]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
jbd2: make the whole kjournald2 kthread NOFS safe
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110                   unsigned int line, const char *fmt, ...)
111 {
112         struct va_format vaf;
113         va_list args;
114
115         if (level > jbd2_journal_enable_debug)
116                 return;
117         va_start(args, fmt);
118         vaf.fmt = fmt;
119         vaf.va = &args;
120         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121         va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!jbd2_journal_has_csum_v2or3_feature(j))
130                 return 1;
131
132         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137         __u32 csum;
138         __be32 old_csum;
139
140         old_csum = sb->s_checksum;
141         sb->s_checksum = 0;
142         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143         sb->s_checksum = old_csum;
144
145         return cpu_to_be32(csum);
146 }
147
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150         if (!jbd2_journal_has_csum_v2or3(j))
151                 return 1;
152
153         return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158         if (!jbd2_journal_has_csum_v2or3(j))
159                 return;
160
161         sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163
164 /*
165  * Helper function used to manage commit timeouts
166  */
167
168 static void commit_timeout(unsigned long __data)
169 {
170         struct task_struct * p = (struct task_struct *) __data;
171
172         wake_up_process(p);
173 }
174
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190
191 static int kjournald2(void *arg)
192 {
193         journal_t *journal = arg;
194         transaction_t *transaction;
195
196         /*
197          * Set up an interval timer which can be used to trigger a commit wakeup
198          * after the commit interval expires
199          */
200         setup_timer(&journal->j_commit_timer, commit_timeout,
201                         (unsigned long)current);
202
203         set_freezable();
204
205         /* Record that the journal thread is running */
206         journal->j_task = current;
207         wake_up(&journal->j_wait_done_commit);
208
209         /*
210          * Make sure that no allocations from this kernel thread will ever
211          * recurse to the fs layer because we are responsible for the
212          * transaction commit and any fs involvement might get stuck waiting for
213          * the trasn. commit.
214          */
215         memalloc_nofs_save();
216
217         /*
218          * And now, wait forever for commit wakeup events.
219          */
220         write_lock(&journal->j_state_lock);
221
222 loop:
223         if (journal->j_flags & JBD2_UNMOUNT)
224                 goto end_loop;
225
226         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
227                 journal->j_commit_sequence, journal->j_commit_request);
228
229         if (journal->j_commit_sequence != journal->j_commit_request) {
230                 jbd_debug(1, "OK, requests differ\n");
231                 write_unlock(&journal->j_state_lock);
232                 del_timer_sync(&journal->j_commit_timer);
233                 jbd2_journal_commit_transaction(journal);
234                 write_lock(&journal->j_state_lock);
235                 goto loop;
236         }
237
238         wake_up(&journal->j_wait_done_commit);
239         if (freezing(current)) {
240                 /*
241                  * The simpler the better. Flushing journal isn't a
242                  * good idea, because that depends on threads that may
243                  * be already stopped.
244                  */
245                 jbd_debug(1, "Now suspending kjournald2\n");
246                 write_unlock(&journal->j_state_lock);
247                 try_to_freeze();
248                 write_lock(&journal->j_state_lock);
249         } else {
250                 /*
251                  * We assume on resume that commits are already there,
252                  * so we don't sleep
253                  */
254                 DEFINE_WAIT(wait);
255                 int should_sleep = 1;
256
257                 prepare_to_wait(&journal->j_wait_commit, &wait,
258                                 TASK_INTERRUPTIBLE);
259                 if (journal->j_commit_sequence != journal->j_commit_request)
260                         should_sleep = 0;
261                 transaction = journal->j_running_transaction;
262                 if (transaction && time_after_eq(jiffies,
263                                                 transaction->t_expires))
264                         should_sleep = 0;
265                 if (journal->j_flags & JBD2_UNMOUNT)
266                         should_sleep = 0;
267                 if (should_sleep) {
268                         write_unlock(&journal->j_state_lock);
269                         schedule();
270                         write_lock(&journal->j_state_lock);
271                 }
272                 finish_wait(&journal->j_wait_commit, &wait);
273         }
274
275         jbd_debug(1, "kjournald2 wakes\n");
276
277         /*
278          * Were we woken up by a commit wakeup event?
279          */
280         transaction = journal->j_running_transaction;
281         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
282                 journal->j_commit_request = transaction->t_tid;
283                 jbd_debug(1, "woke because of timeout\n");
284         }
285         goto loop;
286
287 end_loop:
288         del_timer_sync(&journal->j_commit_timer);
289         journal->j_task = NULL;
290         wake_up(&journal->j_wait_done_commit);
291         jbd_debug(1, "Journal thread exiting.\n");
292         write_unlock(&journal->j_state_lock);
293         return 0;
294 }
295
296 static int jbd2_journal_start_thread(journal_t *journal)
297 {
298         struct task_struct *t;
299
300         t = kthread_run(kjournald2, journal, "jbd2/%s",
301                         journal->j_devname);
302         if (IS_ERR(t))
303                 return PTR_ERR(t);
304
305         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
306         return 0;
307 }
308
309 static void journal_kill_thread(journal_t *journal)
310 {
311         write_lock(&journal->j_state_lock);
312         journal->j_flags |= JBD2_UNMOUNT;
313
314         while (journal->j_task) {
315                 write_unlock(&journal->j_state_lock);
316                 wake_up(&journal->j_wait_commit);
317                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
318                 write_lock(&journal->j_state_lock);
319         }
320         write_unlock(&journal->j_state_lock);
321 }
322
323 /*
324  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
325  *
326  * Writes a metadata buffer to a given disk block.  The actual IO is not
327  * performed but a new buffer_head is constructed which labels the data
328  * to be written with the correct destination disk block.
329  *
330  * Any magic-number escaping which needs to be done will cause a
331  * copy-out here.  If the buffer happens to start with the
332  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
333  * magic number is only written to the log for descripter blocks.  In
334  * this case, we copy the data and replace the first word with 0, and we
335  * return a result code which indicates that this buffer needs to be
336  * marked as an escaped buffer in the corresponding log descriptor
337  * block.  The missing word can then be restored when the block is read
338  * during recovery.
339  *
340  * If the source buffer has already been modified by a new transaction
341  * since we took the last commit snapshot, we use the frozen copy of
342  * that data for IO. If we end up using the existing buffer_head's data
343  * for the write, then we have to make sure nobody modifies it while the
344  * IO is in progress. do_get_write_access() handles this.
345  *
346  * The function returns a pointer to the buffer_head to be used for IO.
347  * 
348  *
349  * Return value:
350  *  <0: Error
351  * >=0: Finished OK
352  *
353  * On success:
354  * Bit 0 set == escape performed on the data
355  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
356  */
357
358 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
359                                   struct journal_head  *jh_in,
360                                   struct buffer_head **bh_out,
361                                   sector_t blocknr)
362 {
363         int need_copy_out = 0;
364         int done_copy_out = 0;
365         int do_escape = 0;
366         char *mapped_data;
367         struct buffer_head *new_bh;
368         struct page *new_page;
369         unsigned int new_offset;
370         struct buffer_head *bh_in = jh2bh(jh_in);
371         journal_t *journal = transaction->t_journal;
372
373         /*
374          * The buffer really shouldn't be locked: only the current committing
375          * transaction is allowed to write it, so nobody else is allowed
376          * to do any IO.
377          *
378          * akpm: except if we're journalling data, and write() output is
379          * also part of a shared mapping, and another thread has
380          * decided to launch a writepage() against this buffer.
381          */
382         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
383
384         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
385
386         /* keep subsequent assertions sane */
387         atomic_set(&new_bh->b_count, 1);
388
389         jbd_lock_bh_state(bh_in);
390 repeat:
391         /*
392          * If a new transaction has already done a buffer copy-out, then
393          * we use that version of the data for the commit.
394          */
395         if (jh_in->b_frozen_data) {
396                 done_copy_out = 1;
397                 new_page = virt_to_page(jh_in->b_frozen_data);
398                 new_offset = offset_in_page(jh_in->b_frozen_data);
399         } else {
400                 new_page = jh2bh(jh_in)->b_page;
401                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
402         }
403
404         mapped_data = kmap_atomic(new_page);
405         /*
406          * Fire data frozen trigger if data already wasn't frozen.  Do this
407          * before checking for escaping, as the trigger may modify the magic
408          * offset.  If a copy-out happens afterwards, it will have the correct
409          * data in the buffer.
410          */
411         if (!done_copy_out)
412                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
413                                            jh_in->b_triggers);
414
415         /*
416          * Check for escaping
417          */
418         if (*((__be32 *)(mapped_data + new_offset)) ==
419                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
420                 need_copy_out = 1;
421                 do_escape = 1;
422         }
423         kunmap_atomic(mapped_data);
424
425         /*
426          * Do we need to do a data copy?
427          */
428         if (need_copy_out && !done_copy_out) {
429                 char *tmp;
430
431                 jbd_unlock_bh_state(bh_in);
432                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
433                 if (!tmp) {
434                         brelse(new_bh);
435                         return -ENOMEM;
436                 }
437                 jbd_lock_bh_state(bh_in);
438                 if (jh_in->b_frozen_data) {
439                         jbd2_free(tmp, bh_in->b_size);
440                         goto repeat;
441                 }
442
443                 jh_in->b_frozen_data = tmp;
444                 mapped_data = kmap_atomic(new_page);
445                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
446                 kunmap_atomic(mapped_data);
447
448                 new_page = virt_to_page(tmp);
449                 new_offset = offset_in_page(tmp);
450                 done_copy_out = 1;
451
452                 /*
453                  * This isn't strictly necessary, as we're using frozen
454                  * data for the escaping, but it keeps consistency with
455                  * b_frozen_data usage.
456                  */
457                 jh_in->b_frozen_triggers = jh_in->b_triggers;
458         }
459
460         /*
461          * Did we need to do an escaping?  Now we've done all the
462          * copying, we can finally do so.
463          */
464         if (do_escape) {
465                 mapped_data = kmap_atomic(new_page);
466                 *((unsigned int *)(mapped_data + new_offset)) = 0;
467                 kunmap_atomic(mapped_data);
468         }
469
470         set_bh_page(new_bh, new_page, new_offset);
471         new_bh->b_size = bh_in->b_size;
472         new_bh->b_bdev = journal->j_dev;
473         new_bh->b_blocknr = blocknr;
474         new_bh->b_private = bh_in;
475         set_buffer_mapped(new_bh);
476         set_buffer_dirty(new_bh);
477
478         *bh_out = new_bh;
479
480         /*
481          * The to-be-written buffer needs to get moved to the io queue,
482          * and the original buffer whose contents we are shadowing or
483          * copying is moved to the transaction's shadow queue.
484          */
485         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
486         spin_lock(&journal->j_list_lock);
487         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
488         spin_unlock(&journal->j_list_lock);
489         set_buffer_shadow(bh_in);
490         jbd_unlock_bh_state(bh_in);
491
492         return do_escape | (done_copy_out << 1);
493 }
494
495 /*
496  * Allocation code for the journal file.  Manage the space left in the
497  * journal, so that we can begin checkpointing when appropriate.
498  */
499
500 /*
501  * Called with j_state_lock locked for writing.
502  * Returns true if a transaction commit was started.
503  */
504 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 {
506         /* Return if the txn has already requested to be committed */
507         if (journal->j_commit_request == target)
508                 return 0;
509
510         /*
511          * The only transaction we can possibly wait upon is the
512          * currently running transaction (if it exists).  Otherwise,
513          * the target tid must be an old one.
514          */
515         if (journal->j_running_transaction &&
516             journal->j_running_transaction->t_tid == target) {
517                 /*
518                  * We want a new commit: OK, mark the request and wakeup the
519                  * commit thread.  We do _not_ do the commit ourselves.
520                  */
521
522                 journal->j_commit_request = target;
523                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
524                           journal->j_commit_request,
525                           journal->j_commit_sequence);
526                 journal->j_running_transaction->t_requested = jiffies;
527                 wake_up(&journal->j_wait_commit);
528                 return 1;
529         } else if (!tid_geq(journal->j_commit_request, target))
530                 /* This should never happen, but if it does, preserve
531                    the evidence before kjournald goes into a loop and
532                    increments j_commit_sequence beyond all recognition. */
533                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
534                           journal->j_commit_request,
535                           journal->j_commit_sequence,
536                           target, journal->j_running_transaction ? 
537                           journal->j_running_transaction->t_tid : 0);
538         return 0;
539 }
540
541 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
542 {
543         int ret;
544
545         write_lock(&journal->j_state_lock);
546         ret = __jbd2_log_start_commit(journal, tid);
547         write_unlock(&journal->j_state_lock);
548         return ret;
549 }
550
551 /*
552  * Force and wait any uncommitted transactions.  We can only force the running
553  * transaction if we don't have an active handle, otherwise, we will deadlock.
554  * Returns: <0 in case of error,
555  *           0 if nothing to commit,
556  *           1 if transaction was successfully committed.
557  */
558 static int __jbd2_journal_force_commit(journal_t *journal)
559 {
560         transaction_t *transaction = NULL;
561         tid_t tid;
562         int need_to_start = 0, ret = 0;
563
564         read_lock(&journal->j_state_lock);
565         if (journal->j_running_transaction && !current->journal_info) {
566                 transaction = journal->j_running_transaction;
567                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
568                         need_to_start = 1;
569         } else if (journal->j_committing_transaction)
570                 transaction = journal->j_committing_transaction;
571
572         if (!transaction) {
573                 /* Nothing to commit */
574                 read_unlock(&journal->j_state_lock);
575                 return 0;
576         }
577         tid = transaction->t_tid;
578         read_unlock(&journal->j_state_lock);
579         if (need_to_start)
580                 jbd2_log_start_commit(journal, tid);
581         ret = jbd2_log_wait_commit(journal, tid);
582         if (!ret)
583                 ret = 1;
584
585         return ret;
586 }
587
588 /**
589  * Force and wait upon a commit if the calling process is not within
590  * transaction.  This is used for forcing out undo-protected data which contains
591  * bitmaps, when the fs is running out of space.
592  *
593  * @journal: journal to force
594  * Returns true if progress was made.
595  */
596 int jbd2_journal_force_commit_nested(journal_t *journal)
597 {
598         int ret;
599
600         ret = __jbd2_journal_force_commit(journal);
601         return ret > 0;
602 }
603
604 /**
605  * int journal_force_commit() - force any uncommitted transactions
606  * @journal: journal to force
607  *
608  * Caller want unconditional commit. We can only force the running transaction
609  * if we don't have an active handle, otherwise, we will deadlock.
610  */
611 int jbd2_journal_force_commit(journal_t *journal)
612 {
613         int ret;
614
615         J_ASSERT(!current->journal_info);
616         ret = __jbd2_journal_force_commit(journal);
617         if (ret > 0)
618                 ret = 0;
619         return ret;
620 }
621
622 /*
623  * Start a commit of the current running transaction (if any).  Returns true
624  * if a transaction is going to be committed (or is currently already
625  * committing), and fills its tid in at *ptid
626  */
627 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
628 {
629         int ret = 0;
630
631         write_lock(&journal->j_state_lock);
632         if (journal->j_running_transaction) {
633                 tid_t tid = journal->j_running_transaction->t_tid;
634
635                 __jbd2_log_start_commit(journal, tid);
636                 /* There's a running transaction and we've just made sure
637                  * it's commit has been scheduled. */
638                 if (ptid)
639                         *ptid = tid;
640                 ret = 1;
641         } else if (journal->j_committing_transaction) {
642                 /*
643                  * If commit has been started, then we have to wait for
644                  * completion of that transaction.
645                  */
646                 if (ptid)
647                         *ptid = journal->j_committing_transaction->t_tid;
648                 ret = 1;
649         }
650         write_unlock(&journal->j_state_lock);
651         return ret;
652 }
653
654 /*
655  * Return 1 if a given transaction has not yet sent barrier request
656  * connected with a transaction commit. If 0 is returned, transaction
657  * may or may not have sent the barrier. Used to avoid sending barrier
658  * twice in common cases.
659  */
660 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
661 {
662         int ret = 0;
663         transaction_t *commit_trans;
664
665         if (!(journal->j_flags & JBD2_BARRIER))
666                 return 0;
667         read_lock(&journal->j_state_lock);
668         /* Transaction already committed? */
669         if (tid_geq(journal->j_commit_sequence, tid))
670                 goto out;
671         commit_trans = journal->j_committing_transaction;
672         if (!commit_trans || commit_trans->t_tid != tid) {
673                 ret = 1;
674                 goto out;
675         }
676         /*
677          * Transaction is being committed and we already proceeded to
678          * submitting a flush to fs partition?
679          */
680         if (journal->j_fs_dev != journal->j_dev) {
681                 if (!commit_trans->t_need_data_flush ||
682                     commit_trans->t_state >= T_COMMIT_DFLUSH)
683                         goto out;
684         } else {
685                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
686                         goto out;
687         }
688         ret = 1;
689 out:
690         read_unlock(&journal->j_state_lock);
691         return ret;
692 }
693 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
694
695 /*
696  * Wait for a specified commit to complete.
697  * The caller may not hold the journal lock.
698  */
699 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
700 {
701         int err = 0;
702
703         jbd2_might_wait_for_commit(journal);
704         read_lock(&journal->j_state_lock);
705 #ifdef CONFIG_JBD2_DEBUG
706         if (!tid_geq(journal->j_commit_request, tid)) {
707                 printk(KERN_ERR
708                        "%s: error: j_commit_request=%d, tid=%d\n",
709                        __func__, journal->j_commit_request, tid);
710         }
711 #endif
712         while (tid_gt(tid, journal->j_commit_sequence)) {
713                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
714                                   tid, journal->j_commit_sequence);
715                 read_unlock(&journal->j_state_lock);
716                 wake_up(&journal->j_wait_commit);
717                 wait_event(journal->j_wait_done_commit,
718                                 !tid_gt(tid, journal->j_commit_sequence));
719                 read_lock(&journal->j_state_lock);
720         }
721         read_unlock(&journal->j_state_lock);
722
723         if (unlikely(is_journal_aborted(journal)))
724                 err = -EIO;
725         return err;
726 }
727
728 /*
729  * When this function returns the transaction corresponding to tid
730  * will be completed.  If the transaction has currently running, start
731  * committing that transaction before waiting for it to complete.  If
732  * the transaction id is stale, it is by definition already completed,
733  * so just return SUCCESS.
734  */
735 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
736 {
737         int     need_to_wait = 1;
738
739         read_lock(&journal->j_state_lock);
740         if (journal->j_running_transaction &&
741             journal->j_running_transaction->t_tid == tid) {
742                 if (journal->j_commit_request != tid) {
743                         /* transaction not yet started, so request it */
744                         read_unlock(&journal->j_state_lock);
745                         jbd2_log_start_commit(journal, tid);
746                         goto wait_commit;
747                 }
748         } else if (!(journal->j_committing_transaction &&
749                      journal->j_committing_transaction->t_tid == tid))
750                 need_to_wait = 0;
751         read_unlock(&journal->j_state_lock);
752         if (!need_to_wait)
753                 return 0;
754 wait_commit:
755         return jbd2_log_wait_commit(journal, tid);
756 }
757 EXPORT_SYMBOL(jbd2_complete_transaction);
758
759 /*
760  * Log buffer allocation routines:
761  */
762
763 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
764 {
765         unsigned long blocknr;
766
767         write_lock(&journal->j_state_lock);
768         J_ASSERT(journal->j_free > 1);
769
770         blocknr = journal->j_head;
771         journal->j_head++;
772         journal->j_free--;
773         if (journal->j_head == journal->j_last)
774                 journal->j_head = journal->j_first;
775         write_unlock(&journal->j_state_lock);
776         return jbd2_journal_bmap(journal, blocknr, retp);
777 }
778
779 /*
780  * Conversion of logical to physical block numbers for the journal
781  *
782  * On external journals the journal blocks are identity-mapped, so
783  * this is a no-op.  If needed, we can use j_blk_offset - everything is
784  * ready.
785  */
786 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
787                  unsigned long long *retp)
788 {
789         int err = 0;
790         unsigned long long ret;
791
792         if (journal->j_inode) {
793                 ret = bmap(journal->j_inode, blocknr);
794                 if (ret)
795                         *retp = ret;
796                 else {
797                         printk(KERN_ALERT "%s: journal block not found "
798                                         "at offset %lu on %s\n",
799                                __func__, blocknr, journal->j_devname);
800                         err = -EIO;
801                         __journal_abort_soft(journal, err);
802                 }
803         } else {
804                 *retp = blocknr; /* +journal->j_blk_offset */
805         }
806         return err;
807 }
808
809 /*
810  * We play buffer_head aliasing tricks to write data/metadata blocks to
811  * the journal without copying their contents, but for journal
812  * descriptor blocks we do need to generate bona fide buffers.
813  *
814  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
815  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
816  * But we don't bother doing that, so there will be coherency problems with
817  * mmaps of blockdevs which hold live JBD-controlled filesystems.
818  */
819 struct buffer_head *
820 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
821 {
822         journal_t *journal = transaction->t_journal;
823         struct buffer_head *bh;
824         unsigned long long blocknr;
825         journal_header_t *header;
826         int err;
827
828         err = jbd2_journal_next_log_block(journal, &blocknr);
829
830         if (err)
831                 return NULL;
832
833         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
834         if (!bh)
835                 return NULL;
836         lock_buffer(bh);
837         memset(bh->b_data, 0, journal->j_blocksize);
838         header = (journal_header_t *)bh->b_data;
839         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
840         header->h_blocktype = cpu_to_be32(type);
841         header->h_sequence = cpu_to_be32(transaction->t_tid);
842         set_buffer_uptodate(bh);
843         unlock_buffer(bh);
844         BUFFER_TRACE(bh, "return this buffer");
845         return bh;
846 }
847
848 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
849 {
850         struct jbd2_journal_block_tail *tail;
851         __u32 csum;
852
853         if (!jbd2_journal_has_csum_v2or3(j))
854                 return;
855
856         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
857                         sizeof(struct jbd2_journal_block_tail));
858         tail->t_checksum = 0;
859         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
860         tail->t_checksum = cpu_to_be32(csum);
861 }
862
863 /*
864  * Return tid of the oldest transaction in the journal and block in the journal
865  * where the transaction starts.
866  *
867  * If the journal is now empty, return which will be the next transaction ID
868  * we will write and where will that transaction start.
869  *
870  * The return value is 0 if journal tail cannot be pushed any further, 1 if
871  * it can.
872  */
873 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
874                               unsigned long *block)
875 {
876         transaction_t *transaction;
877         int ret;
878
879         read_lock(&journal->j_state_lock);
880         spin_lock(&journal->j_list_lock);
881         transaction = journal->j_checkpoint_transactions;
882         if (transaction) {
883                 *tid = transaction->t_tid;
884                 *block = transaction->t_log_start;
885         } else if ((transaction = journal->j_committing_transaction) != NULL) {
886                 *tid = transaction->t_tid;
887                 *block = transaction->t_log_start;
888         } else if ((transaction = journal->j_running_transaction) != NULL) {
889                 *tid = transaction->t_tid;
890                 *block = journal->j_head;
891         } else {
892                 *tid = journal->j_transaction_sequence;
893                 *block = journal->j_head;
894         }
895         ret = tid_gt(*tid, journal->j_tail_sequence);
896         spin_unlock(&journal->j_list_lock);
897         read_unlock(&journal->j_state_lock);
898
899         return ret;
900 }
901
902 /*
903  * Update information in journal structure and in on disk journal superblock
904  * about log tail. This function does not check whether information passed in
905  * really pushes log tail further. It's responsibility of the caller to make
906  * sure provided log tail information is valid (e.g. by holding
907  * j_checkpoint_mutex all the time between computing log tail and calling this
908  * function as is the case with jbd2_cleanup_journal_tail()).
909  *
910  * Requires j_checkpoint_mutex
911  */
912 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
913 {
914         unsigned long freed;
915         int ret;
916
917         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
918
919         /*
920          * We cannot afford for write to remain in drive's caches since as
921          * soon as we update j_tail, next transaction can start reusing journal
922          * space and if we lose sb update during power failure we'd replay
923          * old transaction with possibly newly overwritten data.
924          */
925         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
926         if (ret)
927                 goto out;
928
929         write_lock(&journal->j_state_lock);
930         freed = block - journal->j_tail;
931         if (block < journal->j_tail)
932                 freed += journal->j_last - journal->j_first;
933
934         trace_jbd2_update_log_tail(journal, tid, block, freed);
935         jbd_debug(1,
936                   "Cleaning journal tail from %d to %d (offset %lu), "
937                   "freeing %lu\n",
938                   journal->j_tail_sequence, tid, block, freed);
939
940         journal->j_free += freed;
941         journal->j_tail_sequence = tid;
942         journal->j_tail = block;
943         write_unlock(&journal->j_state_lock);
944
945 out:
946         return ret;
947 }
948
949 /*
950  * This is a variaon of __jbd2_update_log_tail which checks for validity of
951  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
952  * with other threads updating log tail.
953  */
954 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
955 {
956         mutex_lock_io(&journal->j_checkpoint_mutex);
957         if (tid_gt(tid, journal->j_tail_sequence))
958                 __jbd2_update_log_tail(journal, tid, block);
959         mutex_unlock(&journal->j_checkpoint_mutex);
960 }
961
962 struct jbd2_stats_proc_session {
963         journal_t *journal;
964         struct transaction_stats_s *stats;
965         int start;
966         int max;
967 };
968
969 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
970 {
971         return *pos ? NULL : SEQ_START_TOKEN;
972 }
973
974 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
975 {
976         return NULL;
977 }
978
979 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
980 {
981         struct jbd2_stats_proc_session *s = seq->private;
982
983         if (v != SEQ_START_TOKEN)
984                 return 0;
985         seq_printf(seq, "%lu transactions (%lu requested), "
986                    "each up to %u blocks\n",
987                    s->stats->ts_tid, s->stats->ts_requested,
988                    s->journal->j_max_transaction_buffers);
989         if (s->stats->ts_tid == 0)
990                 return 0;
991         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
992             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
993         seq_printf(seq, "  %ums request delay\n",
994             (s->stats->ts_requested == 0) ? 0 :
995             jiffies_to_msecs(s->stats->run.rs_request_delay /
996                              s->stats->ts_requested));
997         seq_printf(seq, "  %ums running transaction\n",
998             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
999         seq_printf(seq, "  %ums transaction was being locked\n",
1000             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1001         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1002             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1003         seq_printf(seq, "  %ums logging transaction\n",
1004             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1005         seq_printf(seq, "  %lluus average transaction commit time\n",
1006                    div_u64(s->journal->j_average_commit_time, 1000));
1007         seq_printf(seq, "  %lu handles per transaction\n",
1008             s->stats->run.rs_handle_count / s->stats->ts_tid);
1009         seq_printf(seq, "  %lu blocks per transaction\n",
1010             s->stats->run.rs_blocks / s->stats->ts_tid);
1011         seq_printf(seq, "  %lu logged blocks per transaction\n",
1012             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1013         return 0;
1014 }
1015
1016 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1017 {
1018 }
1019
1020 static const struct seq_operations jbd2_seq_info_ops = {
1021         .start  = jbd2_seq_info_start,
1022         .next   = jbd2_seq_info_next,
1023         .stop   = jbd2_seq_info_stop,
1024         .show   = jbd2_seq_info_show,
1025 };
1026
1027 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1028 {
1029         journal_t *journal = PDE_DATA(inode);
1030         struct jbd2_stats_proc_session *s;
1031         int rc, size;
1032
1033         s = kmalloc(sizeof(*s), GFP_KERNEL);
1034         if (s == NULL)
1035                 return -ENOMEM;
1036         size = sizeof(struct transaction_stats_s);
1037         s->stats = kmalloc(size, GFP_KERNEL);
1038         if (s->stats == NULL) {
1039                 kfree(s);
1040                 return -ENOMEM;
1041         }
1042         spin_lock(&journal->j_history_lock);
1043         memcpy(s->stats, &journal->j_stats, size);
1044         s->journal = journal;
1045         spin_unlock(&journal->j_history_lock);
1046
1047         rc = seq_open(file, &jbd2_seq_info_ops);
1048         if (rc == 0) {
1049                 struct seq_file *m = file->private_data;
1050                 m->private = s;
1051         } else {
1052                 kfree(s->stats);
1053                 kfree(s);
1054         }
1055         return rc;
1056
1057 }
1058
1059 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1060 {
1061         struct seq_file *seq = file->private_data;
1062         struct jbd2_stats_proc_session *s = seq->private;
1063         kfree(s->stats);
1064         kfree(s);
1065         return seq_release(inode, file);
1066 }
1067
1068 static const struct file_operations jbd2_seq_info_fops = {
1069         .owner          = THIS_MODULE,
1070         .open           = jbd2_seq_info_open,
1071         .read           = seq_read,
1072         .llseek         = seq_lseek,
1073         .release        = jbd2_seq_info_release,
1074 };
1075
1076 static struct proc_dir_entry *proc_jbd2_stats;
1077
1078 static void jbd2_stats_proc_init(journal_t *journal)
1079 {
1080         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1081         if (journal->j_proc_entry) {
1082                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1083                                  &jbd2_seq_info_fops, journal);
1084         }
1085 }
1086
1087 static void jbd2_stats_proc_exit(journal_t *journal)
1088 {
1089         remove_proc_entry("info", journal->j_proc_entry);
1090         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1091 }
1092
1093 /*
1094  * Management for journal control blocks: functions to create and
1095  * destroy journal_t structures, and to initialise and read existing
1096  * journal blocks from disk.  */
1097
1098 /* First: create and setup a journal_t object in memory.  We initialise
1099  * very few fields yet: that has to wait until we have created the
1100  * journal structures from from scratch, or loaded them from disk. */
1101
1102 static journal_t *journal_init_common(struct block_device *bdev,
1103                         struct block_device *fs_dev,
1104                         unsigned long long start, int len, int blocksize)
1105 {
1106         static struct lock_class_key jbd2_trans_commit_key;
1107         journal_t *journal;
1108         int err;
1109         struct buffer_head *bh;
1110         int n;
1111
1112         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1113         if (!journal)
1114                 return NULL;
1115
1116         init_waitqueue_head(&journal->j_wait_transaction_locked);
1117         init_waitqueue_head(&journal->j_wait_done_commit);
1118         init_waitqueue_head(&journal->j_wait_commit);
1119         init_waitqueue_head(&journal->j_wait_updates);
1120         init_waitqueue_head(&journal->j_wait_reserved);
1121         mutex_init(&journal->j_barrier);
1122         mutex_init(&journal->j_checkpoint_mutex);
1123         spin_lock_init(&journal->j_revoke_lock);
1124         spin_lock_init(&journal->j_list_lock);
1125         rwlock_init(&journal->j_state_lock);
1126
1127         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1128         journal->j_min_batch_time = 0;
1129         journal->j_max_batch_time = 15000; /* 15ms */
1130         atomic_set(&journal->j_reserved_credits, 0);
1131
1132         /* The journal is marked for error until we succeed with recovery! */
1133         journal->j_flags = JBD2_ABORT;
1134
1135         /* Set up a default-sized revoke table for the new mount. */
1136         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1137         if (err)
1138                 goto err_cleanup;
1139
1140         spin_lock_init(&journal->j_history_lock);
1141
1142         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1143                          &jbd2_trans_commit_key, 0);
1144
1145         /* journal descriptor can store up to n blocks -bzzz */
1146         journal->j_blocksize = blocksize;
1147         journal->j_dev = bdev;
1148         journal->j_fs_dev = fs_dev;
1149         journal->j_blk_offset = start;
1150         journal->j_maxlen = len;
1151         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1152         journal->j_wbufsize = n;
1153         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1154                                         GFP_KERNEL);
1155         if (!journal->j_wbuf)
1156                 goto err_cleanup;
1157
1158         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1159         if (!bh) {
1160                 pr_err("%s: Cannot get buffer for journal superblock\n",
1161                         __func__);
1162                 goto err_cleanup;
1163         }
1164         journal->j_sb_buffer = bh;
1165         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1166
1167         return journal;
1168
1169 err_cleanup:
1170         kfree(journal->j_wbuf);
1171         jbd2_journal_destroy_revoke(journal);
1172         kfree(journal);
1173         return NULL;
1174 }
1175
1176 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1177  *
1178  * Create a journal structure assigned some fixed set of disk blocks to
1179  * the journal.  We don't actually touch those disk blocks yet, but we
1180  * need to set up all of the mapping information to tell the journaling
1181  * system where the journal blocks are.
1182  *
1183  */
1184
1185 /**
1186  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1187  *  @bdev: Block device on which to create the journal
1188  *  @fs_dev: Device which hold journalled filesystem for this journal.
1189  *  @start: Block nr Start of journal.
1190  *  @len:  Length of the journal in blocks.
1191  *  @blocksize: blocksize of journalling device
1192  *
1193  *  Returns: a newly created journal_t *
1194  *
1195  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1196  *  range of blocks on an arbitrary block device.
1197  *
1198  */
1199 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1200                         struct block_device *fs_dev,
1201                         unsigned long long start, int len, int blocksize)
1202 {
1203         journal_t *journal;
1204
1205         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1206         if (!journal)
1207                 return NULL;
1208
1209         bdevname(journal->j_dev, journal->j_devname);
1210         strreplace(journal->j_devname, '/', '!');
1211         jbd2_stats_proc_init(journal);
1212
1213         return journal;
1214 }
1215
1216 /**
1217  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1218  *  @inode: An inode to create the journal in
1219  *
1220  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1221  * the journal.  The inode must exist already, must support bmap() and
1222  * must have all data blocks preallocated.
1223  */
1224 journal_t *jbd2_journal_init_inode(struct inode *inode)
1225 {
1226         journal_t *journal;
1227         char *p;
1228         unsigned long long blocknr;
1229
1230         blocknr = bmap(inode, 0);
1231         if (!blocknr) {
1232                 pr_err("%s: Cannot locate journal superblock\n",
1233                         __func__);
1234                 return NULL;
1235         }
1236
1237         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1238                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1239                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1240
1241         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1242                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1243                         inode->i_sb->s_blocksize);
1244         if (!journal)
1245                 return NULL;
1246
1247         journal->j_inode = inode;
1248         bdevname(journal->j_dev, journal->j_devname);
1249         p = strreplace(journal->j_devname, '/', '!');
1250         sprintf(p, "-%lu", journal->j_inode->i_ino);
1251         jbd2_stats_proc_init(journal);
1252
1253         return journal;
1254 }
1255
1256 /*
1257  * If the journal init or create aborts, we need to mark the journal
1258  * superblock as being NULL to prevent the journal destroy from writing
1259  * back a bogus superblock.
1260  */
1261 static void journal_fail_superblock (journal_t *journal)
1262 {
1263         struct buffer_head *bh = journal->j_sb_buffer;
1264         brelse(bh);
1265         journal->j_sb_buffer = NULL;
1266 }
1267
1268 /*
1269  * Given a journal_t structure, initialise the various fields for
1270  * startup of a new journaling session.  We use this both when creating
1271  * a journal, and after recovering an old journal to reset it for
1272  * subsequent use.
1273  */
1274
1275 static int journal_reset(journal_t *journal)
1276 {
1277         journal_superblock_t *sb = journal->j_superblock;
1278         unsigned long long first, last;
1279
1280         first = be32_to_cpu(sb->s_first);
1281         last = be32_to_cpu(sb->s_maxlen);
1282         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1283                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1284                        first, last);
1285                 journal_fail_superblock(journal);
1286                 return -EINVAL;
1287         }
1288
1289         journal->j_first = first;
1290         journal->j_last = last;
1291
1292         journal->j_head = first;
1293         journal->j_tail = first;
1294         journal->j_free = last - first;
1295
1296         journal->j_tail_sequence = journal->j_transaction_sequence;
1297         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1298         journal->j_commit_request = journal->j_commit_sequence;
1299
1300         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1301
1302         /*
1303          * As a special case, if the on-disk copy is already marked as needing
1304          * no recovery (s_start == 0), then we can safely defer the superblock
1305          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1306          * attempting a write to a potential-readonly device.
1307          */
1308         if (sb->s_start == 0) {
1309                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1310                         "(start %ld, seq %d, errno %d)\n",
1311                         journal->j_tail, journal->j_tail_sequence,
1312                         journal->j_errno);
1313                 journal->j_flags |= JBD2_FLUSHED;
1314         } else {
1315                 /* Lock here to make assertions happy... */
1316                 mutex_lock_io(&journal->j_checkpoint_mutex);
1317                 /*
1318                  * Update log tail information. We use REQ_FUA since new
1319                  * transaction will start reusing journal space and so we
1320                  * must make sure information about current log tail is on
1321                  * disk before that.
1322                  */
1323                 jbd2_journal_update_sb_log_tail(journal,
1324                                                 journal->j_tail_sequence,
1325                                                 journal->j_tail,
1326                                                 REQ_FUA);
1327                 mutex_unlock(&journal->j_checkpoint_mutex);
1328         }
1329         return jbd2_journal_start_thread(journal);
1330 }
1331
1332 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1333 {
1334         struct buffer_head *bh = journal->j_sb_buffer;
1335         journal_superblock_t *sb = journal->j_superblock;
1336         int ret;
1337
1338         trace_jbd2_write_superblock(journal, write_flags);
1339         if (!(journal->j_flags & JBD2_BARRIER))
1340                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1341         lock_buffer(bh);
1342         if (buffer_write_io_error(bh)) {
1343                 /*
1344                  * Oh, dear.  A previous attempt to write the journal
1345                  * superblock failed.  This could happen because the
1346                  * USB device was yanked out.  Or it could happen to
1347                  * be a transient write error and maybe the block will
1348                  * be remapped.  Nothing we can do but to retry the
1349                  * write and hope for the best.
1350                  */
1351                 printk(KERN_ERR "JBD2: previous I/O error detected "
1352                        "for journal superblock update for %s.\n",
1353                        journal->j_devname);
1354                 clear_buffer_write_io_error(bh);
1355                 set_buffer_uptodate(bh);
1356         }
1357         jbd2_superblock_csum_set(journal, sb);
1358         get_bh(bh);
1359         bh->b_end_io = end_buffer_write_sync;
1360         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1361         wait_on_buffer(bh);
1362         if (buffer_write_io_error(bh)) {
1363                 clear_buffer_write_io_error(bh);
1364                 set_buffer_uptodate(bh);
1365                 ret = -EIO;
1366         }
1367         if (ret) {
1368                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1369                        "journal superblock for %s.\n", ret,
1370                        journal->j_devname);
1371                 jbd2_journal_abort(journal, ret);
1372         }
1373
1374         return ret;
1375 }
1376
1377 /**
1378  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1379  * @journal: The journal to update.
1380  * @tail_tid: TID of the new transaction at the tail of the log
1381  * @tail_block: The first block of the transaction at the tail of the log
1382  * @write_op: With which operation should we write the journal sb
1383  *
1384  * Update a journal's superblock information about log tail and write it to
1385  * disk, waiting for the IO to complete.
1386  */
1387 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1388                                      unsigned long tail_block, int write_op)
1389 {
1390         journal_superblock_t *sb = journal->j_superblock;
1391         int ret;
1392
1393         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1394         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1395                   tail_block, tail_tid);
1396
1397         sb->s_sequence = cpu_to_be32(tail_tid);
1398         sb->s_start    = cpu_to_be32(tail_block);
1399
1400         ret = jbd2_write_superblock(journal, write_op);
1401         if (ret)
1402                 goto out;
1403
1404         /* Log is no longer empty */
1405         write_lock(&journal->j_state_lock);
1406         WARN_ON(!sb->s_sequence);
1407         journal->j_flags &= ~JBD2_FLUSHED;
1408         write_unlock(&journal->j_state_lock);
1409
1410 out:
1411         return ret;
1412 }
1413
1414 /**
1415  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1416  * @journal: The journal to update.
1417  * @write_op: With which operation should we write the journal sb
1418  *
1419  * Update a journal's dynamic superblock fields to show that journal is empty.
1420  * Write updated superblock to disk waiting for IO to complete.
1421  */
1422 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1423 {
1424         journal_superblock_t *sb = journal->j_superblock;
1425
1426         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1427         read_lock(&journal->j_state_lock);
1428         /* Is it already empty? */
1429         if (sb->s_start == 0) {
1430                 read_unlock(&journal->j_state_lock);
1431                 return;
1432         }
1433         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1434                   journal->j_tail_sequence);
1435
1436         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1437         sb->s_start    = cpu_to_be32(0);
1438         read_unlock(&journal->j_state_lock);
1439
1440         jbd2_write_superblock(journal, write_op);
1441
1442         /* Log is no longer empty */
1443         write_lock(&journal->j_state_lock);
1444         journal->j_flags |= JBD2_FLUSHED;
1445         write_unlock(&journal->j_state_lock);
1446 }
1447
1448
1449 /**
1450  * jbd2_journal_update_sb_errno() - Update error in the journal.
1451  * @journal: The journal to update.
1452  *
1453  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1454  * to complete.
1455  */
1456 void jbd2_journal_update_sb_errno(journal_t *journal)
1457 {
1458         journal_superblock_t *sb = journal->j_superblock;
1459
1460         read_lock(&journal->j_state_lock);
1461         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1462                   journal->j_errno);
1463         sb->s_errno    = cpu_to_be32(journal->j_errno);
1464         read_unlock(&journal->j_state_lock);
1465
1466         jbd2_write_superblock(journal, REQ_FUA);
1467 }
1468 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1469
1470 /*
1471  * Read the superblock for a given journal, performing initial
1472  * validation of the format.
1473  */
1474 static int journal_get_superblock(journal_t *journal)
1475 {
1476         struct buffer_head *bh;
1477         journal_superblock_t *sb;
1478         int err = -EIO;
1479
1480         bh = journal->j_sb_buffer;
1481
1482         J_ASSERT(bh != NULL);
1483         if (!buffer_uptodate(bh)) {
1484                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1485                 wait_on_buffer(bh);
1486                 if (!buffer_uptodate(bh)) {
1487                         printk(KERN_ERR
1488                                 "JBD2: IO error reading journal superblock\n");
1489                         goto out;
1490                 }
1491         }
1492
1493         if (buffer_verified(bh))
1494                 return 0;
1495
1496         sb = journal->j_superblock;
1497
1498         err = -EINVAL;
1499
1500         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1501             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1502                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1503                 goto out;
1504         }
1505
1506         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1507         case JBD2_SUPERBLOCK_V1:
1508                 journal->j_format_version = 1;
1509                 break;
1510         case JBD2_SUPERBLOCK_V2:
1511                 journal->j_format_version = 2;
1512                 break;
1513         default:
1514                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1515                 goto out;
1516         }
1517
1518         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1519                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1520         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1521                 printk(KERN_WARNING "JBD2: journal file too short\n");
1522                 goto out;
1523         }
1524
1525         if (be32_to_cpu(sb->s_first) == 0 ||
1526             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1527                 printk(KERN_WARNING
1528                         "JBD2: Invalid start block of journal: %u\n",
1529                         be32_to_cpu(sb->s_first));
1530                 goto out;
1531         }
1532
1533         if (jbd2_has_feature_csum2(journal) &&
1534             jbd2_has_feature_csum3(journal)) {
1535                 /* Can't have checksum v2 and v3 at the same time! */
1536                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1537                        "at the same time!\n");
1538                 goto out;
1539         }
1540
1541         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1542             jbd2_has_feature_checksum(journal)) {
1543                 /* Can't have checksum v1 and v2 on at the same time! */
1544                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1545                        "at the same time!\n");
1546                 goto out;
1547         }
1548
1549         if (!jbd2_verify_csum_type(journal, sb)) {
1550                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1551                 goto out;
1552         }
1553
1554         /* Load the checksum driver */
1555         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1556                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1557                 if (IS_ERR(journal->j_chksum_driver)) {
1558                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1559                         err = PTR_ERR(journal->j_chksum_driver);
1560                         journal->j_chksum_driver = NULL;
1561                         goto out;
1562                 }
1563         }
1564
1565         /* Check superblock checksum */
1566         if (!jbd2_superblock_csum_verify(journal, sb)) {
1567                 printk(KERN_ERR "JBD2: journal checksum error\n");
1568                 err = -EFSBADCRC;
1569                 goto out;
1570         }
1571
1572         /* Precompute checksum seed for all metadata */
1573         if (jbd2_journal_has_csum_v2or3(journal))
1574                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1575                                                    sizeof(sb->s_uuid));
1576
1577         set_buffer_verified(bh);
1578
1579         return 0;
1580
1581 out:
1582         journal_fail_superblock(journal);
1583         return err;
1584 }
1585
1586 /*
1587  * Load the on-disk journal superblock and read the key fields into the
1588  * journal_t.
1589  */
1590
1591 static int load_superblock(journal_t *journal)
1592 {
1593         int err;
1594         journal_superblock_t *sb;
1595
1596         err = journal_get_superblock(journal);
1597         if (err)
1598                 return err;
1599
1600         sb = journal->j_superblock;
1601
1602         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1603         journal->j_tail = be32_to_cpu(sb->s_start);
1604         journal->j_first = be32_to_cpu(sb->s_first);
1605         journal->j_last = be32_to_cpu(sb->s_maxlen);
1606         journal->j_errno = be32_to_cpu(sb->s_errno);
1607
1608         return 0;
1609 }
1610
1611
1612 /**
1613  * int jbd2_journal_load() - Read journal from disk.
1614  * @journal: Journal to act on.
1615  *
1616  * Given a journal_t structure which tells us which disk blocks contain
1617  * a journal, read the journal from disk to initialise the in-memory
1618  * structures.
1619  */
1620 int jbd2_journal_load(journal_t *journal)
1621 {
1622         int err;
1623         journal_superblock_t *sb;
1624
1625         err = load_superblock(journal);
1626         if (err)
1627                 return err;
1628
1629         sb = journal->j_superblock;
1630         /* If this is a V2 superblock, then we have to check the
1631          * features flags on it. */
1632
1633         if (journal->j_format_version >= 2) {
1634                 if ((sb->s_feature_ro_compat &
1635                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1636                     (sb->s_feature_incompat &
1637                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1638                         printk(KERN_WARNING
1639                                 "JBD2: Unrecognised features on journal\n");
1640                         return -EINVAL;
1641                 }
1642         }
1643
1644         /*
1645          * Create a slab for this blocksize
1646          */
1647         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1648         if (err)
1649                 return err;
1650
1651         /* Let the recovery code check whether it needs to recover any
1652          * data from the journal. */
1653         if (jbd2_journal_recover(journal))
1654                 goto recovery_error;
1655
1656         if (journal->j_failed_commit) {
1657                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1658                        "is corrupt.\n", journal->j_failed_commit,
1659                        journal->j_devname);
1660                 return -EFSCORRUPTED;
1661         }
1662
1663         /* OK, we've finished with the dynamic journal bits:
1664          * reinitialise the dynamic contents of the superblock in memory
1665          * and reset them on disk. */
1666         if (journal_reset(journal))
1667                 goto recovery_error;
1668
1669         journal->j_flags &= ~JBD2_ABORT;
1670         journal->j_flags |= JBD2_LOADED;
1671         return 0;
1672
1673 recovery_error:
1674         printk(KERN_WARNING "JBD2: recovery failed\n");
1675         return -EIO;
1676 }
1677
1678 /**
1679  * void jbd2_journal_destroy() - Release a journal_t structure.
1680  * @journal: Journal to act on.
1681  *
1682  * Release a journal_t structure once it is no longer in use by the
1683  * journaled object.
1684  * Return <0 if we couldn't clean up the journal.
1685  */
1686 int jbd2_journal_destroy(journal_t *journal)
1687 {
1688         int err = 0;
1689
1690         /* Wait for the commit thread to wake up and die. */
1691         journal_kill_thread(journal);
1692
1693         /* Force a final log commit */
1694         if (journal->j_running_transaction)
1695                 jbd2_journal_commit_transaction(journal);
1696
1697         /* Force any old transactions to disk */
1698
1699         /* Totally anal locking here... */
1700         spin_lock(&journal->j_list_lock);
1701         while (journal->j_checkpoint_transactions != NULL) {
1702                 spin_unlock(&journal->j_list_lock);
1703                 mutex_lock_io(&journal->j_checkpoint_mutex);
1704                 err = jbd2_log_do_checkpoint(journal);
1705                 mutex_unlock(&journal->j_checkpoint_mutex);
1706                 /*
1707                  * If checkpointing failed, just free the buffers to avoid
1708                  * looping forever
1709                  */
1710                 if (err) {
1711                         jbd2_journal_destroy_checkpoint(journal);
1712                         spin_lock(&journal->j_list_lock);
1713                         break;
1714                 }
1715                 spin_lock(&journal->j_list_lock);
1716         }
1717
1718         J_ASSERT(journal->j_running_transaction == NULL);
1719         J_ASSERT(journal->j_committing_transaction == NULL);
1720         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1721         spin_unlock(&journal->j_list_lock);
1722
1723         if (journal->j_sb_buffer) {
1724                 if (!is_journal_aborted(journal)) {
1725                         mutex_lock_io(&journal->j_checkpoint_mutex);
1726
1727                         write_lock(&journal->j_state_lock);
1728                         journal->j_tail_sequence =
1729                                 ++journal->j_transaction_sequence;
1730                         write_unlock(&journal->j_state_lock);
1731
1732                         jbd2_mark_journal_empty(journal,
1733                                         REQ_PREFLUSH | REQ_FUA);
1734                         mutex_unlock(&journal->j_checkpoint_mutex);
1735                 } else
1736                         err = -EIO;
1737                 brelse(journal->j_sb_buffer);
1738         }
1739
1740         if (journal->j_proc_entry)
1741                 jbd2_stats_proc_exit(journal);
1742         iput(journal->j_inode);
1743         if (journal->j_revoke)
1744                 jbd2_journal_destroy_revoke(journal);
1745         if (journal->j_chksum_driver)
1746                 crypto_free_shash(journal->j_chksum_driver);
1747         kfree(journal->j_wbuf);
1748         kfree(journal);
1749
1750         return err;
1751 }
1752
1753
1754 /**
1755  *int jbd2_journal_check_used_features () - Check if features specified are used.
1756  * @journal: Journal to check.
1757  * @compat: bitmask of compatible features
1758  * @ro: bitmask of features that force read-only mount
1759  * @incompat: bitmask of incompatible features
1760  *
1761  * Check whether the journal uses all of a given set of
1762  * features.  Return true (non-zero) if it does.
1763  **/
1764
1765 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1766                                  unsigned long ro, unsigned long incompat)
1767 {
1768         journal_superblock_t *sb;
1769
1770         if (!compat && !ro && !incompat)
1771                 return 1;
1772         /* Load journal superblock if it is not loaded yet. */
1773         if (journal->j_format_version == 0 &&
1774             journal_get_superblock(journal) != 0)
1775                 return 0;
1776         if (journal->j_format_version == 1)
1777                 return 0;
1778
1779         sb = journal->j_superblock;
1780
1781         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1782             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1783             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1784                 return 1;
1785
1786         return 0;
1787 }
1788
1789 /**
1790  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1791  * @journal: Journal to check.
1792  * @compat: bitmask of compatible features
1793  * @ro: bitmask of features that force read-only mount
1794  * @incompat: bitmask of incompatible features
1795  *
1796  * Check whether the journaling code supports the use of
1797  * all of a given set of features on this journal.  Return true
1798  * (non-zero) if it can. */
1799
1800 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1801                                       unsigned long ro, unsigned long incompat)
1802 {
1803         if (!compat && !ro && !incompat)
1804                 return 1;
1805
1806         /* We can support any known requested features iff the
1807          * superblock is in version 2.  Otherwise we fail to support any
1808          * extended sb features. */
1809
1810         if (journal->j_format_version != 2)
1811                 return 0;
1812
1813         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1814             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1815             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1816                 return 1;
1817
1818         return 0;
1819 }
1820
1821 /**
1822  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1823  * @journal: Journal to act on.
1824  * @compat: bitmask of compatible features
1825  * @ro: bitmask of features that force read-only mount
1826  * @incompat: bitmask of incompatible features
1827  *
1828  * Mark a given journal feature as present on the
1829  * superblock.  Returns true if the requested features could be set.
1830  *
1831  */
1832
1833 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1834                           unsigned long ro, unsigned long incompat)
1835 {
1836 #define INCOMPAT_FEATURE_ON(f) \
1837                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1838 #define COMPAT_FEATURE_ON(f) \
1839                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1840         journal_superblock_t *sb;
1841
1842         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1843                 return 1;
1844
1845         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1846                 return 0;
1847
1848         /* If enabling v2 checksums, turn on v3 instead */
1849         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1850                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1851                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1852         }
1853
1854         /* Asking for checksumming v3 and v1?  Only give them v3. */
1855         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1856             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1857                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1858
1859         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1860                   compat, ro, incompat);
1861
1862         sb = journal->j_superblock;
1863
1864         /* If enabling v3 checksums, update superblock */
1865         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1866                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1867                 sb->s_feature_compat &=
1868                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1869
1870                 /* Load the checksum driver */
1871                 if (journal->j_chksum_driver == NULL) {
1872                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1873                                                                       0, 0);
1874                         if (IS_ERR(journal->j_chksum_driver)) {
1875                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1876                                        "driver.\n");
1877                                 journal->j_chksum_driver = NULL;
1878                                 return 0;
1879                         }
1880
1881                         /* Precompute checksum seed for all metadata */
1882                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1883                                                            sb->s_uuid,
1884                                                            sizeof(sb->s_uuid));
1885                 }
1886         }
1887
1888         /* If enabling v1 checksums, downgrade superblock */
1889         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1890                 sb->s_feature_incompat &=
1891                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1892                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1893
1894         sb->s_feature_compat    |= cpu_to_be32(compat);
1895         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1896         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1897
1898         return 1;
1899 #undef COMPAT_FEATURE_ON
1900 #undef INCOMPAT_FEATURE_ON
1901 }
1902
1903 /*
1904  * jbd2_journal_clear_features () - Clear a given journal feature in the
1905  *                                  superblock
1906  * @journal: Journal to act on.
1907  * @compat: bitmask of compatible features
1908  * @ro: bitmask of features that force read-only mount
1909  * @incompat: bitmask of incompatible features
1910  *
1911  * Clear a given journal feature as present on the
1912  * superblock.
1913  */
1914 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1915                                 unsigned long ro, unsigned long incompat)
1916 {
1917         journal_superblock_t *sb;
1918
1919         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1920                   compat, ro, incompat);
1921
1922         sb = journal->j_superblock;
1923
1924         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1925         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1926         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1927 }
1928 EXPORT_SYMBOL(jbd2_journal_clear_features);
1929
1930 /**
1931  * int jbd2_journal_flush () - Flush journal
1932  * @journal: Journal to act on.
1933  *
1934  * Flush all data for a given journal to disk and empty the journal.
1935  * Filesystems can use this when remounting readonly to ensure that
1936  * recovery does not need to happen on remount.
1937  */
1938
1939 int jbd2_journal_flush(journal_t *journal)
1940 {
1941         int err = 0;
1942         transaction_t *transaction = NULL;
1943
1944         write_lock(&journal->j_state_lock);
1945
1946         /* Force everything buffered to the log... */
1947         if (journal->j_running_transaction) {
1948                 transaction = journal->j_running_transaction;
1949                 __jbd2_log_start_commit(journal, transaction->t_tid);
1950         } else if (journal->j_committing_transaction)
1951                 transaction = journal->j_committing_transaction;
1952
1953         /* Wait for the log commit to complete... */
1954         if (transaction) {
1955                 tid_t tid = transaction->t_tid;
1956
1957                 write_unlock(&journal->j_state_lock);
1958                 jbd2_log_wait_commit(journal, tid);
1959         } else {
1960                 write_unlock(&journal->j_state_lock);
1961         }
1962
1963         /* ...and flush everything in the log out to disk. */
1964         spin_lock(&journal->j_list_lock);
1965         while (!err && journal->j_checkpoint_transactions != NULL) {
1966                 spin_unlock(&journal->j_list_lock);
1967                 mutex_lock_io(&journal->j_checkpoint_mutex);
1968                 err = jbd2_log_do_checkpoint(journal);
1969                 mutex_unlock(&journal->j_checkpoint_mutex);
1970                 spin_lock(&journal->j_list_lock);
1971         }
1972         spin_unlock(&journal->j_list_lock);
1973
1974         if (is_journal_aborted(journal))
1975                 return -EIO;
1976
1977         mutex_lock_io(&journal->j_checkpoint_mutex);
1978         if (!err) {
1979                 err = jbd2_cleanup_journal_tail(journal);
1980                 if (err < 0) {
1981                         mutex_unlock(&journal->j_checkpoint_mutex);
1982                         goto out;
1983                 }
1984                 err = 0;
1985         }
1986
1987         /* Finally, mark the journal as really needing no recovery.
1988          * This sets s_start==0 in the underlying superblock, which is
1989          * the magic code for a fully-recovered superblock.  Any future
1990          * commits of data to the journal will restore the current
1991          * s_start value. */
1992         jbd2_mark_journal_empty(journal, REQ_FUA);
1993         mutex_unlock(&journal->j_checkpoint_mutex);
1994         write_lock(&journal->j_state_lock);
1995         J_ASSERT(!journal->j_running_transaction);
1996         J_ASSERT(!journal->j_committing_transaction);
1997         J_ASSERT(!journal->j_checkpoint_transactions);
1998         J_ASSERT(journal->j_head == journal->j_tail);
1999         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2000         write_unlock(&journal->j_state_lock);
2001 out:
2002         return err;
2003 }
2004
2005 /**
2006  * int jbd2_journal_wipe() - Wipe journal contents
2007  * @journal: Journal to act on.
2008  * @write: flag (see below)
2009  *
2010  * Wipe out all of the contents of a journal, safely.  This will produce
2011  * a warning if the journal contains any valid recovery information.
2012  * Must be called between journal_init_*() and jbd2_journal_load().
2013  *
2014  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2015  * we merely suppress recovery.
2016  */
2017
2018 int jbd2_journal_wipe(journal_t *journal, int write)
2019 {
2020         int err = 0;
2021
2022         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2023
2024         err = load_superblock(journal);
2025         if (err)
2026                 return err;
2027
2028         if (!journal->j_tail)
2029                 goto no_recovery;
2030
2031         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2032                 write ? "Clearing" : "Ignoring");
2033
2034         err = jbd2_journal_skip_recovery(journal);
2035         if (write) {
2036                 /* Lock to make assertions happy... */
2037                 mutex_lock(&journal->j_checkpoint_mutex);
2038                 jbd2_mark_journal_empty(journal, REQ_FUA);
2039                 mutex_unlock(&journal->j_checkpoint_mutex);
2040         }
2041
2042  no_recovery:
2043         return err;
2044 }
2045
2046 /*
2047  * Journal abort has very specific semantics, which we describe
2048  * for journal abort.
2049  *
2050  * Two internal functions, which provide abort to the jbd layer
2051  * itself are here.
2052  */
2053
2054 /*
2055  * Quick version for internal journal use (doesn't lock the journal).
2056  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2057  * and don't attempt to make any other journal updates.
2058  */
2059 void __jbd2_journal_abort_hard(journal_t *journal)
2060 {
2061         transaction_t *transaction;
2062
2063         if (journal->j_flags & JBD2_ABORT)
2064                 return;
2065
2066         printk(KERN_ERR "Aborting journal on device %s.\n",
2067                journal->j_devname);
2068
2069         write_lock(&journal->j_state_lock);
2070         journal->j_flags |= JBD2_ABORT;
2071         transaction = journal->j_running_transaction;
2072         if (transaction)
2073                 __jbd2_log_start_commit(journal, transaction->t_tid);
2074         write_unlock(&journal->j_state_lock);
2075 }
2076
2077 /* Soft abort: record the abort error status in the journal superblock,
2078  * but don't do any other IO. */
2079 static void __journal_abort_soft (journal_t *journal, int errno)
2080 {
2081         if (journal->j_flags & JBD2_ABORT)
2082                 return;
2083
2084         if (!journal->j_errno)
2085                 journal->j_errno = errno;
2086
2087         __jbd2_journal_abort_hard(journal);
2088
2089         if (errno) {
2090                 jbd2_journal_update_sb_errno(journal);
2091                 write_lock(&journal->j_state_lock);
2092                 journal->j_flags |= JBD2_REC_ERR;
2093                 write_unlock(&journal->j_state_lock);
2094         }
2095 }
2096
2097 /**
2098  * void jbd2_journal_abort () - Shutdown the journal immediately.
2099  * @journal: the journal to shutdown.
2100  * @errno:   an error number to record in the journal indicating
2101  *           the reason for the shutdown.
2102  *
2103  * Perform a complete, immediate shutdown of the ENTIRE
2104  * journal (not of a single transaction).  This operation cannot be
2105  * undone without closing and reopening the journal.
2106  *
2107  * The jbd2_journal_abort function is intended to support higher level error
2108  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2109  * mode.
2110  *
2111  * Journal abort has very specific semantics.  Any existing dirty,
2112  * unjournaled buffers in the main filesystem will still be written to
2113  * disk by bdflush, but the journaling mechanism will be suspended
2114  * immediately and no further transaction commits will be honoured.
2115  *
2116  * Any dirty, journaled buffers will be written back to disk without
2117  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2118  * filesystem, but we _do_ attempt to leave as much data as possible
2119  * behind for fsck to use for cleanup.
2120  *
2121  * Any attempt to get a new transaction handle on a journal which is in
2122  * ABORT state will just result in an -EROFS error return.  A
2123  * jbd2_journal_stop on an existing handle will return -EIO if we have
2124  * entered abort state during the update.
2125  *
2126  * Recursive transactions are not disturbed by journal abort until the
2127  * final jbd2_journal_stop, which will receive the -EIO error.
2128  *
2129  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2130  * which will be recorded (if possible) in the journal superblock.  This
2131  * allows a client to record failure conditions in the middle of a
2132  * transaction without having to complete the transaction to record the
2133  * failure to disk.  ext3_error, for example, now uses this
2134  * functionality.
2135  *
2136  * Errors which originate from within the journaling layer will NOT
2137  * supply an errno; a null errno implies that absolutely no further
2138  * writes are done to the journal (unless there are any already in
2139  * progress).
2140  *
2141  */
2142
2143 void jbd2_journal_abort(journal_t *journal, int errno)
2144 {
2145         __journal_abort_soft(journal, errno);
2146 }
2147
2148 /**
2149  * int jbd2_journal_errno () - returns the journal's error state.
2150  * @journal: journal to examine.
2151  *
2152  * This is the errno number set with jbd2_journal_abort(), the last
2153  * time the journal was mounted - if the journal was stopped
2154  * without calling abort this will be 0.
2155  *
2156  * If the journal has been aborted on this mount time -EROFS will
2157  * be returned.
2158  */
2159 int jbd2_journal_errno(journal_t *journal)
2160 {
2161         int err;
2162
2163         read_lock(&journal->j_state_lock);
2164         if (journal->j_flags & JBD2_ABORT)
2165                 err = -EROFS;
2166         else
2167                 err = journal->j_errno;
2168         read_unlock(&journal->j_state_lock);
2169         return err;
2170 }
2171
2172 /**
2173  * int jbd2_journal_clear_err () - clears the journal's error state
2174  * @journal: journal to act on.
2175  *
2176  * An error must be cleared or acked to take a FS out of readonly
2177  * mode.
2178  */
2179 int jbd2_journal_clear_err(journal_t *journal)
2180 {
2181         int err = 0;
2182
2183         write_lock(&journal->j_state_lock);
2184         if (journal->j_flags & JBD2_ABORT)
2185                 err = -EROFS;
2186         else
2187                 journal->j_errno = 0;
2188         write_unlock(&journal->j_state_lock);
2189         return err;
2190 }
2191
2192 /**
2193  * void jbd2_journal_ack_err() - Ack journal err.
2194  * @journal: journal to act on.
2195  *
2196  * An error must be cleared or acked to take a FS out of readonly
2197  * mode.
2198  */
2199 void jbd2_journal_ack_err(journal_t *journal)
2200 {
2201         write_lock(&journal->j_state_lock);
2202         if (journal->j_errno)
2203                 journal->j_flags |= JBD2_ACK_ERR;
2204         write_unlock(&journal->j_state_lock);
2205 }
2206
2207 int jbd2_journal_blocks_per_page(struct inode *inode)
2208 {
2209         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2210 }
2211
2212 /*
2213  * helper functions to deal with 32 or 64bit block numbers.
2214  */
2215 size_t journal_tag_bytes(journal_t *journal)
2216 {
2217         size_t sz;
2218
2219         if (jbd2_has_feature_csum3(journal))
2220                 return sizeof(journal_block_tag3_t);
2221
2222         sz = sizeof(journal_block_tag_t);
2223
2224         if (jbd2_has_feature_csum2(journal))
2225                 sz += sizeof(__u16);
2226
2227         if (jbd2_has_feature_64bit(journal))
2228                 return sz;
2229         else
2230                 return sz - sizeof(__u32);
2231 }
2232
2233 /*
2234  * JBD memory management
2235  *
2236  * These functions are used to allocate block-sized chunks of memory
2237  * used for making copies of buffer_head data.  Very often it will be
2238  * page-sized chunks of data, but sometimes it will be in
2239  * sub-page-size chunks.  (For example, 16k pages on Power systems
2240  * with a 4k block file system.)  For blocks smaller than a page, we
2241  * use a SLAB allocator.  There are slab caches for each block size,
2242  * which are allocated at mount time, if necessary, and we only free
2243  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2244  * this reason we don't need to a mutex to protect access to
2245  * jbd2_slab[] allocating or releasing memory; only in
2246  * jbd2_journal_create_slab().
2247  */
2248 #define JBD2_MAX_SLABS 8
2249 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2250
2251 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2252         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2253         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2254 };
2255
2256
2257 static void jbd2_journal_destroy_slabs(void)
2258 {
2259         int i;
2260
2261         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2262                 if (jbd2_slab[i])
2263                         kmem_cache_destroy(jbd2_slab[i]);
2264                 jbd2_slab[i] = NULL;
2265         }
2266 }
2267
2268 static int jbd2_journal_create_slab(size_t size)
2269 {
2270         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2271         int i = order_base_2(size) - 10;
2272         size_t slab_size;
2273
2274         if (size == PAGE_SIZE)
2275                 return 0;
2276
2277         if (i >= JBD2_MAX_SLABS)
2278                 return -EINVAL;
2279
2280         if (unlikely(i < 0))
2281                 i = 0;
2282         mutex_lock(&jbd2_slab_create_mutex);
2283         if (jbd2_slab[i]) {
2284                 mutex_unlock(&jbd2_slab_create_mutex);
2285                 return 0;       /* Already created */
2286         }
2287
2288         slab_size = 1 << (i+10);
2289         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2290                                          slab_size, 0, NULL);
2291         mutex_unlock(&jbd2_slab_create_mutex);
2292         if (!jbd2_slab[i]) {
2293                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2294                 return -ENOMEM;
2295         }
2296         return 0;
2297 }
2298
2299 static struct kmem_cache *get_slab(size_t size)
2300 {
2301         int i = order_base_2(size) - 10;
2302
2303         BUG_ON(i >= JBD2_MAX_SLABS);
2304         if (unlikely(i < 0))
2305                 i = 0;
2306         BUG_ON(jbd2_slab[i] == NULL);
2307         return jbd2_slab[i];
2308 }
2309
2310 void *jbd2_alloc(size_t size, gfp_t flags)
2311 {
2312         void *ptr;
2313
2314         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2315
2316         if (size < PAGE_SIZE)
2317                 ptr = kmem_cache_alloc(get_slab(size), flags);
2318         else
2319                 ptr = (void *)__get_free_pages(flags, get_order(size));
2320
2321         /* Check alignment; SLUB has gotten this wrong in the past,
2322          * and this can lead to user data corruption! */
2323         BUG_ON(((unsigned long) ptr) & (size-1));
2324
2325         return ptr;
2326 }
2327
2328 void jbd2_free(void *ptr, size_t size)
2329 {
2330         if (size < PAGE_SIZE)
2331                 kmem_cache_free(get_slab(size), ptr);
2332         else
2333                 free_pages((unsigned long)ptr, get_order(size));
2334 };
2335
2336 /*
2337  * Journal_head storage management
2338  */
2339 static struct kmem_cache *jbd2_journal_head_cache;
2340 #ifdef CONFIG_JBD2_DEBUG
2341 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2342 #endif
2343
2344 static int jbd2_journal_init_journal_head_cache(void)
2345 {
2346         int retval;
2347
2348         J_ASSERT(jbd2_journal_head_cache == NULL);
2349         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2350                                 sizeof(struct journal_head),
2351                                 0,              /* offset */
2352                                 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2353                                 NULL);          /* ctor */
2354         retval = 0;
2355         if (!jbd2_journal_head_cache) {
2356                 retval = -ENOMEM;
2357                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2358         }
2359         return retval;
2360 }
2361
2362 static void jbd2_journal_destroy_journal_head_cache(void)
2363 {
2364         if (jbd2_journal_head_cache) {
2365                 kmem_cache_destroy(jbd2_journal_head_cache);
2366                 jbd2_journal_head_cache = NULL;
2367         }
2368 }
2369
2370 /*
2371  * journal_head splicing and dicing
2372  */
2373 static struct journal_head *journal_alloc_journal_head(void)
2374 {
2375         struct journal_head *ret;
2376
2377 #ifdef CONFIG_JBD2_DEBUG
2378         atomic_inc(&nr_journal_heads);
2379 #endif
2380         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2381         if (!ret) {
2382                 jbd_debug(1, "out of memory for journal_head\n");
2383                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2384                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2385                                 GFP_NOFS | __GFP_NOFAIL);
2386         }
2387         return ret;
2388 }
2389
2390 static void journal_free_journal_head(struct journal_head *jh)
2391 {
2392 #ifdef CONFIG_JBD2_DEBUG
2393         atomic_dec(&nr_journal_heads);
2394         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2395 #endif
2396         kmem_cache_free(jbd2_journal_head_cache, jh);
2397 }
2398
2399 /*
2400  * A journal_head is attached to a buffer_head whenever JBD has an
2401  * interest in the buffer.
2402  *
2403  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2404  * is set.  This bit is tested in core kernel code where we need to take
2405  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2406  * there.
2407  *
2408  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2409  *
2410  * When a buffer has its BH_JBD bit set it is immune from being released by
2411  * core kernel code, mainly via ->b_count.
2412  *
2413  * A journal_head is detached from its buffer_head when the journal_head's
2414  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2415  * transaction (b_cp_transaction) hold their references to b_jcount.
2416  *
2417  * Various places in the kernel want to attach a journal_head to a buffer_head
2418  * _before_ attaching the journal_head to a transaction.  To protect the
2419  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2420  * journal_head's b_jcount refcount by one.  The caller must call
2421  * jbd2_journal_put_journal_head() to undo this.
2422  *
2423  * So the typical usage would be:
2424  *
2425  *      (Attach a journal_head if needed.  Increments b_jcount)
2426  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2427  *      ...
2428  *      (Get another reference for transaction)
2429  *      jbd2_journal_grab_journal_head(bh);
2430  *      jh->b_transaction = xxx;
2431  *      (Put original reference)
2432  *      jbd2_journal_put_journal_head(jh);
2433  */
2434
2435 /*
2436  * Give a buffer_head a journal_head.
2437  *
2438  * May sleep.
2439  */
2440 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2441 {
2442         struct journal_head *jh;
2443         struct journal_head *new_jh = NULL;
2444
2445 repeat:
2446         if (!buffer_jbd(bh))
2447                 new_jh = journal_alloc_journal_head();
2448
2449         jbd_lock_bh_journal_head(bh);
2450         if (buffer_jbd(bh)) {
2451                 jh = bh2jh(bh);
2452         } else {
2453                 J_ASSERT_BH(bh,
2454                         (atomic_read(&bh->b_count) > 0) ||
2455                         (bh->b_page && bh->b_page->mapping));
2456
2457                 if (!new_jh) {
2458                         jbd_unlock_bh_journal_head(bh);
2459                         goto repeat;
2460                 }
2461
2462                 jh = new_jh;
2463                 new_jh = NULL;          /* We consumed it */
2464                 set_buffer_jbd(bh);
2465                 bh->b_private = jh;
2466                 jh->b_bh = bh;
2467                 get_bh(bh);
2468                 BUFFER_TRACE(bh, "added journal_head");
2469         }
2470         jh->b_jcount++;
2471         jbd_unlock_bh_journal_head(bh);
2472         if (new_jh)
2473                 journal_free_journal_head(new_jh);
2474         return bh->b_private;
2475 }
2476
2477 /*
2478  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2479  * having a journal_head, return NULL
2480  */
2481 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2482 {
2483         struct journal_head *jh = NULL;
2484
2485         jbd_lock_bh_journal_head(bh);
2486         if (buffer_jbd(bh)) {
2487                 jh = bh2jh(bh);
2488                 jh->b_jcount++;
2489         }
2490         jbd_unlock_bh_journal_head(bh);
2491         return jh;
2492 }
2493
2494 static void __journal_remove_journal_head(struct buffer_head *bh)
2495 {
2496         struct journal_head *jh = bh2jh(bh);
2497
2498         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2499         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2500         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2501         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2502         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2503         J_ASSERT_BH(bh, buffer_jbd(bh));
2504         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2505         BUFFER_TRACE(bh, "remove journal_head");
2506         if (jh->b_frozen_data) {
2507                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2508                 jbd2_free(jh->b_frozen_data, bh->b_size);
2509         }
2510         if (jh->b_committed_data) {
2511                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2512                 jbd2_free(jh->b_committed_data, bh->b_size);
2513         }
2514         bh->b_private = NULL;
2515         jh->b_bh = NULL;        /* debug, really */
2516         clear_buffer_jbd(bh);
2517         journal_free_journal_head(jh);
2518 }
2519
2520 /*
2521  * Drop a reference on the passed journal_head.  If it fell to zero then
2522  * release the journal_head from the buffer_head.
2523  */
2524 void jbd2_journal_put_journal_head(struct journal_head *jh)
2525 {
2526         struct buffer_head *bh = jh2bh(jh);
2527
2528         jbd_lock_bh_journal_head(bh);
2529         J_ASSERT_JH(jh, jh->b_jcount > 0);
2530         --jh->b_jcount;
2531         if (!jh->b_jcount) {
2532                 __journal_remove_journal_head(bh);
2533                 jbd_unlock_bh_journal_head(bh);
2534                 __brelse(bh);
2535         } else
2536                 jbd_unlock_bh_journal_head(bh);
2537 }
2538
2539 /*
2540  * Initialize jbd inode head
2541  */
2542 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2543 {
2544         jinode->i_transaction = NULL;
2545         jinode->i_next_transaction = NULL;
2546         jinode->i_vfs_inode = inode;
2547         jinode->i_flags = 0;
2548         INIT_LIST_HEAD(&jinode->i_list);
2549 }
2550
2551 /*
2552  * Function to be called before we start removing inode from memory (i.e.,
2553  * clear_inode() is a fine place to be called from). It removes inode from
2554  * transaction's lists.
2555  */
2556 void jbd2_journal_release_jbd_inode(journal_t *journal,
2557                                     struct jbd2_inode *jinode)
2558 {
2559         if (!journal)
2560                 return;
2561 restart:
2562         spin_lock(&journal->j_list_lock);
2563         /* Is commit writing out inode - we have to wait */
2564         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2565                 wait_queue_head_t *wq;
2566                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2567                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2568                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2569                 spin_unlock(&journal->j_list_lock);
2570                 schedule();
2571                 finish_wait(wq, &wait.wait);
2572                 goto restart;
2573         }
2574
2575         if (jinode->i_transaction) {
2576                 list_del(&jinode->i_list);
2577                 jinode->i_transaction = NULL;
2578         }
2579         spin_unlock(&journal->j_list_lock);
2580 }
2581
2582
2583 #ifdef CONFIG_PROC_FS
2584
2585 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2586
2587 static void __init jbd2_create_jbd_stats_proc_entry(void)
2588 {
2589         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2590 }
2591
2592 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2593 {
2594         if (proc_jbd2_stats)
2595                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2596 }
2597
2598 #else
2599
2600 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2601 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2602
2603 #endif
2604
2605 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2606
2607 static int __init jbd2_journal_init_handle_cache(void)
2608 {
2609         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2610         if (jbd2_handle_cache == NULL) {
2611                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2612                 return -ENOMEM;
2613         }
2614         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2615         if (jbd2_inode_cache == NULL) {
2616                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2617                 kmem_cache_destroy(jbd2_handle_cache);
2618                 return -ENOMEM;
2619         }
2620         return 0;
2621 }
2622
2623 static void jbd2_journal_destroy_handle_cache(void)
2624 {
2625         if (jbd2_handle_cache)
2626                 kmem_cache_destroy(jbd2_handle_cache);
2627         if (jbd2_inode_cache)
2628                 kmem_cache_destroy(jbd2_inode_cache);
2629
2630 }
2631
2632 /*
2633  * Module startup and shutdown
2634  */
2635
2636 static int __init journal_init_caches(void)
2637 {
2638         int ret;
2639
2640         ret = jbd2_journal_init_revoke_caches();
2641         if (ret == 0)
2642                 ret = jbd2_journal_init_journal_head_cache();
2643         if (ret == 0)
2644                 ret = jbd2_journal_init_handle_cache();
2645         if (ret == 0)
2646                 ret = jbd2_journal_init_transaction_cache();
2647         return ret;
2648 }
2649
2650 static void jbd2_journal_destroy_caches(void)
2651 {
2652         jbd2_journal_destroy_revoke_caches();
2653         jbd2_journal_destroy_journal_head_cache();
2654         jbd2_journal_destroy_handle_cache();
2655         jbd2_journal_destroy_transaction_cache();
2656         jbd2_journal_destroy_slabs();
2657 }
2658
2659 static int __init journal_init(void)
2660 {
2661         int ret;
2662
2663         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2664
2665         ret = journal_init_caches();
2666         if (ret == 0) {
2667                 jbd2_create_jbd_stats_proc_entry();
2668         } else {
2669                 jbd2_journal_destroy_caches();
2670         }
2671         return ret;
2672 }
2673
2674 static void __exit journal_exit(void)
2675 {
2676 #ifdef CONFIG_JBD2_DEBUG
2677         int n = atomic_read(&nr_journal_heads);
2678         if (n)
2679                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2680 #endif
2681         jbd2_remove_jbd_stats_proc_entry();
2682         jbd2_journal_destroy_caches();
2683 }
2684
2685 MODULE_LICENSE("GPL");
2686 module_init(journal_init);
2687 module_exit(journal_exit);
2688