]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/futex.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 } __randomize_layout;
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel so warn for now if this happens.
674                  *
675                  * We are not calling into get_futex_key_refs() in file-backed
676                  * cases, therefore a successful atomic_inc return below will
677                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
678                  */
679                 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680                         rcu_read_unlock();
681                         put_page(page);
682
683                         goto again;
684                 }
685
686                 /* Should be impossible but lets be paranoid for now */
687                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688                         err = -EFAULT;
689                         rcu_read_unlock();
690                         iput(inode);
691
692                         goto out;
693                 }
694
695                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696                 key->shared.inode = inode;
697                 key->shared.pgoff = basepage_index(tail);
698                 rcu_read_unlock();
699         }
700
701 out:
702         put_page(page);
703         return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708         drop_futex_key_refs(key);
709 }
710
711 /**
712  * fault_in_user_writeable() - Fault in user address and verify RW access
713  * @uaddr:      pointer to faulting user space address
714  *
715  * Slow path to fixup the fault we just took in the atomic write
716  * access to @uaddr.
717  *
718  * We have no generic implementation of a non-destructive write to the
719  * user address. We know that we faulted in the atomic pagefault
720  * disabled section so we can as well avoid the #PF overhead by
721  * calling get_user_pages() right away.
722  */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725         struct mm_struct *mm = current->mm;
726         int ret;
727
728         down_read(&mm->mmap_sem);
729         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730                                FAULT_FLAG_WRITE, NULL);
731         up_read(&mm->mmap_sem);
732
733         return ret < 0 ? ret : 0;
734 }
735
736 /**
737  * futex_top_waiter() - Return the highest priority waiter on a futex
738  * @hb:         the hash bucket the futex_q's reside in
739  * @key:        the futex key (to distinguish it from other futex futex_q's)
740  *
741  * Must be called with the hb lock held.
742  */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744                                         union futex_key *key)
745 {
746         struct futex_q *this;
747
748         plist_for_each_entry(this, &hb->chain, list) {
749                 if (match_futex(&this->key, key))
750                         return this;
751         }
752         return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756                                       u32 uval, u32 newval)
757 {
758         int ret;
759
760         pagefault_disable();
761         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762         pagefault_enable();
763
764         return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769         int ret;
770
771         pagefault_disable();
772         ret = __get_user(*dest, from);
773         pagefault_enable();
774
775         return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780  * PI code:
781  */
782 static int refill_pi_state_cache(void)
783 {
784         struct futex_pi_state *pi_state;
785
786         if (likely(current->pi_state_cache))
787                 return 0;
788
789         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791         if (!pi_state)
792                 return -ENOMEM;
793
794         INIT_LIST_HEAD(&pi_state->list);
795         /* pi_mutex gets initialized later */
796         pi_state->owner = NULL;
797         atomic_set(&pi_state->refcount, 1);
798         pi_state->key = FUTEX_KEY_INIT;
799
800         current->pi_state_cache = pi_state;
801
802         return 0;
803 }
804
805 static struct futex_pi_state *alloc_pi_state(void)
806 {
807         struct futex_pi_state *pi_state = current->pi_state_cache;
808
809         WARN_ON(!pi_state);
810         current->pi_state_cache = NULL;
811
812         return pi_state;
813 }
814
815 static void get_pi_state(struct futex_pi_state *pi_state)
816 {
817         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818 }
819
820 /*
821  * Drops a reference to the pi_state object and frees or caches it
822  * when the last reference is gone.
823  *
824  * Must be called with the hb lock held.
825  */
826 static void put_pi_state(struct futex_pi_state *pi_state)
827 {
828         if (!pi_state)
829                 return;
830
831         if (!atomic_dec_and_test(&pi_state->refcount))
832                 return;
833
834         /*
835          * If pi_state->owner is NULL, the owner is most probably dying
836          * and has cleaned up the pi_state already
837          */
838         if (pi_state->owner) {
839                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840                 list_del_init(&pi_state->list);
841                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844         }
845
846         if (current->pi_state_cache)
847                 kfree(pi_state);
848         else {
849                 /*
850                  * pi_state->list is already empty.
851                  * clear pi_state->owner.
852                  * refcount is at 0 - put it back to 1.
853                  */
854                 pi_state->owner = NULL;
855                 atomic_set(&pi_state->refcount, 1);
856                 current->pi_state_cache = pi_state;
857         }
858 }
859
860 /*
861  * Look up the task based on what TID userspace gave us.
862  * We dont trust it.
863  */
864 static struct task_struct *futex_find_get_task(pid_t pid)
865 {
866         struct task_struct *p;
867
868         rcu_read_lock();
869         p = find_task_by_vpid(pid);
870         if (p)
871                 get_task_struct(p);
872
873         rcu_read_unlock();
874
875         return p;
876 }
877
878 /*
879  * This task is holding PI mutexes at exit time => bad.
880  * Kernel cleans up PI-state, but userspace is likely hosed.
881  * (Robust-futex cleanup is separate and might save the day for userspace.)
882  */
883 void exit_pi_state_list(struct task_struct *curr)
884 {
885         struct list_head *next, *head = &curr->pi_state_list;
886         struct futex_pi_state *pi_state;
887         struct futex_hash_bucket *hb;
888         union futex_key key = FUTEX_KEY_INIT;
889
890         if (!futex_cmpxchg_enabled)
891                 return;
892         /*
893          * We are a ZOMBIE and nobody can enqueue itself on
894          * pi_state_list anymore, but we have to be careful
895          * versus waiters unqueueing themselves:
896          */
897         raw_spin_lock_irq(&curr->pi_lock);
898         while (!list_empty(head)) {
899
900                 next = head->next;
901                 pi_state = list_entry(next, struct futex_pi_state, list);
902                 key = pi_state->key;
903                 hb = hash_futex(&key);
904                 raw_spin_unlock_irq(&curr->pi_lock);
905
906                 spin_lock(&hb->lock);
907
908                 raw_spin_lock_irq(&curr->pi_lock);
909                 /*
910                  * We dropped the pi-lock, so re-check whether this
911                  * task still owns the PI-state:
912                  */
913                 if (head->next != next) {
914                         spin_unlock(&hb->lock);
915                         continue;
916                 }
917
918                 WARN_ON(pi_state->owner != curr);
919                 WARN_ON(list_empty(&pi_state->list));
920                 list_del_init(&pi_state->list);
921                 pi_state->owner = NULL;
922                 raw_spin_unlock_irq(&curr->pi_lock);
923
924                 get_pi_state(pi_state);
925                 spin_unlock(&hb->lock);
926
927                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928                 put_pi_state(pi_state);
929
930                 raw_spin_lock_irq(&curr->pi_lock);
931         }
932         raw_spin_unlock_irq(&curr->pi_lock);
933 }
934
935 /*
936  * We need to check the following states:
937  *
938  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
939  *
940  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
941  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
942  *
943  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
944  *
945  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
946  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
947  *
948  * [6]  Found  | Found    | task      | 0         | 1      | Valid
949  *
950  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
951  *
952  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
953  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
954  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
955  *
956  * [1]  Indicates that the kernel can acquire the futex atomically. We
957  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958  *
959  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
960  *      thread is found then it indicates that the owner TID has died.
961  *
962  * [3]  Invalid. The waiter is queued on a non PI futex
963  *
964  * [4]  Valid state after exit_robust_list(), which sets the user space
965  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966  *
967  * [5]  The user space value got manipulated between exit_robust_list()
968  *      and exit_pi_state_list()
969  *
970  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
971  *      the pi_state but cannot access the user space value.
972  *
973  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974  *
975  * [8]  Owner and user space value match
976  *
977  * [9]  There is no transient state which sets the user space TID to 0
978  *      except exit_robust_list(), but this is indicated by the
979  *      FUTEX_OWNER_DIED bit. See [4]
980  *
981  * [10] There is no transient state which leaves owner and user space
982  *      TID out of sync.
983  *
984  *
985  * Serialization and lifetime rules:
986  *
987  * hb->lock:
988  *
989  *      hb -> futex_q, relation
990  *      futex_q -> pi_state, relation
991  *
992  *      (cannot be raw because hb can contain arbitrary amount
993  *       of futex_q's)
994  *
995  * pi_mutex->wait_lock:
996  *
997  *      {uval, pi_state}
998  *
999  *      (and pi_mutex 'obviously')
1000  *
1001  * p->pi_lock:
1002  *
1003  *      p->pi_state_list -> pi_state->list, relation
1004  *
1005  * pi_state->refcount:
1006  *
1007  *      pi_state lifetime
1008  *
1009  *
1010  * Lock order:
1011  *
1012  *   hb->lock
1013  *     pi_mutex->wait_lock
1014  *       p->pi_lock
1015  *
1016  */
1017
1018 /*
1019  * Validate that the existing waiter has a pi_state and sanity check
1020  * the pi_state against the user space value. If correct, attach to
1021  * it.
1022  */
1023 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024                               struct futex_pi_state *pi_state,
1025                               struct futex_pi_state **ps)
1026 {
1027         pid_t pid = uval & FUTEX_TID_MASK;
1028         u32 uval2;
1029         int ret;
1030
1031         /*
1032          * Userspace might have messed up non-PI and PI futexes [3]
1033          */
1034         if (unlikely(!pi_state))
1035                 return -EINVAL;
1036
1037         /*
1038          * We get here with hb->lock held, and having found a
1039          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1040          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1041          * which in turn means that futex_lock_pi() still has a reference on
1042          * our pi_state.
1043          *
1044          * The waiter holding a reference on @pi_state also protects against
1045          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1046          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1047          * free pi_state before we can take a reference ourselves.
1048          */
1049         WARN_ON(!atomic_read(&pi_state->refcount));
1050
1051         /*
1052          * Now that we have a pi_state, we can acquire wait_lock
1053          * and do the state validation.
1054          */
1055         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1056
1057         /*
1058          * Since {uval, pi_state} is serialized by wait_lock, and our current
1059          * uval was read without holding it, it can have changed. Verify it
1060          * still is what we expect it to be, otherwise retry the entire
1061          * operation.
1062          */
1063         if (get_futex_value_locked(&uval2, uaddr))
1064                 goto out_efault;
1065
1066         if (uval != uval2)
1067                 goto out_eagain;
1068
1069         /*
1070          * Handle the owner died case:
1071          */
1072         if (uval & FUTEX_OWNER_DIED) {
1073                 /*
1074                  * exit_pi_state_list sets owner to NULL and wakes the
1075                  * topmost waiter. The task which acquires the
1076                  * pi_state->rt_mutex will fixup owner.
1077                  */
1078                 if (!pi_state->owner) {
1079                         /*
1080                          * No pi state owner, but the user space TID
1081                          * is not 0. Inconsistent state. [5]
1082                          */
1083                         if (pid)
1084                                 goto out_einval;
1085                         /*
1086                          * Take a ref on the state and return success. [4]
1087                          */
1088                         goto out_attach;
1089                 }
1090
1091                 /*
1092                  * If TID is 0, then either the dying owner has not
1093                  * yet executed exit_pi_state_list() or some waiter
1094                  * acquired the rtmutex in the pi state, but did not
1095                  * yet fixup the TID in user space.
1096                  *
1097                  * Take a ref on the state and return success. [6]
1098                  */
1099                 if (!pid)
1100                         goto out_attach;
1101         } else {
1102                 /*
1103                  * If the owner died bit is not set, then the pi_state
1104                  * must have an owner. [7]
1105                  */
1106                 if (!pi_state->owner)
1107                         goto out_einval;
1108         }
1109
1110         /*
1111          * Bail out if user space manipulated the futex value. If pi
1112          * state exists then the owner TID must be the same as the
1113          * user space TID. [9/10]
1114          */
1115         if (pid != task_pid_vnr(pi_state->owner))
1116                 goto out_einval;
1117
1118 out_attach:
1119         get_pi_state(pi_state);
1120         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121         *ps = pi_state;
1122         return 0;
1123
1124 out_einval:
1125         ret = -EINVAL;
1126         goto out_error;
1127
1128 out_eagain:
1129         ret = -EAGAIN;
1130         goto out_error;
1131
1132 out_efault:
1133         ret = -EFAULT;
1134         goto out_error;
1135
1136 out_error:
1137         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1138         return ret;
1139 }
1140
1141 /*
1142  * Lookup the task for the TID provided from user space and attach to
1143  * it after doing proper sanity checks.
1144  */
1145 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1146                               struct futex_pi_state **ps)
1147 {
1148         pid_t pid = uval & FUTEX_TID_MASK;
1149         struct futex_pi_state *pi_state;
1150         struct task_struct *p;
1151
1152         /*
1153          * We are the first waiter - try to look up the real owner and attach
1154          * the new pi_state to it, but bail out when TID = 0 [1]
1155          */
1156         if (!pid)
1157                 return -ESRCH;
1158         p = futex_find_get_task(pid);
1159         if (!p)
1160                 return -ESRCH;
1161
1162         if (unlikely(p->flags & PF_KTHREAD)) {
1163                 put_task_struct(p);
1164                 return -EPERM;
1165         }
1166
1167         /*
1168          * We need to look at the task state flags to figure out,
1169          * whether the task is exiting. To protect against the do_exit
1170          * change of the task flags, we do this protected by
1171          * p->pi_lock:
1172          */
1173         raw_spin_lock_irq(&p->pi_lock);
1174         if (unlikely(p->flags & PF_EXITING)) {
1175                 /*
1176                  * The task is on the way out. When PF_EXITPIDONE is
1177                  * set, we know that the task has finished the
1178                  * cleanup:
1179                  */
1180                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1181
1182                 raw_spin_unlock_irq(&p->pi_lock);
1183                 put_task_struct(p);
1184                 return ret;
1185         }
1186
1187         /*
1188          * No existing pi state. First waiter. [2]
1189          *
1190          * This creates pi_state, we have hb->lock held, this means nothing can
1191          * observe this state, wait_lock is irrelevant.
1192          */
1193         pi_state = alloc_pi_state();
1194
1195         /*
1196          * Initialize the pi_mutex in locked state and make @p
1197          * the owner of it:
1198          */
1199         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1200
1201         /* Store the key for possible exit cleanups: */
1202         pi_state->key = *key;
1203
1204         WARN_ON(!list_empty(&pi_state->list));
1205         list_add(&pi_state->list, &p->pi_state_list);
1206         pi_state->owner = p;
1207         raw_spin_unlock_irq(&p->pi_lock);
1208
1209         put_task_struct(p);
1210
1211         *ps = pi_state;
1212
1213         return 0;
1214 }
1215
1216 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1217                            struct futex_hash_bucket *hb,
1218                            union futex_key *key, struct futex_pi_state **ps)
1219 {
1220         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1221
1222         /*
1223          * If there is a waiter on that futex, validate it and
1224          * attach to the pi_state when the validation succeeds.
1225          */
1226         if (top_waiter)
1227                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1228
1229         /*
1230          * We are the first waiter - try to look up the owner based on
1231          * @uval and attach to it.
1232          */
1233         return attach_to_pi_owner(uval, key, ps);
1234 }
1235
1236 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1237 {
1238         u32 uninitialized_var(curval);
1239
1240         if (unlikely(should_fail_futex(true)))
1241                 return -EFAULT;
1242
1243         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1244                 return -EFAULT;
1245
1246         /* If user space value changed, let the caller retry */
1247         return curval != uval ? -EAGAIN : 0;
1248 }
1249
1250 /**
1251  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1252  * @uaddr:              the pi futex user address
1253  * @hb:                 the pi futex hash bucket
1254  * @key:                the futex key associated with uaddr and hb
1255  * @ps:                 the pi_state pointer where we store the result of the
1256  *                      lookup
1257  * @task:               the task to perform the atomic lock work for.  This will
1258  *                      be "current" except in the case of requeue pi.
1259  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1260  *
1261  * Return:
1262  *  -  0 - ready to wait;
1263  *  -  1 - acquired the lock;
1264  *  - <0 - error
1265  *
1266  * The hb->lock and futex_key refs shall be held by the caller.
1267  */
1268 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1269                                 union futex_key *key,
1270                                 struct futex_pi_state **ps,
1271                                 struct task_struct *task, int set_waiters)
1272 {
1273         u32 uval, newval, vpid = task_pid_vnr(task);
1274         struct futex_q *top_waiter;
1275         int ret;
1276
1277         /*
1278          * Read the user space value first so we can validate a few
1279          * things before proceeding further.
1280          */
1281         if (get_futex_value_locked(&uval, uaddr))
1282                 return -EFAULT;
1283
1284         if (unlikely(should_fail_futex(true)))
1285                 return -EFAULT;
1286
1287         /*
1288          * Detect deadlocks.
1289          */
1290         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1291                 return -EDEADLK;
1292
1293         if ((unlikely(should_fail_futex(true))))
1294                 return -EDEADLK;
1295
1296         /*
1297          * Lookup existing state first. If it exists, try to attach to
1298          * its pi_state.
1299          */
1300         top_waiter = futex_top_waiter(hb, key);
1301         if (top_waiter)
1302                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1303
1304         /*
1305          * No waiter and user TID is 0. We are here because the
1306          * waiters or the owner died bit is set or called from
1307          * requeue_cmp_pi or for whatever reason something took the
1308          * syscall.
1309          */
1310         if (!(uval & FUTEX_TID_MASK)) {
1311                 /*
1312                  * We take over the futex. No other waiters and the user space
1313                  * TID is 0. We preserve the owner died bit.
1314                  */
1315                 newval = uval & FUTEX_OWNER_DIED;
1316                 newval |= vpid;
1317
1318                 /* The futex requeue_pi code can enforce the waiters bit */
1319                 if (set_waiters)
1320                         newval |= FUTEX_WAITERS;
1321
1322                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1323                 /* If the take over worked, return 1 */
1324                 return ret < 0 ? ret : 1;
1325         }
1326
1327         /*
1328          * First waiter. Set the waiters bit before attaching ourself to
1329          * the owner. If owner tries to unlock, it will be forced into
1330          * the kernel and blocked on hb->lock.
1331          */
1332         newval = uval | FUTEX_WAITERS;
1333         ret = lock_pi_update_atomic(uaddr, uval, newval);
1334         if (ret)
1335                 return ret;
1336         /*
1337          * If the update of the user space value succeeded, we try to
1338          * attach to the owner. If that fails, no harm done, we only
1339          * set the FUTEX_WAITERS bit in the user space variable.
1340          */
1341         return attach_to_pi_owner(uval, key, ps);
1342 }
1343
1344 /**
1345  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1346  * @q:  The futex_q to unqueue
1347  *
1348  * The q->lock_ptr must not be NULL and must be held by the caller.
1349  */
1350 static void __unqueue_futex(struct futex_q *q)
1351 {
1352         struct futex_hash_bucket *hb;
1353
1354         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1355             || WARN_ON(plist_node_empty(&q->list)))
1356                 return;
1357
1358         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1359         plist_del(&q->list, &hb->chain);
1360         hb_waiters_dec(hb);
1361 }
1362
1363 /*
1364  * The hash bucket lock must be held when this is called.
1365  * Afterwards, the futex_q must not be accessed. Callers
1366  * must ensure to later call wake_up_q() for the actual
1367  * wakeups to occur.
1368  */
1369 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1370 {
1371         struct task_struct *p = q->task;
1372
1373         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1374                 return;
1375
1376         /*
1377          * Queue the task for later wakeup for after we've released
1378          * the hb->lock. wake_q_add() grabs reference to p.
1379          */
1380         wake_q_add(wake_q, p);
1381         __unqueue_futex(q);
1382         /*
1383          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1384          * is written, without taking any locks. This is possible in the event
1385          * of a spurious wakeup, for example. A memory barrier is required here
1386          * to prevent the following store to lock_ptr from getting ahead of the
1387          * plist_del in __unqueue_futex().
1388          */
1389         smp_store_release(&q->lock_ptr, NULL);
1390 }
1391
1392 /*
1393  * Caller must hold a reference on @pi_state.
1394  */
1395 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1396 {
1397         u32 uninitialized_var(curval), newval;
1398         struct task_struct *new_owner;
1399         bool postunlock = false;
1400         DEFINE_WAKE_Q(wake_q);
1401         int ret = 0;
1402
1403         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1404         if (WARN_ON_ONCE(!new_owner)) {
1405                 /*
1406                  * As per the comment in futex_unlock_pi() this should not happen.
1407                  *
1408                  * When this happens, give up our locks and try again, giving
1409                  * the futex_lock_pi() instance time to complete, either by
1410                  * waiting on the rtmutex or removing itself from the futex
1411                  * queue.
1412                  */
1413                 ret = -EAGAIN;
1414                 goto out_unlock;
1415         }
1416
1417         /*
1418          * We pass it to the next owner. The WAITERS bit is always kept
1419          * enabled while there is PI state around. We cleanup the owner
1420          * died bit, because we are the owner.
1421          */
1422         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1423
1424         if (unlikely(should_fail_futex(true)))
1425                 ret = -EFAULT;
1426
1427         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1428                 ret = -EFAULT;
1429
1430         } else if (curval != uval) {
1431                 /*
1432                  * If a unconditional UNLOCK_PI operation (user space did not
1433                  * try the TID->0 transition) raced with a waiter setting the
1434                  * FUTEX_WAITERS flag between get_user() and locking the hash
1435                  * bucket lock, retry the operation.
1436                  */
1437                 if ((FUTEX_TID_MASK & curval) == uval)
1438                         ret = -EAGAIN;
1439                 else
1440                         ret = -EINVAL;
1441         }
1442
1443         if (ret)
1444                 goto out_unlock;
1445
1446         /*
1447          * This is a point of no return; once we modify the uval there is no
1448          * going back and subsequent operations must not fail.
1449          */
1450
1451         raw_spin_lock(&pi_state->owner->pi_lock);
1452         WARN_ON(list_empty(&pi_state->list));
1453         list_del_init(&pi_state->list);
1454         raw_spin_unlock(&pi_state->owner->pi_lock);
1455
1456         raw_spin_lock(&new_owner->pi_lock);
1457         WARN_ON(!list_empty(&pi_state->list));
1458         list_add(&pi_state->list, &new_owner->pi_state_list);
1459         pi_state->owner = new_owner;
1460         raw_spin_unlock(&new_owner->pi_lock);
1461
1462         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1463
1464 out_unlock:
1465         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1466
1467         if (postunlock)
1468                 rt_mutex_postunlock(&wake_q);
1469
1470         return ret;
1471 }
1472
1473 /*
1474  * Express the locking dependencies for lockdep:
1475  */
1476 static inline void
1477 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1478 {
1479         if (hb1 <= hb2) {
1480                 spin_lock(&hb1->lock);
1481                 if (hb1 < hb2)
1482                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1483         } else { /* hb1 > hb2 */
1484                 spin_lock(&hb2->lock);
1485                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1486         }
1487 }
1488
1489 static inline void
1490 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1491 {
1492         spin_unlock(&hb1->lock);
1493         if (hb1 != hb2)
1494                 spin_unlock(&hb2->lock);
1495 }
1496
1497 /*
1498  * Wake up waiters matching bitset queued on this futex (uaddr).
1499  */
1500 static int
1501 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1502 {
1503         struct futex_hash_bucket *hb;
1504         struct futex_q *this, *next;
1505         union futex_key key = FUTEX_KEY_INIT;
1506         int ret;
1507         DEFINE_WAKE_Q(wake_q);
1508
1509         if (!bitset)
1510                 return -EINVAL;
1511
1512         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1513         if (unlikely(ret != 0))
1514                 goto out;
1515
1516         hb = hash_futex(&key);
1517
1518         /* Make sure we really have tasks to wakeup */
1519         if (!hb_waiters_pending(hb))
1520                 goto out_put_key;
1521
1522         spin_lock(&hb->lock);
1523
1524         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1525                 if (match_futex (&this->key, &key)) {
1526                         if (this->pi_state || this->rt_waiter) {
1527                                 ret = -EINVAL;
1528                                 break;
1529                         }
1530
1531                         /* Check if one of the bits is set in both bitsets */
1532                         if (!(this->bitset & bitset))
1533                                 continue;
1534
1535                         mark_wake_futex(&wake_q, this);
1536                         if (++ret >= nr_wake)
1537                                 break;
1538                 }
1539         }
1540
1541         spin_unlock(&hb->lock);
1542         wake_up_q(&wake_q);
1543 out_put_key:
1544         put_futex_key(&key);
1545 out:
1546         return ret;
1547 }
1548
1549 /*
1550  * Wake up all waiters hashed on the physical page that is mapped
1551  * to this virtual address:
1552  */
1553 static int
1554 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1555               int nr_wake, int nr_wake2, int op)
1556 {
1557         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1558         struct futex_hash_bucket *hb1, *hb2;
1559         struct futex_q *this, *next;
1560         int ret, op_ret;
1561         DEFINE_WAKE_Q(wake_q);
1562
1563 retry:
1564         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1565         if (unlikely(ret != 0))
1566                 goto out;
1567         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1568         if (unlikely(ret != 0))
1569                 goto out_put_key1;
1570
1571         hb1 = hash_futex(&key1);
1572         hb2 = hash_futex(&key2);
1573
1574 retry_private:
1575         double_lock_hb(hb1, hb2);
1576         op_ret = futex_atomic_op_inuser(op, uaddr2);
1577         if (unlikely(op_ret < 0)) {
1578
1579                 double_unlock_hb(hb1, hb2);
1580
1581 #ifndef CONFIG_MMU
1582                 /*
1583                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1584                  * but we might get them from range checking
1585                  */
1586                 ret = op_ret;
1587                 goto out_put_keys;
1588 #endif
1589
1590                 if (unlikely(op_ret != -EFAULT)) {
1591                         ret = op_ret;
1592                         goto out_put_keys;
1593                 }
1594
1595                 ret = fault_in_user_writeable(uaddr2);
1596                 if (ret)
1597                         goto out_put_keys;
1598
1599                 if (!(flags & FLAGS_SHARED))
1600                         goto retry_private;
1601
1602                 put_futex_key(&key2);
1603                 put_futex_key(&key1);
1604                 goto retry;
1605         }
1606
1607         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1608                 if (match_futex (&this->key, &key1)) {
1609                         if (this->pi_state || this->rt_waiter) {
1610                                 ret = -EINVAL;
1611                                 goto out_unlock;
1612                         }
1613                         mark_wake_futex(&wake_q, this);
1614                         if (++ret >= nr_wake)
1615                                 break;
1616                 }
1617         }
1618
1619         if (op_ret > 0) {
1620                 op_ret = 0;
1621                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1622                         if (match_futex (&this->key, &key2)) {
1623                                 if (this->pi_state || this->rt_waiter) {
1624                                         ret = -EINVAL;
1625                                         goto out_unlock;
1626                                 }
1627                                 mark_wake_futex(&wake_q, this);
1628                                 if (++op_ret >= nr_wake2)
1629                                         break;
1630                         }
1631                 }
1632                 ret += op_ret;
1633         }
1634
1635 out_unlock:
1636         double_unlock_hb(hb1, hb2);
1637         wake_up_q(&wake_q);
1638 out_put_keys:
1639         put_futex_key(&key2);
1640 out_put_key1:
1641         put_futex_key(&key1);
1642 out:
1643         return ret;
1644 }
1645
1646 /**
1647  * requeue_futex() - Requeue a futex_q from one hb to another
1648  * @q:          the futex_q to requeue
1649  * @hb1:        the source hash_bucket
1650  * @hb2:        the target hash_bucket
1651  * @key2:       the new key for the requeued futex_q
1652  */
1653 static inline
1654 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1655                    struct futex_hash_bucket *hb2, union futex_key *key2)
1656 {
1657
1658         /*
1659          * If key1 and key2 hash to the same bucket, no need to
1660          * requeue.
1661          */
1662         if (likely(&hb1->chain != &hb2->chain)) {
1663                 plist_del(&q->list, &hb1->chain);
1664                 hb_waiters_dec(hb1);
1665                 hb_waiters_inc(hb2);
1666                 plist_add(&q->list, &hb2->chain);
1667                 q->lock_ptr = &hb2->lock;
1668         }
1669         get_futex_key_refs(key2);
1670         q->key = *key2;
1671 }
1672
1673 /**
1674  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1675  * @q:          the futex_q
1676  * @key:        the key of the requeue target futex
1677  * @hb:         the hash_bucket of the requeue target futex
1678  *
1679  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1680  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1681  * to the requeue target futex so the waiter can detect the wakeup on the right
1682  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1683  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1684  * to protect access to the pi_state to fixup the owner later.  Must be called
1685  * with both q->lock_ptr and hb->lock held.
1686  */
1687 static inline
1688 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1689                            struct futex_hash_bucket *hb)
1690 {
1691         get_futex_key_refs(key);
1692         q->key = *key;
1693
1694         __unqueue_futex(q);
1695
1696         WARN_ON(!q->rt_waiter);
1697         q->rt_waiter = NULL;
1698
1699         q->lock_ptr = &hb->lock;
1700
1701         wake_up_state(q->task, TASK_NORMAL);
1702 }
1703
1704 /**
1705  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1706  * @pifutex:            the user address of the to futex
1707  * @hb1:                the from futex hash bucket, must be locked by the caller
1708  * @hb2:                the to futex hash bucket, must be locked by the caller
1709  * @key1:               the from futex key
1710  * @key2:               the to futex key
1711  * @ps:                 address to store the pi_state pointer
1712  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1713  *
1714  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1715  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1716  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1717  * hb1 and hb2 must be held by the caller.
1718  *
1719  * Return:
1720  *  -  0 - failed to acquire the lock atomically;
1721  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1722  *  - <0 - error
1723  */
1724 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1725                                  struct futex_hash_bucket *hb1,
1726                                  struct futex_hash_bucket *hb2,
1727                                  union futex_key *key1, union futex_key *key2,
1728                                  struct futex_pi_state **ps, int set_waiters)
1729 {
1730         struct futex_q *top_waiter = NULL;
1731         u32 curval;
1732         int ret, vpid;
1733
1734         if (get_futex_value_locked(&curval, pifutex))
1735                 return -EFAULT;
1736
1737         if (unlikely(should_fail_futex(true)))
1738                 return -EFAULT;
1739
1740         /*
1741          * Find the top_waiter and determine if there are additional waiters.
1742          * If the caller intends to requeue more than 1 waiter to pifutex,
1743          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1744          * as we have means to handle the possible fault.  If not, don't set
1745          * the bit unecessarily as it will force the subsequent unlock to enter
1746          * the kernel.
1747          */
1748         top_waiter = futex_top_waiter(hb1, key1);
1749
1750         /* There are no waiters, nothing for us to do. */
1751         if (!top_waiter)
1752                 return 0;
1753
1754         /* Ensure we requeue to the expected futex. */
1755         if (!match_futex(top_waiter->requeue_pi_key, key2))
1756                 return -EINVAL;
1757
1758         /*
1759          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1760          * the contended case or if set_waiters is 1.  The pi_state is returned
1761          * in ps in contended cases.
1762          */
1763         vpid = task_pid_vnr(top_waiter->task);
1764         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1765                                    set_waiters);
1766         if (ret == 1) {
1767                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1768                 return vpid;
1769         }
1770         return ret;
1771 }
1772
1773 /**
1774  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1775  * @uaddr1:     source futex user address
1776  * @flags:      futex flags (FLAGS_SHARED, etc.)
1777  * @uaddr2:     target futex user address
1778  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1779  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1780  * @cmpval:     @uaddr1 expected value (or %NULL)
1781  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1782  *              pi futex (pi to pi requeue is not supported)
1783  *
1784  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1785  * uaddr2 atomically on behalf of the top waiter.
1786  *
1787  * Return:
1788  *  - >=0 - on success, the number of tasks requeued or woken;
1789  *  -  <0 - on error
1790  */
1791 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1792                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1793                          u32 *cmpval, int requeue_pi)
1794 {
1795         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1796         int drop_count = 0, task_count = 0, ret;
1797         struct futex_pi_state *pi_state = NULL;
1798         struct futex_hash_bucket *hb1, *hb2;
1799         struct futex_q *this, *next;
1800         DEFINE_WAKE_Q(wake_q);
1801
1802         if (requeue_pi) {
1803                 /*
1804                  * Requeue PI only works on two distinct uaddrs. This
1805                  * check is only valid for private futexes. See below.
1806                  */
1807                 if (uaddr1 == uaddr2)
1808                         return -EINVAL;
1809
1810                 /*
1811                  * requeue_pi requires a pi_state, try to allocate it now
1812                  * without any locks in case it fails.
1813                  */
1814                 if (refill_pi_state_cache())
1815                         return -ENOMEM;
1816                 /*
1817                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1818                  * + nr_requeue, since it acquires the rt_mutex prior to
1819                  * returning to userspace, so as to not leave the rt_mutex with
1820                  * waiters and no owner.  However, second and third wake-ups
1821                  * cannot be predicted as they involve race conditions with the
1822                  * first wake and a fault while looking up the pi_state.  Both
1823                  * pthread_cond_signal() and pthread_cond_broadcast() should
1824                  * use nr_wake=1.
1825                  */
1826                 if (nr_wake != 1)
1827                         return -EINVAL;
1828         }
1829
1830 retry:
1831         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1832         if (unlikely(ret != 0))
1833                 goto out;
1834         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1835                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1836         if (unlikely(ret != 0))
1837                 goto out_put_key1;
1838
1839         /*
1840          * The check above which compares uaddrs is not sufficient for
1841          * shared futexes. We need to compare the keys:
1842          */
1843         if (requeue_pi && match_futex(&key1, &key2)) {
1844                 ret = -EINVAL;
1845                 goto out_put_keys;
1846         }
1847
1848         hb1 = hash_futex(&key1);
1849         hb2 = hash_futex(&key2);
1850
1851 retry_private:
1852         hb_waiters_inc(hb2);
1853         double_lock_hb(hb1, hb2);
1854
1855         if (likely(cmpval != NULL)) {
1856                 u32 curval;
1857
1858                 ret = get_futex_value_locked(&curval, uaddr1);
1859
1860                 if (unlikely(ret)) {
1861                         double_unlock_hb(hb1, hb2);
1862                         hb_waiters_dec(hb2);
1863
1864                         ret = get_user(curval, uaddr1);
1865                         if (ret)
1866                                 goto out_put_keys;
1867
1868                         if (!(flags & FLAGS_SHARED))
1869                                 goto retry_private;
1870
1871                         put_futex_key(&key2);
1872                         put_futex_key(&key1);
1873                         goto retry;
1874                 }
1875                 if (curval != *cmpval) {
1876                         ret = -EAGAIN;
1877                         goto out_unlock;
1878                 }
1879         }
1880
1881         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1882                 /*
1883                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1884                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1885                  * bit.  We force this here where we are able to easily handle
1886                  * faults rather in the requeue loop below.
1887                  */
1888                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1889                                                  &key2, &pi_state, nr_requeue);
1890
1891                 /*
1892                  * At this point the top_waiter has either taken uaddr2 or is
1893                  * waiting on it.  If the former, then the pi_state will not
1894                  * exist yet, look it up one more time to ensure we have a
1895                  * reference to it. If the lock was taken, ret contains the
1896                  * vpid of the top waiter task.
1897                  * If the lock was not taken, we have pi_state and an initial
1898                  * refcount on it. In case of an error we have nothing.
1899                  */
1900                 if (ret > 0) {
1901                         WARN_ON(pi_state);
1902                         drop_count++;
1903                         task_count++;
1904                         /*
1905                          * If we acquired the lock, then the user space value
1906                          * of uaddr2 should be vpid. It cannot be changed by
1907                          * the top waiter as it is blocked on hb2 lock if it
1908                          * tries to do so. If something fiddled with it behind
1909                          * our back the pi state lookup might unearth it. So
1910                          * we rather use the known value than rereading and
1911                          * handing potential crap to lookup_pi_state.
1912                          *
1913                          * If that call succeeds then we have pi_state and an
1914                          * initial refcount on it.
1915                          */
1916                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1917                 }
1918
1919                 switch (ret) {
1920                 case 0:
1921                         /* We hold a reference on the pi state. */
1922                         break;
1923
1924                         /* If the above failed, then pi_state is NULL */
1925                 case -EFAULT:
1926                         double_unlock_hb(hb1, hb2);
1927                         hb_waiters_dec(hb2);
1928                         put_futex_key(&key2);
1929                         put_futex_key(&key1);
1930                         ret = fault_in_user_writeable(uaddr2);
1931                         if (!ret)
1932                                 goto retry;
1933                         goto out;
1934                 case -EAGAIN:
1935                         /*
1936                          * Two reasons for this:
1937                          * - Owner is exiting and we just wait for the
1938                          *   exit to complete.
1939                          * - The user space value changed.
1940                          */
1941                         double_unlock_hb(hb1, hb2);
1942                         hb_waiters_dec(hb2);
1943                         put_futex_key(&key2);
1944                         put_futex_key(&key1);
1945                         cond_resched();
1946                         goto retry;
1947                 default:
1948                         goto out_unlock;
1949                 }
1950         }
1951
1952         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1953                 if (task_count - nr_wake >= nr_requeue)
1954                         break;
1955
1956                 if (!match_futex(&this->key, &key1))
1957                         continue;
1958
1959                 /*
1960                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1961                  * be paired with each other and no other futex ops.
1962                  *
1963                  * We should never be requeueing a futex_q with a pi_state,
1964                  * which is awaiting a futex_unlock_pi().
1965                  */
1966                 if ((requeue_pi && !this->rt_waiter) ||
1967                     (!requeue_pi && this->rt_waiter) ||
1968                     this->pi_state) {
1969                         ret = -EINVAL;
1970                         break;
1971                 }
1972
1973                 /*
1974                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1975                  * lock, we already woke the top_waiter.  If not, it will be
1976                  * woken by futex_unlock_pi().
1977                  */
1978                 if (++task_count <= nr_wake && !requeue_pi) {
1979                         mark_wake_futex(&wake_q, this);
1980                         continue;
1981                 }
1982
1983                 /* Ensure we requeue to the expected futex for requeue_pi. */
1984                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1985                         ret = -EINVAL;
1986                         break;
1987                 }
1988
1989                 /*
1990                  * Requeue nr_requeue waiters and possibly one more in the case
1991                  * of requeue_pi if we couldn't acquire the lock atomically.
1992                  */
1993                 if (requeue_pi) {
1994                         /*
1995                          * Prepare the waiter to take the rt_mutex. Take a
1996                          * refcount on the pi_state and store the pointer in
1997                          * the futex_q object of the waiter.
1998                          */
1999                         get_pi_state(pi_state);
2000                         this->pi_state = pi_state;
2001                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2002                                                         this->rt_waiter,
2003                                                         this->task);
2004                         if (ret == 1) {
2005                                 /*
2006                                  * We got the lock. We do neither drop the
2007                                  * refcount on pi_state nor clear
2008                                  * this->pi_state because the waiter needs the
2009                                  * pi_state for cleaning up the user space
2010                                  * value. It will drop the refcount after
2011                                  * doing so.
2012                                  */
2013                                 requeue_pi_wake_futex(this, &key2, hb2);
2014                                 drop_count++;
2015                                 continue;
2016                         } else if (ret) {
2017                                 /*
2018                                  * rt_mutex_start_proxy_lock() detected a
2019                                  * potential deadlock when we tried to queue
2020                                  * that waiter. Drop the pi_state reference
2021                                  * which we took above and remove the pointer
2022                                  * to the state from the waiters futex_q
2023                                  * object.
2024                                  */
2025                                 this->pi_state = NULL;
2026                                 put_pi_state(pi_state);
2027                                 /*
2028                                  * We stop queueing more waiters and let user
2029                                  * space deal with the mess.
2030                                  */
2031                                 break;
2032                         }
2033                 }
2034                 requeue_futex(this, hb1, hb2, &key2);
2035                 drop_count++;
2036         }
2037
2038         /*
2039          * We took an extra initial reference to the pi_state either
2040          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2041          * need to drop it here again.
2042          */
2043         put_pi_state(pi_state);
2044
2045 out_unlock:
2046         double_unlock_hb(hb1, hb2);
2047         wake_up_q(&wake_q);
2048         hb_waiters_dec(hb2);
2049
2050         /*
2051          * drop_futex_key_refs() must be called outside the spinlocks. During
2052          * the requeue we moved futex_q's from the hash bucket at key1 to the
2053          * one at key2 and updated their key pointer.  We no longer need to
2054          * hold the references to key1.
2055          */
2056         while (--drop_count >= 0)
2057                 drop_futex_key_refs(&key1);
2058
2059 out_put_keys:
2060         put_futex_key(&key2);
2061 out_put_key1:
2062         put_futex_key(&key1);
2063 out:
2064         return ret ? ret : task_count;
2065 }
2066
2067 /* The key must be already stored in q->key. */
2068 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2069         __acquires(&hb->lock)
2070 {
2071         struct futex_hash_bucket *hb;
2072
2073         hb = hash_futex(&q->key);
2074
2075         /*
2076          * Increment the counter before taking the lock so that
2077          * a potential waker won't miss a to-be-slept task that is
2078          * waiting for the spinlock. This is safe as all queue_lock()
2079          * users end up calling queue_me(). Similarly, for housekeeping,
2080          * decrement the counter at queue_unlock() when some error has
2081          * occurred and we don't end up adding the task to the list.
2082          */
2083         hb_waiters_inc(hb);
2084
2085         q->lock_ptr = &hb->lock;
2086
2087         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2088         return hb;
2089 }
2090
2091 static inline void
2092 queue_unlock(struct futex_hash_bucket *hb)
2093         __releases(&hb->lock)
2094 {
2095         spin_unlock(&hb->lock);
2096         hb_waiters_dec(hb);
2097 }
2098
2099 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2100 {
2101         int prio;
2102
2103         /*
2104          * The priority used to register this element is
2105          * - either the real thread-priority for the real-time threads
2106          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2107          * - or MAX_RT_PRIO for non-RT threads.
2108          * Thus, all RT-threads are woken first in priority order, and
2109          * the others are woken last, in FIFO order.
2110          */
2111         prio = min(current->normal_prio, MAX_RT_PRIO);
2112
2113         plist_node_init(&q->list, prio);
2114         plist_add(&q->list, &hb->chain);
2115         q->task = current;
2116 }
2117
2118 /**
2119  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2120  * @q:  The futex_q to enqueue
2121  * @hb: The destination hash bucket
2122  *
2123  * The hb->lock must be held by the caller, and is released here. A call to
2124  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2125  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2126  * or nothing if the unqueue is done as part of the wake process and the unqueue
2127  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2128  * an example).
2129  */
2130 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2131         __releases(&hb->lock)
2132 {
2133         __queue_me(q, hb);
2134         spin_unlock(&hb->lock);
2135 }
2136
2137 /**
2138  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2139  * @q:  The futex_q to unqueue
2140  *
2141  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2142  * be paired with exactly one earlier call to queue_me().
2143  *
2144  * Return:
2145  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2146  *  - 0 - if the futex_q was already removed by the waking thread
2147  */
2148 static int unqueue_me(struct futex_q *q)
2149 {
2150         spinlock_t *lock_ptr;
2151         int ret = 0;
2152
2153         /* In the common case we don't take the spinlock, which is nice. */
2154 retry:
2155         /*
2156          * q->lock_ptr can change between this read and the following spin_lock.
2157          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2158          * optimizing lock_ptr out of the logic below.
2159          */
2160         lock_ptr = READ_ONCE(q->lock_ptr);
2161         if (lock_ptr != NULL) {
2162                 spin_lock(lock_ptr);
2163                 /*
2164                  * q->lock_ptr can change between reading it and
2165                  * spin_lock(), causing us to take the wrong lock.  This
2166                  * corrects the race condition.
2167                  *
2168                  * Reasoning goes like this: if we have the wrong lock,
2169                  * q->lock_ptr must have changed (maybe several times)
2170                  * between reading it and the spin_lock().  It can
2171                  * change again after the spin_lock() but only if it was
2172                  * already changed before the spin_lock().  It cannot,
2173                  * however, change back to the original value.  Therefore
2174                  * we can detect whether we acquired the correct lock.
2175                  */
2176                 if (unlikely(lock_ptr != q->lock_ptr)) {
2177                         spin_unlock(lock_ptr);
2178                         goto retry;
2179                 }
2180                 __unqueue_futex(q);
2181
2182                 BUG_ON(q->pi_state);
2183
2184                 spin_unlock(lock_ptr);
2185                 ret = 1;
2186         }
2187
2188         drop_futex_key_refs(&q->key);
2189         return ret;
2190 }
2191
2192 /*
2193  * PI futexes can not be requeued and must remove themself from the
2194  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2195  * and dropped here.
2196  */
2197 static void unqueue_me_pi(struct futex_q *q)
2198         __releases(q->lock_ptr)
2199 {
2200         __unqueue_futex(q);
2201
2202         BUG_ON(!q->pi_state);
2203         put_pi_state(q->pi_state);
2204         q->pi_state = NULL;
2205
2206         spin_unlock(q->lock_ptr);
2207 }
2208
2209 /*
2210  * Fixup the pi_state owner with the new owner.
2211  *
2212  * Must be called with hash bucket lock held and mm->sem held for non
2213  * private futexes.
2214  */
2215 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2216                                 struct task_struct *newowner)
2217 {
2218         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2219         struct futex_pi_state *pi_state = q->pi_state;
2220         u32 uval, uninitialized_var(curval), newval;
2221         struct task_struct *oldowner;
2222         int ret;
2223
2224         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2225
2226         oldowner = pi_state->owner;
2227         /* Owner died? */
2228         if (!pi_state->owner)
2229                 newtid |= FUTEX_OWNER_DIED;
2230
2231         /*
2232          * We are here either because we stole the rtmutex from the
2233          * previous highest priority waiter or we are the highest priority
2234          * waiter but have failed to get the rtmutex the first time.
2235          *
2236          * We have to replace the newowner TID in the user space variable.
2237          * This must be atomic as we have to preserve the owner died bit here.
2238          *
2239          * Note: We write the user space value _before_ changing the pi_state
2240          * because we can fault here. Imagine swapped out pages or a fork
2241          * that marked all the anonymous memory readonly for cow.
2242          *
2243          * Modifying pi_state _before_ the user space value would leave the
2244          * pi_state in an inconsistent state when we fault here, because we
2245          * need to drop the locks to handle the fault. This might be observed
2246          * in the PID check in lookup_pi_state.
2247          */
2248 retry:
2249         if (get_futex_value_locked(&uval, uaddr))
2250                 goto handle_fault;
2251
2252         for (;;) {
2253                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2254
2255                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2256                         goto handle_fault;
2257                 if (curval == uval)
2258                         break;
2259                 uval = curval;
2260         }
2261
2262         /*
2263          * We fixed up user space. Now we need to fix the pi_state
2264          * itself.
2265          */
2266         if (pi_state->owner != NULL) {
2267                 raw_spin_lock(&pi_state->owner->pi_lock);
2268                 WARN_ON(list_empty(&pi_state->list));
2269                 list_del_init(&pi_state->list);
2270                 raw_spin_unlock(&pi_state->owner->pi_lock);
2271         }
2272
2273         pi_state->owner = newowner;
2274
2275         raw_spin_lock(&newowner->pi_lock);
2276         WARN_ON(!list_empty(&pi_state->list));
2277         list_add(&pi_state->list, &newowner->pi_state_list);
2278         raw_spin_unlock(&newowner->pi_lock);
2279         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2280
2281         return 0;
2282
2283         /*
2284          * To handle the page fault we need to drop the locks here. That gives
2285          * the other task (either the highest priority waiter itself or the
2286          * task which stole the rtmutex) the chance to try the fixup of the
2287          * pi_state. So once we are back from handling the fault we need to
2288          * check the pi_state after reacquiring the locks and before trying to
2289          * do another fixup. When the fixup has been done already we simply
2290          * return.
2291          *
2292          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2293          * drop hb->lock since the caller owns the hb -> futex_q relation.
2294          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2295          */
2296 handle_fault:
2297         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2298         spin_unlock(q->lock_ptr);
2299
2300         ret = fault_in_user_writeable(uaddr);
2301
2302         spin_lock(q->lock_ptr);
2303         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2304
2305         /*
2306          * Check if someone else fixed it for us:
2307          */
2308         if (pi_state->owner != oldowner) {
2309                 ret = 0;
2310                 goto out_unlock;
2311         }
2312
2313         if (ret)
2314                 goto out_unlock;
2315
2316         goto retry;
2317
2318 out_unlock:
2319         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2320         return ret;
2321 }
2322
2323 static long futex_wait_restart(struct restart_block *restart);
2324
2325 /**
2326  * fixup_owner() - Post lock pi_state and corner case management
2327  * @uaddr:      user address of the futex
2328  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2329  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2330  *
2331  * After attempting to lock an rt_mutex, this function is called to cleanup
2332  * the pi_state owner as well as handle race conditions that may allow us to
2333  * acquire the lock. Must be called with the hb lock held.
2334  *
2335  * Return:
2336  *  -  1 - success, lock taken;
2337  *  -  0 - success, lock not taken;
2338  *  - <0 - on error (-EFAULT)
2339  */
2340 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2341 {
2342         int ret = 0;
2343
2344         if (locked) {
2345                 /*
2346                  * Got the lock. We might not be the anticipated owner if we
2347                  * did a lock-steal - fix up the PI-state in that case:
2348                  *
2349                  * We can safely read pi_state->owner without holding wait_lock
2350                  * because we now own the rt_mutex, only the owner will attempt
2351                  * to change it.
2352                  */
2353                 if (q->pi_state->owner != current)
2354                         ret = fixup_pi_state_owner(uaddr, q, current);
2355                 goto out;
2356         }
2357
2358         /*
2359          * Paranoia check. If we did not take the lock, then we should not be
2360          * the owner of the rt_mutex.
2361          */
2362         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2363                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2364                                 "pi-state %p\n", ret,
2365                                 q->pi_state->pi_mutex.owner,
2366                                 q->pi_state->owner);
2367         }
2368
2369 out:
2370         return ret ? ret : locked;
2371 }
2372
2373 /**
2374  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2375  * @hb:         the futex hash bucket, must be locked by the caller
2376  * @q:          the futex_q to queue up on
2377  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2378  */
2379 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2380                                 struct hrtimer_sleeper *timeout)
2381 {
2382         /*
2383          * The task state is guaranteed to be set before another task can
2384          * wake it. set_current_state() is implemented using smp_store_mb() and
2385          * queue_me() calls spin_unlock() upon completion, both serializing
2386          * access to the hash list and forcing another memory barrier.
2387          */
2388         set_current_state(TASK_INTERRUPTIBLE);
2389         queue_me(q, hb);
2390
2391         /* Arm the timer */
2392         if (timeout)
2393                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2394
2395         /*
2396          * If we have been removed from the hash list, then another task
2397          * has tried to wake us, and we can skip the call to schedule().
2398          */
2399         if (likely(!plist_node_empty(&q->list))) {
2400                 /*
2401                  * If the timer has already expired, current will already be
2402                  * flagged for rescheduling. Only call schedule if there
2403                  * is no timeout, or if it has yet to expire.
2404                  */
2405                 if (!timeout || timeout->task)
2406                         freezable_schedule();
2407         }
2408         __set_current_state(TASK_RUNNING);
2409 }
2410
2411 /**
2412  * futex_wait_setup() - Prepare to wait on a futex
2413  * @uaddr:      the futex userspace address
2414  * @val:        the expected value
2415  * @flags:      futex flags (FLAGS_SHARED, etc.)
2416  * @q:          the associated futex_q
2417  * @hb:         storage for hash_bucket pointer to be returned to caller
2418  *
2419  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2420  * compare it with the expected value.  Handle atomic faults internally.
2421  * Return with the hb lock held and a q.key reference on success, and unlocked
2422  * with no q.key reference on failure.
2423  *
2424  * Return:
2425  *  -  0 - uaddr contains val and hb has been locked;
2426  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2427  */
2428 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2429                            struct futex_q *q, struct futex_hash_bucket **hb)
2430 {
2431         u32 uval;
2432         int ret;
2433
2434         /*
2435          * Access the page AFTER the hash-bucket is locked.
2436          * Order is important:
2437          *
2438          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2439          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2440          *
2441          * The basic logical guarantee of a futex is that it blocks ONLY
2442          * if cond(var) is known to be true at the time of blocking, for
2443          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2444          * would open a race condition where we could block indefinitely with
2445          * cond(var) false, which would violate the guarantee.
2446          *
2447          * On the other hand, we insert q and release the hash-bucket only
2448          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2449          * absorb a wakeup if *uaddr does not match the desired values
2450          * while the syscall executes.
2451          */
2452 retry:
2453         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2454         if (unlikely(ret != 0))
2455                 return ret;
2456
2457 retry_private:
2458         *hb = queue_lock(q);
2459
2460         ret = get_futex_value_locked(&uval, uaddr);
2461
2462         if (ret) {
2463                 queue_unlock(*hb);
2464
2465                 ret = get_user(uval, uaddr);
2466                 if (ret)
2467                         goto out;
2468
2469                 if (!(flags & FLAGS_SHARED))
2470                         goto retry_private;
2471
2472                 put_futex_key(&q->key);
2473                 goto retry;
2474         }
2475
2476         if (uval != val) {
2477                 queue_unlock(*hb);
2478                 ret = -EWOULDBLOCK;
2479         }
2480
2481 out:
2482         if (ret)
2483                 put_futex_key(&q->key);
2484         return ret;
2485 }
2486
2487 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2488                       ktime_t *abs_time, u32 bitset)
2489 {
2490         struct hrtimer_sleeper timeout, *to = NULL;
2491         struct restart_block *restart;
2492         struct futex_hash_bucket *hb;
2493         struct futex_q q = futex_q_init;
2494         int ret;
2495
2496         if (!bitset)
2497                 return -EINVAL;
2498         q.bitset = bitset;
2499
2500         if (abs_time) {
2501                 to = &timeout;
2502
2503                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2504                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2505                                       HRTIMER_MODE_ABS);
2506                 hrtimer_init_sleeper(to, current);
2507                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2508                                              current->timer_slack_ns);
2509         }
2510
2511 retry:
2512         /*
2513          * Prepare to wait on uaddr. On success, holds hb lock and increments
2514          * q.key refs.
2515          */
2516         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2517         if (ret)
2518                 goto out;
2519
2520         /* queue_me and wait for wakeup, timeout, or a signal. */
2521         futex_wait_queue_me(hb, &q, to);
2522
2523         /* If we were woken (and unqueued), we succeeded, whatever. */
2524         ret = 0;
2525         /* unqueue_me() drops q.key ref */
2526         if (!unqueue_me(&q))
2527                 goto out;
2528         ret = -ETIMEDOUT;
2529         if (to && !to->task)
2530                 goto out;
2531
2532         /*
2533          * We expect signal_pending(current), but we might be the
2534          * victim of a spurious wakeup as well.
2535          */
2536         if (!signal_pending(current))
2537                 goto retry;
2538
2539         ret = -ERESTARTSYS;
2540         if (!abs_time)
2541                 goto out;
2542
2543         restart = &current->restart_block;
2544         restart->fn = futex_wait_restart;
2545         restart->futex.uaddr = uaddr;
2546         restart->futex.val = val;
2547         restart->futex.time = *abs_time;
2548         restart->futex.bitset = bitset;
2549         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2550
2551         ret = -ERESTART_RESTARTBLOCK;
2552
2553 out:
2554         if (to) {
2555                 hrtimer_cancel(&to->timer);
2556                 destroy_hrtimer_on_stack(&to->timer);
2557         }
2558         return ret;
2559 }
2560
2561
2562 static long futex_wait_restart(struct restart_block *restart)
2563 {
2564         u32 __user *uaddr = restart->futex.uaddr;
2565         ktime_t t, *tp = NULL;
2566
2567         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2568                 t = restart->futex.time;
2569                 tp = &t;
2570         }
2571         restart->fn = do_no_restart_syscall;
2572
2573         return (long)futex_wait(uaddr, restart->futex.flags,
2574                                 restart->futex.val, tp, restart->futex.bitset);
2575 }
2576
2577
2578 /*
2579  * Userspace tried a 0 -> TID atomic transition of the futex value
2580  * and failed. The kernel side here does the whole locking operation:
2581  * if there are waiters then it will block as a consequence of relying
2582  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2583  * a 0 value of the futex too.).
2584  *
2585  * Also serves as futex trylock_pi()'ing, and due semantics.
2586  */
2587 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2588                          ktime_t *time, int trylock)
2589 {
2590         struct hrtimer_sleeper timeout, *to = NULL;
2591         struct futex_pi_state *pi_state = NULL;
2592         struct rt_mutex_waiter rt_waiter;
2593         struct futex_hash_bucket *hb;
2594         struct futex_q q = futex_q_init;
2595         int res, ret;
2596
2597         if (refill_pi_state_cache())
2598                 return -ENOMEM;
2599
2600         if (time) {
2601                 to = &timeout;
2602                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2603                                       HRTIMER_MODE_ABS);
2604                 hrtimer_init_sleeper(to, current);
2605                 hrtimer_set_expires(&to->timer, *time);
2606         }
2607
2608 retry:
2609         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2610         if (unlikely(ret != 0))
2611                 goto out;
2612
2613 retry_private:
2614         hb = queue_lock(&q);
2615
2616         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2617         if (unlikely(ret)) {
2618                 /*
2619                  * Atomic work succeeded and we got the lock,
2620                  * or failed. Either way, we do _not_ block.
2621                  */
2622                 switch (ret) {
2623                 case 1:
2624                         /* We got the lock. */
2625                         ret = 0;
2626                         goto out_unlock_put_key;
2627                 case -EFAULT:
2628                         goto uaddr_faulted;
2629                 case -EAGAIN:
2630                         /*
2631                          * Two reasons for this:
2632                          * - Task is exiting and we just wait for the
2633                          *   exit to complete.
2634                          * - The user space value changed.
2635                          */
2636                         queue_unlock(hb);
2637                         put_futex_key(&q.key);
2638                         cond_resched();
2639                         goto retry;
2640                 default:
2641                         goto out_unlock_put_key;
2642                 }
2643         }
2644
2645         WARN_ON(!q.pi_state);
2646
2647         /*
2648          * Only actually queue now that the atomic ops are done:
2649          */
2650         __queue_me(&q, hb);
2651
2652         if (trylock) {
2653                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2654                 /* Fixup the trylock return value: */
2655                 ret = ret ? 0 : -EWOULDBLOCK;
2656                 goto no_block;
2657         }
2658
2659         rt_mutex_init_waiter(&rt_waiter);
2660
2661         /*
2662          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2663          * hold it while doing rt_mutex_start_proxy(), because then it will
2664          * include hb->lock in the blocking chain, even through we'll not in
2665          * fact hold it while blocking. This will lead it to report -EDEADLK
2666          * and BUG when futex_unlock_pi() interleaves with this.
2667          *
2668          * Therefore acquire wait_lock while holding hb->lock, but drop the
2669          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2670          * serializes against futex_unlock_pi() as that does the exact same
2671          * lock handoff sequence.
2672          */
2673         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2674         spin_unlock(q.lock_ptr);
2675         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2676         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2677
2678         if (ret) {
2679                 if (ret == 1)
2680                         ret = 0;
2681
2682                 spin_lock(q.lock_ptr);
2683                 goto no_block;
2684         }
2685
2686
2687         if (unlikely(to))
2688                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2689
2690         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2691
2692         spin_lock(q.lock_ptr);
2693         /*
2694          * If we failed to acquire the lock (signal/timeout), we must
2695          * first acquire the hb->lock before removing the lock from the
2696          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2697          * wait lists consistent.
2698          *
2699          * In particular; it is important that futex_unlock_pi() can not
2700          * observe this inconsistency.
2701          */
2702         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2703                 ret = 0;
2704
2705 no_block:
2706         /*
2707          * Fixup the pi_state owner and possibly acquire the lock if we
2708          * haven't already.
2709          */
2710         res = fixup_owner(uaddr, &q, !ret);
2711         /*
2712          * If fixup_owner() returned an error, proprogate that.  If it acquired
2713          * the lock, clear our -ETIMEDOUT or -EINTR.
2714          */
2715         if (res)
2716                 ret = (res < 0) ? res : 0;
2717
2718         /*
2719          * If fixup_owner() faulted and was unable to handle the fault, unlock
2720          * it and return the fault to userspace.
2721          */
2722         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2723                 pi_state = q.pi_state;
2724                 get_pi_state(pi_state);
2725         }
2726
2727         /* Unqueue and drop the lock */
2728         unqueue_me_pi(&q);
2729
2730         if (pi_state) {
2731                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2732                 put_pi_state(pi_state);
2733         }
2734
2735         goto out_put_key;
2736
2737 out_unlock_put_key:
2738         queue_unlock(hb);
2739
2740 out_put_key:
2741         put_futex_key(&q.key);
2742 out:
2743         if (to) {
2744                 hrtimer_cancel(&to->timer);
2745                 destroy_hrtimer_on_stack(&to->timer);
2746         }
2747         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2748
2749 uaddr_faulted:
2750         queue_unlock(hb);
2751
2752         ret = fault_in_user_writeable(uaddr);
2753         if (ret)
2754                 goto out_put_key;
2755
2756         if (!(flags & FLAGS_SHARED))
2757                 goto retry_private;
2758
2759         put_futex_key(&q.key);
2760         goto retry;
2761 }
2762
2763 /*
2764  * Userspace attempted a TID -> 0 atomic transition, and failed.
2765  * This is the in-kernel slowpath: we look up the PI state (if any),
2766  * and do the rt-mutex unlock.
2767  */
2768 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2769 {
2770         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2771         union futex_key key = FUTEX_KEY_INIT;
2772         struct futex_hash_bucket *hb;
2773         struct futex_q *top_waiter;
2774         int ret;
2775
2776 retry:
2777         if (get_user(uval, uaddr))
2778                 return -EFAULT;
2779         /*
2780          * We release only a lock we actually own:
2781          */
2782         if ((uval & FUTEX_TID_MASK) != vpid)
2783                 return -EPERM;
2784
2785         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2786         if (ret)
2787                 return ret;
2788
2789         hb = hash_futex(&key);
2790         spin_lock(&hb->lock);
2791
2792         /*
2793          * Check waiters first. We do not trust user space values at
2794          * all and we at least want to know if user space fiddled
2795          * with the futex value instead of blindly unlocking.
2796          */
2797         top_waiter = futex_top_waiter(hb, &key);
2798         if (top_waiter) {
2799                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2800
2801                 ret = -EINVAL;
2802                 if (!pi_state)
2803                         goto out_unlock;
2804
2805                 /*
2806                  * If current does not own the pi_state then the futex is
2807                  * inconsistent and user space fiddled with the futex value.
2808                  */
2809                 if (pi_state->owner != current)
2810                         goto out_unlock;
2811
2812                 get_pi_state(pi_state);
2813                 /*
2814                  * By taking wait_lock while still holding hb->lock, we ensure
2815                  * there is no point where we hold neither; and therefore
2816                  * wake_futex_pi() must observe a state consistent with what we
2817                  * observed.
2818                  */
2819                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2820                 spin_unlock(&hb->lock);
2821
2822                 ret = wake_futex_pi(uaddr, uval, pi_state);
2823
2824                 put_pi_state(pi_state);
2825
2826                 /*
2827                  * Success, we're done! No tricky corner cases.
2828                  */
2829                 if (!ret)
2830                         goto out_putkey;
2831                 /*
2832                  * The atomic access to the futex value generated a
2833                  * pagefault, so retry the user-access and the wakeup:
2834                  */
2835                 if (ret == -EFAULT)
2836                         goto pi_faulted;
2837                 /*
2838                  * A unconditional UNLOCK_PI op raced against a waiter
2839                  * setting the FUTEX_WAITERS bit. Try again.
2840                  */
2841                 if (ret == -EAGAIN) {
2842                         put_futex_key(&key);
2843                         goto retry;
2844                 }
2845                 /*
2846                  * wake_futex_pi has detected invalid state. Tell user
2847                  * space.
2848                  */
2849                 goto out_putkey;
2850         }
2851
2852         /*
2853          * We have no kernel internal state, i.e. no waiters in the
2854          * kernel. Waiters which are about to queue themselves are stuck
2855          * on hb->lock. So we can safely ignore them. We do neither
2856          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2857          * owner.
2858          */
2859         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2860                 spin_unlock(&hb->lock);
2861                 goto pi_faulted;
2862         }
2863
2864         /*
2865          * If uval has changed, let user space handle it.
2866          */
2867         ret = (curval == uval) ? 0 : -EAGAIN;
2868
2869 out_unlock:
2870         spin_unlock(&hb->lock);
2871 out_putkey:
2872         put_futex_key(&key);
2873         return ret;
2874
2875 pi_faulted:
2876         put_futex_key(&key);
2877
2878         ret = fault_in_user_writeable(uaddr);
2879         if (!ret)
2880                 goto retry;
2881
2882         return ret;
2883 }
2884
2885 /**
2886  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2887  * @hb:         the hash_bucket futex_q was original enqueued on
2888  * @q:          the futex_q woken while waiting to be requeued
2889  * @key2:       the futex_key of the requeue target futex
2890  * @timeout:    the timeout associated with the wait (NULL if none)
2891  *
2892  * Detect if the task was woken on the initial futex as opposed to the requeue
2893  * target futex.  If so, determine if it was a timeout or a signal that caused
2894  * the wakeup and return the appropriate error code to the caller.  Must be
2895  * called with the hb lock held.
2896  *
2897  * Return:
2898  *  -  0 = no early wakeup detected;
2899  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2900  */
2901 static inline
2902 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2903                                    struct futex_q *q, union futex_key *key2,
2904                                    struct hrtimer_sleeper *timeout)
2905 {
2906         int ret = 0;
2907
2908         /*
2909          * With the hb lock held, we avoid races while we process the wakeup.
2910          * We only need to hold hb (and not hb2) to ensure atomicity as the
2911          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2912          * It can't be requeued from uaddr2 to something else since we don't
2913          * support a PI aware source futex for requeue.
2914          */
2915         if (!match_futex(&q->key, key2)) {
2916                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2917                 /*
2918                  * We were woken prior to requeue by a timeout or a signal.
2919                  * Unqueue the futex_q and determine which it was.
2920                  */
2921                 plist_del(&q->list, &hb->chain);
2922                 hb_waiters_dec(hb);
2923
2924                 /* Handle spurious wakeups gracefully */
2925                 ret = -EWOULDBLOCK;
2926                 if (timeout && !timeout->task)
2927                         ret = -ETIMEDOUT;
2928                 else if (signal_pending(current))
2929                         ret = -ERESTARTNOINTR;
2930         }
2931         return ret;
2932 }
2933
2934 /**
2935  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2936  * @uaddr:      the futex we initially wait on (non-pi)
2937  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2938  *              the same type, no requeueing from private to shared, etc.
2939  * @val:        the expected value of uaddr
2940  * @abs_time:   absolute timeout
2941  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2942  * @uaddr2:     the pi futex we will take prior to returning to user-space
2943  *
2944  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2945  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2946  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2947  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2948  * without one, the pi logic would not know which task to boost/deboost, if
2949  * there was a need to.
2950  *
2951  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2952  * via the following--
2953  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2954  * 2) wakeup on uaddr2 after a requeue
2955  * 3) signal
2956  * 4) timeout
2957  *
2958  * If 3, cleanup and return -ERESTARTNOINTR.
2959  *
2960  * If 2, we may then block on trying to take the rt_mutex and return via:
2961  * 5) successful lock
2962  * 6) signal
2963  * 7) timeout
2964  * 8) other lock acquisition failure
2965  *
2966  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2967  *
2968  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2969  *
2970  * Return:
2971  *  -  0 - On success;
2972  *  - <0 - On error
2973  */
2974 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2975                                  u32 val, ktime_t *abs_time, u32 bitset,
2976                                  u32 __user *uaddr2)
2977 {
2978         struct hrtimer_sleeper timeout, *to = NULL;
2979         struct futex_pi_state *pi_state = NULL;
2980         struct rt_mutex_waiter rt_waiter;
2981         struct futex_hash_bucket *hb;
2982         union futex_key key2 = FUTEX_KEY_INIT;
2983         struct futex_q q = futex_q_init;
2984         int res, ret;
2985
2986         if (uaddr == uaddr2)
2987                 return -EINVAL;
2988
2989         if (!bitset)
2990                 return -EINVAL;
2991
2992         if (abs_time) {
2993                 to = &timeout;
2994                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2995                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2996                                       HRTIMER_MODE_ABS);
2997                 hrtimer_init_sleeper(to, current);
2998                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2999                                              current->timer_slack_ns);
3000         }
3001
3002         /*
3003          * The waiter is allocated on our stack, manipulated by the requeue
3004          * code while we sleep on uaddr.
3005          */
3006         rt_mutex_init_waiter(&rt_waiter);
3007
3008         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3009         if (unlikely(ret != 0))
3010                 goto out;
3011
3012         q.bitset = bitset;
3013         q.rt_waiter = &rt_waiter;
3014         q.requeue_pi_key = &key2;
3015
3016         /*
3017          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3018          * count.
3019          */
3020         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3021         if (ret)
3022                 goto out_key2;
3023
3024         /*
3025          * The check above which compares uaddrs is not sufficient for
3026          * shared futexes. We need to compare the keys:
3027          */
3028         if (match_futex(&q.key, &key2)) {
3029                 queue_unlock(hb);
3030                 ret = -EINVAL;
3031                 goto out_put_keys;
3032         }
3033
3034         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3035         futex_wait_queue_me(hb, &q, to);
3036
3037         spin_lock(&hb->lock);
3038         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3039         spin_unlock(&hb->lock);
3040         if (ret)
3041                 goto out_put_keys;
3042
3043         /*
3044          * In order for us to be here, we know our q.key == key2, and since
3045          * we took the hb->lock above, we also know that futex_requeue() has
3046          * completed and we no longer have to concern ourselves with a wakeup
3047          * race with the atomic proxy lock acquisition by the requeue code. The
3048          * futex_requeue dropped our key1 reference and incremented our key2
3049          * reference count.
3050          */
3051
3052         /* Check if the requeue code acquired the second futex for us. */
3053         if (!q.rt_waiter) {
3054                 /*
3055                  * Got the lock. We might not be the anticipated owner if we
3056                  * did a lock-steal - fix up the PI-state in that case.
3057                  */
3058                 if (q.pi_state && (q.pi_state->owner != current)) {
3059                         spin_lock(q.lock_ptr);
3060                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3061                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3062                                 pi_state = q.pi_state;
3063                                 get_pi_state(pi_state);
3064                         }
3065                         /*
3066                          * Drop the reference to the pi state which
3067                          * the requeue_pi() code acquired for us.
3068                          */
3069                         put_pi_state(q.pi_state);
3070                         spin_unlock(q.lock_ptr);
3071                 }
3072         } else {
3073                 struct rt_mutex *pi_mutex;
3074
3075                 /*
3076                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3077                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3078                  * the pi_state.
3079                  */
3080                 WARN_ON(!q.pi_state);
3081                 pi_mutex = &q.pi_state->pi_mutex;
3082                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3083
3084                 spin_lock(q.lock_ptr);
3085                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3086                         ret = 0;
3087
3088                 debug_rt_mutex_free_waiter(&rt_waiter);
3089                 /*
3090                  * Fixup the pi_state owner and possibly acquire the lock if we
3091                  * haven't already.
3092                  */
3093                 res = fixup_owner(uaddr2, &q, !ret);
3094                 /*
3095                  * If fixup_owner() returned an error, proprogate that.  If it
3096                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3097                  */
3098                 if (res)
3099                         ret = (res < 0) ? res : 0;
3100
3101                 /*
3102                  * If fixup_pi_state_owner() faulted and was unable to handle
3103                  * the fault, unlock the rt_mutex and return the fault to
3104                  * userspace.
3105                  */
3106                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3107                         pi_state = q.pi_state;
3108                         get_pi_state(pi_state);
3109                 }
3110
3111                 /* Unqueue and drop the lock. */
3112                 unqueue_me_pi(&q);
3113         }
3114
3115         if (pi_state) {
3116                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3117                 put_pi_state(pi_state);
3118         }
3119
3120         if (ret == -EINTR) {
3121                 /*
3122                  * We've already been requeued, but cannot restart by calling
3123                  * futex_lock_pi() directly. We could restart this syscall, but
3124                  * it would detect that the user space "val" changed and return
3125                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3126                  * -EWOULDBLOCK directly.
3127                  */
3128                 ret = -EWOULDBLOCK;
3129         }
3130
3131 out_put_keys:
3132         put_futex_key(&q.key);
3133 out_key2:
3134         put_futex_key(&key2);
3135
3136 out:
3137         if (to) {
3138                 hrtimer_cancel(&to->timer);
3139                 destroy_hrtimer_on_stack(&to->timer);
3140         }
3141         return ret;
3142 }
3143
3144 /*
3145  * Support for robust futexes: the kernel cleans up held futexes at
3146  * thread exit time.
3147  *
3148  * Implementation: user-space maintains a per-thread list of locks it
3149  * is holding. Upon do_exit(), the kernel carefully walks this list,
3150  * and marks all locks that are owned by this thread with the
3151  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3152  * always manipulated with the lock held, so the list is private and
3153  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3154  * field, to allow the kernel to clean up if the thread dies after
3155  * acquiring the lock, but just before it could have added itself to
3156  * the list. There can only be one such pending lock.
3157  */
3158
3159 /**
3160  * sys_set_robust_list() - Set the robust-futex list head of a task
3161  * @head:       pointer to the list-head
3162  * @len:        length of the list-head, as userspace expects
3163  */
3164 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3165                 size_t, len)
3166 {
3167         if (!futex_cmpxchg_enabled)
3168                 return -ENOSYS;
3169         /*
3170          * The kernel knows only one size for now:
3171          */
3172         if (unlikely(len != sizeof(*head)))
3173                 return -EINVAL;
3174
3175         current->robust_list = head;
3176
3177         return 0;
3178 }
3179
3180 /**
3181  * sys_get_robust_list() - Get the robust-futex list head of a task
3182  * @pid:        pid of the process [zero for current task]
3183  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3184  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3185  */
3186 SYSCALL_DEFINE3(get_robust_list, int, pid,
3187                 struct robust_list_head __user * __user *, head_ptr,
3188                 size_t __user *, len_ptr)
3189 {
3190         struct robust_list_head __user *head;
3191         unsigned long ret;
3192         struct task_struct *p;
3193
3194         if (!futex_cmpxchg_enabled)
3195                 return -ENOSYS;
3196
3197         rcu_read_lock();
3198
3199         ret = -ESRCH;
3200         if (!pid)
3201                 p = current;
3202         else {
3203                 p = find_task_by_vpid(pid);
3204                 if (!p)
3205                         goto err_unlock;
3206         }
3207
3208         ret = -EPERM;
3209         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3210                 goto err_unlock;
3211
3212         head = p->robust_list;
3213         rcu_read_unlock();
3214
3215         if (put_user(sizeof(*head), len_ptr))
3216                 return -EFAULT;
3217         return put_user(head, head_ptr);
3218
3219 err_unlock:
3220         rcu_read_unlock();
3221
3222         return ret;
3223 }
3224
3225 /*
3226  * Process a futex-list entry, check whether it's owned by the
3227  * dying task, and do notification if so:
3228  */
3229 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3230 {
3231         u32 uval, uninitialized_var(nval), mval;
3232
3233 retry:
3234         if (get_user(uval, uaddr))
3235                 return -1;
3236
3237         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3238                 /*
3239                  * Ok, this dying thread is truly holding a futex
3240                  * of interest. Set the OWNER_DIED bit atomically
3241                  * via cmpxchg, and if the value had FUTEX_WAITERS
3242                  * set, wake up a waiter (if any). (We have to do a
3243                  * futex_wake() even if OWNER_DIED is already set -
3244                  * to handle the rare but possible case of recursive
3245                  * thread-death.) The rest of the cleanup is done in
3246                  * userspace.
3247                  */
3248                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3249                 /*
3250                  * We are not holding a lock here, but we want to have
3251                  * the pagefault_disable/enable() protection because
3252                  * we want to handle the fault gracefully. If the
3253                  * access fails we try to fault in the futex with R/W
3254                  * verification via get_user_pages. get_user() above
3255                  * does not guarantee R/W access. If that fails we
3256                  * give up and leave the futex locked.
3257                  */
3258                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3259                         if (fault_in_user_writeable(uaddr))
3260                                 return -1;
3261                         goto retry;
3262                 }
3263                 if (nval != uval)
3264                         goto retry;
3265
3266                 /*
3267                  * Wake robust non-PI futexes here. The wakeup of
3268                  * PI futexes happens in exit_pi_state():
3269                  */
3270                 if (!pi && (uval & FUTEX_WAITERS))
3271                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3272         }
3273         return 0;
3274 }
3275
3276 /*
3277  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3278  */
3279 static inline int fetch_robust_entry(struct robust_list __user **entry,
3280                                      struct robust_list __user * __user *head,
3281                                      unsigned int *pi)
3282 {
3283         unsigned long uentry;
3284
3285         if (get_user(uentry, (unsigned long __user *)head))
3286                 return -EFAULT;
3287
3288         *entry = (void __user *)(uentry & ~1UL);
3289         *pi = uentry & 1;
3290
3291         return 0;
3292 }
3293
3294 /*
3295  * Walk curr->robust_list (very carefully, it's a userspace list!)
3296  * and mark any locks found there dead, and notify any waiters.
3297  *
3298  * We silently return on any sign of list-walking problem.
3299  */
3300 void exit_robust_list(struct task_struct *curr)
3301 {
3302         struct robust_list_head __user *head = curr->robust_list;
3303         struct robust_list __user *entry, *next_entry, *pending;
3304         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3305         unsigned int uninitialized_var(next_pi);
3306         unsigned long futex_offset;
3307         int rc;
3308
3309         if (!futex_cmpxchg_enabled)
3310                 return;
3311
3312         /*
3313          * Fetch the list head (which was registered earlier, via
3314          * sys_set_robust_list()):
3315          */
3316         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3317                 return;
3318         /*
3319          * Fetch the relative futex offset:
3320          */
3321         if (get_user(futex_offset, &head->futex_offset))
3322                 return;
3323         /*
3324          * Fetch any possibly pending lock-add first, and handle it
3325          * if it exists:
3326          */
3327         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3328                 return;
3329
3330         next_entry = NULL;      /* avoid warning with gcc */
3331         while (entry != &head->list) {
3332                 /*
3333                  * Fetch the next entry in the list before calling
3334                  * handle_futex_death:
3335                  */
3336                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3337                 /*
3338                  * A pending lock might already be on the list, so
3339                  * don't process it twice:
3340                  */
3341                 if (entry != pending)
3342                         if (handle_futex_death((void __user *)entry + futex_offset,
3343                                                 curr, pi))
3344                                 return;
3345                 if (rc)
3346                         return;
3347                 entry = next_entry;
3348                 pi = next_pi;
3349                 /*
3350                  * Avoid excessively long or circular lists:
3351                  */
3352                 if (!--limit)
3353                         break;
3354
3355                 cond_resched();
3356         }
3357
3358         if (pending)
3359                 handle_futex_death((void __user *)pending + futex_offset,
3360                                    curr, pip);
3361 }
3362
3363 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3364                 u32 __user *uaddr2, u32 val2, u32 val3)
3365 {
3366         int cmd = op & FUTEX_CMD_MASK;
3367         unsigned int flags = 0;
3368
3369         if (!(op & FUTEX_PRIVATE_FLAG))
3370                 flags |= FLAGS_SHARED;
3371
3372         if (op & FUTEX_CLOCK_REALTIME) {
3373                 flags |= FLAGS_CLOCKRT;
3374                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3375                     cmd != FUTEX_WAIT_REQUEUE_PI)
3376                         return -ENOSYS;
3377         }
3378
3379         switch (cmd) {
3380         case FUTEX_LOCK_PI:
3381         case FUTEX_UNLOCK_PI:
3382         case FUTEX_TRYLOCK_PI:
3383         case FUTEX_WAIT_REQUEUE_PI:
3384         case FUTEX_CMP_REQUEUE_PI:
3385                 if (!futex_cmpxchg_enabled)
3386                         return -ENOSYS;
3387         }
3388
3389         switch (cmd) {
3390         case FUTEX_WAIT:
3391                 val3 = FUTEX_BITSET_MATCH_ANY;
3392         case FUTEX_WAIT_BITSET:
3393                 return futex_wait(uaddr, flags, val, timeout, val3);
3394         case FUTEX_WAKE:
3395                 val3 = FUTEX_BITSET_MATCH_ANY;
3396         case FUTEX_WAKE_BITSET:
3397                 return futex_wake(uaddr, flags, val, val3);
3398         case FUTEX_REQUEUE:
3399                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3400         case FUTEX_CMP_REQUEUE:
3401                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3402         case FUTEX_WAKE_OP:
3403                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3404         case FUTEX_LOCK_PI:
3405                 return futex_lock_pi(uaddr, flags, timeout, 0);
3406         case FUTEX_UNLOCK_PI:
3407                 return futex_unlock_pi(uaddr, flags);
3408         case FUTEX_TRYLOCK_PI:
3409                 return futex_lock_pi(uaddr, flags, NULL, 1);
3410         case FUTEX_WAIT_REQUEUE_PI:
3411                 val3 = FUTEX_BITSET_MATCH_ANY;
3412                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3413                                              uaddr2);
3414         case FUTEX_CMP_REQUEUE_PI:
3415                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3416         }
3417         return -ENOSYS;
3418 }
3419
3420
3421 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3422                 struct timespec __user *, utime, u32 __user *, uaddr2,
3423                 u32, val3)
3424 {
3425         struct timespec ts;
3426         ktime_t t, *tp = NULL;
3427         u32 val2 = 0;
3428         int cmd = op & FUTEX_CMD_MASK;
3429
3430         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3431                       cmd == FUTEX_WAIT_BITSET ||
3432                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3433                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3434                         return -EFAULT;
3435                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3436                         return -EFAULT;
3437                 if (!timespec_valid(&ts))
3438                         return -EINVAL;
3439
3440                 t = timespec_to_ktime(ts);
3441                 if (cmd == FUTEX_WAIT)
3442                         t = ktime_add_safe(ktime_get(), t);
3443                 tp = &t;
3444         }
3445         /*
3446          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3447          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3448          */
3449         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3450             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3451                 val2 = (u32) (unsigned long) utime;
3452
3453         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3454 }
3455
3456 static void __init futex_detect_cmpxchg(void)
3457 {
3458 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3459         u32 curval;
3460
3461         /*
3462          * This will fail and we want it. Some arch implementations do
3463          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3464          * functionality. We want to know that before we call in any
3465          * of the complex code paths. Also we want to prevent
3466          * registration of robust lists in that case. NULL is
3467          * guaranteed to fault and we get -EFAULT on functional
3468          * implementation, the non-functional ones will return
3469          * -ENOSYS.
3470          */
3471         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3472                 futex_cmpxchg_enabled = 1;
3473 #endif
3474 }
3475
3476 static int __init futex_init(void)
3477 {
3478         unsigned int futex_shift;
3479         unsigned long i;
3480
3481 #if CONFIG_BASE_SMALL
3482         futex_hashsize = 16;
3483 #else
3484         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3485 #endif
3486
3487         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3488                                                futex_hashsize, 0,
3489                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3490                                                &futex_shift, NULL,
3491                                                futex_hashsize, futex_hashsize);
3492         futex_hashsize = 1UL << futex_shift;
3493
3494         futex_detect_cmpxchg();
3495
3496         for (i = 0; i < futex_hashsize; i++) {
3497                 atomic_set(&futex_queues[i].waiters, 0);
3498                 plist_head_init(&futex_queues[i].chain);
3499                 spin_lock_init(&futex_queues[i].lock);
3500         }
3501
3502         return 0;
3503 }
3504 core_initcall(futex_init);