]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd2/transaction.c
Merge branch 'master' into for-next
[karo-tx-linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207
208                 /*
209                  * Is the number of reserved credits in the current transaction too
210                  * big to fit this handle? Wait until reserved credits are freed.
211                  */
212                 if (atomic_read(&journal->j_reserved_credits) + total >
213                     journal->j_max_transaction_buffers) {
214                         read_unlock(&journal->j_state_lock);
215                         wait_event(journal->j_wait_reserved,
216                                    atomic_read(&journal->j_reserved_credits) + total <=
217                                    journal->j_max_transaction_buffers);
218                         return 1;
219                 }
220
221                 wait_transaction_locked(journal);
222                 return 1;
223         }
224
225         /*
226          * The commit code assumes that it can get enough log space
227          * without forcing a checkpoint.  This is *critical* for
228          * correctness: a checkpoint of a buffer which is also
229          * associated with a committing transaction creates a deadlock,
230          * so commit simply cannot force through checkpoints.
231          *
232          * We must therefore ensure the necessary space in the journal
233          * *before* starting to dirty potentially checkpointed buffers
234          * in the new transaction.
235          */
236         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237                 atomic_sub(total, &t->t_outstanding_credits);
238                 read_unlock(&journal->j_state_lock);
239                 write_lock(&journal->j_state_lock);
240                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241                         __jbd2_log_wait_for_space(journal);
242                 write_unlock(&journal->j_state_lock);
243                 return 1;
244         }
245
246         /* No reservation? We are done... */
247         if (!rsv_blocks)
248                 return 0;
249
250         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251         /* We allow at most half of a transaction to be reserved */
252         if (needed > journal->j_max_transaction_buffers / 2) {
253                 sub_reserved_credits(journal, rsv_blocks);
254                 atomic_sub(total, &t->t_outstanding_credits);
255                 read_unlock(&journal->j_state_lock);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         lock_map_acquire(&handle->h_lockdep_map);
386         jbd2_journal_free_transaction(new_transaction);
387         return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402                                                 &jbd2_handle_key, 0);
403
404         return handle;
405 }
406
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427                               gfp_t gfp_mask, unsigned int type,
428                               unsigned int line_no)
429 {
430         handle_t *handle = journal_current_handle();
431         int err;
432
433         if (!journal)
434                 return ERR_PTR(-EROFS);
435
436         if (handle) {
437                 J_ASSERT(handle->h_transaction->t_journal == journal);
438                 handle->h_ref++;
439                 return handle;
440         }
441
442         handle = new_handle(nblocks);
443         if (!handle)
444                 return ERR_PTR(-ENOMEM);
445         if (rsv_blocks) {
446                 handle_t *rsv_handle;
447
448                 rsv_handle = new_handle(rsv_blocks);
449                 if (!rsv_handle) {
450                         jbd2_free_handle(handle);
451                         return ERR_PTR(-ENOMEM);
452                 }
453                 rsv_handle->h_reserved = 1;
454                 rsv_handle->h_journal = journal;
455                 handle->h_rsv_handle = rsv_handle;
456         }
457
458         err = start_this_handle(journal, handle, gfp_mask);
459         if (err < 0) {
460                 if (handle->h_rsv_handle)
461                         jbd2_free_handle(handle->h_rsv_handle);
462                 jbd2_free_handle(handle);
463                 return ERR_PTR(err);
464         }
465         handle->h_type = type;
466         handle->h_line_no = line_no;
467         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468                                 handle->h_transaction->t_tid, type,
469                                 line_no, nblocks);
470         return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483         journal_t *journal = handle->h_journal;
484
485         WARN_ON(!handle->h_reserved);
486         sub_reserved_credits(journal, handle->h_buffer_credits);
487         jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504                                 unsigned int line_no)
505 {
506         journal_t *journal = handle->h_journal;
507         int ret = -EIO;
508
509         if (WARN_ON(!handle->h_reserved)) {
510                 /* Someone passed in normal handle? Just stop it. */
511                 jbd2_journal_stop(handle);
512                 return ret;
513         }
514         /*
515          * Usefulness of mixing of reserved and unreserved handles is
516          * questionable. So far nobody seems to need it so just error out.
517          */
518         if (WARN_ON(current->journal_info)) {
519                 jbd2_journal_free_reserved(handle);
520                 return ret;
521         }
522
523         handle->h_journal = NULL;
524         /*
525          * GFP_NOFS is here because callers are likely from writeback or
526          * similarly constrained call sites
527          */
528         ret = start_this_handle(journal, handle, GFP_NOFS);
529         if (ret < 0) {
530                 jbd2_journal_free_reserved(handle);
531                 return ret;
532         }
533         handle->h_type = type;
534         handle->h_line_no = line_no;
535         return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modifications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561         transaction_t *transaction = handle->h_transaction;
562         journal_t *journal;
563         int result;
564         int wanted;
565
566         if (is_handle_aborted(handle))
567                 return -EROFS;
568         journal = transaction->t_journal;
569
570         result = 1;
571
572         read_lock(&journal->j_state_lock);
573
574         /* Don't extend a locked-down transaction! */
575         if (transaction->t_state != T_RUNNING) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "transaction not running\n", handle, nblocks);
578                 goto error_out;
579         }
580
581         spin_lock(&transaction->t_handle_lock);
582         wanted = atomic_add_return(nblocks,
583                                    &transaction->t_outstanding_credits);
584
585         if (wanted > journal->j_max_transaction_buffers) {
586                 jbd_debug(3, "denied handle %p %d blocks: "
587                           "transaction too large\n", handle, nblocks);
588                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589                 goto unlock;
590         }
591
592         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593             jbd2_log_space_left(journal)) {
594                 jbd_debug(3, "denied handle %p %d blocks: "
595                           "insufficient log space\n", handle, nblocks);
596                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597                 goto unlock;
598         }
599
600         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601                                  transaction->t_tid,
602                                  handle->h_type, handle->h_line_no,
603                                  handle->h_buffer_credits,
604                                  nblocks);
605
606         handle->h_buffer_credits += nblocks;
607         handle->h_requested_credits += nblocks;
608         result = 0;
609
610         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612         spin_unlock(&transaction->t_handle_lock);
613 error_out:
614         read_unlock(&journal->j_state_lock);
615         return result;
616 }
617
618
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         tid_t           tid;
639         int             need_to_start, ret;
640
641         /* If we've had an abort of any type, don't even think about
642          * actually doing the restart! */
643         if (is_handle_aborted(handle))
644                 return 0;
645         journal = transaction->t_journal;
646
647         /*
648          * First unlink the handle from its current transaction, and start the
649          * commit on that.
650          */
651         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652         J_ASSERT(journal_current_handle() == handle);
653
654         read_lock(&journal->j_state_lock);
655         spin_lock(&transaction->t_handle_lock);
656         atomic_sub(handle->h_buffer_credits,
657                    &transaction->t_outstanding_credits);
658         if (handle->h_rsv_handle) {
659                 sub_reserved_credits(journal,
660                                      handle->h_rsv_handle->h_buffer_credits);
661         }
662         if (atomic_dec_and_test(&transaction->t_updates))
663                 wake_up(&journal->j_wait_updates);
664         tid = transaction->t_tid;
665         spin_unlock(&transaction->t_handle_lock);
666         handle->h_transaction = NULL;
667         current->journal_info = NULL;
668
669         jbd_debug(2, "restarting handle %p\n", handle);
670         need_to_start = !tid_geq(journal->j_commit_request, tid);
671         read_unlock(&journal->j_state_lock);
672         if (need_to_start)
673                 jbd2_log_start_commit(journal, tid);
674
675         lock_map_release(&handle->h_lockdep_map);
676         handle->h_buffer_credits = nblocks;
677         ret = start_this_handle(journal, handle, gfp_mask);
678         return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701         DEFINE_WAIT(wait);
702
703         write_lock(&journal->j_state_lock);
704         ++journal->j_barrier_count;
705
706         /* Wait until there are no reserved handles */
707         if (atomic_read(&journal->j_reserved_credits)) {
708                 write_unlock(&journal->j_state_lock);
709                 wait_event(journal->j_wait_reserved,
710                            atomic_read(&journal->j_reserved_credits) == 0);
711                 write_lock(&journal->j_state_lock);
712         }
713
714         /* Wait until there are no running updates */
715         while (1) {
716                 transaction_t *transaction = journal->j_running_transaction;
717
718                 if (!transaction)
719                         break;
720
721                 spin_lock(&transaction->t_handle_lock);
722                 prepare_to_wait(&journal->j_wait_updates, &wait,
723                                 TASK_UNINTERRUPTIBLE);
724                 if (!atomic_read(&transaction->t_updates)) {
725                         spin_unlock(&transaction->t_handle_lock);
726                         finish_wait(&journal->j_wait_updates, &wait);
727                         break;
728                 }
729                 spin_unlock(&transaction->t_handle_lock);
730                 write_unlock(&journal->j_state_lock);
731                 schedule();
732                 finish_wait(&journal->j_wait_updates, &wait);
733                 write_lock(&journal->j_state_lock);
734         }
735         write_unlock(&journal->j_state_lock);
736
737         /*
738          * We have now established a barrier against other normal updates, but
739          * we also need to barrier against other jbd2_journal_lock_updates() calls
740          * to make sure that we serialise special journal-locked operations
741          * too.
742          */
743         mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756         J_ASSERT(journal->j_barrier_count != 0);
757
758         mutex_unlock(&journal->j_barrier);
759         write_lock(&journal->j_state_lock);
760         --journal->j_barrier_count;
761         write_unlock(&journal->j_state_lock);
762         wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767         printk(KERN_WARNING
768                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
769                "There's a risk of filesystem corruption in case of system "
770                "crash.\n",
771                bh->b_bdev, (unsigned long long)bh->b_blocknr);
772 }
773
774 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
775 static void jbd2_freeze_jh_data(struct journal_head *jh)
776 {
777         struct page *page;
778         int offset;
779         char *source;
780         struct buffer_head *bh = jh2bh(jh);
781
782         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
783         page = bh->b_page;
784         offset = offset_in_page(bh->b_data);
785         source = kmap_atomic(page);
786         /* Fire data frozen trigger just before we copy the data */
787         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
788         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
789         kunmap_atomic(source);
790
791         /*
792          * Now that the frozen data is saved off, we need to store any matching
793          * triggers.
794          */
795         jh->b_frozen_triggers = jh->b_triggers;
796 }
797
798 /*
799  * If the buffer is already part of the current transaction, then there
800  * is nothing we need to do.  If it is already part of a prior
801  * transaction which we are still committing to disk, then we need to
802  * make sure that we do not overwrite the old copy: we do copy-out to
803  * preserve the copy going to disk.  We also account the buffer against
804  * the handle's metadata buffer credits (unless the buffer is already
805  * part of the transaction, that is).
806  *
807  */
808 static int
809 do_get_write_access(handle_t *handle, struct journal_head *jh,
810                         int force_copy)
811 {
812         struct buffer_head *bh;
813         transaction_t *transaction = handle->h_transaction;
814         journal_t *journal;
815         int error;
816         char *frozen_buffer = NULL;
817         unsigned long start_lock, time_lock;
818
819         if (is_handle_aborted(handle))
820                 return -EROFS;
821         journal = transaction->t_journal;
822
823         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
824
825         JBUFFER_TRACE(jh, "entry");
826 repeat:
827         bh = jh2bh(jh);
828
829         /* @@@ Need to check for errors here at some point. */
830
831         start_lock = jiffies;
832         lock_buffer(bh);
833         jbd_lock_bh_state(bh);
834
835         /* If it takes too long to lock the buffer, trace it */
836         time_lock = jbd2_time_diff(start_lock, jiffies);
837         if (time_lock > HZ/10)
838                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
839                         jiffies_to_msecs(time_lock));
840
841         /* We now hold the buffer lock so it is safe to query the buffer
842          * state.  Is the buffer dirty?
843          *
844          * If so, there are two possibilities.  The buffer may be
845          * non-journaled, and undergoing a quite legitimate writeback.
846          * Otherwise, it is journaled, and we don't expect dirty buffers
847          * in that state (the buffers should be marked JBD_Dirty
848          * instead.)  So either the IO is being done under our own
849          * control and this is a bug, or it's a third party IO such as
850          * dump(8) (which may leave the buffer scheduled for read ---
851          * ie. locked but not dirty) or tune2fs (which may actually have
852          * the buffer dirtied, ugh.)  */
853
854         if (buffer_dirty(bh)) {
855                 /*
856                  * First question: is this buffer already part of the current
857                  * transaction or the existing committing transaction?
858                  */
859                 if (jh->b_transaction) {
860                         J_ASSERT_JH(jh,
861                                 jh->b_transaction == transaction ||
862                                 jh->b_transaction ==
863                                         journal->j_committing_transaction);
864                         if (jh->b_next_transaction)
865                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
866                                                         transaction);
867                         warn_dirty_buffer(bh);
868                 }
869                 /*
870                  * In any case we need to clean the dirty flag and we must
871                  * do it under the buffer lock to be sure we don't race
872                  * with running write-out.
873                  */
874                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
875                 clear_buffer_dirty(bh);
876                 set_buffer_jbddirty(bh);
877         }
878
879         unlock_buffer(bh);
880
881         error = -EROFS;
882         if (is_handle_aborted(handle)) {
883                 jbd_unlock_bh_state(bh);
884                 goto out;
885         }
886         error = 0;
887
888         /*
889          * The buffer is already part of this transaction if b_transaction or
890          * b_next_transaction points to it
891          */
892         if (jh->b_transaction == transaction ||
893             jh->b_next_transaction == transaction)
894                 goto done;
895
896         /*
897          * this is the first time this transaction is touching this buffer,
898          * reset the modified flag
899          */
900        jh->b_modified = 0;
901
902         /*
903          * If the buffer is not journaled right now, we need to make sure it
904          * doesn't get written to disk before the caller actually commits the
905          * new data
906          */
907         if (!jh->b_transaction) {
908                 JBUFFER_TRACE(jh, "no transaction");
909                 J_ASSERT_JH(jh, !jh->b_next_transaction);
910                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
911                 /*
912                  * Make sure all stores to jh (b_modified, b_frozen_data) are
913                  * visible before attaching it to the running transaction.
914                  * Paired with barrier in jbd2_write_access_granted()
915                  */
916                 smp_wmb();
917                 spin_lock(&journal->j_list_lock);
918                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
919                 spin_unlock(&journal->j_list_lock);
920                 goto done;
921         }
922         /*
923          * If there is already a copy-out version of this buffer, then we don't
924          * need to make another one
925          */
926         if (jh->b_frozen_data) {
927                 JBUFFER_TRACE(jh, "has frozen data");
928                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929                 goto attach_next;
930         }
931
932         JBUFFER_TRACE(jh, "owned by older transaction");
933         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
935
936         /*
937          * There is one case we have to be very careful about.  If the
938          * committing transaction is currently writing this buffer out to disk
939          * and has NOT made a copy-out, then we cannot modify the buffer
940          * contents at all right now.  The essence of copy-out is that it is
941          * the extra copy, not the primary copy, which gets journaled.  If the
942          * primary copy is already going to disk then we cannot do copy-out
943          * here.
944          */
945         if (buffer_shadow(bh)) {
946                 JBUFFER_TRACE(jh, "on shadow: sleep");
947                 jbd_unlock_bh_state(bh);
948                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
949                 goto repeat;
950         }
951
952         /*
953          * Only do the copy if the currently-owning transaction still needs it.
954          * If buffer isn't on BJ_Metadata list, the committing transaction is
955          * past that stage (here we use the fact that BH_Shadow is set under
956          * bh_state lock together with refiling to BJ_Shadow list and at this
957          * point we know the buffer doesn't have BH_Shadow set).
958          *
959          * Subtle point, though: if this is a get_undo_access, then we will be
960          * relying on the frozen_data to contain the new value of the
961          * committed_data record after the transaction, so we HAVE to force the
962          * frozen_data copy in that case.
963          */
964         if (jh->b_jlist == BJ_Metadata || force_copy) {
965                 JBUFFER_TRACE(jh, "generate frozen data");
966                 if (!frozen_buffer) {
967                         JBUFFER_TRACE(jh, "allocate memory for buffer");
968                         jbd_unlock_bh_state(bh);
969                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
970                                                    GFP_NOFS | __GFP_NOFAIL);
971                         goto repeat;
972                 }
973                 jh->b_frozen_data = frozen_buffer;
974                 frozen_buffer = NULL;
975                 jbd2_freeze_jh_data(jh);
976         }
977 attach_next:
978         /*
979          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
980          * before attaching it to the running transaction. Paired with barrier
981          * in jbd2_write_access_granted()
982          */
983         smp_wmb();
984         jh->b_next_transaction = transaction;
985
986 done:
987         jbd_unlock_bh_state(bh);
988
989         /*
990          * If we are about to journal a buffer, then any revoke pending on it is
991          * no longer valid
992          */
993         jbd2_journal_cancel_revoke(handle, jh);
994
995 out:
996         if (unlikely(frozen_buffer))    /* It's usually NULL */
997                 jbd2_free(frozen_buffer, bh->b_size);
998
999         JBUFFER_TRACE(jh, "exit");
1000         return error;
1001 }
1002
1003 /* Fast check whether buffer is already attached to the required transaction */
1004 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1005                                                         bool undo)
1006 {
1007         struct journal_head *jh;
1008         bool ret = false;
1009
1010         /* Dirty buffers require special handling... */
1011         if (buffer_dirty(bh))
1012                 return false;
1013
1014         /*
1015          * RCU protects us from dereferencing freed pages. So the checks we do
1016          * are guaranteed not to oops. However the jh slab object can get freed
1017          * & reallocated while we work with it. So we have to be careful. When
1018          * we see jh attached to the running transaction, we know it must stay
1019          * so until the transaction is committed. Thus jh won't be freed and
1020          * will be attached to the same bh while we run.  However it can
1021          * happen jh gets freed, reallocated, and attached to the transaction
1022          * just after we get pointer to it from bh. So we have to be careful
1023          * and recheck jh still belongs to our bh before we return success.
1024          */
1025         rcu_read_lock();
1026         if (!buffer_jbd(bh))
1027                 goto out;
1028         /* This should be bh2jh() but that doesn't work with inline functions */
1029         jh = READ_ONCE(bh->b_private);
1030         if (!jh)
1031                 goto out;
1032         /* For undo access buffer must have data copied */
1033         if (undo && !jh->b_committed_data)
1034                 goto out;
1035         if (jh->b_transaction != handle->h_transaction &&
1036             jh->b_next_transaction != handle->h_transaction)
1037                 goto out;
1038         /*
1039          * There are two reasons for the barrier here:
1040          * 1) Make sure to fetch b_bh after we did previous checks so that we
1041          * detect when jh went through free, realloc, attach to transaction
1042          * while we were checking. Paired with implicit barrier in that path.
1043          * 2) So that access to bh done after jbd2_write_access_granted()
1044          * doesn't get reordered and see inconsistent state of concurrent
1045          * do_get_write_access().
1046          */
1047         smp_mb();
1048         if (unlikely(jh->b_bh != bh))
1049                 goto out;
1050         ret = true;
1051 out:
1052         rcu_read_unlock();
1053         return ret;
1054 }
1055
1056 /**
1057  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1058  * @handle: transaction to add buffer modifications to
1059  * @bh:     bh to be used for metadata writes
1060  *
1061  * Returns an error code or 0 on success.
1062  *
1063  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1064  * because we're write()ing a buffer which is also part of a shared mapping.
1065  */
1066
1067 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1068 {
1069         struct journal_head *jh;
1070         int rc;
1071
1072         if (jbd2_write_access_granted(handle, bh, false))
1073                 return 0;
1074
1075         jh = jbd2_journal_add_journal_head(bh);
1076         /* We do not want to get caught playing with fields which the
1077          * log thread also manipulates.  Make sure that the buffer
1078          * completes any outstanding IO before proceeding. */
1079         rc = do_get_write_access(handle, jh, 0);
1080         jbd2_journal_put_journal_head(jh);
1081         return rc;
1082 }
1083
1084
1085 /*
1086  * When the user wants to journal a newly created buffer_head
1087  * (ie. getblk() returned a new buffer and we are going to populate it
1088  * manually rather than reading off disk), then we need to keep the
1089  * buffer_head locked until it has been completely filled with new
1090  * data.  In this case, we should be able to make the assertion that
1091  * the bh is not already part of an existing transaction.
1092  *
1093  * The buffer should already be locked by the caller by this point.
1094  * There is no lock ranking violation: it was a newly created,
1095  * unlocked buffer beforehand. */
1096
1097 /**
1098  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1099  * @handle: transaction to new buffer to
1100  * @bh: new buffer.
1101  *
1102  * Call this if you create a new bh.
1103  */
1104 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1105 {
1106         transaction_t *transaction = handle->h_transaction;
1107         journal_t *journal;
1108         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1109         int err;
1110
1111         jbd_debug(5, "journal_head %p\n", jh);
1112         err = -EROFS;
1113         if (is_handle_aborted(handle))
1114                 goto out;
1115         journal = transaction->t_journal;
1116         err = 0;
1117
1118         JBUFFER_TRACE(jh, "entry");
1119         /*
1120          * The buffer may already belong to this transaction due to pre-zeroing
1121          * in the filesystem's new_block code.  It may also be on the previous,
1122          * committing transaction's lists, but it HAS to be in Forget state in
1123          * that case: the transaction must have deleted the buffer for it to be
1124          * reused here.
1125          */
1126         jbd_lock_bh_state(bh);
1127         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1128                 jh->b_transaction == NULL ||
1129                 (jh->b_transaction == journal->j_committing_transaction &&
1130                           jh->b_jlist == BJ_Forget)));
1131
1132         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1133         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1134
1135         if (jh->b_transaction == NULL) {
1136                 /*
1137                  * Previous jbd2_journal_forget() could have left the buffer
1138                  * with jbddirty bit set because it was being committed. When
1139                  * the commit finished, we've filed the buffer for
1140                  * checkpointing and marked it dirty. Now we are reallocating
1141                  * the buffer so the transaction freeing it must have
1142                  * committed and so it's safe to clear the dirty bit.
1143                  */
1144                 clear_buffer_dirty(jh2bh(jh));
1145                 /* first access by this transaction */
1146                 jh->b_modified = 0;
1147
1148                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1149                 spin_lock(&journal->j_list_lock);
1150                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1151         } else if (jh->b_transaction == journal->j_committing_transaction) {
1152                 /* first access by this transaction */
1153                 jh->b_modified = 0;
1154
1155                 JBUFFER_TRACE(jh, "set next transaction");
1156                 spin_lock(&journal->j_list_lock);
1157                 jh->b_next_transaction = transaction;
1158         }
1159         spin_unlock(&journal->j_list_lock);
1160         jbd_unlock_bh_state(bh);
1161
1162         /*
1163          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1164          * blocks which contain freed but then revoked metadata.  We need
1165          * to cancel the revoke in case we end up freeing it yet again
1166          * and the reallocating as data - this would cause a second revoke,
1167          * which hits an assertion error.
1168          */
1169         JBUFFER_TRACE(jh, "cancelling revoke");
1170         jbd2_journal_cancel_revoke(handle, jh);
1171 out:
1172         jbd2_journal_put_journal_head(jh);
1173         return err;
1174 }
1175
1176 /**
1177  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1178  *     non-rewindable consequences
1179  * @handle: transaction
1180  * @bh: buffer to undo
1181  *
1182  * Sometimes there is a need to distinguish between metadata which has
1183  * been committed to disk and that which has not.  The ext3fs code uses
1184  * this for freeing and allocating space, we have to make sure that we
1185  * do not reuse freed space until the deallocation has been committed,
1186  * since if we overwrote that space we would make the delete
1187  * un-rewindable in case of a crash.
1188  *
1189  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1190  * buffer for parts of non-rewindable operations such as delete
1191  * operations on the bitmaps.  The journaling code must keep a copy of
1192  * the buffer's contents prior to the undo_access call until such time
1193  * as we know that the buffer has definitely been committed to disk.
1194  *
1195  * We never need to know which transaction the committed data is part
1196  * of, buffers touched here are guaranteed to be dirtied later and so
1197  * will be committed to a new transaction in due course, at which point
1198  * we can discard the old committed data pointer.
1199  *
1200  * Returns error number or 0 on success.
1201  */
1202 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1203 {
1204         int err;
1205         struct journal_head *jh;
1206         char *committed_data = NULL;
1207
1208         JBUFFER_TRACE(jh, "entry");
1209         if (jbd2_write_access_granted(handle, bh, true))
1210                 return 0;
1211
1212         jh = jbd2_journal_add_journal_head(bh);
1213         /*
1214          * Do this first --- it can drop the journal lock, so we want to
1215          * make sure that obtaining the committed_data is done
1216          * atomically wrt. completion of any outstanding commits.
1217          */
1218         err = do_get_write_access(handle, jh, 1);
1219         if (err)
1220                 goto out;
1221
1222 repeat:
1223         if (!jh->b_committed_data)
1224                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1225                                             GFP_NOFS|__GFP_NOFAIL);
1226
1227         jbd_lock_bh_state(bh);
1228         if (!jh->b_committed_data) {
1229                 /* Copy out the current buffer contents into the
1230                  * preserved, committed copy. */
1231                 JBUFFER_TRACE(jh, "generate b_committed data");
1232                 if (!committed_data) {
1233                         jbd_unlock_bh_state(bh);
1234                         goto repeat;
1235                 }
1236
1237                 jh->b_committed_data = committed_data;
1238                 committed_data = NULL;
1239                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1240         }
1241         jbd_unlock_bh_state(bh);
1242 out:
1243         jbd2_journal_put_journal_head(jh);
1244         if (unlikely(committed_data))
1245                 jbd2_free(committed_data, bh->b_size);
1246         return err;
1247 }
1248
1249 /**
1250  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1251  * @bh: buffer to trigger on
1252  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1253  *
1254  * Set any triggers on this journal_head.  This is always safe, because
1255  * triggers for a committing buffer will be saved off, and triggers for
1256  * a running transaction will match the buffer in that transaction.
1257  *
1258  * Call with NULL to clear the triggers.
1259  */
1260 void jbd2_journal_set_triggers(struct buffer_head *bh,
1261                                struct jbd2_buffer_trigger_type *type)
1262 {
1263         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1264
1265         if (WARN_ON(!jh))
1266                 return;
1267         jh->b_triggers = type;
1268         jbd2_journal_put_journal_head(jh);
1269 }
1270
1271 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1272                                 struct jbd2_buffer_trigger_type *triggers)
1273 {
1274         struct buffer_head *bh = jh2bh(jh);
1275
1276         if (!triggers || !triggers->t_frozen)
1277                 return;
1278
1279         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1280 }
1281
1282 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1283                                struct jbd2_buffer_trigger_type *triggers)
1284 {
1285         if (!triggers || !triggers->t_abort)
1286                 return;
1287
1288         triggers->t_abort(triggers, jh2bh(jh));
1289 }
1290
1291 /**
1292  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1293  * @handle: transaction to add buffer to.
1294  * @bh: buffer to mark
1295  *
1296  * mark dirty metadata which needs to be journaled as part of the current
1297  * transaction.
1298  *
1299  * The buffer must have previously had jbd2_journal_get_write_access()
1300  * called so that it has a valid journal_head attached to the buffer
1301  * head.
1302  *
1303  * The buffer is placed on the transaction's metadata list and is marked
1304  * as belonging to the transaction.
1305  *
1306  * Returns error number or 0 on success.
1307  *
1308  * Special care needs to be taken if the buffer already belongs to the
1309  * current committing transaction (in which case we should have frozen
1310  * data present for that commit).  In that case, we don't relink the
1311  * buffer: that only gets done when the old transaction finally
1312  * completes its commit.
1313  */
1314 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1315 {
1316         transaction_t *transaction = handle->h_transaction;
1317         journal_t *journal;
1318         struct journal_head *jh;
1319         int ret = 0;
1320
1321         if (is_handle_aborted(handle))
1322                 return -EROFS;
1323         if (!buffer_jbd(bh)) {
1324                 ret = -EUCLEAN;
1325                 goto out;
1326         }
1327         /*
1328          * We don't grab jh reference here since the buffer must be part
1329          * of the running transaction.
1330          */
1331         jh = bh2jh(bh);
1332         /*
1333          * This and the following assertions are unreliable since we may see jh
1334          * in inconsistent state unless we grab bh_state lock. But this is
1335          * crucial to catch bugs so let's do a reliable check until the
1336          * lockless handling is fully proven.
1337          */
1338         if (jh->b_transaction != transaction &&
1339             jh->b_next_transaction != transaction) {
1340                 jbd_lock_bh_state(bh);
1341                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1342                                 jh->b_next_transaction == transaction);
1343                 jbd_unlock_bh_state(bh);
1344         }
1345         if (jh->b_modified == 1) {
1346                 /* If it's in our transaction it must be in BJ_Metadata list. */
1347                 if (jh->b_transaction == transaction &&
1348                     jh->b_jlist != BJ_Metadata) {
1349                         jbd_lock_bh_state(bh);
1350                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1351                                         jh->b_jlist == BJ_Metadata);
1352                         jbd_unlock_bh_state(bh);
1353                 }
1354                 goto out;
1355         }
1356
1357         journal = transaction->t_journal;
1358         jbd_debug(5, "journal_head %p\n", jh);
1359         JBUFFER_TRACE(jh, "entry");
1360
1361         jbd_lock_bh_state(bh);
1362
1363         if (jh->b_modified == 0) {
1364                 /*
1365                  * This buffer's got modified and becoming part
1366                  * of the transaction. This needs to be done
1367                  * once a transaction -bzzz
1368                  */
1369                 jh->b_modified = 1;
1370                 if (handle->h_buffer_credits <= 0) {
1371                         ret = -ENOSPC;
1372                         goto out_unlock_bh;
1373                 }
1374                 handle->h_buffer_credits--;
1375         }
1376
1377         /*
1378          * fastpath, to avoid expensive locking.  If this buffer is already
1379          * on the running transaction's metadata list there is nothing to do.
1380          * Nobody can take it off again because there is a handle open.
1381          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1382          * result in this test being false, so we go in and take the locks.
1383          */
1384         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1385                 JBUFFER_TRACE(jh, "fastpath");
1386                 if (unlikely(jh->b_transaction !=
1387                              journal->j_running_transaction)) {
1388                         printk(KERN_ERR "JBD2: %s: "
1389                                "jh->b_transaction (%llu, %p, %u) != "
1390                                "journal->j_running_transaction (%p, %u)\n",
1391                                journal->j_devname,
1392                                (unsigned long long) bh->b_blocknr,
1393                                jh->b_transaction,
1394                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1395                                journal->j_running_transaction,
1396                                journal->j_running_transaction ?
1397                                journal->j_running_transaction->t_tid : 0);
1398                         ret = -EINVAL;
1399                 }
1400                 goto out_unlock_bh;
1401         }
1402
1403         set_buffer_jbddirty(bh);
1404
1405         /*
1406          * Metadata already on the current transaction list doesn't
1407          * need to be filed.  Metadata on another transaction's list must
1408          * be committing, and will be refiled once the commit completes:
1409          * leave it alone for now.
1410          */
1411         if (jh->b_transaction != transaction) {
1412                 JBUFFER_TRACE(jh, "already on other transaction");
1413                 if (unlikely(((jh->b_transaction !=
1414                                journal->j_committing_transaction)) ||
1415                              (jh->b_next_transaction != transaction))) {
1416                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1417                                "bad jh for block %llu: "
1418                                "transaction (%p, %u), "
1419                                "jh->b_transaction (%p, %u), "
1420                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1421                                journal->j_devname,
1422                                (unsigned long long) bh->b_blocknr,
1423                                transaction, transaction->t_tid,
1424                                jh->b_transaction,
1425                                jh->b_transaction ?
1426                                jh->b_transaction->t_tid : 0,
1427                                jh->b_next_transaction,
1428                                jh->b_next_transaction ?
1429                                jh->b_next_transaction->t_tid : 0,
1430                                jh->b_jlist);
1431                         WARN_ON(1);
1432                         ret = -EINVAL;
1433                 }
1434                 /* And this case is illegal: we can't reuse another
1435                  * transaction's data buffer, ever. */
1436                 goto out_unlock_bh;
1437         }
1438
1439         /* That test should have eliminated the following case: */
1440         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1441
1442         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1443         spin_lock(&journal->j_list_lock);
1444         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1445         spin_unlock(&journal->j_list_lock);
1446 out_unlock_bh:
1447         jbd_unlock_bh_state(bh);
1448 out:
1449         JBUFFER_TRACE(jh, "exit");
1450         return ret;
1451 }
1452
1453 /**
1454  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1455  * @handle: transaction handle
1456  * @bh:     bh to 'forget'
1457  *
1458  * We can only do the bforget if there are no commits pending against the
1459  * buffer.  If the buffer is dirty in the current running transaction we
1460  * can safely unlink it.
1461  *
1462  * bh may not be a journalled buffer at all - it may be a non-JBD
1463  * buffer which came off the hashtable.  Check for this.
1464  *
1465  * Decrements bh->b_count by one.
1466  *
1467  * Allow this call even if the handle has aborted --- it may be part of
1468  * the caller's cleanup after an abort.
1469  */
1470 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1471 {
1472         transaction_t *transaction = handle->h_transaction;
1473         journal_t *journal;
1474         struct journal_head *jh;
1475         int drop_reserve = 0;
1476         int err = 0;
1477         int was_modified = 0;
1478
1479         if (is_handle_aborted(handle))
1480                 return -EROFS;
1481         journal = transaction->t_journal;
1482
1483         BUFFER_TRACE(bh, "entry");
1484
1485         jbd_lock_bh_state(bh);
1486
1487         if (!buffer_jbd(bh))
1488                 goto not_jbd;
1489         jh = bh2jh(bh);
1490
1491         /* Critical error: attempting to delete a bitmap buffer, maybe?
1492          * Don't do any jbd operations, and return an error. */
1493         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1494                          "inconsistent data on disk")) {
1495                 err = -EIO;
1496                 goto not_jbd;
1497         }
1498
1499         /* keep track of whether or not this transaction modified us */
1500         was_modified = jh->b_modified;
1501
1502         /*
1503          * The buffer's going from the transaction, we must drop
1504          * all references -bzzz
1505          */
1506         jh->b_modified = 0;
1507
1508         if (jh->b_transaction == transaction) {
1509                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1510
1511                 /* If we are forgetting a buffer which is already part
1512                  * of this transaction, then we can just drop it from
1513                  * the transaction immediately. */
1514                 clear_buffer_dirty(bh);
1515                 clear_buffer_jbddirty(bh);
1516
1517                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1518
1519                 /*
1520                  * we only want to drop a reference if this transaction
1521                  * modified the buffer
1522                  */
1523                 if (was_modified)
1524                         drop_reserve = 1;
1525
1526                 /*
1527                  * We are no longer going to journal this buffer.
1528                  * However, the commit of this transaction is still
1529                  * important to the buffer: the delete that we are now
1530                  * processing might obsolete an old log entry, so by
1531                  * committing, we can satisfy the buffer's checkpoint.
1532                  *
1533                  * So, if we have a checkpoint on the buffer, we should
1534                  * now refile the buffer on our BJ_Forget list so that
1535                  * we know to remove the checkpoint after we commit.
1536                  */
1537
1538                 spin_lock(&journal->j_list_lock);
1539                 if (jh->b_cp_transaction) {
1540                         __jbd2_journal_temp_unlink_buffer(jh);
1541                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1542                 } else {
1543                         __jbd2_journal_unfile_buffer(jh);
1544                         if (!buffer_jbd(bh)) {
1545                                 spin_unlock(&journal->j_list_lock);
1546                                 jbd_unlock_bh_state(bh);
1547                                 __bforget(bh);
1548                                 goto drop;
1549                         }
1550                 }
1551                 spin_unlock(&journal->j_list_lock);
1552         } else if (jh->b_transaction) {
1553                 J_ASSERT_JH(jh, (jh->b_transaction ==
1554                                  journal->j_committing_transaction));
1555                 /* However, if the buffer is still owned by a prior
1556                  * (committing) transaction, we can't drop it yet... */
1557                 JBUFFER_TRACE(jh, "belongs to older transaction");
1558                 /* ... but we CAN drop it from the new transaction if we
1559                  * have also modified it since the original commit. */
1560
1561                 if (jh->b_next_transaction) {
1562                         J_ASSERT(jh->b_next_transaction == transaction);
1563                         spin_lock(&journal->j_list_lock);
1564                         jh->b_next_transaction = NULL;
1565                         spin_unlock(&journal->j_list_lock);
1566
1567                         /*
1568                          * only drop a reference if this transaction modified
1569                          * the buffer
1570                          */
1571                         if (was_modified)
1572                                 drop_reserve = 1;
1573                 }
1574         }
1575
1576 not_jbd:
1577         jbd_unlock_bh_state(bh);
1578         __brelse(bh);
1579 drop:
1580         if (drop_reserve) {
1581                 /* no need to reserve log space for this block -bzzz */
1582                 handle->h_buffer_credits++;
1583         }
1584         return err;
1585 }
1586
1587 /**
1588  * int jbd2_journal_stop() - complete a transaction
1589  * @handle: transaction to complete.
1590  *
1591  * All done for a particular handle.
1592  *
1593  * There is not much action needed here.  We just return any remaining
1594  * buffer credits to the transaction and remove the handle.  The only
1595  * complication is that we need to start a commit operation if the
1596  * filesystem is marked for synchronous update.
1597  *
1598  * jbd2_journal_stop itself will not usually return an error, but it may
1599  * do so in unusual circumstances.  In particular, expect it to
1600  * return -EIO if a jbd2_journal_abort has been executed since the
1601  * transaction began.
1602  */
1603 int jbd2_journal_stop(handle_t *handle)
1604 {
1605         transaction_t *transaction = handle->h_transaction;
1606         journal_t *journal;
1607         int err = 0, wait_for_commit = 0;
1608         tid_t tid;
1609         pid_t pid;
1610
1611         if (!transaction) {
1612                 /*
1613                  * Handle is already detached from the transaction so
1614                  * there is nothing to do other than decrease a refcount,
1615                  * or free the handle if refcount drops to zero
1616                  */
1617                 if (--handle->h_ref > 0) {
1618                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1619                                                          handle->h_ref);
1620                         return err;
1621                 } else {
1622                         if (handle->h_rsv_handle)
1623                                 jbd2_free_handle(handle->h_rsv_handle);
1624                         goto free_and_exit;
1625                 }
1626         }
1627         journal = transaction->t_journal;
1628
1629         J_ASSERT(journal_current_handle() == handle);
1630
1631         if (is_handle_aborted(handle))
1632                 err = -EIO;
1633         else
1634                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1635
1636         if (--handle->h_ref > 0) {
1637                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1638                           handle->h_ref);
1639                 return err;
1640         }
1641
1642         jbd_debug(4, "Handle %p going down\n", handle);
1643         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1644                                 transaction->t_tid,
1645                                 handle->h_type, handle->h_line_no,
1646                                 jiffies - handle->h_start_jiffies,
1647                                 handle->h_sync, handle->h_requested_credits,
1648                                 (handle->h_requested_credits -
1649                                  handle->h_buffer_credits));
1650
1651         /*
1652          * Implement synchronous transaction batching.  If the handle
1653          * was synchronous, don't force a commit immediately.  Let's
1654          * yield and let another thread piggyback onto this
1655          * transaction.  Keep doing that while new threads continue to
1656          * arrive.  It doesn't cost much - we're about to run a commit
1657          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1658          * operations by 30x or more...
1659          *
1660          * We try and optimize the sleep time against what the
1661          * underlying disk can do, instead of having a static sleep
1662          * time.  This is useful for the case where our storage is so
1663          * fast that it is more optimal to go ahead and force a flush
1664          * and wait for the transaction to be committed than it is to
1665          * wait for an arbitrary amount of time for new writers to
1666          * join the transaction.  We achieve this by measuring how
1667          * long it takes to commit a transaction, and compare it with
1668          * how long this transaction has been running, and if run time
1669          * < commit time then we sleep for the delta and commit.  This
1670          * greatly helps super fast disks that would see slowdowns as
1671          * more threads started doing fsyncs.
1672          *
1673          * But don't do this if this process was the most recent one
1674          * to perform a synchronous write.  We do this to detect the
1675          * case where a single process is doing a stream of sync
1676          * writes.  No point in waiting for joiners in that case.
1677          *
1678          * Setting max_batch_time to 0 disables this completely.
1679          */
1680         pid = current->pid;
1681         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1682             journal->j_max_batch_time) {
1683                 u64 commit_time, trans_time;
1684
1685                 journal->j_last_sync_writer = pid;
1686
1687                 read_lock(&journal->j_state_lock);
1688                 commit_time = journal->j_average_commit_time;
1689                 read_unlock(&journal->j_state_lock);
1690
1691                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1692                                                    transaction->t_start_time));
1693
1694                 commit_time = max_t(u64, commit_time,
1695                                     1000*journal->j_min_batch_time);
1696                 commit_time = min_t(u64, commit_time,
1697                                     1000*journal->j_max_batch_time);
1698
1699                 if (trans_time < commit_time) {
1700                         ktime_t expires = ktime_add_ns(ktime_get(),
1701                                                        commit_time);
1702                         set_current_state(TASK_UNINTERRUPTIBLE);
1703                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1704                 }
1705         }
1706
1707         if (handle->h_sync)
1708                 transaction->t_synchronous_commit = 1;
1709         current->journal_info = NULL;
1710         atomic_sub(handle->h_buffer_credits,
1711                    &transaction->t_outstanding_credits);
1712
1713         /*
1714          * If the handle is marked SYNC, we need to set another commit
1715          * going!  We also want to force a commit if the current
1716          * transaction is occupying too much of the log, or if the
1717          * transaction is too old now.
1718          */
1719         if (handle->h_sync ||
1720             (atomic_read(&transaction->t_outstanding_credits) >
1721              journal->j_max_transaction_buffers) ||
1722             time_after_eq(jiffies, transaction->t_expires)) {
1723                 /* Do this even for aborted journals: an abort still
1724                  * completes the commit thread, it just doesn't write
1725                  * anything to disk. */
1726
1727                 jbd_debug(2, "transaction too old, requesting commit for "
1728                                         "handle %p\n", handle);
1729                 /* This is non-blocking */
1730                 jbd2_log_start_commit(journal, transaction->t_tid);
1731
1732                 /*
1733                  * Special case: JBD2_SYNC synchronous updates require us
1734                  * to wait for the commit to complete.
1735                  */
1736                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1737                         wait_for_commit = 1;
1738         }
1739
1740         /*
1741          * Once we drop t_updates, if it goes to zero the transaction
1742          * could start committing on us and eventually disappear.  So
1743          * once we do this, we must not dereference transaction
1744          * pointer again.
1745          */
1746         tid = transaction->t_tid;
1747         if (atomic_dec_and_test(&transaction->t_updates)) {
1748                 wake_up(&journal->j_wait_updates);
1749                 if (journal->j_barrier_count)
1750                         wake_up(&journal->j_wait_transaction_locked);
1751         }
1752
1753         if (wait_for_commit)
1754                 err = jbd2_log_wait_commit(journal, tid);
1755
1756         lock_map_release(&handle->h_lockdep_map);
1757
1758         if (handle->h_rsv_handle)
1759                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1760 free_and_exit:
1761         jbd2_free_handle(handle);
1762         return err;
1763 }
1764
1765 /*
1766  *
1767  * List management code snippets: various functions for manipulating the
1768  * transaction buffer lists.
1769  *
1770  */
1771
1772 /*
1773  * Append a buffer to a transaction list, given the transaction's list head
1774  * pointer.
1775  *
1776  * j_list_lock is held.
1777  *
1778  * jbd_lock_bh_state(jh2bh(jh)) is held.
1779  */
1780
1781 static inline void
1782 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1783 {
1784         if (!*list) {
1785                 jh->b_tnext = jh->b_tprev = jh;
1786                 *list = jh;
1787         } else {
1788                 /* Insert at the tail of the list to preserve order */
1789                 struct journal_head *first = *list, *last = first->b_tprev;
1790                 jh->b_tprev = last;
1791                 jh->b_tnext = first;
1792                 last->b_tnext = first->b_tprev = jh;
1793         }
1794 }
1795
1796 /*
1797  * Remove a buffer from a transaction list, given the transaction's list
1798  * head pointer.
1799  *
1800  * Called with j_list_lock held, and the journal may not be locked.
1801  *
1802  * jbd_lock_bh_state(jh2bh(jh)) is held.
1803  */
1804
1805 static inline void
1806 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1807 {
1808         if (*list == jh) {
1809                 *list = jh->b_tnext;
1810                 if (*list == jh)
1811                         *list = NULL;
1812         }
1813         jh->b_tprev->b_tnext = jh->b_tnext;
1814         jh->b_tnext->b_tprev = jh->b_tprev;
1815 }
1816
1817 /*
1818  * Remove a buffer from the appropriate transaction list.
1819  *
1820  * Note that this function can *change* the value of
1821  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1822  * t_reserved_list.  If the caller is holding onto a copy of one of these
1823  * pointers, it could go bad.  Generally the caller needs to re-read the
1824  * pointer from the transaction_t.
1825  *
1826  * Called under j_list_lock.
1827  */
1828 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1829 {
1830         struct journal_head **list = NULL;
1831         transaction_t *transaction;
1832         struct buffer_head *bh = jh2bh(jh);
1833
1834         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1835         transaction = jh->b_transaction;
1836         if (transaction)
1837                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1838
1839         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1840         if (jh->b_jlist != BJ_None)
1841                 J_ASSERT_JH(jh, transaction != NULL);
1842
1843         switch (jh->b_jlist) {
1844         case BJ_None:
1845                 return;
1846         case BJ_Metadata:
1847                 transaction->t_nr_buffers--;
1848                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1849                 list = &transaction->t_buffers;
1850                 break;
1851         case BJ_Forget:
1852                 list = &transaction->t_forget;
1853                 break;
1854         case BJ_Shadow:
1855                 list = &transaction->t_shadow_list;
1856                 break;
1857         case BJ_Reserved:
1858                 list = &transaction->t_reserved_list;
1859                 break;
1860         }
1861
1862         __blist_del_buffer(list, jh);
1863         jh->b_jlist = BJ_None;
1864         if (test_clear_buffer_jbddirty(bh))
1865                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1866 }
1867
1868 /*
1869  * Remove buffer from all transactions.
1870  *
1871  * Called with bh_state lock and j_list_lock
1872  *
1873  * jh and bh may be already freed when this function returns.
1874  */
1875 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1876 {
1877         __jbd2_journal_temp_unlink_buffer(jh);
1878         jh->b_transaction = NULL;
1879         jbd2_journal_put_journal_head(jh);
1880 }
1881
1882 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1883 {
1884         struct buffer_head *bh = jh2bh(jh);
1885
1886         /* Get reference so that buffer cannot be freed before we unlock it */
1887         get_bh(bh);
1888         jbd_lock_bh_state(bh);
1889         spin_lock(&journal->j_list_lock);
1890         __jbd2_journal_unfile_buffer(jh);
1891         spin_unlock(&journal->j_list_lock);
1892         jbd_unlock_bh_state(bh);
1893         __brelse(bh);
1894 }
1895
1896 /*
1897  * Called from jbd2_journal_try_to_free_buffers().
1898  *
1899  * Called under jbd_lock_bh_state(bh)
1900  */
1901 static void
1902 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1903 {
1904         struct journal_head *jh;
1905
1906         jh = bh2jh(bh);
1907
1908         if (buffer_locked(bh) || buffer_dirty(bh))
1909                 goto out;
1910
1911         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1912                 goto out;
1913
1914         spin_lock(&journal->j_list_lock);
1915         if (jh->b_cp_transaction != NULL) {
1916                 /* written-back checkpointed metadata buffer */
1917                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1918                 __jbd2_journal_remove_checkpoint(jh);
1919         }
1920         spin_unlock(&journal->j_list_lock);
1921 out:
1922         return;
1923 }
1924
1925 /**
1926  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1927  * @journal: journal for operation
1928  * @page: to try and free
1929  * @gfp_mask: we use the mask to detect how hard should we try to release
1930  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1931  * code to release the buffers.
1932  *
1933  *
1934  * For all the buffers on this page,
1935  * if they are fully written out ordered data, move them onto BUF_CLEAN
1936  * so try_to_free_buffers() can reap them.
1937  *
1938  * This function returns non-zero if we wish try_to_free_buffers()
1939  * to be called. We do this if the page is releasable by try_to_free_buffers().
1940  * We also do it if the page has locked or dirty buffers and the caller wants
1941  * us to perform sync or async writeout.
1942  *
1943  * This complicates JBD locking somewhat.  We aren't protected by the
1944  * BKL here.  We wish to remove the buffer from its committing or
1945  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1946  *
1947  * This may *change* the value of transaction_t->t_datalist, so anyone
1948  * who looks at t_datalist needs to lock against this function.
1949  *
1950  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1951  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1952  * will come out of the lock with the buffer dirty, which makes it
1953  * ineligible for release here.
1954  *
1955  * Who else is affected by this?  hmm...  Really the only contender
1956  * is do_get_write_access() - it could be looking at the buffer while
1957  * journal_try_to_free_buffer() is changing its state.  But that
1958  * cannot happen because we never reallocate freed data as metadata
1959  * while the data is part of a transaction.  Yes?
1960  *
1961  * Return 0 on failure, 1 on success
1962  */
1963 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1964                                 struct page *page, gfp_t gfp_mask)
1965 {
1966         struct buffer_head *head;
1967         struct buffer_head *bh;
1968         int ret = 0;
1969
1970         J_ASSERT(PageLocked(page));
1971
1972         head = page_buffers(page);
1973         bh = head;
1974         do {
1975                 struct journal_head *jh;
1976
1977                 /*
1978                  * We take our own ref against the journal_head here to avoid
1979                  * having to add tons of locking around each instance of
1980                  * jbd2_journal_put_journal_head().
1981                  */
1982                 jh = jbd2_journal_grab_journal_head(bh);
1983                 if (!jh)
1984                         continue;
1985
1986                 jbd_lock_bh_state(bh);
1987                 __journal_try_to_free_buffer(journal, bh);
1988                 jbd2_journal_put_journal_head(jh);
1989                 jbd_unlock_bh_state(bh);
1990                 if (buffer_jbd(bh))
1991                         goto busy;
1992         } while ((bh = bh->b_this_page) != head);
1993
1994         ret = try_to_free_buffers(page);
1995
1996 busy:
1997         return ret;
1998 }
1999
2000 /*
2001  * This buffer is no longer needed.  If it is on an older transaction's
2002  * checkpoint list we need to record it on this transaction's forget list
2003  * to pin this buffer (and hence its checkpointing transaction) down until
2004  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2005  * release it.
2006  * Returns non-zero if JBD no longer has an interest in the buffer.
2007  *
2008  * Called under j_list_lock.
2009  *
2010  * Called under jbd_lock_bh_state(bh).
2011  */
2012 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2013 {
2014         int may_free = 1;
2015         struct buffer_head *bh = jh2bh(jh);
2016
2017         if (jh->b_cp_transaction) {
2018                 JBUFFER_TRACE(jh, "on running+cp transaction");
2019                 __jbd2_journal_temp_unlink_buffer(jh);
2020                 /*
2021                  * We don't want to write the buffer anymore, clear the
2022                  * bit so that we don't confuse checks in
2023                  * __journal_file_buffer
2024                  */
2025                 clear_buffer_dirty(bh);
2026                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2027                 may_free = 0;
2028         } else {
2029                 JBUFFER_TRACE(jh, "on running transaction");
2030                 __jbd2_journal_unfile_buffer(jh);
2031         }
2032         return may_free;
2033 }
2034
2035 /*
2036  * jbd2_journal_invalidatepage
2037  *
2038  * This code is tricky.  It has a number of cases to deal with.
2039  *
2040  * There are two invariants which this code relies on:
2041  *
2042  * i_size must be updated on disk before we start calling invalidatepage on the
2043  * data.
2044  *
2045  *  This is done in ext3 by defining an ext3_setattr method which
2046  *  updates i_size before truncate gets going.  By maintaining this
2047  *  invariant, we can be sure that it is safe to throw away any buffers
2048  *  attached to the current transaction: once the transaction commits,
2049  *  we know that the data will not be needed.
2050  *
2051  *  Note however that we can *not* throw away data belonging to the
2052  *  previous, committing transaction!
2053  *
2054  * Any disk blocks which *are* part of the previous, committing
2055  * transaction (and which therefore cannot be discarded immediately) are
2056  * not going to be reused in the new running transaction
2057  *
2058  *  The bitmap committed_data images guarantee this: any block which is
2059  *  allocated in one transaction and removed in the next will be marked
2060  *  as in-use in the committed_data bitmap, so cannot be reused until
2061  *  the next transaction to delete the block commits.  This means that
2062  *  leaving committing buffers dirty is quite safe: the disk blocks
2063  *  cannot be reallocated to a different file and so buffer aliasing is
2064  *  not possible.
2065  *
2066  *
2067  * The above applies mainly to ordered data mode.  In writeback mode we
2068  * don't make guarantees about the order in which data hits disk --- in
2069  * particular we don't guarantee that new dirty data is flushed before
2070  * transaction commit --- so it is always safe just to discard data
2071  * immediately in that mode.  --sct
2072  */
2073
2074 /*
2075  * The journal_unmap_buffer helper function returns zero if the buffer
2076  * concerned remains pinned as an anonymous buffer belonging to an older
2077  * transaction.
2078  *
2079  * We're outside-transaction here.  Either or both of j_running_transaction
2080  * and j_committing_transaction may be NULL.
2081  */
2082 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2083                                 int partial_page)
2084 {
2085         transaction_t *transaction;
2086         struct journal_head *jh;
2087         int may_free = 1;
2088
2089         BUFFER_TRACE(bh, "entry");
2090
2091         /*
2092          * It is safe to proceed here without the j_list_lock because the
2093          * buffers cannot be stolen by try_to_free_buffers as long as we are
2094          * holding the page lock. --sct
2095          */
2096
2097         if (!buffer_jbd(bh))
2098                 goto zap_buffer_unlocked;
2099
2100         /* OK, we have data buffer in journaled mode */
2101         write_lock(&journal->j_state_lock);
2102         jbd_lock_bh_state(bh);
2103         spin_lock(&journal->j_list_lock);
2104
2105         jh = jbd2_journal_grab_journal_head(bh);
2106         if (!jh)
2107                 goto zap_buffer_no_jh;
2108
2109         /*
2110          * We cannot remove the buffer from checkpoint lists until the
2111          * transaction adding inode to orphan list (let's call it T)
2112          * is committed.  Otherwise if the transaction changing the
2113          * buffer would be cleaned from the journal before T is
2114          * committed, a crash will cause that the correct contents of
2115          * the buffer will be lost.  On the other hand we have to
2116          * clear the buffer dirty bit at latest at the moment when the
2117          * transaction marking the buffer as freed in the filesystem
2118          * structures is committed because from that moment on the
2119          * block can be reallocated and used by a different page.
2120          * Since the block hasn't been freed yet but the inode has
2121          * already been added to orphan list, it is safe for us to add
2122          * the buffer to BJ_Forget list of the newest transaction.
2123          *
2124          * Also we have to clear buffer_mapped flag of a truncated buffer
2125          * because the buffer_head may be attached to the page straddling
2126          * i_size (can happen only when blocksize < pagesize) and thus the
2127          * buffer_head can be reused when the file is extended again. So we end
2128          * up keeping around invalidated buffers attached to transactions'
2129          * BJ_Forget list just to stop checkpointing code from cleaning up
2130          * the transaction this buffer was modified in.
2131          */
2132         transaction = jh->b_transaction;
2133         if (transaction == NULL) {
2134                 /* First case: not on any transaction.  If it
2135                  * has no checkpoint link, then we can zap it:
2136                  * it's a writeback-mode buffer so we don't care
2137                  * if it hits disk safely. */
2138                 if (!jh->b_cp_transaction) {
2139                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2140                         goto zap_buffer;
2141                 }
2142
2143                 if (!buffer_dirty(bh)) {
2144                         /* bdflush has written it.  We can drop it now */
2145                         __jbd2_journal_remove_checkpoint(jh);
2146                         goto zap_buffer;
2147                 }
2148
2149                 /* OK, it must be in the journal but still not
2150                  * written fully to disk: it's metadata or
2151                  * journaled data... */
2152
2153                 if (journal->j_running_transaction) {
2154                         /* ... and once the current transaction has
2155                          * committed, the buffer won't be needed any
2156                          * longer. */
2157                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2158                         may_free = __dispose_buffer(jh,
2159                                         journal->j_running_transaction);
2160                         goto zap_buffer;
2161                 } else {
2162                         /* There is no currently-running transaction. So the
2163                          * orphan record which we wrote for this file must have
2164                          * passed into commit.  We must attach this buffer to
2165                          * the committing transaction, if it exists. */
2166                         if (journal->j_committing_transaction) {
2167                                 JBUFFER_TRACE(jh, "give to committing trans");
2168                                 may_free = __dispose_buffer(jh,
2169                                         journal->j_committing_transaction);
2170                                 goto zap_buffer;
2171                         } else {
2172                                 /* The orphan record's transaction has
2173                                  * committed.  We can cleanse this buffer */
2174                                 clear_buffer_jbddirty(bh);
2175                                 __jbd2_journal_remove_checkpoint(jh);
2176                                 goto zap_buffer;
2177                         }
2178                 }
2179         } else if (transaction == journal->j_committing_transaction) {
2180                 JBUFFER_TRACE(jh, "on committing transaction");
2181                 /*
2182                  * The buffer is committing, we simply cannot touch
2183                  * it. If the page is straddling i_size we have to wait
2184                  * for commit and try again.
2185                  */
2186                 if (partial_page) {
2187                         jbd2_journal_put_journal_head(jh);
2188                         spin_unlock(&journal->j_list_lock);
2189                         jbd_unlock_bh_state(bh);
2190                         write_unlock(&journal->j_state_lock);
2191                         return -EBUSY;
2192                 }
2193                 /*
2194                  * OK, buffer won't be reachable after truncate. We just set
2195                  * j_next_transaction to the running transaction (if there is
2196                  * one) and mark buffer as freed so that commit code knows it
2197                  * should clear dirty bits when it is done with the buffer.
2198                  */
2199                 set_buffer_freed(bh);
2200                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2201                         jh->b_next_transaction = journal->j_running_transaction;
2202                 jbd2_journal_put_journal_head(jh);
2203                 spin_unlock(&journal->j_list_lock);
2204                 jbd_unlock_bh_state(bh);
2205                 write_unlock(&journal->j_state_lock);
2206                 return 0;
2207         } else {
2208                 /* Good, the buffer belongs to the running transaction.
2209                  * We are writing our own transaction's data, not any
2210                  * previous one's, so it is safe to throw it away
2211                  * (remember that we expect the filesystem to have set
2212                  * i_size already for this truncate so recovery will not
2213                  * expose the disk blocks we are discarding here.) */
2214                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2215                 JBUFFER_TRACE(jh, "on running transaction");
2216                 may_free = __dispose_buffer(jh, transaction);
2217         }
2218
2219 zap_buffer:
2220         /*
2221          * This is tricky. Although the buffer is truncated, it may be reused
2222          * if blocksize < pagesize and it is attached to the page straddling
2223          * EOF. Since the buffer might have been added to BJ_Forget list of the
2224          * running transaction, journal_get_write_access() won't clear
2225          * b_modified and credit accounting gets confused. So clear b_modified
2226          * here.
2227          */
2228         jh->b_modified = 0;
2229         jbd2_journal_put_journal_head(jh);
2230 zap_buffer_no_jh:
2231         spin_unlock(&journal->j_list_lock);
2232         jbd_unlock_bh_state(bh);
2233         write_unlock(&journal->j_state_lock);
2234 zap_buffer_unlocked:
2235         clear_buffer_dirty(bh);
2236         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2237         clear_buffer_mapped(bh);
2238         clear_buffer_req(bh);
2239         clear_buffer_new(bh);
2240         clear_buffer_delay(bh);
2241         clear_buffer_unwritten(bh);
2242         bh->b_bdev = NULL;
2243         return may_free;
2244 }
2245
2246 /**
2247  * void jbd2_journal_invalidatepage()
2248  * @journal: journal to use for flush...
2249  * @page:    page to flush
2250  * @offset:  start of the range to invalidate
2251  * @length:  length of the range to invalidate
2252  *
2253  * Reap page buffers containing data after in the specified range in page.
2254  * Can return -EBUSY if buffers are part of the committing transaction and
2255  * the page is straddling i_size. Caller then has to wait for current commit
2256  * and try again.
2257  */
2258 int jbd2_journal_invalidatepage(journal_t *journal,
2259                                 struct page *page,
2260                                 unsigned int offset,
2261                                 unsigned int length)
2262 {
2263         struct buffer_head *head, *bh, *next;
2264         unsigned int stop = offset + length;
2265         unsigned int curr_off = 0;
2266         int partial_page = (offset || length < PAGE_SIZE);
2267         int may_free = 1;
2268         int ret = 0;
2269
2270         if (!PageLocked(page))
2271                 BUG();
2272         if (!page_has_buffers(page))
2273                 return 0;
2274
2275         BUG_ON(stop > PAGE_SIZE || stop < length);
2276
2277         /* We will potentially be playing with lists other than just the
2278          * data lists (especially for journaled data mode), so be
2279          * cautious in our locking. */
2280
2281         head = bh = page_buffers(page);
2282         do {
2283                 unsigned int next_off = curr_off + bh->b_size;
2284                 next = bh->b_this_page;
2285
2286                 if (next_off > stop)
2287                         return 0;
2288
2289                 if (offset <= curr_off) {
2290                         /* This block is wholly outside the truncation point */
2291                         lock_buffer(bh);
2292                         ret = journal_unmap_buffer(journal, bh, partial_page);
2293                         unlock_buffer(bh);
2294                         if (ret < 0)
2295                                 return ret;
2296                         may_free &= ret;
2297                 }
2298                 curr_off = next_off;
2299                 bh = next;
2300
2301         } while (bh != head);
2302
2303         if (!partial_page) {
2304                 if (may_free && try_to_free_buffers(page))
2305                         J_ASSERT(!page_has_buffers(page));
2306         }
2307         return 0;
2308 }
2309
2310 /*
2311  * File a buffer on the given transaction list.
2312  */
2313 void __jbd2_journal_file_buffer(struct journal_head *jh,
2314                         transaction_t *transaction, int jlist)
2315 {
2316         struct journal_head **list = NULL;
2317         int was_dirty = 0;
2318         struct buffer_head *bh = jh2bh(jh);
2319
2320         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2321         assert_spin_locked(&transaction->t_journal->j_list_lock);
2322
2323         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2324         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2325                                 jh->b_transaction == NULL);
2326
2327         if (jh->b_transaction && jh->b_jlist == jlist)
2328                 return;
2329
2330         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2331             jlist == BJ_Shadow || jlist == BJ_Forget) {
2332                 /*
2333                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2334                  * instead of buffer_dirty. We should not see a dirty bit set
2335                  * here because we clear it in do_get_write_access but e.g.
2336                  * tune2fs can modify the sb and set the dirty bit at any time
2337                  * so we try to gracefully handle that.
2338                  */
2339                 if (buffer_dirty(bh))
2340                         warn_dirty_buffer(bh);
2341                 if (test_clear_buffer_dirty(bh) ||
2342                     test_clear_buffer_jbddirty(bh))
2343                         was_dirty = 1;
2344         }
2345
2346         if (jh->b_transaction)
2347                 __jbd2_journal_temp_unlink_buffer(jh);
2348         else
2349                 jbd2_journal_grab_journal_head(bh);
2350         jh->b_transaction = transaction;
2351
2352         switch (jlist) {
2353         case BJ_None:
2354                 J_ASSERT_JH(jh, !jh->b_committed_data);
2355                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2356                 return;
2357         case BJ_Metadata:
2358                 transaction->t_nr_buffers++;
2359                 list = &transaction->t_buffers;
2360                 break;
2361         case BJ_Forget:
2362                 list = &transaction->t_forget;
2363                 break;
2364         case BJ_Shadow:
2365                 list = &transaction->t_shadow_list;
2366                 break;
2367         case BJ_Reserved:
2368                 list = &transaction->t_reserved_list;
2369                 break;
2370         }
2371
2372         __blist_add_buffer(list, jh);
2373         jh->b_jlist = jlist;
2374
2375         if (was_dirty)
2376                 set_buffer_jbddirty(bh);
2377 }
2378
2379 void jbd2_journal_file_buffer(struct journal_head *jh,
2380                                 transaction_t *transaction, int jlist)
2381 {
2382         jbd_lock_bh_state(jh2bh(jh));
2383         spin_lock(&transaction->t_journal->j_list_lock);
2384         __jbd2_journal_file_buffer(jh, transaction, jlist);
2385         spin_unlock(&transaction->t_journal->j_list_lock);
2386         jbd_unlock_bh_state(jh2bh(jh));
2387 }
2388
2389 /*
2390  * Remove a buffer from its current buffer list in preparation for
2391  * dropping it from its current transaction entirely.  If the buffer has
2392  * already started to be used by a subsequent transaction, refile the
2393  * buffer on that transaction's metadata list.
2394  *
2395  * Called under j_list_lock
2396  * Called under jbd_lock_bh_state(jh2bh(jh))
2397  *
2398  * jh and bh may be already free when this function returns
2399  */
2400 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2401 {
2402         int was_dirty, jlist;
2403         struct buffer_head *bh = jh2bh(jh);
2404
2405         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2406         if (jh->b_transaction)
2407                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2408
2409         /* If the buffer is now unused, just drop it. */
2410         if (jh->b_next_transaction == NULL) {
2411                 __jbd2_journal_unfile_buffer(jh);
2412                 return;
2413         }
2414
2415         /*
2416          * It has been modified by a later transaction: add it to the new
2417          * transaction's metadata list.
2418          */
2419
2420         was_dirty = test_clear_buffer_jbddirty(bh);
2421         __jbd2_journal_temp_unlink_buffer(jh);
2422         /*
2423          * We set b_transaction here because b_next_transaction will inherit
2424          * our jh reference and thus __jbd2_journal_file_buffer() must not
2425          * take a new one.
2426          */
2427         jh->b_transaction = jh->b_next_transaction;
2428         jh->b_next_transaction = NULL;
2429         if (buffer_freed(bh))
2430                 jlist = BJ_Forget;
2431         else if (jh->b_modified)
2432                 jlist = BJ_Metadata;
2433         else
2434                 jlist = BJ_Reserved;
2435         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2436         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2437
2438         if (was_dirty)
2439                 set_buffer_jbddirty(bh);
2440 }
2441
2442 /*
2443  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2444  * bh reference so that we can safely unlock bh.
2445  *
2446  * The jh and bh may be freed by this call.
2447  */
2448 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2449 {
2450         struct buffer_head *bh = jh2bh(jh);
2451
2452         /* Get reference so that buffer cannot be freed before we unlock it */
2453         get_bh(bh);
2454         jbd_lock_bh_state(bh);
2455         spin_lock(&journal->j_list_lock);
2456         __jbd2_journal_refile_buffer(jh);
2457         jbd_unlock_bh_state(bh);
2458         spin_unlock(&journal->j_list_lock);
2459         __brelse(bh);
2460 }
2461
2462 /*
2463  * File inode in the inode list of the handle's transaction
2464  */
2465 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2466 {
2467         transaction_t *transaction = handle->h_transaction;
2468         journal_t *journal;
2469
2470         if (is_handle_aborted(handle))
2471                 return -EROFS;
2472         journal = transaction->t_journal;
2473
2474         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2475                         transaction->t_tid);
2476
2477         /*
2478          * First check whether inode isn't already on the transaction's
2479          * lists without taking the lock. Note that this check is safe
2480          * without the lock as we cannot race with somebody removing inode
2481          * from the transaction. The reason is that we remove inode from the
2482          * transaction only in journal_release_jbd_inode() and when we commit
2483          * the transaction. We are guarded from the first case by holding
2484          * a reference to the inode. We are safe against the second case
2485          * because if jinode->i_transaction == transaction, commit code
2486          * cannot touch the transaction because we hold reference to it,
2487          * and if jinode->i_next_transaction == transaction, commit code
2488          * will only file the inode where we want it.
2489          */
2490         if (jinode->i_transaction == transaction ||
2491             jinode->i_next_transaction == transaction)
2492                 return 0;
2493
2494         spin_lock(&journal->j_list_lock);
2495
2496         if (jinode->i_transaction == transaction ||
2497             jinode->i_next_transaction == transaction)
2498                 goto done;
2499
2500         /*
2501          * We only ever set this variable to 1 so the test is safe. Since
2502          * t_need_data_flush is likely to be set, we do the test to save some
2503          * cacheline bouncing
2504          */
2505         if (!transaction->t_need_data_flush)
2506                 transaction->t_need_data_flush = 1;
2507         /* On some different transaction's list - should be
2508          * the committing one */
2509         if (jinode->i_transaction) {
2510                 J_ASSERT(jinode->i_next_transaction == NULL);
2511                 J_ASSERT(jinode->i_transaction ==
2512                                         journal->j_committing_transaction);
2513                 jinode->i_next_transaction = transaction;
2514                 goto done;
2515         }
2516         /* Not on any transaction list... */
2517         J_ASSERT(!jinode->i_next_transaction);
2518         jinode->i_transaction = transaction;
2519         list_add(&jinode->i_list, &transaction->t_inode_list);
2520 done:
2521         spin_unlock(&journal->j_list_lock);
2522
2523         return 0;
2524 }
2525
2526 /*
2527  * File truncate and transaction commit interact with each other in a
2528  * non-trivial way.  If a transaction writing data block A is
2529  * committing, we cannot discard the data by truncate until we have
2530  * written them.  Otherwise if we crashed after the transaction with
2531  * write has committed but before the transaction with truncate has
2532  * committed, we could see stale data in block A.  This function is a
2533  * helper to solve this problem.  It starts writeout of the truncated
2534  * part in case it is in the committing transaction.
2535  *
2536  * Filesystem code must call this function when inode is journaled in
2537  * ordered mode before truncation happens and after the inode has been
2538  * placed on orphan list with the new inode size. The second condition
2539  * avoids the race that someone writes new data and we start
2540  * committing the transaction after this function has been called but
2541  * before a transaction for truncate is started (and furthermore it
2542  * allows us to optimize the case where the addition to orphan list
2543  * happens in the same transaction as write --- we don't have to write
2544  * any data in such case).
2545  */
2546 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2547                                         struct jbd2_inode *jinode,
2548                                         loff_t new_size)
2549 {
2550         transaction_t *inode_trans, *commit_trans;
2551         int ret = 0;
2552
2553         /* This is a quick check to avoid locking if not necessary */
2554         if (!jinode->i_transaction)
2555                 goto out;
2556         /* Locks are here just to force reading of recent values, it is
2557          * enough that the transaction was not committing before we started
2558          * a transaction adding the inode to orphan list */
2559         read_lock(&journal->j_state_lock);
2560         commit_trans = journal->j_committing_transaction;
2561         read_unlock(&journal->j_state_lock);
2562         spin_lock(&journal->j_list_lock);
2563         inode_trans = jinode->i_transaction;
2564         spin_unlock(&journal->j_list_lock);
2565         if (inode_trans == commit_trans) {
2566                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2567                         new_size, LLONG_MAX);
2568                 if (ret)
2569                         jbd2_journal_abort(journal, ret);
2570         }
2571 out:
2572         return ret;
2573 }