]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/bpf/core.c
bpf: add prog_digest and expose it via fdinfo/netlink
[karo-tx-linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31
32 #include <asm/unaligned.h>
33
34 /* Registers */
35 #define BPF_R0  regs[BPF_REG_0]
36 #define BPF_R1  regs[BPF_REG_1]
37 #define BPF_R2  regs[BPF_REG_2]
38 #define BPF_R3  regs[BPF_REG_3]
39 #define BPF_R4  regs[BPF_REG_4]
40 #define BPF_R5  regs[BPF_REG_5]
41 #define BPF_R6  regs[BPF_REG_6]
42 #define BPF_R7  regs[BPF_REG_7]
43 #define BPF_R8  regs[BPF_REG_8]
44 #define BPF_R9  regs[BPF_REG_9]
45 #define BPF_R10 regs[BPF_REG_10]
46
47 /* Named registers */
48 #define DST     regs[insn->dst_reg]
49 #define SRC     regs[insn->src_reg]
50 #define FP      regs[BPF_REG_FP]
51 #define ARG1    regs[BPF_REG_ARG1]
52 #define CTX     regs[BPF_REG_CTX]
53 #define IMM     insn->imm
54
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61         u8 *ptr = NULL;
62
63         if (k >= SKF_NET_OFF)
64                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65         else if (k >= SKF_LL_OFF)
66                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67
68         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69                 return ptr;
70
71         return NULL;
72 }
73
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77                           gfp_extra_flags;
78         struct bpf_prog_aux *aux;
79         struct bpf_prog *fp;
80
81         size = round_up(size, PAGE_SIZE);
82         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83         if (fp == NULL)
84                 return NULL;
85
86         kmemcheck_annotate_bitfield(fp, meta);
87
88         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89         if (aux == NULL) {
90                 vfree(fp);
91                 return NULL;
92         }
93
94         fp->pages = size / PAGE_SIZE;
95         fp->aux = aux;
96         fp->aux->prog = fp;
97
98         return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103                                   gfp_t gfp_extra_flags)
104 {
105         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106                           gfp_extra_flags;
107         struct bpf_prog *fp;
108
109         BUG_ON(fp_old == NULL);
110
111         size = round_up(size, PAGE_SIZE);
112         if (size <= fp_old->pages * PAGE_SIZE)
113                 return fp_old;
114
115         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
116         if (fp != NULL) {
117                 kmemcheck_annotate_bitfield(fp, meta);
118
119                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
120                 fp->pages = size / PAGE_SIZE;
121                 fp->aux->prog = fp;
122
123                 /* We keep fp->aux from fp_old around in the new
124                  * reallocated structure.
125                  */
126                 fp_old->aux = NULL;
127                 __bpf_prog_free(fp_old);
128         }
129
130         return fp;
131 }
132
133 void __bpf_prog_free(struct bpf_prog *fp)
134 {
135         kfree(fp->aux);
136         vfree(fp);
137 }
138
139 #define SHA_BPF_RAW_SIZE                                                \
140         round_up(MAX_BPF_SIZE + sizeof(__be64) + 1, SHA_MESSAGE_BYTES)
141
142 /* Called under verifier mutex. */
143 void bpf_prog_calc_digest(struct bpf_prog *fp)
144 {
145         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
146         static u32 ws[SHA_WORKSPACE_WORDS];
147         static u8 raw[SHA_BPF_RAW_SIZE];
148         struct bpf_insn *dst = (void *)raw;
149         u32 i, bsize, psize, blocks;
150         bool was_ld_map;
151         u8 *todo = raw;
152         __be32 *result;
153         __be64 *bits;
154
155         sha_init(fp->digest);
156         memset(ws, 0, sizeof(ws));
157
158         /* We need to take out the map fd for the digest calculation
159          * since they are unstable from user space side.
160          */
161         for (i = 0, was_ld_map = false; i < fp->len; i++) {
162                 dst[i] = fp->insnsi[i];
163                 if (!was_ld_map &&
164                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
165                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
166                         was_ld_map = true;
167                         dst[i].imm = 0;
168                 } else if (was_ld_map &&
169                            dst[i].code == 0 &&
170                            dst[i].dst_reg == 0 &&
171                            dst[i].src_reg == 0 &&
172                            dst[i].off == 0) {
173                         was_ld_map = false;
174                         dst[i].imm = 0;
175                 } else {
176                         was_ld_map = false;
177                 }
178         }
179
180         psize = fp->len * sizeof(struct bpf_insn);
181         memset(&raw[psize], 0, sizeof(raw) - psize);
182         raw[psize++] = 0x80;
183
184         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
185         blocks = bsize / SHA_MESSAGE_BYTES;
186         if (bsize - psize >= sizeof(__be64)) {
187                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
188         } else {
189                 bits = (__be64 *)(todo + bsize + bits_offset);
190                 blocks++;
191         }
192         *bits = cpu_to_be64((psize - 1) << 3);
193
194         while (blocks--) {
195                 sha_transform(fp->digest, todo, ws);
196                 todo += SHA_MESSAGE_BYTES;
197         }
198
199         result = (__force __be32 *)fp->digest;
200         for (i = 0; i < SHA_DIGEST_WORDS; i++)
201                 result[i] = cpu_to_be32(fp->digest[i]);
202 }
203
204 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
205 {
206         return BPF_CLASS(insn->code) == BPF_JMP  &&
207                /* Call and Exit are both special jumps with no
208                 * target inside the BPF instruction image.
209                 */
210                BPF_OP(insn->code) != BPF_CALL &&
211                BPF_OP(insn->code) != BPF_EXIT;
212 }
213
214 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
215 {
216         struct bpf_insn *insn = prog->insnsi;
217         u32 i, insn_cnt = prog->len;
218
219         for (i = 0; i < insn_cnt; i++, insn++) {
220                 if (!bpf_is_jmp_and_has_target(insn))
221                         continue;
222
223                 /* Adjust offset of jmps if we cross boundaries. */
224                 if (i < pos && i + insn->off + 1 > pos)
225                         insn->off += delta;
226                 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
227                         insn->off -= delta;
228         }
229 }
230
231 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
232                                        const struct bpf_insn *patch, u32 len)
233 {
234         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
235         struct bpf_prog *prog_adj;
236
237         /* Since our patchlet doesn't expand the image, we're done. */
238         if (insn_delta == 0) {
239                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
240                 return prog;
241         }
242
243         insn_adj_cnt = prog->len + insn_delta;
244
245         /* Several new instructions need to be inserted. Make room
246          * for them. Likely, there's no need for a new allocation as
247          * last page could have large enough tailroom.
248          */
249         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
250                                     GFP_USER);
251         if (!prog_adj)
252                 return NULL;
253
254         prog_adj->len = insn_adj_cnt;
255
256         /* Patching happens in 3 steps:
257          *
258          * 1) Move over tail of insnsi from next instruction onwards,
259          *    so we can patch the single target insn with one or more
260          *    new ones (patching is always from 1 to n insns, n > 0).
261          * 2) Inject new instructions at the target location.
262          * 3) Adjust branch offsets if necessary.
263          */
264         insn_rest = insn_adj_cnt - off - len;
265
266         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
267                 sizeof(*patch) * insn_rest);
268         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
269
270         bpf_adj_branches(prog_adj, off, insn_delta);
271
272         return prog_adj;
273 }
274
275 #ifdef CONFIG_BPF_JIT
276 struct bpf_binary_header *
277 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
278                      unsigned int alignment,
279                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
280 {
281         struct bpf_binary_header *hdr;
282         unsigned int size, hole, start;
283
284         /* Most of BPF filters are really small, but if some of them
285          * fill a page, allow at least 128 extra bytes to insert a
286          * random section of illegal instructions.
287          */
288         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
289         hdr = module_alloc(size);
290         if (hdr == NULL)
291                 return NULL;
292
293         /* Fill space with illegal/arch-dep instructions. */
294         bpf_fill_ill_insns(hdr, size);
295
296         hdr->pages = size / PAGE_SIZE;
297         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
298                      PAGE_SIZE - sizeof(*hdr));
299         start = (get_random_int() % hole) & ~(alignment - 1);
300
301         /* Leave a random number of instructions before BPF code. */
302         *image_ptr = &hdr->image[start];
303
304         return hdr;
305 }
306
307 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
308 {
309         module_memfree(hdr);
310 }
311
312 int bpf_jit_harden __read_mostly;
313
314 static int bpf_jit_blind_insn(const struct bpf_insn *from,
315                               const struct bpf_insn *aux,
316                               struct bpf_insn *to_buff)
317 {
318         struct bpf_insn *to = to_buff;
319         u32 imm_rnd = get_random_int();
320         s16 off;
321
322         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
323         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
324
325         if (from->imm == 0 &&
326             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
327              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
328                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
329                 goto out;
330         }
331
332         switch (from->code) {
333         case BPF_ALU | BPF_ADD | BPF_K:
334         case BPF_ALU | BPF_SUB | BPF_K:
335         case BPF_ALU | BPF_AND | BPF_K:
336         case BPF_ALU | BPF_OR  | BPF_K:
337         case BPF_ALU | BPF_XOR | BPF_K:
338         case BPF_ALU | BPF_MUL | BPF_K:
339         case BPF_ALU | BPF_MOV | BPF_K:
340         case BPF_ALU | BPF_DIV | BPF_K:
341         case BPF_ALU | BPF_MOD | BPF_K:
342                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
343                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
344                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
345                 break;
346
347         case BPF_ALU64 | BPF_ADD | BPF_K:
348         case BPF_ALU64 | BPF_SUB | BPF_K:
349         case BPF_ALU64 | BPF_AND | BPF_K:
350         case BPF_ALU64 | BPF_OR  | BPF_K:
351         case BPF_ALU64 | BPF_XOR | BPF_K:
352         case BPF_ALU64 | BPF_MUL | BPF_K:
353         case BPF_ALU64 | BPF_MOV | BPF_K:
354         case BPF_ALU64 | BPF_DIV | BPF_K:
355         case BPF_ALU64 | BPF_MOD | BPF_K:
356                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
357                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
358                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
359                 break;
360
361         case BPF_JMP | BPF_JEQ  | BPF_K:
362         case BPF_JMP | BPF_JNE  | BPF_K:
363         case BPF_JMP | BPF_JGT  | BPF_K:
364         case BPF_JMP | BPF_JGE  | BPF_K:
365         case BPF_JMP | BPF_JSGT | BPF_K:
366         case BPF_JMP | BPF_JSGE | BPF_K:
367         case BPF_JMP | BPF_JSET | BPF_K:
368                 /* Accommodate for extra offset in case of a backjump. */
369                 off = from->off;
370                 if (off < 0)
371                         off -= 2;
372                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
373                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
374                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
375                 break;
376
377         case BPF_LD | BPF_ABS | BPF_W:
378         case BPF_LD | BPF_ABS | BPF_H:
379         case BPF_LD | BPF_ABS | BPF_B:
380                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
381                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
382                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
383                 break;
384
385         case BPF_LD | BPF_IND | BPF_W:
386         case BPF_LD | BPF_IND | BPF_H:
387         case BPF_LD | BPF_IND | BPF_B:
388                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
389                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
390                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
391                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
392                 break;
393
394         case BPF_LD | BPF_IMM | BPF_DW:
395                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
396                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
397                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
398                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
399                 break;
400         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
401                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
402                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
403                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
404                 break;
405
406         case BPF_ST | BPF_MEM | BPF_DW:
407         case BPF_ST | BPF_MEM | BPF_W:
408         case BPF_ST | BPF_MEM | BPF_H:
409         case BPF_ST | BPF_MEM | BPF_B:
410                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
411                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
412                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
413                 break;
414         }
415 out:
416         return to - to_buff;
417 }
418
419 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
420                                               gfp_t gfp_extra_flags)
421 {
422         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
423                           gfp_extra_flags;
424         struct bpf_prog *fp;
425
426         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
427         if (fp != NULL) {
428                 kmemcheck_annotate_bitfield(fp, meta);
429
430                 /* aux->prog still points to the fp_other one, so
431                  * when promoting the clone to the real program,
432                  * this still needs to be adapted.
433                  */
434                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
435         }
436
437         return fp;
438 }
439
440 static void bpf_prog_clone_free(struct bpf_prog *fp)
441 {
442         /* aux was stolen by the other clone, so we cannot free
443          * it from this path! It will be freed eventually by the
444          * other program on release.
445          *
446          * At this point, we don't need a deferred release since
447          * clone is guaranteed to not be locked.
448          */
449         fp->aux = NULL;
450         __bpf_prog_free(fp);
451 }
452
453 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
454 {
455         /* We have to repoint aux->prog to self, as we don't
456          * know whether fp here is the clone or the original.
457          */
458         fp->aux->prog = fp;
459         bpf_prog_clone_free(fp_other);
460 }
461
462 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
463 {
464         struct bpf_insn insn_buff[16], aux[2];
465         struct bpf_prog *clone, *tmp;
466         int insn_delta, insn_cnt;
467         struct bpf_insn *insn;
468         int i, rewritten;
469
470         if (!bpf_jit_blinding_enabled())
471                 return prog;
472
473         clone = bpf_prog_clone_create(prog, GFP_USER);
474         if (!clone)
475                 return ERR_PTR(-ENOMEM);
476
477         insn_cnt = clone->len;
478         insn = clone->insnsi;
479
480         for (i = 0; i < insn_cnt; i++, insn++) {
481                 /* We temporarily need to hold the original ld64 insn
482                  * so that we can still access the first part in the
483                  * second blinding run.
484                  */
485                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
486                     insn[1].code == 0)
487                         memcpy(aux, insn, sizeof(aux));
488
489                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
490                 if (!rewritten)
491                         continue;
492
493                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
494                 if (!tmp) {
495                         /* Patching may have repointed aux->prog during
496                          * realloc from the original one, so we need to
497                          * fix it up here on error.
498                          */
499                         bpf_jit_prog_release_other(prog, clone);
500                         return ERR_PTR(-ENOMEM);
501                 }
502
503                 clone = tmp;
504                 insn_delta = rewritten - 1;
505
506                 /* Walk new program and skip insns we just inserted. */
507                 insn = clone->insnsi + i + insn_delta;
508                 insn_cnt += insn_delta;
509                 i        += insn_delta;
510         }
511
512         return clone;
513 }
514 #endif /* CONFIG_BPF_JIT */
515
516 /* Base function for offset calculation. Needs to go into .text section,
517  * therefore keeping it non-static as well; will also be used by JITs
518  * anyway later on, so do not let the compiler omit it.
519  */
520 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
521 {
522         return 0;
523 }
524 EXPORT_SYMBOL_GPL(__bpf_call_base);
525
526 /**
527  *      __bpf_prog_run - run eBPF program on a given context
528  *      @ctx: is the data we are operating on
529  *      @insn: is the array of eBPF instructions
530  *
531  * Decode and execute eBPF instructions.
532  */
533 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
534 {
535         u64 stack[MAX_BPF_STACK / sizeof(u64)];
536         u64 regs[MAX_BPF_REG], tmp;
537         static const void *jumptable[256] = {
538                 [0 ... 255] = &&default_label,
539                 /* Now overwrite non-defaults ... */
540                 /* 32 bit ALU operations */
541                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
542                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
543                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
544                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
545                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
546                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
547                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
548                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
549                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
550                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
551                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
552                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
553                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
554                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
555                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
556                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
557                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
558                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
559                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
560                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
561                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
562                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
563                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
564                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
565                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
566                 /* 64 bit ALU operations */
567                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
568                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
569                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
570                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
571                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
572                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
573                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
574                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
575                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
576                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
577                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
578                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
579                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
580                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
581                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
582                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
583                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
584                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
585                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
586                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
587                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
588                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
589                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
590                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
591                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
592                 /* Call instruction */
593                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
594                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
595                 /* Jumps */
596                 [BPF_JMP | BPF_JA] = &&JMP_JA,
597                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
598                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
599                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
600                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
601                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
602                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
603                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
604                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
605                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
606                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
607                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
608                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
609                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
610                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
611                 /* Program return */
612                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
613                 /* Store instructions */
614                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
615                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
616                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
617                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
618                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
619                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
620                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
621                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
622                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
623                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
624                 /* Load instructions */
625                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
626                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
627                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
628                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
629                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
630                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
631                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
632                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
633                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
634                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
635                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
636         };
637         u32 tail_call_cnt = 0;
638         void *ptr;
639         int off;
640
641 #define CONT     ({ insn++; goto select_insn; })
642 #define CONT_JMP ({ insn++; goto select_insn; })
643
644         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
645         ARG1 = (u64) (unsigned long) ctx;
646
647 select_insn:
648         goto *jumptable[insn->code];
649
650         /* ALU */
651 #define ALU(OPCODE, OP)                 \
652         ALU64_##OPCODE##_X:             \
653                 DST = DST OP SRC;       \
654                 CONT;                   \
655         ALU_##OPCODE##_X:               \
656                 DST = (u32) DST OP (u32) SRC;   \
657                 CONT;                   \
658         ALU64_##OPCODE##_K:             \
659                 DST = DST OP IMM;               \
660                 CONT;                   \
661         ALU_##OPCODE##_K:               \
662                 DST = (u32) DST OP (u32) IMM;   \
663                 CONT;
664
665         ALU(ADD,  +)
666         ALU(SUB,  -)
667         ALU(AND,  &)
668         ALU(OR,   |)
669         ALU(LSH, <<)
670         ALU(RSH, >>)
671         ALU(XOR,  ^)
672         ALU(MUL,  *)
673 #undef ALU
674         ALU_NEG:
675                 DST = (u32) -DST;
676                 CONT;
677         ALU64_NEG:
678                 DST = -DST;
679                 CONT;
680         ALU_MOV_X:
681                 DST = (u32) SRC;
682                 CONT;
683         ALU_MOV_K:
684                 DST = (u32) IMM;
685                 CONT;
686         ALU64_MOV_X:
687                 DST = SRC;
688                 CONT;
689         ALU64_MOV_K:
690                 DST = IMM;
691                 CONT;
692         LD_IMM_DW:
693                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
694                 insn++;
695                 CONT;
696         ALU64_ARSH_X:
697                 (*(s64 *) &DST) >>= SRC;
698                 CONT;
699         ALU64_ARSH_K:
700                 (*(s64 *) &DST) >>= IMM;
701                 CONT;
702         ALU64_MOD_X:
703                 if (unlikely(SRC == 0))
704                         return 0;
705                 div64_u64_rem(DST, SRC, &tmp);
706                 DST = tmp;
707                 CONT;
708         ALU_MOD_X:
709                 if (unlikely(SRC == 0))
710                         return 0;
711                 tmp = (u32) DST;
712                 DST = do_div(tmp, (u32) SRC);
713                 CONT;
714         ALU64_MOD_K:
715                 div64_u64_rem(DST, IMM, &tmp);
716                 DST = tmp;
717                 CONT;
718         ALU_MOD_K:
719                 tmp = (u32) DST;
720                 DST = do_div(tmp, (u32) IMM);
721                 CONT;
722         ALU64_DIV_X:
723                 if (unlikely(SRC == 0))
724                         return 0;
725                 DST = div64_u64(DST, SRC);
726                 CONT;
727         ALU_DIV_X:
728                 if (unlikely(SRC == 0))
729                         return 0;
730                 tmp = (u32) DST;
731                 do_div(tmp, (u32) SRC);
732                 DST = (u32) tmp;
733                 CONT;
734         ALU64_DIV_K:
735                 DST = div64_u64(DST, IMM);
736                 CONT;
737         ALU_DIV_K:
738                 tmp = (u32) DST;
739                 do_div(tmp, (u32) IMM);
740                 DST = (u32) tmp;
741                 CONT;
742         ALU_END_TO_BE:
743                 switch (IMM) {
744                 case 16:
745                         DST = (__force u16) cpu_to_be16(DST);
746                         break;
747                 case 32:
748                         DST = (__force u32) cpu_to_be32(DST);
749                         break;
750                 case 64:
751                         DST = (__force u64) cpu_to_be64(DST);
752                         break;
753                 }
754                 CONT;
755         ALU_END_TO_LE:
756                 switch (IMM) {
757                 case 16:
758                         DST = (__force u16) cpu_to_le16(DST);
759                         break;
760                 case 32:
761                         DST = (__force u32) cpu_to_le32(DST);
762                         break;
763                 case 64:
764                         DST = (__force u64) cpu_to_le64(DST);
765                         break;
766                 }
767                 CONT;
768
769         /* CALL */
770         JMP_CALL:
771                 /* Function call scratches BPF_R1-BPF_R5 registers,
772                  * preserves BPF_R6-BPF_R9, and stores return value
773                  * into BPF_R0.
774                  */
775                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
776                                                        BPF_R4, BPF_R5);
777                 CONT;
778
779         JMP_TAIL_CALL: {
780                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
781                 struct bpf_array *array = container_of(map, struct bpf_array, map);
782                 struct bpf_prog *prog;
783                 u64 index = BPF_R3;
784
785                 if (unlikely(index >= array->map.max_entries))
786                         goto out;
787                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
788                         goto out;
789
790                 tail_call_cnt++;
791
792                 prog = READ_ONCE(array->ptrs[index]);
793                 if (!prog)
794                         goto out;
795
796                 /* ARG1 at this point is guaranteed to point to CTX from
797                  * the verifier side due to the fact that the tail call is
798                  * handeled like a helper, that is, bpf_tail_call_proto,
799                  * where arg1_type is ARG_PTR_TO_CTX.
800                  */
801                 insn = prog->insnsi;
802                 goto select_insn;
803 out:
804                 CONT;
805         }
806         /* JMP */
807         JMP_JA:
808                 insn += insn->off;
809                 CONT;
810         JMP_JEQ_X:
811                 if (DST == SRC) {
812                         insn += insn->off;
813                         CONT_JMP;
814                 }
815                 CONT;
816         JMP_JEQ_K:
817                 if (DST == IMM) {
818                         insn += insn->off;
819                         CONT_JMP;
820                 }
821                 CONT;
822         JMP_JNE_X:
823                 if (DST != SRC) {
824                         insn += insn->off;
825                         CONT_JMP;
826                 }
827                 CONT;
828         JMP_JNE_K:
829                 if (DST != IMM) {
830                         insn += insn->off;
831                         CONT_JMP;
832                 }
833                 CONT;
834         JMP_JGT_X:
835                 if (DST > SRC) {
836                         insn += insn->off;
837                         CONT_JMP;
838                 }
839                 CONT;
840         JMP_JGT_K:
841                 if (DST > IMM) {
842                         insn += insn->off;
843                         CONT_JMP;
844                 }
845                 CONT;
846         JMP_JGE_X:
847                 if (DST >= SRC) {
848                         insn += insn->off;
849                         CONT_JMP;
850                 }
851                 CONT;
852         JMP_JGE_K:
853                 if (DST >= IMM) {
854                         insn += insn->off;
855                         CONT_JMP;
856                 }
857                 CONT;
858         JMP_JSGT_X:
859                 if (((s64) DST) > ((s64) SRC)) {
860                         insn += insn->off;
861                         CONT_JMP;
862                 }
863                 CONT;
864         JMP_JSGT_K:
865                 if (((s64) DST) > ((s64) IMM)) {
866                         insn += insn->off;
867                         CONT_JMP;
868                 }
869                 CONT;
870         JMP_JSGE_X:
871                 if (((s64) DST) >= ((s64) SRC)) {
872                         insn += insn->off;
873                         CONT_JMP;
874                 }
875                 CONT;
876         JMP_JSGE_K:
877                 if (((s64) DST) >= ((s64) IMM)) {
878                         insn += insn->off;
879                         CONT_JMP;
880                 }
881                 CONT;
882         JMP_JSET_X:
883                 if (DST & SRC) {
884                         insn += insn->off;
885                         CONT_JMP;
886                 }
887                 CONT;
888         JMP_JSET_K:
889                 if (DST & IMM) {
890                         insn += insn->off;
891                         CONT_JMP;
892                 }
893                 CONT;
894         JMP_EXIT:
895                 return BPF_R0;
896
897         /* STX and ST and LDX*/
898 #define LDST(SIZEOP, SIZE)                                              \
899         STX_MEM_##SIZEOP:                                               \
900                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
901                 CONT;                                                   \
902         ST_MEM_##SIZEOP:                                                \
903                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
904                 CONT;                                                   \
905         LDX_MEM_##SIZEOP:                                               \
906                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
907                 CONT;
908
909         LDST(B,   u8)
910         LDST(H,  u16)
911         LDST(W,  u32)
912         LDST(DW, u64)
913 #undef LDST
914         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
915                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
916                            (DST + insn->off));
917                 CONT;
918         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
919                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
920                              (DST + insn->off));
921                 CONT;
922         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
923                 off = IMM;
924 load_word:
925                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
926                  * only appearing in the programs where ctx ==
927                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
928                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
929                  * internal BPF verifier will check that BPF_R6 ==
930                  * ctx.
931                  *
932                  * BPF_ABS and BPF_IND are wrappers of function calls,
933                  * so they scratch BPF_R1-BPF_R5 registers, preserve
934                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
935                  *
936                  * Implicit input:
937                  *   ctx == skb == BPF_R6 == CTX
938                  *
939                  * Explicit input:
940                  *   SRC == any register
941                  *   IMM == 32-bit immediate
942                  *
943                  * Output:
944                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
945                  */
946
947                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
948                 if (likely(ptr != NULL)) {
949                         BPF_R0 = get_unaligned_be32(ptr);
950                         CONT;
951                 }
952
953                 return 0;
954         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
955                 off = IMM;
956 load_half:
957                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
958                 if (likely(ptr != NULL)) {
959                         BPF_R0 = get_unaligned_be16(ptr);
960                         CONT;
961                 }
962
963                 return 0;
964         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
965                 off = IMM;
966 load_byte:
967                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
968                 if (likely(ptr != NULL)) {
969                         BPF_R0 = *(u8 *)ptr;
970                         CONT;
971                 }
972
973                 return 0;
974         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
975                 off = IMM + SRC;
976                 goto load_word;
977         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
978                 off = IMM + SRC;
979                 goto load_half;
980         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
981                 off = IMM + SRC;
982                 goto load_byte;
983
984         default_label:
985                 /* If we ever reach this, we have a bug somewhere. */
986                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
987                 return 0;
988 }
989 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
990
991 bool bpf_prog_array_compatible(struct bpf_array *array,
992                                const struct bpf_prog *fp)
993 {
994         if (!array->owner_prog_type) {
995                 /* There's no owner yet where we could check for
996                  * compatibility.
997                  */
998                 array->owner_prog_type = fp->type;
999                 array->owner_jited = fp->jited;
1000
1001                 return true;
1002         }
1003
1004         return array->owner_prog_type == fp->type &&
1005                array->owner_jited == fp->jited;
1006 }
1007
1008 static int bpf_check_tail_call(const struct bpf_prog *fp)
1009 {
1010         struct bpf_prog_aux *aux = fp->aux;
1011         int i;
1012
1013         for (i = 0; i < aux->used_map_cnt; i++) {
1014                 struct bpf_map *map = aux->used_maps[i];
1015                 struct bpf_array *array;
1016
1017                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1018                         continue;
1019
1020                 array = container_of(map, struct bpf_array, map);
1021                 if (!bpf_prog_array_compatible(array, fp))
1022                         return -EINVAL;
1023         }
1024
1025         return 0;
1026 }
1027
1028 /**
1029  *      bpf_prog_select_runtime - select exec runtime for BPF program
1030  *      @fp: bpf_prog populated with internal BPF program
1031  *      @err: pointer to error variable
1032  *
1033  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1034  * The BPF program will be executed via BPF_PROG_RUN() macro.
1035  */
1036 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1037 {
1038         fp->bpf_func = (void *) __bpf_prog_run;
1039
1040         /* eBPF JITs can rewrite the program in case constant
1041          * blinding is active. However, in case of error during
1042          * blinding, bpf_int_jit_compile() must always return a
1043          * valid program, which in this case would simply not
1044          * be JITed, but falls back to the interpreter.
1045          */
1046         fp = bpf_int_jit_compile(fp);
1047         bpf_prog_lock_ro(fp);
1048
1049         /* The tail call compatibility check can only be done at
1050          * this late stage as we need to determine, if we deal
1051          * with JITed or non JITed program concatenations and not
1052          * all eBPF JITs might immediately support all features.
1053          */
1054         *err = bpf_check_tail_call(fp);
1055
1056         return fp;
1057 }
1058 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1059
1060 static void bpf_prog_free_deferred(struct work_struct *work)
1061 {
1062         struct bpf_prog_aux *aux;
1063
1064         aux = container_of(work, struct bpf_prog_aux, work);
1065         bpf_jit_free(aux->prog);
1066 }
1067
1068 /* Free internal BPF program */
1069 void bpf_prog_free(struct bpf_prog *fp)
1070 {
1071         struct bpf_prog_aux *aux = fp->aux;
1072
1073         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1074         schedule_work(&aux->work);
1075 }
1076 EXPORT_SYMBOL_GPL(bpf_prog_free);
1077
1078 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1079 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1080
1081 void bpf_user_rnd_init_once(void)
1082 {
1083         prandom_init_once(&bpf_user_rnd_state);
1084 }
1085
1086 BPF_CALL_0(bpf_user_rnd_u32)
1087 {
1088         /* Should someone ever have the rather unwise idea to use some
1089          * of the registers passed into this function, then note that
1090          * this function is called from native eBPF and classic-to-eBPF
1091          * transformations. Register assignments from both sides are
1092          * different, f.e. classic always sets fn(ctx, A, X) here.
1093          */
1094         struct rnd_state *state;
1095         u32 res;
1096
1097         state = &get_cpu_var(bpf_user_rnd_state);
1098         res = prandom_u32_state(state);
1099         put_cpu_var(bpf_user_rnd_state);
1100
1101         return res;
1102 }
1103
1104 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1105 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1106 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1107 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1108
1109 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1110 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1111 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1112 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1113
1114 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1115 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1116 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1117
1118 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1119 {
1120         return NULL;
1121 }
1122
1123 u64 __weak
1124 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1125                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1126 {
1127         return -ENOTSUPP;
1128 }
1129
1130 /* Always built-in helper functions. */
1131 const struct bpf_func_proto bpf_tail_call_proto = {
1132         .func           = NULL,
1133         .gpl_only       = false,
1134         .ret_type       = RET_VOID,
1135         .arg1_type      = ARG_PTR_TO_CTX,
1136         .arg2_type      = ARG_CONST_MAP_PTR,
1137         .arg3_type      = ARG_ANYTHING,
1138 };
1139
1140 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1141 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1142 {
1143         return prog;
1144 }
1145
1146 bool __weak bpf_helper_changes_skb_data(void *func)
1147 {
1148         return false;
1149 }
1150
1151 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1152  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1153  */
1154 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1155                          int len)
1156 {
1157         return -EFAULT;
1158 }