]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/futex.c
drm/nouveau/kms/nv50: skip core channel cursor update on position-only changes
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 };
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 };
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in *key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel so warn for now if this happens.
674                  *
675                  * We are not calling into get_futex_key_refs() in file-backed
676                  * cases, therefore a successful atomic_inc return below will
677                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
678                  */
679                 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680                         rcu_read_unlock();
681                         put_page(page);
682
683                         goto again;
684                 }
685
686                 /* Should be impossible but lets be paranoid for now */
687                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688                         err = -EFAULT;
689                         rcu_read_unlock();
690                         iput(inode);
691
692                         goto out;
693                 }
694
695                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696                 key->shared.inode = inode;
697                 key->shared.pgoff = basepage_index(tail);
698                 rcu_read_unlock();
699         }
700
701 out:
702         put_page(page);
703         return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708         drop_futex_key_refs(key);
709 }
710
711 /**
712  * fault_in_user_writeable() - Fault in user address and verify RW access
713  * @uaddr:      pointer to faulting user space address
714  *
715  * Slow path to fixup the fault we just took in the atomic write
716  * access to @uaddr.
717  *
718  * We have no generic implementation of a non-destructive write to the
719  * user address. We know that we faulted in the atomic pagefault
720  * disabled section so we can as well avoid the #PF overhead by
721  * calling get_user_pages() right away.
722  */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725         struct mm_struct *mm = current->mm;
726         int ret;
727
728         down_read(&mm->mmap_sem);
729         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730                                FAULT_FLAG_WRITE, NULL);
731         up_read(&mm->mmap_sem);
732
733         return ret < 0 ? ret : 0;
734 }
735
736 /**
737  * futex_top_waiter() - Return the highest priority waiter on a futex
738  * @hb:         the hash bucket the futex_q's reside in
739  * @key:        the futex key (to distinguish it from other futex futex_q's)
740  *
741  * Must be called with the hb lock held.
742  */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744                                         union futex_key *key)
745 {
746         struct futex_q *this;
747
748         plist_for_each_entry(this, &hb->chain, list) {
749                 if (match_futex(&this->key, key))
750                         return this;
751         }
752         return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756                                       u32 uval, u32 newval)
757 {
758         int ret;
759
760         pagefault_disable();
761         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762         pagefault_enable();
763
764         return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769         int ret;
770
771         pagefault_disable();
772         ret = __get_user(*dest, from);
773         pagefault_enable();
774
775         return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780  * PI code:
781  */
782 static int refill_pi_state_cache(void)
783 {
784         struct futex_pi_state *pi_state;
785
786         if (likely(current->pi_state_cache))
787                 return 0;
788
789         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791         if (!pi_state)
792                 return -ENOMEM;
793
794         INIT_LIST_HEAD(&pi_state->list);
795         /* pi_mutex gets initialized later */
796         pi_state->owner = NULL;
797         atomic_set(&pi_state->refcount, 1);
798         pi_state->key = FUTEX_KEY_INIT;
799
800         current->pi_state_cache = pi_state;
801
802         return 0;
803 }
804
805 static struct futex_pi_state * alloc_pi_state(void)
806 {
807         struct futex_pi_state *pi_state = current->pi_state_cache;
808
809         WARN_ON(!pi_state);
810         current->pi_state_cache = NULL;
811
812         return pi_state;
813 }
814
815 /*
816  * Drops a reference to the pi_state object and frees or caches it
817  * when the last reference is gone.
818  *
819  * Must be called with the hb lock held.
820  */
821 static void put_pi_state(struct futex_pi_state *pi_state)
822 {
823         if (!pi_state)
824                 return;
825
826         if (!atomic_dec_and_test(&pi_state->refcount))
827                 return;
828
829         /*
830          * If pi_state->owner is NULL, the owner is most probably dying
831          * and has cleaned up the pi_state already
832          */
833         if (pi_state->owner) {
834                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
835                 list_del_init(&pi_state->list);
836                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
837
838                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
839         }
840
841         if (current->pi_state_cache)
842                 kfree(pi_state);
843         else {
844                 /*
845                  * pi_state->list is already empty.
846                  * clear pi_state->owner.
847                  * refcount is at 0 - put it back to 1.
848                  */
849                 pi_state->owner = NULL;
850                 atomic_set(&pi_state->refcount, 1);
851                 current->pi_state_cache = pi_state;
852         }
853 }
854
855 /*
856  * Look up the task based on what TID userspace gave us.
857  * We dont trust it.
858  */
859 static struct task_struct * futex_find_get_task(pid_t pid)
860 {
861         struct task_struct *p;
862
863         rcu_read_lock();
864         p = find_task_by_vpid(pid);
865         if (p)
866                 get_task_struct(p);
867
868         rcu_read_unlock();
869
870         return p;
871 }
872
873 /*
874  * This task is holding PI mutexes at exit time => bad.
875  * Kernel cleans up PI-state, but userspace is likely hosed.
876  * (Robust-futex cleanup is separate and might save the day for userspace.)
877  */
878 void exit_pi_state_list(struct task_struct *curr)
879 {
880         struct list_head *next, *head = &curr->pi_state_list;
881         struct futex_pi_state *pi_state;
882         struct futex_hash_bucket *hb;
883         union futex_key key = FUTEX_KEY_INIT;
884
885         if (!futex_cmpxchg_enabled)
886                 return;
887         /*
888          * We are a ZOMBIE and nobody can enqueue itself on
889          * pi_state_list anymore, but we have to be careful
890          * versus waiters unqueueing themselves:
891          */
892         raw_spin_lock_irq(&curr->pi_lock);
893         while (!list_empty(head)) {
894
895                 next = head->next;
896                 pi_state = list_entry(next, struct futex_pi_state, list);
897                 key = pi_state->key;
898                 hb = hash_futex(&key);
899                 raw_spin_unlock_irq(&curr->pi_lock);
900
901                 spin_lock(&hb->lock);
902
903                 raw_spin_lock_irq(&curr->pi_lock);
904                 /*
905                  * We dropped the pi-lock, so re-check whether this
906                  * task still owns the PI-state:
907                  */
908                 if (head->next != next) {
909                         spin_unlock(&hb->lock);
910                         continue;
911                 }
912
913                 WARN_ON(pi_state->owner != curr);
914                 WARN_ON(list_empty(&pi_state->list));
915                 list_del_init(&pi_state->list);
916                 pi_state->owner = NULL;
917                 raw_spin_unlock_irq(&curr->pi_lock);
918
919                 rt_mutex_unlock(&pi_state->pi_mutex);
920
921                 spin_unlock(&hb->lock);
922
923                 raw_spin_lock_irq(&curr->pi_lock);
924         }
925         raw_spin_unlock_irq(&curr->pi_lock);
926 }
927
928 /*
929  * We need to check the following states:
930  *
931  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
932  *
933  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
934  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
935  *
936  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
937  *
938  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
939  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
940  *
941  * [6]  Found  | Found    | task      | 0         | 1      | Valid
942  *
943  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
944  *
945  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
946  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
947  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
948  *
949  * [1]  Indicates that the kernel can acquire the futex atomically. We
950  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
951  *
952  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
953  *      thread is found then it indicates that the owner TID has died.
954  *
955  * [3]  Invalid. The waiter is queued on a non PI futex
956  *
957  * [4]  Valid state after exit_robust_list(), which sets the user space
958  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
959  *
960  * [5]  The user space value got manipulated between exit_robust_list()
961  *      and exit_pi_state_list()
962  *
963  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
964  *      the pi_state but cannot access the user space value.
965  *
966  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
967  *
968  * [8]  Owner and user space value match
969  *
970  * [9]  There is no transient state which sets the user space TID to 0
971  *      except exit_robust_list(), but this is indicated by the
972  *      FUTEX_OWNER_DIED bit. See [4]
973  *
974  * [10] There is no transient state which leaves owner and user space
975  *      TID out of sync.
976  */
977
978 /*
979  * Validate that the existing waiter has a pi_state and sanity check
980  * the pi_state against the user space value. If correct, attach to
981  * it.
982  */
983 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
984                               struct futex_pi_state **ps)
985 {
986         pid_t pid = uval & FUTEX_TID_MASK;
987
988         /*
989          * Userspace might have messed up non-PI and PI futexes [3]
990          */
991         if (unlikely(!pi_state))
992                 return -EINVAL;
993
994         WARN_ON(!atomic_read(&pi_state->refcount));
995
996         /*
997          * Handle the owner died case:
998          */
999         if (uval & FUTEX_OWNER_DIED) {
1000                 /*
1001                  * exit_pi_state_list sets owner to NULL and wakes the
1002                  * topmost waiter. The task which acquires the
1003                  * pi_state->rt_mutex will fixup owner.
1004                  */
1005                 if (!pi_state->owner) {
1006                         /*
1007                          * No pi state owner, but the user space TID
1008                          * is not 0. Inconsistent state. [5]
1009                          */
1010                         if (pid)
1011                                 return -EINVAL;
1012                         /*
1013                          * Take a ref on the state and return success. [4]
1014                          */
1015                         goto out_state;
1016                 }
1017
1018                 /*
1019                  * If TID is 0, then either the dying owner has not
1020                  * yet executed exit_pi_state_list() or some waiter
1021                  * acquired the rtmutex in the pi state, but did not
1022                  * yet fixup the TID in user space.
1023                  *
1024                  * Take a ref on the state and return success. [6]
1025                  */
1026                 if (!pid)
1027                         goto out_state;
1028         } else {
1029                 /*
1030                  * If the owner died bit is not set, then the pi_state
1031                  * must have an owner. [7]
1032                  */
1033                 if (!pi_state->owner)
1034                         return -EINVAL;
1035         }
1036
1037         /*
1038          * Bail out if user space manipulated the futex value. If pi
1039          * state exists then the owner TID must be the same as the
1040          * user space TID. [9/10]
1041          */
1042         if (pid != task_pid_vnr(pi_state->owner))
1043                 return -EINVAL;
1044 out_state:
1045         atomic_inc(&pi_state->refcount);
1046         *ps = pi_state;
1047         return 0;
1048 }
1049
1050 /*
1051  * Lookup the task for the TID provided from user space and attach to
1052  * it after doing proper sanity checks.
1053  */
1054 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1055                               struct futex_pi_state **ps)
1056 {
1057         pid_t pid = uval & FUTEX_TID_MASK;
1058         struct futex_pi_state *pi_state;
1059         struct task_struct *p;
1060
1061         /*
1062          * We are the first waiter - try to look up the real owner and attach
1063          * the new pi_state to it, but bail out when TID = 0 [1]
1064          */
1065         if (!pid)
1066                 return -ESRCH;
1067         p = futex_find_get_task(pid);
1068         if (!p)
1069                 return -ESRCH;
1070
1071         if (unlikely(p->flags & PF_KTHREAD)) {
1072                 put_task_struct(p);
1073                 return -EPERM;
1074         }
1075
1076         /*
1077          * We need to look at the task state flags to figure out,
1078          * whether the task is exiting. To protect against the do_exit
1079          * change of the task flags, we do this protected by
1080          * p->pi_lock:
1081          */
1082         raw_spin_lock_irq(&p->pi_lock);
1083         if (unlikely(p->flags & PF_EXITING)) {
1084                 /*
1085                  * The task is on the way out. When PF_EXITPIDONE is
1086                  * set, we know that the task has finished the
1087                  * cleanup:
1088                  */
1089                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1090
1091                 raw_spin_unlock_irq(&p->pi_lock);
1092                 put_task_struct(p);
1093                 return ret;
1094         }
1095
1096         /*
1097          * No existing pi state. First waiter. [2]
1098          */
1099         pi_state = alloc_pi_state();
1100
1101         /*
1102          * Initialize the pi_mutex in locked state and make @p
1103          * the owner of it:
1104          */
1105         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1106
1107         /* Store the key for possible exit cleanups: */
1108         pi_state->key = *key;
1109
1110         WARN_ON(!list_empty(&pi_state->list));
1111         list_add(&pi_state->list, &p->pi_state_list);
1112         pi_state->owner = p;
1113         raw_spin_unlock_irq(&p->pi_lock);
1114
1115         put_task_struct(p);
1116
1117         *ps = pi_state;
1118
1119         return 0;
1120 }
1121
1122 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1123                            union futex_key *key, struct futex_pi_state **ps)
1124 {
1125         struct futex_q *match = futex_top_waiter(hb, key);
1126
1127         /*
1128          * If there is a waiter on that futex, validate it and
1129          * attach to the pi_state when the validation succeeds.
1130          */
1131         if (match)
1132                 return attach_to_pi_state(uval, match->pi_state, ps);
1133
1134         /*
1135          * We are the first waiter - try to look up the owner based on
1136          * @uval and attach to it.
1137          */
1138         return attach_to_pi_owner(uval, key, ps);
1139 }
1140
1141 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1142 {
1143         u32 uninitialized_var(curval);
1144
1145         if (unlikely(should_fail_futex(true)))
1146                 return -EFAULT;
1147
1148         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1149                 return -EFAULT;
1150
1151         /*If user space value changed, let the caller retry */
1152         return curval != uval ? -EAGAIN : 0;
1153 }
1154
1155 /**
1156  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1157  * @uaddr:              the pi futex user address
1158  * @hb:                 the pi futex hash bucket
1159  * @key:                the futex key associated with uaddr and hb
1160  * @ps:                 the pi_state pointer where we store the result of the
1161  *                      lookup
1162  * @task:               the task to perform the atomic lock work for.  This will
1163  *                      be "current" except in the case of requeue pi.
1164  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1165  *
1166  * Return:
1167  *  0 - ready to wait;
1168  *  1 - acquired the lock;
1169  * <0 - error
1170  *
1171  * The hb->lock and futex_key refs shall be held by the caller.
1172  */
1173 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1174                                 union futex_key *key,
1175                                 struct futex_pi_state **ps,
1176                                 struct task_struct *task, int set_waiters)
1177 {
1178         u32 uval, newval, vpid = task_pid_vnr(task);
1179         struct futex_q *match;
1180         int ret;
1181
1182         /*
1183          * Read the user space value first so we can validate a few
1184          * things before proceeding further.
1185          */
1186         if (get_futex_value_locked(&uval, uaddr))
1187                 return -EFAULT;
1188
1189         if (unlikely(should_fail_futex(true)))
1190                 return -EFAULT;
1191
1192         /*
1193          * Detect deadlocks.
1194          */
1195         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1196                 return -EDEADLK;
1197
1198         if ((unlikely(should_fail_futex(true))))
1199                 return -EDEADLK;
1200
1201         /*
1202          * Lookup existing state first. If it exists, try to attach to
1203          * its pi_state.
1204          */
1205         match = futex_top_waiter(hb, key);
1206         if (match)
1207                 return attach_to_pi_state(uval, match->pi_state, ps);
1208
1209         /*
1210          * No waiter and user TID is 0. We are here because the
1211          * waiters or the owner died bit is set or called from
1212          * requeue_cmp_pi or for whatever reason something took the
1213          * syscall.
1214          */
1215         if (!(uval & FUTEX_TID_MASK)) {
1216                 /*
1217                  * We take over the futex. No other waiters and the user space
1218                  * TID is 0. We preserve the owner died bit.
1219                  */
1220                 newval = uval & FUTEX_OWNER_DIED;
1221                 newval |= vpid;
1222
1223                 /* The futex requeue_pi code can enforce the waiters bit */
1224                 if (set_waiters)
1225                         newval |= FUTEX_WAITERS;
1226
1227                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228                 /* If the take over worked, return 1 */
1229                 return ret < 0 ? ret : 1;
1230         }
1231
1232         /*
1233          * First waiter. Set the waiters bit before attaching ourself to
1234          * the owner. If owner tries to unlock, it will be forced into
1235          * the kernel and blocked on hb->lock.
1236          */
1237         newval = uval | FUTEX_WAITERS;
1238         ret = lock_pi_update_atomic(uaddr, uval, newval);
1239         if (ret)
1240                 return ret;
1241         /*
1242          * If the update of the user space value succeeded, we try to
1243          * attach to the owner. If that fails, no harm done, we only
1244          * set the FUTEX_WAITERS bit in the user space variable.
1245          */
1246         return attach_to_pi_owner(uval, key, ps);
1247 }
1248
1249 /**
1250  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1251  * @q:  The futex_q to unqueue
1252  *
1253  * The q->lock_ptr must not be NULL and must be held by the caller.
1254  */
1255 static void __unqueue_futex(struct futex_q *q)
1256 {
1257         struct futex_hash_bucket *hb;
1258
1259         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1260             || WARN_ON(plist_node_empty(&q->list)))
1261                 return;
1262
1263         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1264         plist_del(&q->list, &hb->chain);
1265         hb_waiters_dec(hb);
1266 }
1267
1268 /*
1269  * The hash bucket lock must be held when this is called.
1270  * Afterwards, the futex_q must not be accessed. Callers
1271  * must ensure to later call wake_up_q() for the actual
1272  * wakeups to occur.
1273  */
1274 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1275 {
1276         struct task_struct *p = q->task;
1277
1278         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1279                 return;
1280
1281         /*
1282          * Queue the task for later wakeup for after we've released
1283          * the hb->lock. wake_q_add() grabs reference to p.
1284          */
1285         wake_q_add(wake_q, p);
1286         __unqueue_futex(q);
1287         /*
1288          * The waiting task can free the futex_q as soon as
1289          * q->lock_ptr = NULL is written, without taking any locks. A
1290          * memory barrier is required here to prevent the following
1291          * store to lock_ptr from getting ahead of the plist_del.
1292          */
1293         smp_wmb();
1294         q->lock_ptr = NULL;
1295 }
1296
1297 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1298                          struct futex_hash_bucket *hb)
1299 {
1300         struct task_struct *new_owner;
1301         struct futex_pi_state *pi_state = this->pi_state;
1302         u32 uninitialized_var(curval), newval;
1303         DEFINE_WAKE_Q(wake_q);
1304         bool deboost;
1305         int ret = 0;
1306
1307         if (!pi_state)
1308                 return -EINVAL;
1309
1310         /*
1311          * If current does not own the pi_state then the futex is
1312          * inconsistent and user space fiddled with the futex value.
1313          */
1314         if (pi_state->owner != current)
1315                 return -EINVAL;
1316
1317         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1318         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1319
1320         /*
1321          * It is possible that the next waiter (the one that brought
1322          * this owner to the kernel) timed out and is no longer
1323          * waiting on the lock.
1324          */
1325         if (!new_owner)
1326                 new_owner = this->task;
1327
1328         /*
1329          * We pass it to the next owner. The WAITERS bit is always
1330          * kept enabled while there is PI state around. We cleanup the
1331          * owner died bit, because we are the owner.
1332          */
1333         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1334
1335         if (unlikely(should_fail_futex(true)))
1336                 ret = -EFAULT;
1337
1338         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1339                 ret = -EFAULT;
1340         } else if (curval != uval) {
1341                 /*
1342                  * If a unconditional UNLOCK_PI operation (user space did not
1343                  * try the TID->0 transition) raced with a waiter setting the
1344                  * FUTEX_WAITERS flag between get_user() and locking the hash
1345                  * bucket lock, retry the operation.
1346                  */
1347                 if ((FUTEX_TID_MASK & curval) == uval)
1348                         ret = -EAGAIN;
1349                 else
1350                         ret = -EINVAL;
1351         }
1352         if (ret) {
1353                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1354                 return ret;
1355         }
1356
1357         raw_spin_lock(&pi_state->owner->pi_lock);
1358         WARN_ON(list_empty(&pi_state->list));
1359         list_del_init(&pi_state->list);
1360         raw_spin_unlock(&pi_state->owner->pi_lock);
1361
1362         raw_spin_lock(&new_owner->pi_lock);
1363         WARN_ON(!list_empty(&pi_state->list));
1364         list_add(&pi_state->list, &new_owner->pi_state_list);
1365         pi_state->owner = new_owner;
1366         raw_spin_unlock(&new_owner->pi_lock);
1367
1368         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1369
1370         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1371
1372         /*
1373          * First unlock HB so the waiter does not spin on it once he got woken
1374          * up. Second wake up the waiter before the priority is adjusted. If we
1375          * deboost first (and lose our higher priority), then the task might get
1376          * scheduled away before the wake up can take place.
1377          */
1378         spin_unlock(&hb->lock);
1379         wake_up_q(&wake_q);
1380         if (deboost)
1381                 rt_mutex_adjust_prio(current);
1382
1383         return 0;
1384 }
1385
1386 /*
1387  * Express the locking dependencies for lockdep:
1388  */
1389 static inline void
1390 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1391 {
1392         if (hb1 <= hb2) {
1393                 spin_lock(&hb1->lock);
1394                 if (hb1 < hb2)
1395                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1396         } else { /* hb1 > hb2 */
1397                 spin_lock(&hb2->lock);
1398                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1399         }
1400 }
1401
1402 static inline void
1403 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1404 {
1405         spin_unlock(&hb1->lock);
1406         if (hb1 != hb2)
1407                 spin_unlock(&hb2->lock);
1408 }
1409
1410 /*
1411  * Wake up waiters matching bitset queued on this futex (uaddr).
1412  */
1413 static int
1414 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1415 {
1416         struct futex_hash_bucket *hb;
1417         struct futex_q *this, *next;
1418         union futex_key key = FUTEX_KEY_INIT;
1419         int ret;
1420         DEFINE_WAKE_Q(wake_q);
1421
1422         if (!bitset)
1423                 return -EINVAL;
1424
1425         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1426         if (unlikely(ret != 0))
1427                 goto out;
1428
1429         hb = hash_futex(&key);
1430
1431         /* Make sure we really have tasks to wakeup */
1432         if (!hb_waiters_pending(hb))
1433                 goto out_put_key;
1434
1435         spin_lock(&hb->lock);
1436
1437         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1438                 if (match_futex (&this->key, &key)) {
1439                         if (this->pi_state || this->rt_waiter) {
1440                                 ret = -EINVAL;
1441                                 break;
1442                         }
1443
1444                         /* Check if one of the bits is set in both bitsets */
1445                         if (!(this->bitset & bitset))
1446                                 continue;
1447
1448                         mark_wake_futex(&wake_q, this);
1449                         if (++ret >= nr_wake)
1450                                 break;
1451                 }
1452         }
1453
1454         spin_unlock(&hb->lock);
1455         wake_up_q(&wake_q);
1456 out_put_key:
1457         put_futex_key(&key);
1458 out:
1459         return ret;
1460 }
1461
1462 /*
1463  * Wake up all waiters hashed on the physical page that is mapped
1464  * to this virtual address:
1465  */
1466 static int
1467 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1468               int nr_wake, int nr_wake2, int op)
1469 {
1470         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1471         struct futex_hash_bucket *hb1, *hb2;
1472         struct futex_q *this, *next;
1473         int ret, op_ret;
1474         DEFINE_WAKE_Q(wake_q);
1475
1476 retry:
1477         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1478         if (unlikely(ret != 0))
1479                 goto out;
1480         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1481         if (unlikely(ret != 0))
1482                 goto out_put_key1;
1483
1484         hb1 = hash_futex(&key1);
1485         hb2 = hash_futex(&key2);
1486
1487 retry_private:
1488         double_lock_hb(hb1, hb2);
1489         op_ret = futex_atomic_op_inuser(op, uaddr2);
1490         if (unlikely(op_ret < 0)) {
1491
1492                 double_unlock_hb(hb1, hb2);
1493
1494 #ifndef CONFIG_MMU
1495                 /*
1496                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1497                  * but we might get them from range checking
1498                  */
1499                 ret = op_ret;
1500                 goto out_put_keys;
1501 #endif
1502
1503                 if (unlikely(op_ret != -EFAULT)) {
1504                         ret = op_ret;
1505                         goto out_put_keys;
1506                 }
1507
1508                 ret = fault_in_user_writeable(uaddr2);
1509                 if (ret)
1510                         goto out_put_keys;
1511
1512                 if (!(flags & FLAGS_SHARED))
1513                         goto retry_private;
1514
1515                 put_futex_key(&key2);
1516                 put_futex_key(&key1);
1517                 goto retry;
1518         }
1519
1520         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1521                 if (match_futex (&this->key, &key1)) {
1522                         if (this->pi_state || this->rt_waiter) {
1523                                 ret = -EINVAL;
1524                                 goto out_unlock;
1525                         }
1526                         mark_wake_futex(&wake_q, this);
1527                         if (++ret >= nr_wake)
1528                                 break;
1529                 }
1530         }
1531
1532         if (op_ret > 0) {
1533                 op_ret = 0;
1534                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1535                         if (match_futex (&this->key, &key2)) {
1536                                 if (this->pi_state || this->rt_waiter) {
1537                                         ret = -EINVAL;
1538                                         goto out_unlock;
1539                                 }
1540                                 mark_wake_futex(&wake_q, this);
1541                                 if (++op_ret >= nr_wake2)
1542                                         break;
1543                         }
1544                 }
1545                 ret += op_ret;
1546         }
1547
1548 out_unlock:
1549         double_unlock_hb(hb1, hb2);
1550         wake_up_q(&wake_q);
1551 out_put_keys:
1552         put_futex_key(&key2);
1553 out_put_key1:
1554         put_futex_key(&key1);
1555 out:
1556         return ret;
1557 }
1558
1559 /**
1560  * requeue_futex() - Requeue a futex_q from one hb to another
1561  * @q:          the futex_q to requeue
1562  * @hb1:        the source hash_bucket
1563  * @hb2:        the target hash_bucket
1564  * @key2:       the new key for the requeued futex_q
1565  */
1566 static inline
1567 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1568                    struct futex_hash_bucket *hb2, union futex_key *key2)
1569 {
1570
1571         /*
1572          * If key1 and key2 hash to the same bucket, no need to
1573          * requeue.
1574          */
1575         if (likely(&hb1->chain != &hb2->chain)) {
1576                 plist_del(&q->list, &hb1->chain);
1577                 hb_waiters_dec(hb1);
1578                 hb_waiters_inc(hb2);
1579                 plist_add(&q->list, &hb2->chain);
1580                 q->lock_ptr = &hb2->lock;
1581         }
1582         get_futex_key_refs(key2);
1583         q->key = *key2;
1584 }
1585
1586 /**
1587  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1588  * @q:          the futex_q
1589  * @key:        the key of the requeue target futex
1590  * @hb:         the hash_bucket of the requeue target futex
1591  *
1592  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1593  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1594  * to the requeue target futex so the waiter can detect the wakeup on the right
1595  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1596  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1597  * to protect access to the pi_state to fixup the owner later.  Must be called
1598  * with both q->lock_ptr and hb->lock held.
1599  */
1600 static inline
1601 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1602                            struct futex_hash_bucket *hb)
1603 {
1604         get_futex_key_refs(key);
1605         q->key = *key;
1606
1607         __unqueue_futex(q);
1608
1609         WARN_ON(!q->rt_waiter);
1610         q->rt_waiter = NULL;
1611
1612         q->lock_ptr = &hb->lock;
1613
1614         wake_up_state(q->task, TASK_NORMAL);
1615 }
1616
1617 /**
1618  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1619  * @pifutex:            the user address of the to futex
1620  * @hb1:                the from futex hash bucket, must be locked by the caller
1621  * @hb2:                the to futex hash bucket, must be locked by the caller
1622  * @key1:               the from futex key
1623  * @key2:               the to futex key
1624  * @ps:                 address to store the pi_state pointer
1625  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1626  *
1627  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1628  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1629  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1630  * hb1 and hb2 must be held by the caller.
1631  *
1632  * Return:
1633  *  0 - failed to acquire the lock atomically;
1634  * >0 - acquired the lock, return value is vpid of the top_waiter
1635  * <0 - error
1636  */
1637 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1638                                  struct futex_hash_bucket *hb1,
1639                                  struct futex_hash_bucket *hb2,
1640                                  union futex_key *key1, union futex_key *key2,
1641                                  struct futex_pi_state **ps, int set_waiters)
1642 {
1643         struct futex_q *top_waiter = NULL;
1644         u32 curval;
1645         int ret, vpid;
1646
1647         if (get_futex_value_locked(&curval, pifutex))
1648                 return -EFAULT;
1649
1650         if (unlikely(should_fail_futex(true)))
1651                 return -EFAULT;
1652
1653         /*
1654          * Find the top_waiter and determine if there are additional waiters.
1655          * If the caller intends to requeue more than 1 waiter to pifutex,
1656          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1657          * as we have means to handle the possible fault.  If not, don't set
1658          * the bit unecessarily as it will force the subsequent unlock to enter
1659          * the kernel.
1660          */
1661         top_waiter = futex_top_waiter(hb1, key1);
1662
1663         /* There are no waiters, nothing for us to do. */
1664         if (!top_waiter)
1665                 return 0;
1666
1667         /* Ensure we requeue to the expected futex. */
1668         if (!match_futex(top_waiter->requeue_pi_key, key2))
1669                 return -EINVAL;
1670
1671         /*
1672          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1673          * the contended case or if set_waiters is 1.  The pi_state is returned
1674          * in ps in contended cases.
1675          */
1676         vpid = task_pid_vnr(top_waiter->task);
1677         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1678                                    set_waiters);
1679         if (ret == 1) {
1680                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1681                 return vpid;
1682         }
1683         return ret;
1684 }
1685
1686 /**
1687  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1688  * @uaddr1:     source futex user address
1689  * @flags:      futex flags (FLAGS_SHARED, etc.)
1690  * @uaddr2:     target futex user address
1691  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1692  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1693  * @cmpval:     @uaddr1 expected value (or %NULL)
1694  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1695  *              pi futex (pi to pi requeue is not supported)
1696  *
1697  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1698  * uaddr2 atomically on behalf of the top waiter.
1699  *
1700  * Return:
1701  * >=0 - on success, the number of tasks requeued or woken;
1702  *  <0 - on error
1703  */
1704 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1705                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1706                          u32 *cmpval, int requeue_pi)
1707 {
1708         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1709         int drop_count = 0, task_count = 0, ret;
1710         struct futex_pi_state *pi_state = NULL;
1711         struct futex_hash_bucket *hb1, *hb2;
1712         struct futex_q *this, *next;
1713         DEFINE_WAKE_Q(wake_q);
1714
1715         if (requeue_pi) {
1716                 /*
1717                  * Requeue PI only works on two distinct uaddrs. This
1718                  * check is only valid for private futexes. See below.
1719                  */
1720                 if (uaddr1 == uaddr2)
1721                         return -EINVAL;
1722
1723                 /*
1724                  * requeue_pi requires a pi_state, try to allocate it now
1725                  * without any locks in case it fails.
1726                  */
1727                 if (refill_pi_state_cache())
1728                         return -ENOMEM;
1729                 /*
1730                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1731                  * + nr_requeue, since it acquires the rt_mutex prior to
1732                  * returning to userspace, so as to not leave the rt_mutex with
1733                  * waiters and no owner.  However, second and third wake-ups
1734                  * cannot be predicted as they involve race conditions with the
1735                  * first wake and a fault while looking up the pi_state.  Both
1736                  * pthread_cond_signal() and pthread_cond_broadcast() should
1737                  * use nr_wake=1.
1738                  */
1739                 if (nr_wake != 1)
1740                         return -EINVAL;
1741         }
1742
1743 retry:
1744         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1745         if (unlikely(ret != 0))
1746                 goto out;
1747         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1748                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1749         if (unlikely(ret != 0))
1750                 goto out_put_key1;
1751
1752         /*
1753          * The check above which compares uaddrs is not sufficient for
1754          * shared futexes. We need to compare the keys:
1755          */
1756         if (requeue_pi && match_futex(&key1, &key2)) {
1757                 ret = -EINVAL;
1758                 goto out_put_keys;
1759         }
1760
1761         hb1 = hash_futex(&key1);
1762         hb2 = hash_futex(&key2);
1763
1764 retry_private:
1765         hb_waiters_inc(hb2);
1766         double_lock_hb(hb1, hb2);
1767
1768         if (likely(cmpval != NULL)) {
1769                 u32 curval;
1770
1771                 ret = get_futex_value_locked(&curval, uaddr1);
1772
1773                 if (unlikely(ret)) {
1774                         double_unlock_hb(hb1, hb2);
1775                         hb_waiters_dec(hb2);
1776
1777                         ret = get_user(curval, uaddr1);
1778                         if (ret)
1779                                 goto out_put_keys;
1780
1781                         if (!(flags & FLAGS_SHARED))
1782                                 goto retry_private;
1783
1784                         put_futex_key(&key2);
1785                         put_futex_key(&key1);
1786                         goto retry;
1787                 }
1788                 if (curval != *cmpval) {
1789                         ret = -EAGAIN;
1790                         goto out_unlock;
1791                 }
1792         }
1793
1794         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1795                 /*
1796                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1797                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1798                  * bit.  We force this here where we are able to easily handle
1799                  * faults rather in the requeue loop below.
1800                  */
1801                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1802                                                  &key2, &pi_state, nr_requeue);
1803
1804                 /*
1805                  * At this point the top_waiter has either taken uaddr2 or is
1806                  * waiting on it.  If the former, then the pi_state will not
1807                  * exist yet, look it up one more time to ensure we have a
1808                  * reference to it. If the lock was taken, ret contains the
1809                  * vpid of the top waiter task.
1810                  * If the lock was not taken, we have pi_state and an initial
1811                  * refcount on it. In case of an error we have nothing.
1812                  */
1813                 if (ret > 0) {
1814                         WARN_ON(pi_state);
1815                         drop_count++;
1816                         task_count++;
1817                         /*
1818                          * If we acquired the lock, then the user space value
1819                          * of uaddr2 should be vpid. It cannot be changed by
1820                          * the top waiter as it is blocked on hb2 lock if it
1821                          * tries to do so. If something fiddled with it behind
1822                          * our back the pi state lookup might unearth it. So
1823                          * we rather use the known value than rereading and
1824                          * handing potential crap to lookup_pi_state.
1825                          *
1826                          * If that call succeeds then we have pi_state and an
1827                          * initial refcount on it.
1828                          */
1829                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1830                 }
1831
1832                 switch (ret) {
1833                 case 0:
1834                         /* We hold a reference on the pi state. */
1835                         break;
1836
1837                         /* If the above failed, then pi_state is NULL */
1838                 case -EFAULT:
1839                         double_unlock_hb(hb1, hb2);
1840                         hb_waiters_dec(hb2);
1841                         put_futex_key(&key2);
1842                         put_futex_key(&key1);
1843                         ret = fault_in_user_writeable(uaddr2);
1844                         if (!ret)
1845                                 goto retry;
1846                         goto out;
1847                 case -EAGAIN:
1848                         /*
1849                          * Two reasons for this:
1850                          * - Owner is exiting and we just wait for the
1851                          *   exit to complete.
1852                          * - The user space value changed.
1853                          */
1854                         double_unlock_hb(hb1, hb2);
1855                         hb_waiters_dec(hb2);
1856                         put_futex_key(&key2);
1857                         put_futex_key(&key1);
1858                         cond_resched();
1859                         goto retry;
1860                 default:
1861                         goto out_unlock;
1862                 }
1863         }
1864
1865         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1866                 if (task_count - nr_wake >= nr_requeue)
1867                         break;
1868
1869                 if (!match_futex(&this->key, &key1))
1870                         continue;
1871
1872                 /*
1873                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1874                  * be paired with each other and no other futex ops.
1875                  *
1876                  * We should never be requeueing a futex_q with a pi_state,
1877                  * which is awaiting a futex_unlock_pi().
1878                  */
1879                 if ((requeue_pi && !this->rt_waiter) ||
1880                     (!requeue_pi && this->rt_waiter) ||
1881                     this->pi_state) {
1882                         ret = -EINVAL;
1883                         break;
1884                 }
1885
1886                 /*
1887                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1888                  * lock, we already woke the top_waiter.  If not, it will be
1889                  * woken by futex_unlock_pi().
1890                  */
1891                 if (++task_count <= nr_wake && !requeue_pi) {
1892                         mark_wake_futex(&wake_q, this);
1893                         continue;
1894                 }
1895
1896                 /* Ensure we requeue to the expected futex for requeue_pi. */
1897                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1898                         ret = -EINVAL;
1899                         break;
1900                 }
1901
1902                 /*
1903                  * Requeue nr_requeue waiters and possibly one more in the case
1904                  * of requeue_pi if we couldn't acquire the lock atomically.
1905                  */
1906                 if (requeue_pi) {
1907                         /*
1908                          * Prepare the waiter to take the rt_mutex. Take a
1909                          * refcount on the pi_state and store the pointer in
1910                          * the futex_q object of the waiter.
1911                          */
1912                         atomic_inc(&pi_state->refcount);
1913                         this->pi_state = pi_state;
1914                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1915                                                         this->rt_waiter,
1916                                                         this->task);
1917                         if (ret == 1) {
1918                                 /*
1919                                  * We got the lock. We do neither drop the
1920                                  * refcount on pi_state nor clear
1921                                  * this->pi_state because the waiter needs the
1922                                  * pi_state for cleaning up the user space
1923                                  * value. It will drop the refcount after
1924                                  * doing so.
1925                                  */
1926                                 requeue_pi_wake_futex(this, &key2, hb2);
1927                                 drop_count++;
1928                                 continue;
1929                         } else if (ret) {
1930                                 /*
1931                                  * rt_mutex_start_proxy_lock() detected a
1932                                  * potential deadlock when we tried to queue
1933                                  * that waiter. Drop the pi_state reference
1934                                  * which we took above and remove the pointer
1935                                  * to the state from the waiters futex_q
1936                                  * object.
1937                                  */
1938                                 this->pi_state = NULL;
1939                                 put_pi_state(pi_state);
1940                                 /*
1941                                  * We stop queueing more waiters and let user
1942                                  * space deal with the mess.
1943                                  */
1944                                 break;
1945                         }
1946                 }
1947                 requeue_futex(this, hb1, hb2, &key2);
1948                 drop_count++;
1949         }
1950
1951         /*
1952          * We took an extra initial reference to the pi_state either
1953          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1954          * need to drop it here again.
1955          */
1956         put_pi_state(pi_state);
1957
1958 out_unlock:
1959         double_unlock_hb(hb1, hb2);
1960         wake_up_q(&wake_q);
1961         hb_waiters_dec(hb2);
1962
1963         /*
1964          * drop_futex_key_refs() must be called outside the spinlocks. During
1965          * the requeue we moved futex_q's from the hash bucket at key1 to the
1966          * one at key2 and updated their key pointer.  We no longer need to
1967          * hold the references to key1.
1968          */
1969         while (--drop_count >= 0)
1970                 drop_futex_key_refs(&key1);
1971
1972 out_put_keys:
1973         put_futex_key(&key2);
1974 out_put_key1:
1975         put_futex_key(&key1);
1976 out:
1977         return ret ? ret : task_count;
1978 }
1979
1980 /* The key must be already stored in q->key. */
1981 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1982         __acquires(&hb->lock)
1983 {
1984         struct futex_hash_bucket *hb;
1985
1986         hb = hash_futex(&q->key);
1987
1988         /*
1989          * Increment the counter before taking the lock so that
1990          * a potential waker won't miss a to-be-slept task that is
1991          * waiting for the spinlock. This is safe as all queue_lock()
1992          * users end up calling queue_me(). Similarly, for housekeeping,
1993          * decrement the counter at queue_unlock() when some error has
1994          * occurred and we don't end up adding the task to the list.
1995          */
1996         hb_waiters_inc(hb);
1997
1998         q->lock_ptr = &hb->lock;
1999
2000         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2001         return hb;
2002 }
2003
2004 static inline void
2005 queue_unlock(struct futex_hash_bucket *hb)
2006         __releases(&hb->lock)
2007 {
2008         spin_unlock(&hb->lock);
2009         hb_waiters_dec(hb);
2010 }
2011
2012 /**
2013  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2014  * @q:  The futex_q to enqueue
2015  * @hb: The destination hash bucket
2016  *
2017  * The hb->lock must be held by the caller, and is released here. A call to
2018  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2019  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2020  * or nothing if the unqueue is done as part of the wake process and the unqueue
2021  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2022  * an example).
2023  */
2024 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2025         __releases(&hb->lock)
2026 {
2027         int prio;
2028
2029         /*
2030          * The priority used to register this element is
2031          * - either the real thread-priority for the real-time threads
2032          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2033          * - or MAX_RT_PRIO for non-RT threads.
2034          * Thus, all RT-threads are woken first in priority order, and
2035          * the others are woken last, in FIFO order.
2036          */
2037         prio = min(current->normal_prio, MAX_RT_PRIO);
2038
2039         plist_node_init(&q->list, prio);
2040         plist_add(&q->list, &hb->chain);
2041         q->task = current;
2042         spin_unlock(&hb->lock);
2043 }
2044
2045 /**
2046  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2047  * @q:  The futex_q to unqueue
2048  *
2049  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2050  * be paired with exactly one earlier call to queue_me().
2051  *
2052  * Return:
2053  *   1 - if the futex_q was still queued (and we removed unqueued it);
2054  *   0 - if the futex_q was already removed by the waking thread
2055  */
2056 static int unqueue_me(struct futex_q *q)
2057 {
2058         spinlock_t *lock_ptr;
2059         int ret = 0;
2060
2061         /* In the common case we don't take the spinlock, which is nice. */
2062 retry:
2063         /*
2064          * q->lock_ptr can change between this read and the following spin_lock.
2065          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2066          * optimizing lock_ptr out of the logic below.
2067          */
2068         lock_ptr = READ_ONCE(q->lock_ptr);
2069         if (lock_ptr != NULL) {
2070                 spin_lock(lock_ptr);
2071                 /*
2072                  * q->lock_ptr can change between reading it and
2073                  * spin_lock(), causing us to take the wrong lock.  This
2074                  * corrects the race condition.
2075                  *
2076                  * Reasoning goes like this: if we have the wrong lock,
2077                  * q->lock_ptr must have changed (maybe several times)
2078                  * between reading it and the spin_lock().  It can
2079                  * change again after the spin_lock() but only if it was
2080                  * already changed before the spin_lock().  It cannot,
2081                  * however, change back to the original value.  Therefore
2082                  * we can detect whether we acquired the correct lock.
2083                  */
2084                 if (unlikely(lock_ptr != q->lock_ptr)) {
2085                         spin_unlock(lock_ptr);
2086                         goto retry;
2087                 }
2088                 __unqueue_futex(q);
2089
2090                 BUG_ON(q->pi_state);
2091
2092                 spin_unlock(lock_ptr);
2093                 ret = 1;
2094         }
2095
2096         drop_futex_key_refs(&q->key);
2097         return ret;
2098 }
2099
2100 /*
2101  * PI futexes can not be requeued and must remove themself from the
2102  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2103  * and dropped here.
2104  */
2105 static void unqueue_me_pi(struct futex_q *q)
2106         __releases(q->lock_ptr)
2107 {
2108         __unqueue_futex(q);
2109
2110         BUG_ON(!q->pi_state);
2111         put_pi_state(q->pi_state);
2112         q->pi_state = NULL;
2113
2114         spin_unlock(q->lock_ptr);
2115 }
2116
2117 /*
2118  * Fixup the pi_state owner with the new owner.
2119  *
2120  * Must be called with hash bucket lock held and mm->sem held for non
2121  * private futexes.
2122  */
2123 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2124                                 struct task_struct *newowner)
2125 {
2126         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2127         struct futex_pi_state *pi_state = q->pi_state;
2128         struct task_struct *oldowner = pi_state->owner;
2129         u32 uval, uninitialized_var(curval), newval;
2130         int ret;
2131
2132         /* Owner died? */
2133         if (!pi_state->owner)
2134                 newtid |= FUTEX_OWNER_DIED;
2135
2136         /*
2137          * We are here either because we stole the rtmutex from the
2138          * previous highest priority waiter or we are the highest priority
2139          * waiter but failed to get the rtmutex the first time.
2140          * We have to replace the newowner TID in the user space variable.
2141          * This must be atomic as we have to preserve the owner died bit here.
2142          *
2143          * Note: We write the user space value _before_ changing the pi_state
2144          * because we can fault here. Imagine swapped out pages or a fork
2145          * that marked all the anonymous memory readonly for cow.
2146          *
2147          * Modifying pi_state _before_ the user space value would
2148          * leave the pi_state in an inconsistent state when we fault
2149          * here, because we need to drop the hash bucket lock to
2150          * handle the fault. This might be observed in the PID check
2151          * in lookup_pi_state.
2152          */
2153 retry:
2154         if (get_futex_value_locked(&uval, uaddr))
2155                 goto handle_fault;
2156
2157         while (1) {
2158                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2159
2160                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2161                         goto handle_fault;
2162                 if (curval == uval)
2163                         break;
2164                 uval = curval;
2165         }
2166
2167         /*
2168          * We fixed up user space. Now we need to fix the pi_state
2169          * itself.
2170          */
2171         if (pi_state->owner != NULL) {
2172                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2173                 WARN_ON(list_empty(&pi_state->list));
2174                 list_del_init(&pi_state->list);
2175                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2176         }
2177
2178         pi_state->owner = newowner;
2179
2180         raw_spin_lock_irq(&newowner->pi_lock);
2181         WARN_ON(!list_empty(&pi_state->list));
2182         list_add(&pi_state->list, &newowner->pi_state_list);
2183         raw_spin_unlock_irq(&newowner->pi_lock);
2184         return 0;
2185
2186         /*
2187          * To handle the page fault we need to drop the hash bucket
2188          * lock here. That gives the other task (either the highest priority
2189          * waiter itself or the task which stole the rtmutex) the
2190          * chance to try the fixup of the pi_state. So once we are
2191          * back from handling the fault we need to check the pi_state
2192          * after reacquiring the hash bucket lock and before trying to
2193          * do another fixup. When the fixup has been done already we
2194          * simply return.
2195          */
2196 handle_fault:
2197         spin_unlock(q->lock_ptr);
2198
2199         ret = fault_in_user_writeable(uaddr);
2200
2201         spin_lock(q->lock_ptr);
2202
2203         /*
2204          * Check if someone else fixed it for us:
2205          */
2206         if (pi_state->owner != oldowner)
2207                 return 0;
2208
2209         if (ret)
2210                 return ret;
2211
2212         goto retry;
2213 }
2214
2215 static long futex_wait_restart(struct restart_block *restart);
2216
2217 /**
2218  * fixup_owner() - Post lock pi_state and corner case management
2219  * @uaddr:      user address of the futex
2220  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2221  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2222  *
2223  * After attempting to lock an rt_mutex, this function is called to cleanup
2224  * the pi_state owner as well as handle race conditions that may allow us to
2225  * acquire the lock. Must be called with the hb lock held.
2226  *
2227  * Return:
2228  *  1 - success, lock taken;
2229  *  0 - success, lock not taken;
2230  * <0 - on error (-EFAULT)
2231  */
2232 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2233 {
2234         struct task_struct *owner;
2235         int ret = 0;
2236
2237         if (locked) {
2238                 /*
2239                  * Got the lock. We might not be the anticipated owner if we
2240                  * did a lock-steal - fix up the PI-state in that case:
2241                  */
2242                 if (q->pi_state->owner != current)
2243                         ret = fixup_pi_state_owner(uaddr, q, current);
2244                 goto out;
2245         }
2246
2247         /*
2248          * Catch the rare case, where the lock was released when we were on the
2249          * way back before we locked the hash bucket.
2250          */
2251         if (q->pi_state->owner == current) {
2252                 /*
2253                  * Try to get the rt_mutex now. This might fail as some other
2254                  * task acquired the rt_mutex after we removed ourself from the
2255                  * rt_mutex waiters list.
2256                  */
2257                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2258                         locked = 1;
2259                         goto out;
2260                 }
2261
2262                 /*
2263                  * pi_state is incorrect, some other task did a lock steal and
2264                  * we returned due to timeout or signal without taking the
2265                  * rt_mutex. Too late.
2266                  */
2267                 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2268                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2269                 if (!owner)
2270                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2271                 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2272                 ret = fixup_pi_state_owner(uaddr, q, owner);
2273                 goto out;
2274         }
2275
2276         /*
2277          * Paranoia check. If we did not take the lock, then we should not be
2278          * the owner of the rt_mutex.
2279          */
2280         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2281                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2282                                 "pi-state %p\n", ret,
2283                                 q->pi_state->pi_mutex.owner,
2284                                 q->pi_state->owner);
2285
2286 out:
2287         return ret ? ret : locked;
2288 }
2289
2290 /**
2291  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2292  * @hb:         the futex hash bucket, must be locked by the caller
2293  * @q:          the futex_q to queue up on
2294  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2295  */
2296 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2297                                 struct hrtimer_sleeper *timeout)
2298 {
2299         /*
2300          * The task state is guaranteed to be set before another task can
2301          * wake it. set_current_state() is implemented using smp_store_mb() and
2302          * queue_me() calls spin_unlock() upon completion, both serializing
2303          * access to the hash list and forcing another memory barrier.
2304          */
2305         set_current_state(TASK_INTERRUPTIBLE);
2306         queue_me(q, hb);
2307
2308         /* Arm the timer */
2309         if (timeout)
2310                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2311
2312         /*
2313          * If we have been removed from the hash list, then another task
2314          * has tried to wake us, and we can skip the call to schedule().
2315          */
2316         if (likely(!plist_node_empty(&q->list))) {
2317                 /*
2318                  * If the timer has already expired, current will already be
2319                  * flagged for rescheduling. Only call schedule if there
2320                  * is no timeout, or if it has yet to expire.
2321                  */
2322                 if (!timeout || timeout->task)
2323                         freezable_schedule();
2324         }
2325         __set_current_state(TASK_RUNNING);
2326 }
2327
2328 /**
2329  * futex_wait_setup() - Prepare to wait on a futex
2330  * @uaddr:      the futex userspace address
2331  * @val:        the expected value
2332  * @flags:      futex flags (FLAGS_SHARED, etc.)
2333  * @q:          the associated futex_q
2334  * @hb:         storage for hash_bucket pointer to be returned to caller
2335  *
2336  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2337  * compare it with the expected value.  Handle atomic faults internally.
2338  * Return with the hb lock held and a q.key reference on success, and unlocked
2339  * with no q.key reference on failure.
2340  *
2341  * Return:
2342  *  0 - uaddr contains val and hb has been locked;
2343  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2344  */
2345 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2346                            struct futex_q *q, struct futex_hash_bucket **hb)
2347 {
2348         u32 uval;
2349         int ret;
2350
2351         /*
2352          * Access the page AFTER the hash-bucket is locked.
2353          * Order is important:
2354          *
2355          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2356          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2357          *
2358          * The basic logical guarantee of a futex is that it blocks ONLY
2359          * if cond(var) is known to be true at the time of blocking, for
2360          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2361          * would open a race condition where we could block indefinitely with
2362          * cond(var) false, which would violate the guarantee.
2363          *
2364          * On the other hand, we insert q and release the hash-bucket only
2365          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2366          * absorb a wakeup if *uaddr does not match the desired values
2367          * while the syscall executes.
2368          */
2369 retry:
2370         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2371         if (unlikely(ret != 0))
2372                 return ret;
2373
2374 retry_private:
2375         *hb = queue_lock(q);
2376
2377         ret = get_futex_value_locked(&uval, uaddr);
2378
2379         if (ret) {
2380                 queue_unlock(*hb);
2381
2382                 ret = get_user(uval, uaddr);
2383                 if (ret)
2384                         goto out;
2385
2386                 if (!(flags & FLAGS_SHARED))
2387                         goto retry_private;
2388
2389                 put_futex_key(&q->key);
2390                 goto retry;
2391         }
2392
2393         if (uval != val) {
2394                 queue_unlock(*hb);
2395                 ret = -EWOULDBLOCK;
2396         }
2397
2398 out:
2399         if (ret)
2400                 put_futex_key(&q->key);
2401         return ret;
2402 }
2403
2404 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2405                       ktime_t *abs_time, u32 bitset)
2406 {
2407         struct hrtimer_sleeper timeout, *to = NULL;
2408         struct restart_block *restart;
2409         struct futex_hash_bucket *hb;
2410         struct futex_q q = futex_q_init;
2411         int ret;
2412
2413         if (!bitset)
2414                 return -EINVAL;
2415         q.bitset = bitset;
2416
2417         if (abs_time) {
2418                 to = &timeout;
2419
2420                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2421                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2422                                       HRTIMER_MODE_ABS);
2423                 hrtimer_init_sleeper(to, current);
2424                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2425                                              current->timer_slack_ns);
2426         }
2427
2428 retry:
2429         /*
2430          * Prepare to wait on uaddr. On success, holds hb lock and increments
2431          * q.key refs.
2432          */
2433         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2434         if (ret)
2435                 goto out;
2436
2437         /* queue_me and wait for wakeup, timeout, or a signal. */
2438         futex_wait_queue_me(hb, &q, to);
2439
2440         /* If we were woken (and unqueued), we succeeded, whatever. */
2441         ret = 0;
2442         /* unqueue_me() drops q.key ref */
2443         if (!unqueue_me(&q))
2444                 goto out;
2445         ret = -ETIMEDOUT;
2446         if (to && !to->task)
2447                 goto out;
2448
2449         /*
2450          * We expect signal_pending(current), but we might be the
2451          * victim of a spurious wakeup as well.
2452          */
2453         if (!signal_pending(current))
2454                 goto retry;
2455
2456         ret = -ERESTARTSYS;
2457         if (!abs_time)
2458                 goto out;
2459
2460         restart = &current->restart_block;
2461         restart->fn = futex_wait_restart;
2462         restart->futex.uaddr = uaddr;
2463         restart->futex.val = val;
2464         restart->futex.time = *abs_time;
2465         restart->futex.bitset = bitset;
2466         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2467
2468         ret = -ERESTART_RESTARTBLOCK;
2469
2470 out:
2471         if (to) {
2472                 hrtimer_cancel(&to->timer);
2473                 destroy_hrtimer_on_stack(&to->timer);
2474         }
2475         return ret;
2476 }
2477
2478
2479 static long futex_wait_restart(struct restart_block *restart)
2480 {
2481         u32 __user *uaddr = restart->futex.uaddr;
2482         ktime_t t, *tp = NULL;
2483
2484         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2485                 t = restart->futex.time;
2486                 tp = &t;
2487         }
2488         restart->fn = do_no_restart_syscall;
2489
2490         return (long)futex_wait(uaddr, restart->futex.flags,
2491                                 restart->futex.val, tp, restart->futex.bitset);
2492 }
2493
2494
2495 /*
2496  * Userspace tried a 0 -> TID atomic transition of the futex value
2497  * and failed. The kernel side here does the whole locking operation:
2498  * if there are waiters then it will block as a consequence of relying
2499  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2500  * a 0 value of the futex too.).
2501  *
2502  * Also serves as futex trylock_pi()'ing, and due semantics.
2503  */
2504 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2505                          ktime_t *time, int trylock)
2506 {
2507         struct hrtimer_sleeper timeout, *to = NULL;
2508         struct futex_hash_bucket *hb;
2509         struct futex_q q = futex_q_init;
2510         int res, ret;
2511
2512         if (refill_pi_state_cache())
2513                 return -ENOMEM;
2514
2515         if (time) {
2516                 to = &timeout;
2517                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2518                                       HRTIMER_MODE_ABS);
2519                 hrtimer_init_sleeper(to, current);
2520                 hrtimer_set_expires(&to->timer, *time);
2521         }
2522
2523 retry:
2524         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2525         if (unlikely(ret != 0))
2526                 goto out;
2527
2528 retry_private:
2529         hb = queue_lock(&q);
2530
2531         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2532         if (unlikely(ret)) {
2533                 /*
2534                  * Atomic work succeeded and we got the lock,
2535                  * or failed. Either way, we do _not_ block.
2536                  */
2537                 switch (ret) {
2538                 case 1:
2539                         /* We got the lock. */
2540                         ret = 0;
2541                         goto out_unlock_put_key;
2542                 case -EFAULT:
2543                         goto uaddr_faulted;
2544                 case -EAGAIN:
2545                         /*
2546                          * Two reasons for this:
2547                          * - Task is exiting and we just wait for the
2548                          *   exit to complete.
2549                          * - The user space value changed.
2550                          */
2551                         queue_unlock(hb);
2552                         put_futex_key(&q.key);
2553                         cond_resched();
2554                         goto retry;
2555                 default:
2556                         goto out_unlock_put_key;
2557                 }
2558         }
2559
2560         /*
2561          * Only actually queue now that the atomic ops are done:
2562          */
2563         queue_me(&q, hb);
2564
2565         WARN_ON(!q.pi_state);
2566         /*
2567          * Block on the PI mutex:
2568          */
2569         if (!trylock) {
2570                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2571         } else {
2572                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2573                 /* Fixup the trylock return value: */
2574                 ret = ret ? 0 : -EWOULDBLOCK;
2575         }
2576
2577         spin_lock(q.lock_ptr);
2578         /*
2579          * Fixup the pi_state owner and possibly acquire the lock if we
2580          * haven't already.
2581          */
2582         res = fixup_owner(uaddr, &q, !ret);
2583         /*
2584          * If fixup_owner() returned an error, proprogate that.  If it acquired
2585          * the lock, clear our -ETIMEDOUT or -EINTR.
2586          */
2587         if (res)
2588                 ret = (res < 0) ? res : 0;
2589
2590         /*
2591          * If fixup_owner() faulted and was unable to handle the fault, unlock
2592          * it and return the fault to userspace.
2593          */
2594         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2595                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2596
2597         /* Unqueue and drop the lock */
2598         unqueue_me_pi(&q);
2599
2600         goto out_put_key;
2601
2602 out_unlock_put_key:
2603         queue_unlock(hb);
2604
2605 out_put_key:
2606         put_futex_key(&q.key);
2607 out:
2608         if (to)
2609                 destroy_hrtimer_on_stack(&to->timer);
2610         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2611
2612 uaddr_faulted:
2613         queue_unlock(hb);
2614
2615         ret = fault_in_user_writeable(uaddr);
2616         if (ret)
2617                 goto out_put_key;
2618
2619         if (!(flags & FLAGS_SHARED))
2620                 goto retry_private;
2621
2622         put_futex_key(&q.key);
2623         goto retry;
2624 }
2625
2626 /*
2627  * Userspace attempted a TID -> 0 atomic transition, and failed.
2628  * This is the in-kernel slowpath: we look up the PI state (if any),
2629  * and do the rt-mutex unlock.
2630  */
2631 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2632 {
2633         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2634         union futex_key key = FUTEX_KEY_INIT;
2635         struct futex_hash_bucket *hb;
2636         struct futex_q *match;
2637         int ret;
2638
2639 retry:
2640         if (get_user(uval, uaddr))
2641                 return -EFAULT;
2642         /*
2643          * We release only a lock we actually own:
2644          */
2645         if ((uval & FUTEX_TID_MASK) != vpid)
2646                 return -EPERM;
2647
2648         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2649         if (ret)
2650                 return ret;
2651
2652         hb = hash_futex(&key);
2653         spin_lock(&hb->lock);
2654
2655         /*
2656          * Check waiters first. We do not trust user space values at
2657          * all and we at least want to know if user space fiddled
2658          * with the futex value instead of blindly unlocking.
2659          */
2660         match = futex_top_waiter(hb, &key);
2661         if (match) {
2662                 ret = wake_futex_pi(uaddr, uval, match, hb);
2663                 /*
2664                  * In case of success wake_futex_pi dropped the hash
2665                  * bucket lock.
2666                  */
2667                 if (!ret)
2668                         goto out_putkey;
2669                 /*
2670                  * The atomic access to the futex value generated a
2671                  * pagefault, so retry the user-access and the wakeup:
2672                  */
2673                 if (ret == -EFAULT)
2674                         goto pi_faulted;
2675                 /*
2676                  * A unconditional UNLOCK_PI op raced against a waiter
2677                  * setting the FUTEX_WAITERS bit. Try again.
2678                  */
2679                 if (ret == -EAGAIN) {
2680                         spin_unlock(&hb->lock);
2681                         put_futex_key(&key);
2682                         goto retry;
2683                 }
2684                 /*
2685                  * wake_futex_pi has detected invalid state. Tell user
2686                  * space.
2687                  */
2688                 goto out_unlock;
2689         }
2690
2691         /*
2692          * We have no kernel internal state, i.e. no waiters in the
2693          * kernel. Waiters which are about to queue themselves are stuck
2694          * on hb->lock. So we can safely ignore them. We do neither
2695          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2696          * owner.
2697          */
2698         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2699                 goto pi_faulted;
2700
2701         /*
2702          * If uval has changed, let user space handle it.
2703          */
2704         ret = (curval == uval) ? 0 : -EAGAIN;
2705
2706 out_unlock:
2707         spin_unlock(&hb->lock);
2708 out_putkey:
2709         put_futex_key(&key);
2710         return ret;
2711
2712 pi_faulted:
2713         spin_unlock(&hb->lock);
2714         put_futex_key(&key);
2715
2716         ret = fault_in_user_writeable(uaddr);
2717         if (!ret)
2718                 goto retry;
2719
2720         return ret;
2721 }
2722
2723 /**
2724  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2725  * @hb:         the hash_bucket futex_q was original enqueued on
2726  * @q:          the futex_q woken while waiting to be requeued
2727  * @key2:       the futex_key of the requeue target futex
2728  * @timeout:    the timeout associated with the wait (NULL if none)
2729  *
2730  * Detect if the task was woken on the initial futex as opposed to the requeue
2731  * target futex.  If so, determine if it was a timeout or a signal that caused
2732  * the wakeup and return the appropriate error code to the caller.  Must be
2733  * called with the hb lock held.
2734  *
2735  * Return:
2736  *  0 = no early wakeup detected;
2737  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2738  */
2739 static inline
2740 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2741                                    struct futex_q *q, union futex_key *key2,
2742                                    struct hrtimer_sleeper *timeout)
2743 {
2744         int ret = 0;
2745
2746         /*
2747          * With the hb lock held, we avoid races while we process the wakeup.
2748          * We only need to hold hb (and not hb2) to ensure atomicity as the
2749          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2750          * It can't be requeued from uaddr2 to something else since we don't
2751          * support a PI aware source futex for requeue.
2752          */
2753         if (!match_futex(&q->key, key2)) {
2754                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2755                 /*
2756                  * We were woken prior to requeue by a timeout or a signal.
2757                  * Unqueue the futex_q and determine which it was.
2758                  */
2759                 plist_del(&q->list, &hb->chain);
2760                 hb_waiters_dec(hb);
2761
2762                 /* Handle spurious wakeups gracefully */
2763                 ret = -EWOULDBLOCK;
2764                 if (timeout && !timeout->task)
2765                         ret = -ETIMEDOUT;
2766                 else if (signal_pending(current))
2767                         ret = -ERESTARTNOINTR;
2768         }
2769         return ret;
2770 }
2771
2772 /**
2773  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2774  * @uaddr:      the futex we initially wait on (non-pi)
2775  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2776  *              the same type, no requeueing from private to shared, etc.
2777  * @val:        the expected value of uaddr
2778  * @abs_time:   absolute timeout
2779  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2780  * @uaddr2:     the pi futex we will take prior to returning to user-space
2781  *
2782  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2783  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2784  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2785  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2786  * without one, the pi logic would not know which task to boost/deboost, if
2787  * there was a need to.
2788  *
2789  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2790  * via the following--
2791  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2792  * 2) wakeup on uaddr2 after a requeue
2793  * 3) signal
2794  * 4) timeout
2795  *
2796  * If 3, cleanup and return -ERESTARTNOINTR.
2797  *
2798  * If 2, we may then block on trying to take the rt_mutex and return via:
2799  * 5) successful lock
2800  * 6) signal
2801  * 7) timeout
2802  * 8) other lock acquisition failure
2803  *
2804  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2805  *
2806  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2807  *
2808  * Return:
2809  *  0 - On success;
2810  * <0 - On error
2811  */
2812 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2813                                  u32 val, ktime_t *abs_time, u32 bitset,
2814                                  u32 __user *uaddr2)
2815 {
2816         struct hrtimer_sleeper timeout, *to = NULL;
2817         struct rt_mutex_waiter rt_waiter;
2818         struct futex_hash_bucket *hb;
2819         union futex_key key2 = FUTEX_KEY_INIT;
2820         struct futex_q q = futex_q_init;
2821         int res, ret;
2822
2823         if (uaddr == uaddr2)
2824                 return -EINVAL;
2825
2826         if (!bitset)
2827                 return -EINVAL;
2828
2829         if (abs_time) {
2830                 to = &timeout;
2831                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2832                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2833                                       HRTIMER_MODE_ABS);
2834                 hrtimer_init_sleeper(to, current);
2835                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2836                                              current->timer_slack_ns);
2837         }
2838
2839         /*
2840          * The waiter is allocated on our stack, manipulated by the requeue
2841          * code while we sleep on uaddr.
2842          */
2843         debug_rt_mutex_init_waiter(&rt_waiter);
2844         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2845         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2846         rt_waiter.task = NULL;
2847
2848         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2849         if (unlikely(ret != 0))
2850                 goto out;
2851
2852         q.bitset = bitset;
2853         q.rt_waiter = &rt_waiter;
2854         q.requeue_pi_key = &key2;
2855
2856         /*
2857          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2858          * count.
2859          */
2860         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2861         if (ret)
2862                 goto out_key2;
2863
2864         /*
2865          * The check above which compares uaddrs is not sufficient for
2866          * shared futexes. We need to compare the keys:
2867          */
2868         if (match_futex(&q.key, &key2)) {
2869                 queue_unlock(hb);
2870                 ret = -EINVAL;
2871                 goto out_put_keys;
2872         }
2873
2874         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2875         futex_wait_queue_me(hb, &q, to);
2876
2877         spin_lock(&hb->lock);
2878         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2879         spin_unlock(&hb->lock);
2880         if (ret)
2881                 goto out_put_keys;
2882
2883         /*
2884          * In order for us to be here, we know our q.key == key2, and since
2885          * we took the hb->lock above, we also know that futex_requeue() has
2886          * completed and we no longer have to concern ourselves with a wakeup
2887          * race with the atomic proxy lock acquisition by the requeue code. The
2888          * futex_requeue dropped our key1 reference and incremented our key2
2889          * reference count.
2890          */
2891
2892         /* Check if the requeue code acquired the second futex for us. */
2893         if (!q.rt_waiter) {
2894                 /*
2895                  * Got the lock. We might not be the anticipated owner if we
2896                  * did a lock-steal - fix up the PI-state in that case.
2897                  */
2898                 if (q.pi_state && (q.pi_state->owner != current)) {
2899                         spin_lock(q.lock_ptr);
2900                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2901                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2902                                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2903                         /*
2904                          * Drop the reference to the pi state which
2905                          * the requeue_pi() code acquired for us.
2906                          */
2907                         put_pi_state(q.pi_state);
2908                         spin_unlock(q.lock_ptr);
2909                 }
2910         } else {
2911                 struct rt_mutex *pi_mutex;
2912
2913                 /*
2914                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2915                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2916                  * the pi_state.
2917                  */
2918                 WARN_ON(!q.pi_state);
2919                 pi_mutex = &q.pi_state->pi_mutex;
2920                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2921                 debug_rt_mutex_free_waiter(&rt_waiter);
2922
2923                 spin_lock(q.lock_ptr);
2924                 /*
2925                  * Fixup the pi_state owner and possibly acquire the lock if we
2926                  * haven't already.
2927                  */
2928                 res = fixup_owner(uaddr2, &q, !ret);
2929                 /*
2930                  * If fixup_owner() returned an error, proprogate that.  If it
2931                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2932                  */
2933                 if (res)
2934                         ret = (res < 0) ? res : 0;
2935
2936                 /*
2937                  * If fixup_pi_state_owner() faulted and was unable to handle
2938                  * the fault, unlock the rt_mutex and return the fault to
2939                  * userspace.
2940                  */
2941                 if (ret && rt_mutex_owner(pi_mutex) == current)
2942                         rt_mutex_unlock(pi_mutex);
2943
2944                 /* Unqueue and drop the lock. */
2945                 unqueue_me_pi(&q);
2946         }
2947
2948         if (ret == -EINTR) {
2949                 /*
2950                  * We've already been requeued, but cannot restart by calling
2951                  * futex_lock_pi() directly. We could restart this syscall, but
2952                  * it would detect that the user space "val" changed and return
2953                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2954                  * -EWOULDBLOCK directly.
2955                  */
2956                 ret = -EWOULDBLOCK;
2957         }
2958
2959 out_put_keys:
2960         put_futex_key(&q.key);
2961 out_key2:
2962         put_futex_key(&key2);
2963
2964 out:
2965         if (to) {
2966                 hrtimer_cancel(&to->timer);
2967                 destroy_hrtimer_on_stack(&to->timer);
2968         }
2969         return ret;
2970 }
2971
2972 /*
2973  * Support for robust futexes: the kernel cleans up held futexes at
2974  * thread exit time.
2975  *
2976  * Implementation: user-space maintains a per-thread list of locks it
2977  * is holding. Upon do_exit(), the kernel carefully walks this list,
2978  * and marks all locks that are owned by this thread with the
2979  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2980  * always manipulated with the lock held, so the list is private and
2981  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2982  * field, to allow the kernel to clean up if the thread dies after
2983  * acquiring the lock, but just before it could have added itself to
2984  * the list. There can only be one such pending lock.
2985  */
2986
2987 /**
2988  * sys_set_robust_list() - Set the robust-futex list head of a task
2989  * @head:       pointer to the list-head
2990  * @len:        length of the list-head, as userspace expects
2991  */
2992 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2993                 size_t, len)
2994 {
2995         if (!futex_cmpxchg_enabled)
2996                 return -ENOSYS;
2997         /*
2998          * The kernel knows only one size for now:
2999          */
3000         if (unlikely(len != sizeof(*head)))
3001                 return -EINVAL;
3002
3003         current->robust_list = head;
3004
3005         return 0;
3006 }
3007
3008 /**
3009  * sys_get_robust_list() - Get the robust-futex list head of a task
3010  * @pid:        pid of the process [zero for current task]
3011  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3012  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3013  */
3014 SYSCALL_DEFINE3(get_robust_list, int, pid,
3015                 struct robust_list_head __user * __user *, head_ptr,
3016                 size_t __user *, len_ptr)
3017 {
3018         struct robust_list_head __user *head;
3019         unsigned long ret;
3020         struct task_struct *p;
3021
3022         if (!futex_cmpxchg_enabled)
3023                 return -ENOSYS;
3024
3025         rcu_read_lock();
3026
3027         ret = -ESRCH;
3028         if (!pid)
3029                 p = current;
3030         else {
3031                 p = find_task_by_vpid(pid);
3032                 if (!p)
3033                         goto err_unlock;
3034         }
3035
3036         ret = -EPERM;
3037         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3038                 goto err_unlock;
3039
3040         head = p->robust_list;
3041         rcu_read_unlock();
3042
3043         if (put_user(sizeof(*head), len_ptr))
3044                 return -EFAULT;
3045         return put_user(head, head_ptr);
3046
3047 err_unlock:
3048         rcu_read_unlock();
3049
3050         return ret;
3051 }
3052
3053 /*
3054  * Process a futex-list entry, check whether it's owned by the
3055  * dying task, and do notification if so:
3056  */
3057 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3058 {
3059         u32 uval, uninitialized_var(nval), mval;
3060
3061 retry:
3062         if (get_user(uval, uaddr))
3063                 return -1;
3064
3065         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3066                 /*
3067                  * Ok, this dying thread is truly holding a futex
3068                  * of interest. Set the OWNER_DIED bit atomically
3069                  * via cmpxchg, and if the value had FUTEX_WAITERS
3070                  * set, wake up a waiter (if any). (We have to do a
3071                  * futex_wake() even if OWNER_DIED is already set -
3072                  * to handle the rare but possible case of recursive
3073                  * thread-death.) The rest of the cleanup is done in
3074                  * userspace.
3075                  */
3076                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3077                 /*
3078                  * We are not holding a lock here, but we want to have
3079                  * the pagefault_disable/enable() protection because
3080                  * we want to handle the fault gracefully. If the
3081                  * access fails we try to fault in the futex with R/W
3082                  * verification via get_user_pages. get_user() above
3083                  * does not guarantee R/W access. If that fails we
3084                  * give up and leave the futex locked.
3085                  */
3086                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3087                         if (fault_in_user_writeable(uaddr))
3088                                 return -1;
3089                         goto retry;
3090                 }
3091                 if (nval != uval)
3092                         goto retry;
3093
3094                 /*
3095                  * Wake robust non-PI futexes here. The wakeup of
3096                  * PI futexes happens in exit_pi_state():
3097                  */
3098                 if (!pi && (uval & FUTEX_WAITERS))
3099                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3100         }
3101         return 0;
3102 }
3103
3104 /*
3105  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3106  */
3107 static inline int fetch_robust_entry(struct robust_list __user **entry,
3108                                      struct robust_list __user * __user *head,
3109                                      unsigned int *pi)
3110 {
3111         unsigned long uentry;
3112
3113         if (get_user(uentry, (unsigned long __user *)head))
3114                 return -EFAULT;
3115
3116         *entry = (void __user *)(uentry & ~1UL);
3117         *pi = uentry & 1;
3118
3119         return 0;
3120 }
3121
3122 /*
3123  * Walk curr->robust_list (very carefully, it's a userspace list!)
3124  * and mark any locks found there dead, and notify any waiters.
3125  *
3126  * We silently return on any sign of list-walking problem.
3127  */
3128 void exit_robust_list(struct task_struct *curr)
3129 {
3130         struct robust_list_head __user *head = curr->robust_list;
3131         struct robust_list __user *entry, *next_entry, *pending;
3132         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3133         unsigned int uninitialized_var(next_pi);
3134         unsigned long futex_offset;
3135         int rc;
3136
3137         if (!futex_cmpxchg_enabled)
3138                 return;
3139
3140         /*
3141          * Fetch the list head (which was registered earlier, via
3142          * sys_set_robust_list()):
3143          */
3144         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3145                 return;
3146         /*
3147          * Fetch the relative futex offset:
3148          */
3149         if (get_user(futex_offset, &head->futex_offset))
3150                 return;
3151         /*
3152          * Fetch any possibly pending lock-add first, and handle it
3153          * if it exists:
3154          */
3155         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3156                 return;
3157
3158         next_entry = NULL;      /* avoid warning with gcc */
3159         while (entry != &head->list) {
3160                 /*
3161                  * Fetch the next entry in the list before calling
3162                  * handle_futex_death:
3163                  */
3164                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3165                 /*
3166                  * A pending lock might already be on the list, so
3167                  * don't process it twice:
3168                  */
3169                 if (entry != pending)
3170                         if (handle_futex_death((void __user *)entry + futex_offset,
3171                                                 curr, pi))
3172                                 return;
3173                 if (rc)
3174                         return;
3175                 entry = next_entry;
3176                 pi = next_pi;
3177                 /*
3178                  * Avoid excessively long or circular lists:
3179                  */
3180                 if (!--limit)
3181                         break;
3182
3183                 cond_resched();
3184         }
3185
3186         if (pending)
3187                 handle_futex_death((void __user *)pending + futex_offset,
3188                                    curr, pip);
3189 }
3190
3191 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3192                 u32 __user *uaddr2, u32 val2, u32 val3)
3193 {
3194         int cmd = op & FUTEX_CMD_MASK;
3195         unsigned int flags = 0;
3196
3197         if (!(op & FUTEX_PRIVATE_FLAG))
3198                 flags |= FLAGS_SHARED;
3199
3200         if (op & FUTEX_CLOCK_REALTIME) {
3201                 flags |= FLAGS_CLOCKRT;
3202                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3203                     cmd != FUTEX_WAIT_REQUEUE_PI)
3204                         return -ENOSYS;
3205         }
3206
3207         switch (cmd) {
3208         case FUTEX_LOCK_PI:
3209         case FUTEX_UNLOCK_PI:
3210         case FUTEX_TRYLOCK_PI:
3211         case FUTEX_WAIT_REQUEUE_PI:
3212         case FUTEX_CMP_REQUEUE_PI:
3213                 if (!futex_cmpxchg_enabled)
3214                         return -ENOSYS;
3215         }
3216
3217         switch (cmd) {
3218         case FUTEX_WAIT:
3219                 val3 = FUTEX_BITSET_MATCH_ANY;
3220         case FUTEX_WAIT_BITSET:
3221                 return futex_wait(uaddr, flags, val, timeout, val3);
3222         case FUTEX_WAKE:
3223                 val3 = FUTEX_BITSET_MATCH_ANY;
3224         case FUTEX_WAKE_BITSET:
3225                 return futex_wake(uaddr, flags, val, val3);
3226         case FUTEX_REQUEUE:
3227                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3228         case FUTEX_CMP_REQUEUE:
3229                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3230         case FUTEX_WAKE_OP:
3231                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3232         case FUTEX_LOCK_PI:
3233                 return futex_lock_pi(uaddr, flags, timeout, 0);
3234         case FUTEX_UNLOCK_PI:
3235                 return futex_unlock_pi(uaddr, flags);
3236         case FUTEX_TRYLOCK_PI:
3237                 return futex_lock_pi(uaddr, flags, NULL, 1);
3238         case FUTEX_WAIT_REQUEUE_PI:
3239                 val3 = FUTEX_BITSET_MATCH_ANY;
3240                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3241                                              uaddr2);
3242         case FUTEX_CMP_REQUEUE_PI:
3243                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3244         }
3245         return -ENOSYS;
3246 }
3247
3248
3249 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3250                 struct timespec __user *, utime, u32 __user *, uaddr2,
3251                 u32, val3)
3252 {
3253         struct timespec ts;
3254         ktime_t t, *tp = NULL;
3255         u32 val2 = 0;
3256         int cmd = op & FUTEX_CMD_MASK;
3257
3258         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3259                       cmd == FUTEX_WAIT_BITSET ||
3260                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3261                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3262                         return -EFAULT;
3263                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3264                         return -EFAULT;
3265                 if (!timespec_valid(&ts))
3266                         return -EINVAL;
3267
3268                 t = timespec_to_ktime(ts);
3269                 if (cmd == FUTEX_WAIT)
3270                         t = ktime_add_safe(ktime_get(), t);
3271                 tp = &t;
3272         }
3273         /*
3274          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3275          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3276          */
3277         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3278             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3279                 val2 = (u32) (unsigned long) utime;
3280
3281         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3282 }
3283
3284 static void __init futex_detect_cmpxchg(void)
3285 {
3286 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3287         u32 curval;
3288
3289         /*
3290          * This will fail and we want it. Some arch implementations do
3291          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3292          * functionality. We want to know that before we call in any
3293          * of the complex code paths. Also we want to prevent
3294          * registration of robust lists in that case. NULL is
3295          * guaranteed to fault and we get -EFAULT on functional
3296          * implementation, the non-functional ones will return
3297          * -ENOSYS.
3298          */
3299         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3300                 futex_cmpxchg_enabled = 1;
3301 #endif
3302 }
3303
3304 static int __init futex_init(void)
3305 {
3306         unsigned int futex_shift;
3307         unsigned long i;
3308
3309 #if CONFIG_BASE_SMALL
3310         futex_hashsize = 16;
3311 #else
3312         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3313 #endif
3314
3315         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3316                                                futex_hashsize, 0,
3317                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3318                                                &futex_shift, NULL,
3319                                                futex_hashsize, futex_hashsize);
3320         futex_hashsize = 1UL << futex_shift;
3321
3322         futex_detect_cmpxchg();
3323
3324         for (i = 0; i < futex_hashsize; i++) {
3325                 atomic_set(&futex_queues[i].waiters, 0);
3326                 plist_head_init(&futex_queues[i].chain);
3327                 spin_lock_init(&futex_queues[i].lock);
3328         }
3329
3330         return 0;
3331 }
3332 core_initcall(futex_init);