
242         spin_unlock(&journal->j_state_lock);
243 }
244
245 /*
246  * journal_write_metadata_buffer: write a metadata buffer to the journal.
247  *
248  * Writes a metadata buffer to a given disk block.  The actual IO is not
249  * performed but a new buffer_head is constructed which labels the data
250  * to be written with the correct destination disk block.
251  *
252  * Any magic-number escaping which needs to be done will cause a
253  * copy-out here.  If the buffer happens to start with the
254  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
255  * magic number is only written to the log for descripter blocks.  In
256  * this case, we copy the data and replace the first word with 0, and we
257  * return a result code which indicates that this buffer needs to be
258  * marked as an escaped buffer in the corresponding log descriptor
259  * block.  The missing word can then be restored when the block is read
260  * during recovery.
261  *
262  * If the source buffer has already been modified by a new transaction
263  * since we took the last commit snapshot, we use the frozen copy of
264  * that data for IO.  If we end up using the existing buffer_head's data
265  * for the write, then we *have* to lock the buffer to prevent anyone
266  * else from using and possibly modifying it while the IO is in
267  * progress.
268  *
269  * The function returns a pointer to the buffer_heads to be used for IO.
270  *
271  * We assume that the journal has already been locked in this function.
272  *
273  * Return value:
274  *  <0: Error
275  * >=0: Finished OK
276  *
277  * On success:
278  * Bit 0 set == escape performed on the data
279  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
280  */
281
282 int journal_write_metadata_buffer(transaction_t *transaction,
283                                   struct journal_head  *jh_in,
284                                   struct journal_head **jh_out,
285                                   unsigned int blocknr)
286 {
287         int need_copy_out = 0;
288         int done_copy_out = 0;
289         int do_escape = 0;
290         char *mapped_data;
291         struct buffer_head *new_bh;
292         struct journal_head *new_jh;
293         struct page *new_page;
294         unsigned int new_offset;
295         struct buffer_head *bh_in = jh2bh(jh_in);
296         journal_t *journal = transaction->t_journal;
297
298         /*
299          * The buffer really shouldn't be locked: only the current committing
300          * transaction is allowed to write it, so nobody else is allowed
301          * to do any IO.
302          *
303          * akpm: except if we're journalling data, and write() output is
304          * also part of a shared mapping, and another thread has
305          * decided to launch a writepage() against this buffer.
306          */
307         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
308
309         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
310         /* keep subsequent assertions sane */
311         new_bh->b_state = 0;
312         init_buffer(new_bh, NULL, NULL);
313         atomic_set(&new_bh->b_count, 1);
314         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
315
316         /*
317          * If a new transaction has already done a buffer copy-out, then
318          * we use that version of the data for the commit.
319          */
320         jbd_lock_bh_state(bh_in);
321 repeat:
322         if (jh_in->b_frozen_data) {
323                 done_copy_out = 1;
324                 new_page = virt_to_page(jh_in->b_frozen_data);
325                 new_offset = offset_in_page(jh_in->b_frozen_data);
326         } else {
327                 new_page = jh2bh(jh_in)->b_page;
328                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329         }
330
331         mapped_data = kmap_atomic(new_page, KM_USER0);
332         /*
333          * Check for escaping
334          */
335         if (*((__be32 *)(mapped_data + new_offset)) ==
336                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
337                 need_copy_out = 1;
338                 do_escape = 1;
339         }
340         kunmap_atomic(mapped_data, KM_USER0);
341
342         /*
343          * Do we need to do a data copy?
344          */
345         if (need_copy_out && !done_copy_out) {
346                 char *tmp;
347
348                 jbd_unlock_bh_state(bh_in);
349                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350                 jbd_lock_bh_state(bh_in);
351                 if (jh_in->b_frozen_data) {
352                         jbd_free(tmp, bh_in->b_size);
353                         goto repeat;
354                 }
355
356                 jh_in->b_frozen_data = tmp;
357                 mapped_data = kmap_atomic(new_page, KM_USER0);
358                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359                 kunmap_atomic(mapped_data, KM_USER0);
360
361                 new_page = virt_to_page(tmp);
362                 new_offset = offset_in_page(tmp);
363                 done_copy_out = 1;
364         }
365
366         /*
367          * Did we need to do an escaping?  Now we've done all the
368          * copying, we can finally do so.
369          */
370         if (do_escape) {
371                 mapped_data = kmap_atomic(new_page, KM_USER0);
372                 *((unsigned int *)(mapped_data + new_offset)) = 0;
373                 kunmap_atomic(mapped_data, KM_USER0);
374         }
375
376         set_bh_page(new_bh, new_page, new_offset);
377         new_jh->b_transaction = NULL;
378         new_bh->b_size = jh2bh(jh_in)->b_size;
379         new_bh->b_bdev = transaction->t_journal->j_dev;
380         new_bh->b_blocknr = blocknr;
381         set_buffer_mapped(new_bh);
382         set_buffer_dirty(new_bh);
383
384         *jh_out = new_jh;
385
386         /*
387          * The to-be-written buffer needs to get moved to the io queue,
388          * and the original buffer whose contents we are shadowing or
389          * copying is moved to the transaction's shadow queue.
390          */
391         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392         spin_lock(&journal->j_list_lock);
393         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
394         spin_unlock(&journal->j_list_lock);
395         jbd_unlock_bh_state(bh_in);
396
397         JBUFFER_TRACE(new_jh, "file as BJ_IO");
398         journal_file_buffer(new_jh, transaction, BJ_IO);
399
400         return do_escape | (done_copy_out << 1);
401 }
402
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415
416 int __log_space_left(journal_t *journal)
417 {
418         int left = journal->j_free;
419
420         assert_spin_locked(&journal->j_state_lock);
421
422         /*
423          * Be pessimistic here about the number of those free blocks which
424          * might be required for log descriptor control blocks.
425          */
426
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428
429         left -= MIN_LOG_RESERVED_BLOCKS;
430
431         if (left <= 0)
432                 return 0;
433         left -= (left >> 3);
434         return left;
435 }
436
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442         /*
443          * The only transaction we can possibly wait upon is the
444          * currently running transaction (if it exists).  Otherwise,
445          * the target tid must be an old one.
446          */
447         if (journal->j_running_transaction &&
448             journal->j_running_transaction->t_tid == target) {
449                 /*
450                  * We want a new commit: OK, mark the request and wakeup the
451                  * commit thread.  We do _not_ do the commit ourselves.
452                  */
453
454                 journal->j_commit_request = target;
455                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
456                           journal->j_commit_request,
457                           journal->j_commit_sequence);
458                 wake_up(&journal->j_wait_commit);
459                 return 1;
460         } else if (!tid_geq(journal->j_commit_request, target))
461                 /* This should never happen, but if it does, preserve
462                    the evidence before kjournald goes into a loop and
463                    increments j_commit_sequence beyond all recognition. */
464                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
465                     journal->j_commit_request, journal->j_commit_sequence,
466                     target, journal->j_running_transaction ?
467                     journal->j_running_transaction->t_tid : 0);
468         return 0;
469 }
470
471 int log_start_commit(journal_t *journal, tid_t tid)
472 {
473         int ret;
474
475         spin_lock(&journal->j_state_lock);
476         ret = __log_start_commit(journal, tid);
477         spin_unlock(&journal->j_state_lock);
478         return ret;
479 }
480
481 /*
482  * Force and wait upon a commit if the calling process is not within
483  * transaction.  This is used for forcing out undo-protected data which contains
484  * bitmaps, when the fs is running out of space.
485  *
486  * We can only force the running transaction if we don't have an active handle;
487  * otherwise, we will deadlock.
488  *
489  * Returns true if a transaction was started.
490  */
491 int journal_force_commit_nested(journal_t *journal)
492 {
493         transaction_t *transaction = NULL;
494         tid_t tid;
495
496         spin_lock(&journal->j_state_lock);
497         if (journal->j_running_transaction && !current->journal_info) {
498                 transaction = journal->j_running_transaction;
499                 __log_start_commit(journal, transaction->t_tid);
500         } else if (journal->j_committing_transaction)
501                 transaction = journal->j_committing_transaction;
502
503         if (!transaction) {
504                 spin_unlock(&journal->j_state_lock);
505                 return 0;       /* Nothing to retry */
506         }
507
508         tid = transaction->t_tid;
509         spin_unlock(&journal->j_state_lock);
510         log_wait_commit(journal, tid);
511         return 1;
512 }
513
514 /*
515  * Start a commit of the current running transaction (if any).  Returns true
516  * if a transaction is going to be committed (or is currently already
517  * committing), and fills its tid in at *ptid
518  */
519 int journal_start_commit(journal_t *journal, tid_t *ptid)
520 {
521         int ret = 0;
522
523         spin_lock(&journal->j_state_lock);
524         if (journal->j_running_transaction) {
525                 tid_t tid = journal->j_running_transaction->t_tid;
526
527                 __log_start_commit(journal, tid);
528                 /* There's a running transaction and we've just made sure
529                  * it's commit has been scheduled. */
530                 if (ptid)
531                         *ptid = tid;
532                 ret = 1;
533         } else if (journal->j_committing_transaction) {
534                 /*
535                  * If ext3_write_super() recently started a commit, then we
536                  * have to wait for completion of that transaction
537                  */
538                 if (ptid)
539                         *ptid = journal->j_committing_transaction->t_tid;
540                 ret = 1;
541         }
542         spin_unlock(&journal->j_state_lock);
543         return ret;
544 }
545
546 /*
547  * Wait for a specified commit to complete.
548  * The caller may not hold the journal lock.
549  */
550 int log_wait_commit(journal_t *journal, tid_t tid)
551 {
552         int err = 0;
553
554 #ifdef CONFIG_JBD_DEBUG
555         spin_lock(&journal->j_state_lock);
556         if (!tid_geq(journal->j_commit_request, tid)) {
557                 printk(KERN_EMERG
558                        "%s: error: j_commit_request=%d, tid=%d\n",
559                        __func__, journal->j_commit_request, tid);
560         }
561         spin_unlock(&journal->j_state_lock);
562 #endif
563         spin_lock(&journal->j_state_lock);
564         while (tid_gt(tid, journal->j_commit_sequence)) {
565                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566                                   tid, journal->j_commit_sequence);
567                 wake_up(&journal->j_wait_commit);
568                 spin_unlock(&journal->j_state_lock);
569                 wait_event(journal->j_wait_done_commit,
570                                 !tid_gt(tid, journal->j_commit_sequence));
571                 spin_lock(&journal->j_state_lock);
572         }
573         spin_unlock(&journal->j_state_lock);
574
575         if (unlikely(is_journal_aborted(journal))) {
576                 printk(KERN_EMERG "journal commit I/O error\n");
577                 err = -EIO;
578         }
579         return err;
580 }
581
582 /*
583  * Return 1 if a given transaction has not yet sent barrier request
584  * connected with a transaction commit. If 0 is returned, transaction
585  * may or may not have sent the barrier. Used to avoid sending barrier
586  * twice in common cases.
587  */
588 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
589 {
590         int ret = 0;
591         transaction_t *commit_trans;
592
593         if (!(journal->j_flags & JFS_BARRIER))
594                 return 0;
595         spin_lock(&journal->j_state_lock);
596         /* Transaction already committed? */
597         if (tid_geq(journal->j_commit_sequence, tid))
598                 goto out;
599         /*
600          * Transaction is being committed and we already proceeded to
601          * writing commit record?
602          */
603         commit_trans = journal->j_committing_transaction;
604         if (commit_trans && commit_trans->t_tid == tid &&
605             commit_trans->t_state >= T_COMMIT_RECORD)
606                 goto out;
607         ret = 1;
608 out:
609         spin_unlock(&journal->j_state_lock);
610         return ret;
611 }
612 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
613
614 /*
615  * Log buffer allocation routines:
616  */
617
618 int journal_next_log_block(journal_t *journal, unsigned int *retp)
619 {
620         unsigned int blocknr;
621
622         spin_lock(&journal->j_state_lock);
623         J_ASSERT(journal->j_free > 1);
624
625         blocknr = journal->j_head;
626         journal->j_head++;
627         journal->j_free--;
628         if (journal->j_head == journal->j_last)
629                 journal->j_head = journal->j_first;
630         spin_unlock(&journal->j_state_lock);
631         return journal_bmap(journal, blocknr, retp);
632 }
633
634 /*
635  * Conversion of logical to physical block numbers for the journal
636  *
637  * On external journals the journal blocks are identity-mapped, so
638  * this is a no-op.  If needed, we can use j_blk_offset - everything is
639  * ready.
640  */
641 int journal_bmap(journal_t *journal, unsigned int blocknr,
642                  unsigned int *retp)
643 {
644         int err = 0;
645         unsigned int ret;
646
647         if (journal->j_inode) {
648                 ret = bmap(journal->j_inode, blocknr);
649                 if (ret)
650                         *retp = ret;
651                 else {
652                         char b[BDEVNAME_SIZE];
653
654                         printk(KERN_ALERT "%s: journal block not found "
655                                         "at offset %u on %s\n",
656                                 __func__,
657                                 blocknr,
658                                 bdevname(journal->j_dev, b));
659                         err = -EIO;
660                         __journal_abort_soft(journal, err);
661                 }
662         } else {
663                 *retp = blocknr; /* +journal->j_blk_offset */
664         }
665         return err;
666 }
667
668 /*
669  * We play buffer_head aliasing tricks to write data/metadata blocks to
670  * the journal without copying their contents, but for journal
671  * descriptor blocks we do need to generate bona fide buffers.
672  *
673  * After the caller of journal_get_descriptor_buffer() has finished modifying
674  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
675  * But we don't bother doing that, so there will be coherency problems with
676  * mmaps of blockdevs which hold live JBD-controlled filesystems.
677  */
678 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
679 {
680         struct buffer_head *bh;
681         unsigned int blocknr;
682         int err;
683
684         err = journal_next_log_block(journal, &blocknr);
685
686         if (err)
687                 return NULL;
688
689         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
690         if (!bh)
691                 return NULL;
692         lock_buffer(bh);
693         memset(bh->b_data, 0, journal->j_blocksize);
694         set_buffer_uptodate(bh);
695         unlock_buffer(bh);
696         BUFFER_TRACE(bh, "return this buffer");
697         return journal_add_journal_head(bh);
698 }
699
700 /*
701  * Management for journal control blocks: functions to create and
702  * destroy journal_t structures, and to initialise and read existing
703  * journal blocks from disk.  */
704
705 /* First: create and setup a journal_t object in memory.  We initialise
706  * very few fields yet: that has to wait until we have created the
707  * journal structures from from scratch, or loaded them from disk. */
708
709 static journal_t * journal_init_common (void)
710 {
711         journal_t *journal;
712         int err;
713
714         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
715         if (!journal)
716                 goto fail;
717
718         init_waitqueue_head(&journal->j_wait_transaction_locked);
719         init_waitqueue_head(&journal->j_wait_logspace);
720         init_waitqueue_head(&journal->j_wait_done_commit);
721         init_waitqueue_head(&journal->j_wait_checkpoint);
722         init_waitqueue_head(&journal->j_wait_commit);
723         init_waitqueue_head(&journal->j_wait_updates);
724         mutex_init(&journal->j_checkpoint_mutex);
725         spin_lock_init(&journal->j_revoke_lock);
726         spin_lock_init(&journal->j_list_lock);
727         spin_lock_init(&journal->j_state_lock);
728
729         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
730
731         /* The journal is marked for error until we succeed with recovery! */
732         journal->j_flags = JFS_ABORT;
733
734         /* Set up a default-sized revoke table for the new mount. */
735         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
736         if (err) {
737                 kfree(journal);
738                 goto fail;
739         }
740         return journal;
741 fail:
742         return NULL;
743 }
744
745 /* journal_init_dev and journal_init_inode:
746  *
747  * Create a journal structure assigned some fixed set of disk blocks to
748  * the journal.  We don't actually touch those disk blocks yet, but we
749  * need to set up all of the mapping information to tell the journaling
750  * system where the journal blocks are.
751  *
752  */
753
754 /**
755  *  journal_t * journal_init_dev() - creates and initialises a journal structure
756  *  @bdev: Block device on which to create the journal
757  *  @fs_dev: Device which hold journalled filesystem for this journal.
758  *  @start: Block nr Start of journal.
759  *  @len:  Length of the journal in blocks.
760  *  @blocksize: blocksize of journalling device
761  *
762  *  Returns: a newly created journal_t *
763  *
764  *  journal_init_dev creates a journal which maps a fixed contiguous
765  *  range of blocks on an arbitrary block device.
766  *
767  */
768 journal_t * journal_init_dev(struct block_device *bdev,
769                         struct block_device *fs_dev,
770                         int start, int len, int blocksize)
771 {
772         journal_t *journal = journal_init_common();
773         struct buffer_head *bh;
774         int n;
775
776         if (!journal)
777                 return NULL;
778
779         /* journal descriptor can store up to n blocks -bzzz */
780         journal->j_blocksize = blocksize;
781         n = journal->j_blocksize / sizeof(journal_block_tag_t);
782         journal->j_wbufsize = n;
783         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
784         if (!journal->j_wbuf) {
785                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
786                         __func__);
787                 goto out_err;
788         }
789         journal->j_dev = bdev;
790         journal->j_fs_dev = fs_dev;
791         journal->j_blk_offset = start;
792         journal->j_maxlen = len;
793
794         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
795         if (!bh) {
796                 printk(KERN_ERR
797                        "%s: Cannot get buffer for journal superblock\n",
798                        __func__);
799                 goto out_err;
800         }
801         journal->j_sb_buffer = bh;
802         journal->j_superblock = (journal_superblock_t *)bh->b_data;
803
804         return journal;
805 out_err:
806         kfree(journal->j_wbuf);
807         kfree(journal);
808         return NULL;
809 }
810
811 /**
812  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
813  *  @inode: An inode to create the journal in
814  *
815  * journal_init_inode creates a journal which maps an on-disk inode as
816  * the journal.  The inode must exist already, must support bmap() and
817  * must have all data blocks preallocated.
818  */
819 journal_t * journal_init_inode (struct inode *inode)
820 {
821         struct buffer_head *bh;
822         journal_t *journal = journal_init_common();
823         int err;
824         int n;
825         unsigned int blocknr;
826
827         if (!journal)
828                 return NULL;
829
830         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
831         journal->j_inode = inode;
832         jbd_debug(1,
833                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
834                   journal, inode->i_sb->s_id, inode->i_ino,
835                   (long long) inode->i_size,
836                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
837
838         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
839         journal->j_blocksize = inode->i_sb->s_blocksize;
840
841         /* journal descriptor can store up to n blocks -bzzz */
842         n = journal->j_blocksize / sizeof(journal_block_tag_t);
843         journal->j_wbufsize = n;
844         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
845         if (!journal->j_wbuf) {
846                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
847                         __func__);
848                 goto out_err;
849         }
850
851         err = journal_bmap(journal, 0, &blocknr);
852         /* If that failed, give up */
853         if (err) {
854                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
855                        __func__);
856                 goto out_err;
857         }
858
859         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860         if (!bh) {
861                 printk(KERN_ERR
862                        "%s: Cannot get buffer for journal superblock\n",
863                        __func__);
864                 goto out_err;
865         }
866         journal->j_sb_buffer = bh;
867         journal->j_superblock = (journal_superblock_t *)bh->b_data;
868
869         return journal;
870 out_err:
871         kfree(journal->j_wbuf);
872         kfree(journal);
873         return NULL;
874 }
875
876 /*
877  * If the journal init or create aborts, we need to mark the journal
878  * superblock as being NULL to prevent the journal destroy from writing
879  * back a bogus superblock.
880  */
881 static void journal_fail_superblock (journal_t *journal)
882 {
883         struct buffer_head *bh = journal->j_sb_buffer;
884         brelse(bh);
885         journal->j_sb_buffer = NULL;
886 }
887
888 /*
889  * Given a journal_t structure, initialise the various fields for
890  * startup of a new journaling session.  We use this both when creating
891  * a journal, and after recovering an old journal to reset it for
892  * subsequent use.
893  */
894
895 static int journal_reset(journal_t *journal)
896 {
897         journal_superblock_t *sb = journal->j_superblock;
898         unsigned int first, last;
899
900         first = be32_to_cpu(sb->s_first);
901         last = be32_to_cpu(sb->s_maxlen);
902         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
903                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
904                        first, last);
905                 journal_fail_superblock(journal);
906                 return -EINVAL;
907         }
908
909         journal->j_first = first;
910         journal->j_last = last;
911
912         journal->j_head = first;
913         journal->j_tail = first;
914         journal->j_free = last - first;
915
916         journal->j_tail_sequence = journal->j_transaction_sequence;
917         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
918         journal->j_commit_request = journal->j_commit_sequence;
919
920         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
921
922         /* Add the dynamic fields and write it to disk. */
923         journal_update_superblock(journal, 1);
924         return journal_start_thread(journal);
925 }
926
927 /**
928  * int journal_create() - Initialise the new journal file
929  * @journal: Journal to create. This structure must have been initialised
930  *
931  * Given a journal_t structure which tells us which disk blocks we can
932  * use, create a new journal superblock and initialise all of the
933  * journal fields from scratch.
934  **/
935 int journal_create(journal_t *journal)
936 {
937         unsigned int blocknr;
938         struct buffer_head *bh;
939         journal_superblock_t *sb;
940         int i, err;
941
942         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
943                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
944                         journal->j_maxlen);
945                 journal_fail_superblock(journal);
946                 return -EINVAL;
947         }
948
949         if (journal->j_inode == NULL) {
950                 /*
951                  * We don't know what block to start at!
952                  */
953                 printk(KERN_EMERG
954                        "%s: creation of journal on external device!\n",
955                        __func__);
956                 BUG();
957         }
958
959         /* Zero out the entire journal on disk.  We cannot afford to
960            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
961         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
962         for (i = 0; i < journal->j_maxlen; i++) {
963                 err = journal_bmap(journal, i, &blocknr);
964                 if (err)
965                         return err;
966                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
967                 if (unlikely(!bh))
968                         return -ENOMEM;
969                 lock_buffer(bh);
970                 memset (bh->b_data, 0, journal->j_blocksize);
971                 BUFFER_TRACE(bh, "marking dirty");
972                 mark_buffer_dirty(bh);
973                 BUFFER_TRACE(bh, "marking uptodate");
974                 set_buffer_uptodate(bh);
975                 unlock_buffer(bh);
976                 __brelse(bh);
977         }
978
979         sync_blockdev(journal->j_dev);
980         jbd_debug(1, "JBD: journal cleared.\n");
981
982         /* OK, fill in the initial static fields in the new superblock */
983         sb = journal->j_superblock;
984
985         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
986         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
987
988         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
989         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
990         sb->s_first     = cpu_to_be32(1);
991
992         journal->j_transaction_sequence = 1;
993
994         journal->j_flags &= ~JFS_ABORT;
995         journal->j_format_version = 2;
996
997         return journal_reset(journal);
998 }
999
1000 /**
1001  * void journal_update_superblock() - Update journal sb on disk.
1002  * @journal: The journal to update.
1003  * @wait: Set to '0' if you don't want to wait for IO completion.
1004  *
1005  * Update a journal's dynamic superblock fields and write it to disk,
1006  * optionally waiting for the IO to complete.
1007  */
1008 void journal_update_superblock(journal_t *journal, int wait)
1009 {
1010         journal_superblock_t *sb = journal->j_superblock;
1011         struct buffer_head *bh = journal->j_sb_buffer;
1012
1013         /*
1014          * As a special case, if the on-disk copy is already marked as needing
1015          * no recovery (s_start == 0) and there are no outstanding transactions
1016          * in the filesystem, then we can safely defer the superblock update
1017          * until the next commit by setting JFS_FLUSHED.  This avoids
1018          * attempting a write to a potential-readonly device.
1019          */
1020         if (sb->s_start == 0 && journal->j_tail_sequence ==
1021                                 journal->j_transaction_sequence) {
1022                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1023                         "(start %u, seq %d, errno %d)\n",
1024                         journal->j_tail, journal->j_tail_sequence,
1025                         journal->j_errno);
1026                 goto out;
1027         }
1028
1029         if (buffer_write_io_error(bh)) {
1030                 char b[BDEVNAME_SIZE];
1031                 /*
1032                  * Oh, dear.  A previous attempt to write the journal
1033                  * superblock failed.  This could happen because the
1034                  * USB device was yanked out.  Or it could happen to
1035                  * be a transient write error and maybe the block will
1036                  * be remapped.  Nothing we can do but to retry the
1037                  * write and hope for the best.
1038                  */
1039                 printk(KERN_ERR "JBD: previous I/O error detected "
1040                        "for journal superblock update for %s.\n",
1041                        journal_dev_name(journal, b));
1042                 clear_buffer_write_io_error(bh);
1043                 set_buffer_uptodate(bh);
1044         }
1045
1046         spin_lock(&journal->j_state_lock);
1047         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1048                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1049
1050         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1051         sb->s_start    = cpu_to_be32(journal->j_tail);
1052         sb->s_errno    = cpu_to_be32(journal->j_errno);
1053         spin_unlock(&journal->j_state_lock);
1054
1055         BUFFER_TRACE(bh, "marking dirty");
1056         mark_buffer_dirty(bh);
1057         if (wait) {
1058                 sync_dirty_buffer(bh);
1059                 if (buffer_write_io_error(bh)) {
1060                         char b[BDEVNAME_SIZE];
1061                         printk(KERN_ERR "JBD: I/O error detected "
1062                                "when updating journal superblock for %s.\n",
1063                                journal_dev_name(journal, b));
1064                         clear_buffer_write_io_error(bh);
1065                         set_buffer_uptodate(bh);
1066                 }
1067         } else
1068                 write_dirty_buffer(bh, WRITE);
1069
1070         trace_jbd_update_superblock_end(journal, wait);
1071 out:
1072         /* If we have just flushed the log (by marking s_start==0), then
1073          * any future commit will have to be careful to update the
1074          * superblock again to re-record the true start of the log. */
1075
1076         spin_lock(&journal->j_state_lock);
1077         if (sb->s_start)
1078                 journal->j_flags &= ~JFS_FLUSHED;
1079         else
1080                 journal->j_flags |= JFS_FLUSHED;
1081         spin_unlock(&journal->j_state_lock);
1082 }
1083
1084 /*
1085  * Read the superblock for a given journal, performing initial
1086  * validation of the format.
1087  */
1088
1089 static int journal_get_superblock(journal_t *journal)
1090 {
1091         struct buffer_head *bh;
1092         journal_superblock_t *sb;
1093         int err = -EIO;
1094
1095         bh = journal->j_sb_buffer;
1096
1097         J_ASSERT(bh != NULL);
1098         if (!buffer_uptodate(bh)) {
1099                 ll_rw_block(READ, 1, &bh);
1100                 wait_on_buffer(bh);
1101                 if (!buffer_uptodate(bh)) {
1102                         printk (KERN_ERR
1103                                 "JBD: IO error reading journal superblock\n");
1104                         goto out;
1105                 }
1106         }
1107
1108         sb = journal->j_superblock;
1109
1110         err = -EINVAL;
1111
1112         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1113             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1114                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1115                 goto out;
1116         }
1117
1118         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1119         case JFS_SUPERBLOCK_V1:
1120                 journal->j_format_version = 1;
1121                 break;
1122         case JFS_SUPERBLOCK_V2:
1123                 journal->j_format_version = 2;
1124                 break;
1125         default:
1126                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1127                 goto out;
1128         }
1129
1130         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1131                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1132         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1133                 printk (KERN_WARNING "JBD: journal file too short\n");
1134                 goto out;
1135         }
1136
1137         if (be32_to_cpu(sb->s_first) == 0 ||
1138             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1139                 printk(KERN_WARNING
1140                         "JBD: Invalid start block of journal: %u\n",
1141                         be32_to_cpu(sb->s_first));
1142                 goto out;
1143         }
1144
1145         return 0;
1146
1147 out:
1148         journal_fail_superblock(journal);
1149         return err;
1150 }
1151
1152 /*
1153  * Load the on-disk journal superblock and read the key fields into the
1154  * journal_t.
1155  */
1156
1157 static int load_superblock(journal_t *journal)
1158 {
1159         int err;
1160         journal_superblock_t *sb;
1161
1162         err = journal_get_superblock(journal);
1163         if (err)
1164                 return err;
1165
1166         sb = journal->j_superblock;
1167
1168         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1169         journal->j_tail = be32_to_cpu(sb->s_start);
1170         journal->j_first = be32_to_cpu(sb->s_first);
1171         journal->j_last = be32_to_cpu(sb->s_maxlen);
1172         journal->j_errno = be32_to_cpu(sb->s_errno);
1173
1174         return 0;
1175 }
1176
1177
1178 /**
1179  * int journal_load() - Read journal from disk.
1180  * @journal: Journal to act on.
1181  *
1182  * Given a journal_t structure which tells us which disk blocks contain
1183  * a journal, read the journal from disk to initialise the in-memory
1184  * structures.
1185  */
1186 int journal_load(journal_t *journal)
1187 {
1188         int err;
1189         journal_superblock_t *sb;
1190
1191         err = load_superblock(journal);
1192         if (err)
1193                 return err;
1194
1195         sb = journal->j_superblock;
1196         /* If this is a V2 superblock, then we have to check the
1197          * features flags on it. */
1198
1199         if (journal->j_format_version >= 2) {
1200                 if ((sb->s_feature_ro_compat &
1201                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1202                     (sb->s_feature_incompat &
1203                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1204                         printk (KERN_WARNING
1205                                 "JBD: Unrecognised features on journal\n");
1206                         return -EINVAL;
1207                 }
1208         }
1209
1210         /* Let the recovery code check whether it needs to recover any
1211          * data from the journal. */
1212         if (journal_recover(journal))
1213                 goto recovery_error;
1214
1215         /* OK, we've finished with the dynamic journal bits:
1216          * reinitialise the dynamic contents of the superblock in memory
1217          * and reset them on disk. */
1218         if (journal_reset(journal))
1219                 goto recovery_error;
1220
1221         journal->j_flags &= ~JFS_ABORT;
1222         journal->j_flags |= JFS_LOADED;
1223         return 0;
1224
1225 recovery_error:
1226         printk (KERN_WARNING "JBD: recovery failed\n");
1227         return -EIO;
1228 }
1229
1230 /**
1231  * void journal_destroy() - Release a journal_t structure.
1232  * @journal: Journal to act on.
1233  *
1234  * Release a journal_t structure once it is no longer in use by the
1235  * journaled object.
1236  * Return <0 if we couldn't clean up the journal.
1237  */
1238 int journal_destroy(journal_t *journal)
1239 {
1240         int err = 0;
1241
1242         
1243         /* Wait for the commit thread to wake up and die. */
1244         journal_kill_thread(journal);
1245
1246         /* Force a final log commit */
1247         if (journal->j_running_transaction)
1248                 journal_commit_transaction(journal);
1249
1250         /* Force any old transactions to disk */
1251
1252         /* Totally anal locking here... */
1253         spin_lock(&journal->j_list_lock);
1254         while (journal->j_checkpoint_transactions != NULL) {
1255                 spin_unlock(&journal->j_list_lock);
1256                 log_do_checkpoint(journal);
1257                 spin_lock(&journal->j_list_lock);
1258         }
1259
1260         J_ASSERT(journal->j_running_transaction == NULL);
1261         J_ASSERT(journal->j_committing_transaction == NULL);
1262         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1263         spin_unlock(&journal->j_list_lock);
1264
1265         if (journal->j_sb_buffer) {
1266                 if (!is_journal_aborted(journal)) {
1267                         /* We can now mark the journal as empty. */
1268                         journal->j_tail = 0;
1269                         journal->j_tail_sequence =
1270                                 ++journal->j_transaction_sequence;
1271                         journal_update_superblock(journal, 1);
1272                 } else {
1273                         err = -EIO;
1274                 }
1275                 brelse(journal->j_sb_buffer);
1276         }
1277
1278         if (journal->j_inode)
1279                 iput(journal->j_inode);
1280         if (journal->j_revoke)
1281                 journal_destroy_revoke(journal);
1282         kfree(journal->j_wbuf);
1283         kfree(journal);
1284
1285         return err;
1286 }
1287
1288
1289 /**
1290  *int journal_check_used_features () - Check if features specified are used.
1291  * @journal: Journal to check.
1292  * @compat: bitmask of compatible features
1293  * @ro: bitmask of features that force read-only mount
1294  * @incompat: bitmask of incompatible features
1295  *
1296  * Check whether the journal uses all of a given set of
1297  * features.  Return true (non-zero) if it does.
1298  **/
1299
1300 int journal_check_used_features (journal_t *journal, unsigned long compat,
1301                                  unsigned long ro, unsigned long incompat)
1302 {
1303         journal_superblock_t *sb;
1304
1305         if (!compat && !ro && !incompat)
1306                 return 1;
1307         if (journal->j_format_version == 1)
1308                 return 0;
1309
1310         sb = journal->j_superblock;
1311
1312         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1313             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1314             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1315                 return 1;
1316
1317         return 0;
1318 }
1319
1320 /**
1321  * int journal_check_available_features() - Check feature set in journalling layer
1322  * @journal: Journal to check.
1323  * @compat: bitmask of compatible features
1324  * @ro: bitmask of features that force read-only mount
1325  * @incompat: bitmask of incompatible features
1326  *
1327  * Check whether the journaling code supports the use of
1328  * all of a given set of features on this journal.  Return true
1329  * (non-zero) if it can. */
1330
1331 int journal_check_available_features (journal_t *journal, unsigned long compat,
1332                                       unsigned long ro, unsigned long incompat)
1333 {
1334         if (!compat && !ro && !incompat)
1335                 return 1;
1336
1337         /* We can support any known requested features iff the
1338          * superblock is in version 2.  Otherwise we fail to support any
1339          * extended sb features. */
1340
1341         if (journal->j_format_version != 2)
1342                 return 0;
1343
1344         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1345             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1346             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1347                 return 1;
1348
1349         return 0;
1350 }
1351
1352 /**
1353  * int journal_set_features () - Mark a given journal feature in the superblock
1354  * @journal: Journal to act on.
1355  * @compat: bitmask of compatible features
1356  * @ro: bitmask of features that force read-only mount
1357  * @incompat: bitmask of incompatible features
1358  *
1359  * Mark a given journal feature as present on the
1360  * superblock.  Returns true if the requested features could be set.
1361  *
1362  */
1363
1364 int journal_set_features (journal_t *journal, unsigned long compat,
1365                           unsigned long ro, unsigned long incompat)
1366 {
1367         journal_superblock_t *sb;
1368
1369         if (journal_check_used_features(journal, compat, ro, incompat))
1370                 return 1;
1371
1372         if (!journal_check_available_features(journal, compat, ro, incompat))
1373                 return 0;
1374
1375         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1376                   compat, ro, incompat);
1377
1378         sb = journal->j_superblock;
1379
1380         sb->s_feature_compat    |= cpu_to_be32(compat);
1381         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1382         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1383
1384         return 1;
1385 }
1386
1387
1388 /**
1389  * int journal_update_format () - Update on-disk journal structure.
1390  * @journal: Journal to act on.
1391  *
1392  * Given an initialised but unloaded journal struct, poke about in the
1393  * on-disk structure to update it to the most recent supported version.
1394  */
1395 int journal_update_format (journal_t *journal)
1396 {
1397         journal_superblock_t *sb;
1398         int err;
1399
1400         err = journal_get_superblock(journal);
1401         if (err)
1402                 return err;
1403
1404         sb = journal->j_superblock;
1405
1406         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1407         case JFS_SUPERBLOCK_V2:
1408                 return 0;
1409         case JFS_SUPERBLOCK_V1:
1410                 return journal_convert_superblock_v1(journal, sb);
1411         default:
1412                 break;
1413         }
1414         return -EINVAL;
1415 }
1416
1417 static int journal_convert_superblock_v1(journal_t *journal,
1418                                          journal_superblock_t *sb)
1419 {
1420         int offset, blocksize;
1421         struct buffer_head *bh;
1422
1423         printk(KERN_WARNING
1424                 "JBD: Converting superblock from version 1 to 2.\n");
1425
1426         /* Pre-initialise new fields to zero */
1427         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1428         blocksize = be32_to_cpu(sb->s_blocksize);
1429         memset(&sb->s_feature_compat, 0, blocksize-offset);
1430
1431         sb->s_nr_users = cpu_to_be32(1);
1432         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1433         journal->j_format_version = 2;
1434
1435         bh = journal->j_sb_buffer;
1436         BUFFER_TRACE(bh, "marking dirty");
1437         mark_buffer_dirty(bh);
1438         sync_dirty_buffer(bh);
1439         return 0;
1440 }
1441
1442
1443 /**
1444  * int journal_flush () - Flush journal
1445  * @journal: Journal to act on.
1446  *
1447  * Flush all data for a given journal to disk and empty the journal.
1448  * Filesystems can use this when remounting readonly to ensure that
1449  * recovery does not need to happen on remount.
1450  */
1451
1452 int journal_flush(journal_t *journal)
1453 {
1454         int err = 0;
1455         transaction_t *transaction = NULL;
1456         unsigned int old_tail;
1457
1458         spin_lock(&journal->j_state_lock);
1459
1460         /* Force everything buffered to the log... */
1461         if (journal->j_running_transaction) {
1462                 transaction = journal->j_running_transaction;
1463                 __log_start_commit(journal, transaction->t_tid);
1464         } else if (journal->j_committing_transaction)
1465                 transaction = journal->j_committing_transaction;
1466
1467         /* Wait for the log commit to complete... */
1468         if (transaction) {
1469                 tid_t tid = transaction->t_tid;
1470
1471                 spin_unlock(&journal->j_state_lock);
1472                 log_wait_commit(journal, tid);
1473         } else {
1474                 spin_unlock(&journal->j_state_lock);
1475         }
1476
1477         /* ...and flush everything in the log out to disk. */
1478         spin_lock(&journal->j_list_lock);
1479         while (!err && journal->j_checkpoint_transactions != NULL) {
1480                 spin_unlock(&journal->j_list_lock);
1481                 mutex_lock(&journal->j_checkpoint_mutex);
1482                 err = log_do_checkpoint(journal);
1483                 mutex_unlock(&journal->j_checkpoint_mutex);
1484                 spin_lock(&journal->j_list_lock);
1485         }
1486         spin_unlock(&journal->j_list_lock);
1487
1488         if (is_journal_aborted(journal))
1489                 return -EIO;
1490
1491         cleanup_journal_tail(journal);
1492
1493         /* Finally, mark the journal as really needing no recovery.
1494          * This sets s_start==0 in the underlying superblock, which is
1495          * the magic code for a fully-recovered superblock.  Any future
1496          * commits of data to the journal will restore the current
1497          * s_start value. */
1498         spin_lock(&journal->j_state_lock);
1499         old_tail = journal->j_tail;
1500         journal->j_tail = 0;
1501         spin_unlock(&journal->j_state_lock);
1502         journal_update_superblock(journal, 1);
1503         spin_lock(&journal->j_state_lock);
1504         journal->j_tail = old_tail;
1505
1506         J_ASSERT(!journal->j_running_transaction);
1507         J_ASSERT(!journal->j_committing_transaction);
1508         J_ASSERT(!journal->j_checkpoint_transactions);
1509         J_ASSERT(journal->j_head == journal->j_tail);
1510         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1511         spin_unlock(&journal->j_state_lock);
1512         return 0;
1513 }
1514
1515 /**
1516  * int journal_wipe() - Wipe journal contents
1517  * @journal: Journal to act on.
1518  * @write: flag (see below)
1519  *
1520  * Wipe out all of the contents of a journal, safely.  This will produce
1521  * a warning if the journal contains any valid recovery information.
1522  * Must be called between journal_init_*() and journal_load().
1523  *
1524  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1525  * we merely suppress recovery.
1526  */
1527
1528 int journal_wipe(journal_t *journal, int write)
1529 {
1530         int err = 0;
1531
1532         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1533
1534         err = load_superblock(journal);
1535         if (err)
1536                 return err;
1537
1538         if (!journal->j_tail)
1539                 goto no_recovery;
1540
1541         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1542                 write ? "Clearing" : "Ignoring");
1543
1544         err = journal_skip_recovery(journal);
1545         if (write)
1546                 journal_update_superblock(journal, 1);
1547
1548  no_recovery:
1549         return err;
1550 }
1551
1552 /*
1553  * journal_dev_name: format a character string to describe on what
1554  * device this journal is present.
1555  */
1556
1557 static const char *journal_dev_name(journal_t *journal, char *buffer)
1558 {
1559         struct block_device *bdev;
1560
1561         if (journal->j_inode)
1562                 bdev = journal->j_inode->i_sb->s_bdev;
1563         else
1564                 bdev = journal->j_dev;
1565
1566         return bdevname(bdev, buffer);
1567 }
1568
1569 /*
1570  * Journal abort has very specific semantics, which we describe
1571  * for journal abort.
1572  *
1573  * Two internal function, which provide abort to te jbd layer
1574  * itself are here.
1575  */
1576
1577 /*
1578  * Quick version for internal journal use (doesn't lock the journal).
1579  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1580  * and don't attempt to make any other journal updates.
1581  */
1582 static void __journal_abort_hard(journal_t *journal)
1583 {
1584         transaction_t *transaction;
1585         char b[BDEVNAME_SIZE];
1586
1587         if (journal->j_flags & JFS_ABORT)
1588                 return;
1589
1590         printk(KERN_ERR "Aborting journal on device %s.\n",
1591                 journal_dev_name(journal, b));
1592
1593         spin_lock(&journal->j_state_lock);
1594         journal->j_flags |= JFS_ABORT;
1595         transaction = journal->j_running_transaction;
1596         if (transaction)
1597                 __log_start_commit(journal, transaction->t_tid);
1598         spin_unlock(&journal->j_state_lock);
1599 }
1600
1601 /* Soft abort: record the abort error status in the journal superblock,
1602  * but don't do any other IO. */
1603 static void __journal_abort_soft (journal_t *journal, int errno)
1604 {
1605         if (journal->j_flags & JFS_ABORT)
1606                 return;
1607
1608         if (!journal->j_errno)
1609                 journal->j_errno = errno;
1610
1611         __journal_abort_hard(journal);
1612
1613         if (errno)
1614                 journal_update_superblock(journal, 1);
1615 }
1616
1617 /**
1618  * void journal_abort () - Shutdown the journal immediately.
1619  * @journal: the journal to shutdown.
1620  * @errno:   an error number to record in the journal indicating
1621  *           the reason for the shutdown.
1622  *
1623  * Perform a complete, immediate shutdown of the ENTIRE
1624  * journal (not of a single transaction).  This operation cannot be
1625  * undone without closing and reopening the journal.
1626  *
1627  * The journal_abort function is intended to support higher level error
1628  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1629  * mode.
1630  *
1631  * Journal abort has very specific semantics.  Any existing dirty,
1632  * unjournaled buffers in the main filesystem will still be written to
1633  * disk by bdflush, but the journaling mechanism will be suspended
1634  * immediately and no further transaction commits will be honoured.
1635  *
1636  * Any dirty, journaled buffers will be written back to disk without
1637  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1638  * filesystem, but we _do_ attempt to leave as much data as possible
1639  * behind for fsck to use for cleanup.
1640  *
1641  * Any attempt to get a new transaction handle on a journal which is in
1642  * ABORT state will just result in an -EROFS error return.  A
1643  * journal_stop on an existing handle will return -EIO if we have
1644  * entered abort state during the update.
1645  *
1646  * Recursive transactions are not disturbed by journal abort until the
1647  * final journal_stop, which will receive the -EIO error.
1648  *
1649  * Finally, the journal_abort call allows the caller to supply an errno
1650  * which will be recorded (if possible) in the journal superblock.  This
1651  * allows a client to record failure conditions in the middle of a
1652  * transaction without having to complete the transaction to record the
1653  * failure to disk.  ext3_error, for example, now uses this
1654  * functionality.
1655  *
1656  * Errors which originate from within the journaling layer will NOT
1657  * supply an errno; a null errno implies that absolutely no further
1658  * writes are done to the journal (unless there are any already in
1659  * progress).
1660  *
1661  */
1662
1663 void journal_abort(journal_t *journal, int errno)
1664 {
1665         __journal_abort_soft(journal, errno);
1666 }
1667
1668 /**
1669  * int journal_errno () - returns the journal's error state.
1670  * @journal: journal to examine.
1671  *
1672  * This is the errno numbet set with journal_abort(), the last
1673  * time the journal was mounted - if the journal was stopped
1674  * without calling abort this will be 0.
1675  *
1676  * If the journal has been aborted on this mount time -EROFS will
1677  * be returned.
1678  */
1679 int journal_errno(journal_t *journal)
1680 {
1681         int err;
1682
1683         spin_lock(&journal->j_state_lock);
1684         if (journal->j_flags & JFS_ABORT)
1685                 err = -EROFS;
1686         else
1687                 err = journal->j_errno;
1688         spin_unlock(&journal->j_state_lock);
1689         return err;
1690 }
1691
1692 /**
1693  * int journal_clear_err () - clears the journal's error state
1694  * @journal: journal to act on.
1695  *
1696  * An error must be cleared or Acked to take a FS out of readonly
1697  * mode.
1698  */
1699 int journal_clear_err(journal_t *journal)
1700 {
1701         int err = 0;
1702
1703         spin_lock(&journal->j_state_lock);
1704         if (journal->j_flags & JFS_ABORT)
1705                 err = -EROFS;
1706         else
1707                 journal->j_errno = 0;
1708         spin_unlock(&journal->j_state_lock);
1709         return err;
1710 }
1711
1712 /**
1713  * void journal_ack_err() - Ack journal err.
1714  * @journal: journal to act on.
1715  *
1716  * An error must be cleared or Acked to take a FS out of readonly
1717  * mode.
1718  */
1719 void journal_ack_err(journal_t *journal)
1720 {
1721         spin_lock(&journal->j_state_lock);
1722         if (journal->j_errno)
1723                 journal->j_flags |= JFS_ACK_ERR;
1724         spin_unlock(&journal->j_state_lock);
1725 }
1726
1727 int journal_blocks_per_page(struct inode *inode)
1728 {
1729         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1730 }
1731
1732 /*
1733  * Journal_head storage management
1734  */
1735 static struct kmem_cache *journal_head_cache;
1736 #ifdef CONFIG_JBD_DEBUG
1737 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1738 #endif
1739
1740 static int journal_init_journal_head_cache(void)
1741 {
1742         int retval;
1743
1744         J_ASSERT(journal_head_cache == NULL);
1745         journal_head_cache = kmem_cache_create("journal_head",
1746                                 sizeof(struct journal_head),
1747                                 0,              /* offset */
1748                                 SLAB_TEMPORARY, /* flags */
1749                                 NULL);          /* ctor */
1750         retval = 0;
1751         if (!journal_head_cache) {
1752                 retval = -ENOMEM;
1753                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1754         }
1755         return retval;
1756 }
1757
1758 static void journal_destroy_journal_head_cache(void)
1759 {
1760         if (journal_head_cache) {
1761                 kmem_cache_destroy(journal_head_cache);
1762                 journal_head_cache = NULL;
1763         }
1764 }
1765
1766 /*
1767  * journal_head splicing and dicing
1768  */
1769 static struct journal_head *journal_alloc_journal_head(void)
1770 {
1771         struct journal_head *ret;
1772
1773 #ifdef CONFIG_JBD_DEBUG
1774         atomic_inc(&nr_journal_heads);
1775 #endif
1776         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1777         if (ret == NULL) {
1778                 jbd_debug(1, "out of memory for journal_head\n");
1779                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1780                                    __func__);
1781
1782                 while (ret == NULL) {
1783                         yield();
1784                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1785                 }
1786         }
1787         return ret;
1788 }
1789
1790 static void journal_free_journal_head(struct journal_head *jh)
1791 {
1792 #ifdef CONFIG_JBD_DEBUG
1793         atomic_dec(&nr_journal_heads);
1794         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1795 #endif
1796         kmem_cache_free(journal_head_cache, jh);
1797 }
1798
1799 /*
1800  * A journal_head is attached to a buffer_head whenever JBD has an
1801  * interest in the buffer.
1802  *
1803  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1804  * is set.  This bit is tested in core kernel code where we need to take
1805  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1806  * there.
1807  *
1808  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1809  *
1810  * When a buffer has its BH_JBD bit set it is immune from being released by
1811  * core kernel code, mainly via ->b_count.
1812  *
1813  * A journal_head is detached from its buffer_head when the journal_head's
1814  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1815  * transaction (b_cp_transaction) hold their references to b_jcount.
1816  *
1817  * Various places in the kernel want to attach a journal_head to a buffer_head
1818  * _before_ attaching the journal_head to a transaction.  To protect the
1819  * journal_head in this situation, journal_add_journal_head elevates the
1820  * journal_head's b_jcount refcount by one.  The caller must call
1821  * journal_put_journal_head() to undo this.
1822  *
1823  * So the typical usage would be:
1824  *
1825  *      (Attach a journal_head if needed.  Increments b_jcount)
1826  *      struct journal_head *jh = journal_add_journal_head(bh);
1827  *      ...
1828  *      (Get another reference for transaction)
1829  *      journal_grab_journal_head(bh);
1830  *      jh->b_transaction = xxx;
1831  *      (Put original reference)
1832  *      journal_put_journal_head(jh);
1833  */
1834
1835 /*
1836  * Give a buffer_head a journal_head.
1837  *
1838  * May sleep.
1839  */
1840 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1841 {
1842         struct journal_head *jh;
1843         struct journal_head *new_jh = NULL;
1844
1845 repeat:
1846         if (!buffer_jbd(bh)) {
1847                 new_jh = journal_alloc_journal_head();
1848                 memset(new_jh, 0, sizeof(*new_jh));
1849         }
1850
1851         jbd_lock_bh_journal_head(bh);
1852         if (buffer_jbd(bh)) {
1853                 jh = bh2jh(bh);
1854         } else {
1855                 J_ASSERT_BH(bh,
1856                         (atomic_read(&bh->b_count) > 0) ||
1857                         (bh->b_page && bh->b_page->mapping));
1858
1859                 if (!new_jh) {
1860                         jbd_unlock_bh_journal_head(bh);
1861                         goto repeat;
1862                 }
1863
1864                 jh = new_jh;
1865                 new_jh = NULL;          /* We consumed it */
1866                 set_buffer_jbd(bh);
1867                 bh->b_private = jh;
1868                 jh->b_bh = bh;
1869                 get_bh(bh);
1870                 BUFFER_TRACE(bh, "added journal_head");
1871         }
1872         jh->b_jcount++;
1873         jbd_unlock_bh_journal_head(bh);
1874         if (new_jh)
1875                 journal_free_journal_head(new_jh);
1876         return bh->b_private;
1877 }
1878
1879 /*
1880  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1881  * having a journal_head, return NULL
1882  */
1883 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1884 {
1885         struct journal_head *jh = NULL;
1886
1887         jbd_lock_bh_journal_head(bh);
1888         if (buffer_jbd(bh)) {
1889                 jh = bh2jh(bh);
1890                 jh->b_jcount++;
1891         }
1892         jbd_unlock_bh_journal_head(bh);
1893         return jh;
1894 }
1895
1896 static void __journal_remove_journal_head(struct buffer_head *bh)
1897 {
1898         struct journal_head *jh = bh2jh(bh);
1899
1900         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1901         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1902         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1903         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1904         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1905         J_ASSERT_BH(bh, buffer_jbd(bh));
1906         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1907         BUFFER_TRACE(bh, "remove journal_head");
1908         if (jh->b_frozen_data) {
1909                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1910                 jbd_free(jh->b_frozen_data, bh->b_size);
1911         }
1912         if (jh->b_committed_data) {
1913                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1914                 jbd_free(jh->b_committed_data, bh->b_size);
1915         }
1916         bh->b_private = NULL;
1917         jh->b_bh = NULL;        /* debug, really */
1918         clear_buffer_jbd(bh);
1919         journal_free_journal_head(jh);
1920 }
1921
1922 /*
1923  * Drop a reference on the passed journal_head.  If it fell to zero then
1924  * release the journal_head from the buffer_head.
1925  */
1926 void journal_put_journal_head(struct journal_head *jh)
1927 {
1928         struct buffer_head *bh = jh2bh(jh);
1929
1930         jbd_lock_bh_journal_head(bh);
1931         J_ASSERT_JH(jh, jh->b_jcount > 0);
1932         --jh->b_jcount;
1933         if (!jh->b_jcount) {
1934                 __journal_remove_journal_head(bh);
1935                 jbd_unlock_bh_journal_head(bh);
1936                 __brelse(bh);
1937         } else
1938                 jbd_unlock_bh_journal_head(bh);
1939 }
1940
1941 /*
1942  * debugfs tunables
1943  */
1944 #ifdef CONFIG_JBD_DEBUG
1945
1946 u8 journal_enable_debug __read_mostly;
1947 EXPORT_SYMBOL(journal_enable_debug);
1948
1949 static struct dentry *jbd_debugfs_dir;
1950 static struct dentry *jbd_debug;
1951
1952 static void __init jbd_create_debugfs_entry(void)
1953 {
1954         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1955         if (jbd_debugfs_dir)
1956                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1957                                                jbd_debugfs_dir,
1958                                                &journal_enable_debug);
1959 }
1960
1961 static void __exit jbd_remove_debugfs_entry(void)
1962 {
1963         debugfs_remove(jbd_debug);
1964         debugfs_remove(jbd_debugfs_dir);
1965 }
1966
1967 #else
1968
1969 static inline void jbd_create_debugfs_entry(void)
1970 {
1971 }
1972
1973 static inline void jbd_remove_debugfs_entry(void)
1974 {
1975 }
1976
1977 #endif
1978
1979 struct kmem_cache *jbd_handle_cache;
1980
1981 static int __init journal_init_handle_cache(void)
1982 {
1983         jbd_handle_cache = kmem_cache_create("journal_handle",
1984                                 sizeof(handle_t),
1985                                 0,              /* offset */
1986                                 SLAB_TEMPORARY, /* flags */
1987                                 NULL);          /* ctor */
1988         if (jbd_handle_cache == NULL) {
1989                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1990                 return -ENOMEM;
1991         }
1992         return 0;
1993 }
1994
1995 static void journal_destroy_handle_cache(void)
1996 {
1997         if (jbd_handle_cache)
1998                 kmem_cache_destroy(jbd_handle_cache);
1999 }
2000
2001 /*
2002  * Module startup and shutdown
2003  */
2004
2005 static int __init journal_init_caches(void)
2006 {
2007         int ret;
2008
2009         ret = journal_init_revoke_caches();
2010         if (ret == 0)
2011                 ret = journal_init_journal_head_cache();
2012         if (ret == 0)
2013                 ret = journal_init_handle_cache();
2014         return ret;
2015 }
2016
2017 static void journal_destroy_caches(void)
2018 {
2019         journal_destroy_revoke_caches();
2020         journal_destroy_journal_head_cache();
2021         journal_destroy_handle_cache();
2022 }
2023
2024 static int __init journal_init(void)
2025 {
2026         int ret;
2027
2028         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2029
2030         ret = journal_init_caches();
2031         if (ret != 0)
2032                 journal_destroy_caches();
2033         jbd_create_debugfs_entry();
2034         return ret;
2035 }
2036
2037 static void __exit journal_exit(void)
2038 {
2039 #ifdef CONFIG_JBD_DEBUG
2040         int n = atomic_read(&nr_journal_heads);
2041         if (n)
2042                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2043 #endif
2044         jbd_remove_debugfs_entry();
2045         journal_destroy_caches();
2046 }
2047
2048 MODULE_LICENSE("GPL");
2049 module_init(journal_init);
2050 module_exit(journal_exit);
2051