]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/futex.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 } __randomize_layout;
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel which is almost certainly an
674                  * application bug. In such a case, just retry.
675                  *
676                  * We are not calling into get_futex_key_refs() in file-backed
677                  * cases, therefore a successful atomic_inc return below will
678                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
679                  */
680                 if (!atomic_inc_not_zero(&inode->i_count)) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 /* Should be impossible but lets be paranoid for now */
688                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689                         err = -EFAULT;
690                         rcu_read_unlock();
691                         iput(inode);
692
693                         goto out;
694                 }
695
696                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697                 key->shared.inode = inode;
698                 key->shared.pgoff = basepage_index(tail);
699                 rcu_read_unlock();
700         }
701
702 out:
703         put_page(page);
704         return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709         drop_futex_key_refs(key);
710 }
711
712 /**
713  * fault_in_user_writeable() - Fault in user address and verify RW access
714  * @uaddr:      pointer to faulting user space address
715  *
716  * Slow path to fixup the fault we just took in the atomic write
717  * access to @uaddr.
718  *
719  * We have no generic implementation of a non-destructive write to the
720  * user address. We know that we faulted in the atomic pagefault
721  * disabled section so we can as well avoid the #PF overhead by
722  * calling get_user_pages() right away.
723  */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726         struct mm_struct *mm = current->mm;
727         int ret;
728
729         down_read(&mm->mmap_sem);
730         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731                                FAULT_FLAG_WRITE, NULL);
732         up_read(&mm->mmap_sem);
733
734         return ret < 0 ? ret : 0;
735 }
736
737 /**
738  * futex_top_waiter() - Return the highest priority waiter on a futex
739  * @hb:         the hash bucket the futex_q's reside in
740  * @key:        the futex key (to distinguish it from other futex futex_q's)
741  *
742  * Must be called with the hb lock held.
743  */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745                                         union futex_key *key)
746 {
747         struct futex_q *this;
748
749         plist_for_each_entry(this, &hb->chain, list) {
750                 if (match_futex(&this->key, key))
751                         return this;
752         }
753         return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757                                       u32 uval, u32 newval)
758 {
759         int ret;
760
761         pagefault_disable();
762         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763         pagefault_enable();
764
765         return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770         int ret;
771
772         pagefault_disable();
773         ret = __get_user(*dest, from);
774         pagefault_enable();
775
776         return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781  * PI code:
782  */
783 static int refill_pi_state_cache(void)
784 {
785         struct futex_pi_state *pi_state;
786
787         if (likely(current->pi_state_cache))
788                 return 0;
789
790         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792         if (!pi_state)
793                 return -ENOMEM;
794
795         INIT_LIST_HEAD(&pi_state->list);
796         /* pi_mutex gets initialized later */
797         pi_state->owner = NULL;
798         atomic_set(&pi_state->refcount, 1);
799         pi_state->key = FUTEX_KEY_INIT;
800
801         current->pi_state_cache = pi_state;
802
803         return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808         struct futex_pi_state *pi_state = current->pi_state_cache;
809
810         WARN_ON(!pi_state);
811         current->pi_state_cache = NULL;
812
813         return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822  * Drops a reference to the pi_state object and frees or caches it
823  * when the last reference is gone.
824  *
825  * Must be called with the hb lock held.
826  */
827 static void put_pi_state(struct futex_pi_state *pi_state)
828 {
829         if (!pi_state)
830                 return;
831
832         if (!atomic_dec_and_test(&pi_state->refcount))
833                 return;
834
835         /*
836          * If pi_state->owner is NULL, the owner is most probably dying
837          * and has cleaned up the pi_state already
838          */
839         if (pi_state->owner) {
840                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
841                 list_del_init(&pi_state->list);
842                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
843
844                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
845         }
846
847         if (current->pi_state_cache)
848                 kfree(pi_state);
849         else {
850                 /*
851                  * pi_state->list is already empty.
852                  * clear pi_state->owner.
853                  * refcount is at 0 - put it back to 1.
854                  */
855                 pi_state->owner = NULL;
856                 atomic_set(&pi_state->refcount, 1);
857                 current->pi_state_cache = pi_state;
858         }
859 }
860
861 /*
862  * Look up the task based on what TID userspace gave us.
863  * We dont trust it.
864  */
865 static struct task_struct *futex_find_get_task(pid_t pid)
866 {
867         struct task_struct *p;
868
869         rcu_read_lock();
870         p = find_task_by_vpid(pid);
871         if (p)
872                 get_task_struct(p);
873
874         rcu_read_unlock();
875
876         return p;
877 }
878
879 /*
880  * This task is holding PI mutexes at exit time => bad.
881  * Kernel cleans up PI-state, but userspace is likely hosed.
882  * (Robust-futex cleanup is separate and might save the day for userspace.)
883  */
884 void exit_pi_state_list(struct task_struct *curr)
885 {
886         struct list_head *next, *head = &curr->pi_state_list;
887         struct futex_pi_state *pi_state;
888         struct futex_hash_bucket *hb;
889         union futex_key key = FUTEX_KEY_INIT;
890
891         if (!futex_cmpxchg_enabled)
892                 return;
893         /*
894          * We are a ZOMBIE and nobody can enqueue itself on
895          * pi_state_list anymore, but we have to be careful
896          * versus waiters unqueueing themselves:
897          */
898         raw_spin_lock_irq(&curr->pi_lock);
899         while (!list_empty(head)) {
900
901                 next = head->next;
902                 pi_state = list_entry(next, struct futex_pi_state, list);
903                 key = pi_state->key;
904                 hb = hash_futex(&key);
905                 raw_spin_unlock_irq(&curr->pi_lock);
906
907                 spin_lock(&hb->lock);
908
909                 raw_spin_lock_irq(&curr->pi_lock);
910                 /*
911                  * We dropped the pi-lock, so re-check whether this
912                  * task still owns the PI-state:
913                  */
914                 if (head->next != next) {
915                         spin_unlock(&hb->lock);
916                         continue;
917                 }
918
919                 WARN_ON(pi_state->owner != curr);
920                 WARN_ON(list_empty(&pi_state->list));
921                 list_del_init(&pi_state->list);
922                 pi_state->owner = NULL;
923                 raw_spin_unlock_irq(&curr->pi_lock);
924
925                 get_pi_state(pi_state);
926                 spin_unlock(&hb->lock);
927
928                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
929                 put_pi_state(pi_state);
930
931                 raw_spin_lock_irq(&curr->pi_lock);
932         }
933         raw_spin_unlock_irq(&curr->pi_lock);
934 }
935
936 /*
937  * We need to check the following states:
938  *
939  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
940  *
941  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
942  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
943  *
944  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
945  *
946  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
947  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
948  *
949  * [6]  Found  | Found    | task      | 0         | 1      | Valid
950  *
951  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
952  *
953  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
954  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
955  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
956  *
957  * [1]  Indicates that the kernel can acquire the futex atomically. We
958  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
959  *
960  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
961  *      thread is found then it indicates that the owner TID has died.
962  *
963  * [3]  Invalid. The waiter is queued on a non PI futex
964  *
965  * [4]  Valid state after exit_robust_list(), which sets the user space
966  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
967  *
968  * [5]  The user space value got manipulated between exit_robust_list()
969  *      and exit_pi_state_list()
970  *
971  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
972  *      the pi_state but cannot access the user space value.
973  *
974  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
975  *
976  * [8]  Owner and user space value match
977  *
978  * [9]  There is no transient state which sets the user space TID to 0
979  *      except exit_robust_list(), but this is indicated by the
980  *      FUTEX_OWNER_DIED bit. See [4]
981  *
982  * [10] There is no transient state which leaves owner and user space
983  *      TID out of sync.
984  *
985  *
986  * Serialization and lifetime rules:
987  *
988  * hb->lock:
989  *
990  *      hb -> futex_q, relation
991  *      futex_q -> pi_state, relation
992  *
993  *      (cannot be raw because hb can contain arbitrary amount
994  *       of futex_q's)
995  *
996  * pi_mutex->wait_lock:
997  *
998  *      {uval, pi_state}
999  *
1000  *      (and pi_mutex 'obviously')
1001  *
1002  * p->pi_lock:
1003  *
1004  *      p->pi_state_list -> pi_state->list, relation
1005  *
1006  * pi_state->refcount:
1007  *
1008  *      pi_state lifetime
1009  *
1010  *
1011  * Lock order:
1012  *
1013  *   hb->lock
1014  *     pi_mutex->wait_lock
1015  *       p->pi_lock
1016  *
1017  */
1018
1019 /*
1020  * Validate that the existing waiter has a pi_state and sanity check
1021  * the pi_state against the user space value. If correct, attach to
1022  * it.
1023  */
1024 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1025                               struct futex_pi_state *pi_state,
1026                               struct futex_pi_state **ps)
1027 {
1028         pid_t pid = uval & FUTEX_TID_MASK;
1029         u32 uval2;
1030         int ret;
1031
1032         /*
1033          * Userspace might have messed up non-PI and PI futexes [3]
1034          */
1035         if (unlikely(!pi_state))
1036                 return -EINVAL;
1037
1038         /*
1039          * We get here with hb->lock held, and having found a
1040          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1041          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1042          * which in turn means that futex_lock_pi() still has a reference on
1043          * our pi_state.
1044          *
1045          * The waiter holding a reference on @pi_state also protects against
1046          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1047          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1048          * free pi_state before we can take a reference ourselves.
1049          */
1050         WARN_ON(!atomic_read(&pi_state->refcount));
1051
1052         /*
1053          * Now that we have a pi_state, we can acquire wait_lock
1054          * and do the state validation.
1055          */
1056         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1057
1058         /*
1059          * Since {uval, pi_state} is serialized by wait_lock, and our current
1060          * uval was read without holding it, it can have changed. Verify it
1061          * still is what we expect it to be, otherwise retry the entire
1062          * operation.
1063          */
1064         if (get_futex_value_locked(&uval2, uaddr))
1065                 goto out_efault;
1066
1067         if (uval != uval2)
1068                 goto out_eagain;
1069
1070         /*
1071          * Handle the owner died case:
1072          */
1073         if (uval & FUTEX_OWNER_DIED) {
1074                 /*
1075                  * exit_pi_state_list sets owner to NULL and wakes the
1076                  * topmost waiter. The task which acquires the
1077                  * pi_state->rt_mutex will fixup owner.
1078                  */
1079                 if (!pi_state->owner) {
1080                         /*
1081                          * No pi state owner, but the user space TID
1082                          * is not 0. Inconsistent state. [5]
1083                          */
1084                         if (pid)
1085                                 goto out_einval;
1086                         /*
1087                          * Take a ref on the state and return success. [4]
1088                          */
1089                         goto out_attach;
1090                 }
1091
1092                 /*
1093                  * If TID is 0, then either the dying owner has not
1094                  * yet executed exit_pi_state_list() or some waiter
1095                  * acquired the rtmutex in the pi state, but did not
1096                  * yet fixup the TID in user space.
1097                  *
1098                  * Take a ref on the state and return success. [6]
1099                  */
1100                 if (!pid)
1101                         goto out_attach;
1102         } else {
1103                 /*
1104                  * If the owner died bit is not set, then the pi_state
1105                  * must have an owner. [7]
1106                  */
1107                 if (!pi_state->owner)
1108                         goto out_einval;
1109         }
1110
1111         /*
1112          * Bail out if user space manipulated the futex value. If pi
1113          * state exists then the owner TID must be the same as the
1114          * user space TID. [9/10]
1115          */
1116         if (pid != task_pid_vnr(pi_state->owner))
1117                 goto out_einval;
1118
1119 out_attach:
1120         get_pi_state(pi_state);
1121         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1122         *ps = pi_state;
1123         return 0;
1124
1125 out_einval:
1126         ret = -EINVAL;
1127         goto out_error;
1128
1129 out_eagain:
1130         ret = -EAGAIN;
1131         goto out_error;
1132
1133 out_efault:
1134         ret = -EFAULT;
1135         goto out_error;
1136
1137 out_error:
1138         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1139         return ret;
1140 }
1141
1142 /*
1143  * Lookup the task for the TID provided from user space and attach to
1144  * it after doing proper sanity checks.
1145  */
1146 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1147                               struct futex_pi_state **ps)
1148 {
1149         pid_t pid = uval & FUTEX_TID_MASK;
1150         struct futex_pi_state *pi_state;
1151         struct task_struct *p;
1152
1153         /*
1154          * We are the first waiter - try to look up the real owner and attach
1155          * the new pi_state to it, but bail out when TID = 0 [1]
1156          */
1157         if (!pid)
1158                 return -ESRCH;
1159         p = futex_find_get_task(pid);
1160         if (!p)
1161                 return -ESRCH;
1162
1163         if (unlikely(p->flags & PF_KTHREAD)) {
1164                 put_task_struct(p);
1165                 return -EPERM;
1166         }
1167
1168         /*
1169          * We need to look at the task state flags to figure out,
1170          * whether the task is exiting. To protect against the do_exit
1171          * change of the task flags, we do this protected by
1172          * p->pi_lock:
1173          */
1174         raw_spin_lock_irq(&p->pi_lock);
1175         if (unlikely(p->flags & PF_EXITING)) {
1176                 /*
1177                  * The task is on the way out. When PF_EXITPIDONE is
1178                  * set, we know that the task has finished the
1179                  * cleanup:
1180                  */
1181                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1182
1183                 raw_spin_unlock_irq(&p->pi_lock);
1184                 put_task_struct(p);
1185                 return ret;
1186         }
1187
1188         /*
1189          * No existing pi state. First waiter. [2]
1190          *
1191          * This creates pi_state, we have hb->lock held, this means nothing can
1192          * observe this state, wait_lock is irrelevant.
1193          */
1194         pi_state = alloc_pi_state();
1195
1196         /*
1197          * Initialize the pi_mutex in locked state and make @p
1198          * the owner of it:
1199          */
1200         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1201
1202         /* Store the key for possible exit cleanups: */
1203         pi_state->key = *key;
1204
1205         WARN_ON(!list_empty(&pi_state->list));
1206         list_add(&pi_state->list, &p->pi_state_list);
1207         pi_state->owner = p;
1208         raw_spin_unlock_irq(&p->pi_lock);
1209
1210         put_task_struct(p);
1211
1212         *ps = pi_state;
1213
1214         return 0;
1215 }
1216
1217 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1218                            struct futex_hash_bucket *hb,
1219                            union futex_key *key, struct futex_pi_state **ps)
1220 {
1221         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1222
1223         /*
1224          * If there is a waiter on that futex, validate it and
1225          * attach to the pi_state when the validation succeeds.
1226          */
1227         if (top_waiter)
1228                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1229
1230         /*
1231          * We are the first waiter - try to look up the owner based on
1232          * @uval and attach to it.
1233          */
1234         return attach_to_pi_owner(uval, key, ps);
1235 }
1236
1237 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1238 {
1239         u32 uninitialized_var(curval);
1240
1241         if (unlikely(should_fail_futex(true)))
1242                 return -EFAULT;
1243
1244         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1245                 return -EFAULT;
1246
1247         /* If user space value changed, let the caller retry */
1248         return curval != uval ? -EAGAIN : 0;
1249 }
1250
1251 /**
1252  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1253  * @uaddr:              the pi futex user address
1254  * @hb:                 the pi futex hash bucket
1255  * @key:                the futex key associated with uaddr and hb
1256  * @ps:                 the pi_state pointer where we store the result of the
1257  *                      lookup
1258  * @task:               the task to perform the atomic lock work for.  This will
1259  *                      be "current" except in the case of requeue pi.
1260  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1261  *
1262  * Return:
1263  *  -  0 - ready to wait;
1264  *  -  1 - acquired the lock;
1265  *  - <0 - error
1266  *
1267  * The hb->lock and futex_key refs shall be held by the caller.
1268  */
1269 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1270                                 union futex_key *key,
1271                                 struct futex_pi_state **ps,
1272                                 struct task_struct *task, int set_waiters)
1273 {
1274         u32 uval, newval, vpid = task_pid_vnr(task);
1275         struct futex_q *top_waiter;
1276         int ret;
1277
1278         /*
1279          * Read the user space value first so we can validate a few
1280          * things before proceeding further.
1281          */
1282         if (get_futex_value_locked(&uval, uaddr))
1283                 return -EFAULT;
1284
1285         if (unlikely(should_fail_futex(true)))
1286                 return -EFAULT;
1287
1288         /*
1289          * Detect deadlocks.
1290          */
1291         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1292                 return -EDEADLK;
1293
1294         if ((unlikely(should_fail_futex(true))))
1295                 return -EDEADLK;
1296
1297         /*
1298          * Lookup existing state first. If it exists, try to attach to
1299          * its pi_state.
1300          */
1301         top_waiter = futex_top_waiter(hb, key);
1302         if (top_waiter)
1303                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1304
1305         /*
1306          * No waiter and user TID is 0. We are here because the
1307          * waiters or the owner died bit is set or called from
1308          * requeue_cmp_pi or for whatever reason something took the
1309          * syscall.
1310          */
1311         if (!(uval & FUTEX_TID_MASK)) {
1312                 /*
1313                  * We take over the futex. No other waiters and the user space
1314                  * TID is 0. We preserve the owner died bit.
1315                  */
1316                 newval = uval & FUTEX_OWNER_DIED;
1317                 newval |= vpid;
1318
1319                 /* The futex requeue_pi code can enforce the waiters bit */
1320                 if (set_waiters)
1321                         newval |= FUTEX_WAITERS;
1322
1323                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1324                 /* If the take over worked, return 1 */
1325                 return ret < 0 ? ret : 1;
1326         }
1327
1328         /*
1329          * First waiter. Set the waiters bit before attaching ourself to
1330          * the owner. If owner tries to unlock, it will be forced into
1331          * the kernel and blocked on hb->lock.
1332          */
1333         newval = uval | FUTEX_WAITERS;
1334         ret = lock_pi_update_atomic(uaddr, uval, newval);
1335         if (ret)
1336                 return ret;
1337         /*
1338          * If the update of the user space value succeeded, we try to
1339          * attach to the owner. If that fails, no harm done, we only
1340          * set the FUTEX_WAITERS bit in the user space variable.
1341          */
1342         return attach_to_pi_owner(uval, key, ps);
1343 }
1344
1345 /**
1346  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1347  * @q:  The futex_q to unqueue
1348  *
1349  * The q->lock_ptr must not be NULL and must be held by the caller.
1350  */
1351 static void __unqueue_futex(struct futex_q *q)
1352 {
1353         struct futex_hash_bucket *hb;
1354
1355         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1356             || WARN_ON(plist_node_empty(&q->list)))
1357                 return;
1358
1359         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1360         plist_del(&q->list, &hb->chain);
1361         hb_waiters_dec(hb);
1362 }
1363
1364 /*
1365  * The hash bucket lock must be held when this is called.
1366  * Afterwards, the futex_q must not be accessed. Callers
1367  * must ensure to later call wake_up_q() for the actual
1368  * wakeups to occur.
1369  */
1370 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1371 {
1372         struct task_struct *p = q->task;
1373
1374         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1375                 return;
1376
1377         /*
1378          * Queue the task for later wakeup for after we've released
1379          * the hb->lock. wake_q_add() grabs reference to p.
1380          */
1381         wake_q_add(wake_q, p);
1382         __unqueue_futex(q);
1383         /*
1384          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1385          * is written, without taking any locks. This is possible in the event
1386          * of a spurious wakeup, for example. A memory barrier is required here
1387          * to prevent the following store to lock_ptr from getting ahead of the
1388          * plist_del in __unqueue_futex().
1389          */
1390         smp_store_release(&q->lock_ptr, NULL);
1391 }
1392
1393 /*
1394  * Caller must hold a reference on @pi_state.
1395  */
1396 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1397 {
1398         u32 uninitialized_var(curval), newval;
1399         struct task_struct *new_owner;
1400         bool postunlock = false;
1401         DEFINE_WAKE_Q(wake_q);
1402         int ret = 0;
1403
1404         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1405         if (WARN_ON_ONCE(!new_owner)) {
1406                 /*
1407                  * As per the comment in futex_unlock_pi() this should not happen.
1408                  *
1409                  * When this happens, give up our locks and try again, giving
1410                  * the futex_lock_pi() instance time to complete, either by
1411                  * waiting on the rtmutex or removing itself from the futex
1412                  * queue.
1413                  */
1414                 ret = -EAGAIN;
1415                 goto out_unlock;
1416         }
1417
1418         /*
1419          * We pass it to the next owner. The WAITERS bit is always kept
1420          * enabled while there is PI state around. We cleanup the owner
1421          * died bit, because we are the owner.
1422          */
1423         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1424
1425         if (unlikely(should_fail_futex(true)))
1426                 ret = -EFAULT;
1427
1428         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1429                 ret = -EFAULT;
1430
1431         } else if (curval != uval) {
1432                 /*
1433                  * If a unconditional UNLOCK_PI operation (user space did not
1434                  * try the TID->0 transition) raced with a waiter setting the
1435                  * FUTEX_WAITERS flag between get_user() and locking the hash
1436                  * bucket lock, retry the operation.
1437                  */
1438                 if ((FUTEX_TID_MASK & curval) == uval)
1439                         ret = -EAGAIN;
1440                 else
1441                         ret = -EINVAL;
1442         }
1443
1444         if (ret)
1445                 goto out_unlock;
1446
1447         /*
1448          * This is a point of no return; once we modify the uval there is no
1449          * going back and subsequent operations must not fail.
1450          */
1451
1452         raw_spin_lock(&pi_state->owner->pi_lock);
1453         WARN_ON(list_empty(&pi_state->list));
1454         list_del_init(&pi_state->list);
1455         raw_spin_unlock(&pi_state->owner->pi_lock);
1456
1457         raw_spin_lock(&new_owner->pi_lock);
1458         WARN_ON(!list_empty(&pi_state->list));
1459         list_add(&pi_state->list, &new_owner->pi_state_list);
1460         pi_state->owner = new_owner;
1461         raw_spin_unlock(&new_owner->pi_lock);
1462
1463         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1464
1465 out_unlock:
1466         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1467
1468         if (postunlock)
1469                 rt_mutex_postunlock(&wake_q);
1470
1471         return ret;
1472 }
1473
1474 /*
1475  * Express the locking dependencies for lockdep:
1476  */
1477 static inline void
1478 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1479 {
1480         if (hb1 <= hb2) {
1481                 spin_lock(&hb1->lock);
1482                 if (hb1 < hb2)
1483                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1484         } else { /* hb1 > hb2 */
1485                 spin_lock(&hb2->lock);
1486                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1487         }
1488 }
1489
1490 static inline void
1491 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492 {
1493         spin_unlock(&hb1->lock);
1494         if (hb1 != hb2)
1495                 spin_unlock(&hb2->lock);
1496 }
1497
1498 /*
1499  * Wake up waiters matching bitset queued on this futex (uaddr).
1500  */
1501 static int
1502 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1503 {
1504         struct futex_hash_bucket *hb;
1505         struct futex_q *this, *next;
1506         union futex_key key = FUTEX_KEY_INIT;
1507         int ret;
1508         DEFINE_WAKE_Q(wake_q);
1509
1510         if (!bitset)
1511                 return -EINVAL;
1512
1513         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1514         if (unlikely(ret != 0))
1515                 goto out;
1516
1517         hb = hash_futex(&key);
1518
1519         /* Make sure we really have tasks to wakeup */
1520         if (!hb_waiters_pending(hb))
1521                 goto out_put_key;
1522
1523         spin_lock(&hb->lock);
1524
1525         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1526                 if (match_futex (&this->key, &key)) {
1527                         if (this->pi_state || this->rt_waiter) {
1528                                 ret = -EINVAL;
1529                                 break;
1530                         }
1531
1532                         /* Check if one of the bits is set in both bitsets */
1533                         if (!(this->bitset & bitset))
1534                                 continue;
1535
1536                         mark_wake_futex(&wake_q, this);
1537                         if (++ret >= nr_wake)
1538                                 break;
1539                 }
1540         }
1541
1542         spin_unlock(&hb->lock);
1543         wake_up_q(&wake_q);
1544 out_put_key:
1545         put_futex_key(&key);
1546 out:
1547         return ret;
1548 }
1549
1550 /*
1551  * Wake up all waiters hashed on the physical page that is mapped
1552  * to this virtual address:
1553  */
1554 static int
1555 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1556               int nr_wake, int nr_wake2, int op)
1557 {
1558         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1559         struct futex_hash_bucket *hb1, *hb2;
1560         struct futex_q *this, *next;
1561         int ret, op_ret;
1562         DEFINE_WAKE_Q(wake_q);
1563
1564 retry:
1565         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1566         if (unlikely(ret != 0))
1567                 goto out;
1568         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1569         if (unlikely(ret != 0))
1570                 goto out_put_key1;
1571
1572         hb1 = hash_futex(&key1);
1573         hb2 = hash_futex(&key2);
1574
1575 retry_private:
1576         double_lock_hb(hb1, hb2);
1577         op_ret = futex_atomic_op_inuser(op, uaddr2);
1578         if (unlikely(op_ret < 0)) {
1579
1580                 double_unlock_hb(hb1, hb2);
1581
1582 #ifndef CONFIG_MMU
1583                 /*
1584                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1585                  * but we might get them from range checking
1586                  */
1587                 ret = op_ret;
1588                 goto out_put_keys;
1589 #endif
1590
1591                 if (unlikely(op_ret != -EFAULT)) {
1592                         ret = op_ret;
1593                         goto out_put_keys;
1594                 }
1595
1596                 ret = fault_in_user_writeable(uaddr2);
1597                 if (ret)
1598                         goto out_put_keys;
1599
1600                 if (!(flags & FLAGS_SHARED))
1601                         goto retry_private;
1602
1603                 put_futex_key(&key2);
1604                 put_futex_key(&key1);
1605                 goto retry;
1606         }
1607
1608         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1609                 if (match_futex (&this->key, &key1)) {
1610                         if (this->pi_state || this->rt_waiter) {
1611                                 ret = -EINVAL;
1612                                 goto out_unlock;
1613                         }
1614                         mark_wake_futex(&wake_q, this);
1615                         if (++ret >= nr_wake)
1616                                 break;
1617                 }
1618         }
1619
1620         if (op_ret > 0) {
1621                 op_ret = 0;
1622                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1623                         if (match_futex (&this->key, &key2)) {
1624                                 if (this->pi_state || this->rt_waiter) {
1625                                         ret = -EINVAL;
1626                                         goto out_unlock;
1627                                 }
1628                                 mark_wake_futex(&wake_q, this);
1629                                 if (++op_ret >= nr_wake2)
1630                                         break;
1631                         }
1632                 }
1633                 ret += op_ret;
1634         }
1635
1636 out_unlock:
1637         double_unlock_hb(hb1, hb2);
1638         wake_up_q(&wake_q);
1639 out_put_keys:
1640         put_futex_key(&key2);
1641 out_put_key1:
1642         put_futex_key(&key1);
1643 out:
1644         return ret;
1645 }
1646
1647 /**
1648  * requeue_futex() - Requeue a futex_q from one hb to another
1649  * @q:          the futex_q to requeue
1650  * @hb1:        the source hash_bucket
1651  * @hb2:        the target hash_bucket
1652  * @key2:       the new key for the requeued futex_q
1653  */
1654 static inline
1655 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1656                    struct futex_hash_bucket *hb2, union futex_key *key2)
1657 {
1658
1659         /*
1660          * If key1 and key2 hash to the same bucket, no need to
1661          * requeue.
1662          */
1663         if (likely(&hb1->chain != &hb2->chain)) {
1664                 plist_del(&q->list, &hb1->chain);
1665                 hb_waiters_dec(hb1);
1666                 hb_waiters_inc(hb2);
1667                 plist_add(&q->list, &hb2->chain);
1668                 q->lock_ptr = &hb2->lock;
1669         }
1670         get_futex_key_refs(key2);
1671         q->key = *key2;
1672 }
1673
1674 /**
1675  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1676  * @q:          the futex_q
1677  * @key:        the key of the requeue target futex
1678  * @hb:         the hash_bucket of the requeue target futex
1679  *
1680  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1681  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1682  * to the requeue target futex so the waiter can detect the wakeup on the right
1683  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1684  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1685  * to protect access to the pi_state to fixup the owner later.  Must be called
1686  * with both q->lock_ptr and hb->lock held.
1687  */
1688 static inline
1689 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1690                            struct futex_hash_bucket *hb)
1691 {
1692         get_futex_key_refs(key);
1693         q->key = *key;
1694
1695         __unqueue_futex(q);
1696
1697         WARN_ON(!q->rt_waiter);
1698         q->rt_waiter = NULL;
1699
1700         q->lock_ptr = &hb->lock;
1701
1702         wake_up_state(q->task, TASK_NORMAL);
1703 }
1704
1705 /**
1706  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1707  * @pifutex:            the user address of the to futex
1708  * @hb1:                the from futex hash bucket, must be locked by the caller
1709  * @hb2:                the to futex hash bucket, must be locked by the caller
1710  * @key1:               the from futex key
1711  * @key2:               the to futex key
1712  * @ps:                 address to store the pi_state pointer
1713  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1714  *
1715  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1716  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1717  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1718  * hb1 and hb2 must be held by the caller.
1719  *
1720  * Return:
1721  *  -  0 - failed to acquire the lock atomically;
1722  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1723  *  - <0 - error
1724  */
1725 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1726                                  struct futex_hash_bucket *hb1,
1727                                  struct futex_hash_bucket *hb2,
1728                                  union futex_key *key1, union futex_key *key2,
1729                                  struct futex_pi_state **ps, int set_waiters)
1730 {
1731         struct futex_q *top_waiter = NULL;
1732         u32 curval;
1733         int ret, vpid;
1734
1735         if (get_futex_value_locked(&curval, pifutex))
1736                 return -EFAULT;
1737
1738         if (unlikely(should_fail_futex(true)))
1739                 return -EFAULT;
1740
1741         /*
1742          * Find the top_waiter and determine if there are additional waiters.
1743          * If the caller intends to requeue more than 1 waiter to pifutex,
1744          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1745          * as we have means to handle the possible fault.  If not, don't set
1746          * the bit unecessarily as it will force the subsequent unlock to enter
1747          * the kernel.
1748          */
1749         top_waiter = futex_top_waiter(hb1, key1);
1750
1751         /* There are no waiters, nothing for us to do. */
1752         if (!top_waiter)
1753                 return 0;
1754
1755         /* Ensure we requeue to the expected futex. */
1756         if (!match_futex(top_waiter->requeue_pi_key, key2))
1757                 return -EINVAL;
1758
1759         /*
1760          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1761          * the contended case or if set_waiters is 1.  The pi_state is returned
1762          * in ps in contended cases.
1763          */
1764         vpid = task_pid_vnr(top_waiter->task);
1765         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1766                                    set_waiters);
1767         if (ret == 1) {
1768                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1769                 return vpid;
1770         }
1771         return ret;
1772 }
1773
1774 /**
1775  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1776  * @uaddr1:     source futex user address
1777  * @flags:      futex flags (FLAGS_SHARED, etc.)
1778  * @uaddr2:     target futex user address
1779  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1780  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1781  * @cmpval:     @uaddr1 expected value (or %NULL)
1782  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1783  *              pi futex (pi to pi requeue is not supported)
1784  *
1785  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1786  * uaddr2 atomically on behalf of the top waiter.
1787  *
1788  * Return:
1789  *  - >=0 - on success, the number of tasks requeued or woken;
1790  *  -  <0 - on error
1791  */
1792 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1793                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1794                          u32 *cmpval, int requeue_pi)
1795 {
1796         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1797         int drop_count = 0, task_count = 0, ret;
1798         struct futex_pi_state *pi_state = NULL;
1799         struct futex_hash_bucket *hb1, *hb2;
1800         struct futex_q *this, *next;
1801         DEFINE_WAKE_Q(wake_q);
1802
1803         if (requeue_pi) {
1804                 /*
1805                  * Requeue PI only works on two distinct uaddrs. This
1806                  * check is only valid for private futexes. See below.
1807                  */
1808                 if (uaddr1 == uaddr2)
1809                         return -EINVAL;
1810
1811                 /*
1812                  * requeue_pi requires a pi_state, try to allocate it now
1813                  * without any locks in case it fails.
1814                  */
1815                 if (refill_pi_state_cache())
1816                         return -ENOMEM;
1817                 /*
1818                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1819                  * + nr_requeue, since it acquires the rt_mutex prior to
1820                  * returning to userspace, so as to not leave the rt_mutex with
1821                  * waiters and no owner.  However, second and third wake-ups
1822                  * cannot be predicted as they involve race conditions with the
1823                  * first wake and a fault while looking up the pi_state.  Both
1824                  * pthread_cond_signal() and pthread_cond_broadcast() should
1825                  * use nr_wake=1.
1826                  */
1827                 if (nr_wake != 1)
1828                         return -EINVAL;
1829         }
1830
1831 retry:
1832         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1833         if (unlikely(ret != 0))
1834                 goto out;
1835         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1836                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1837         if (unlikely(ret != 0))
1838                 goto out_put_key1;
1839
1840         /*
1841          * The check above which compares uaddrs is not sufficient for
1842          * shared futexes. We need to compare the keys:
1843          */
1844         if (requeue_pi && match_futex(&key1, &key2)) {
1845                 ret = -EINVAL;
1846                 goto out_put_keys;
1847         }
1848
1849         hb1 = hash_futex(&key1);
1850         hb2 = hash_futex(&key2);
1851
1852 retry_private:
1853         hb_waiters_inc(hb2);
1854         double_lock_hb(hb1, hb2);
1855
1856         if (likely(cmpval != NULL)) {
1857                 u32 curval;
1858
1859                 ret = get_futex_value_locked(&curval, uaddr1);
1860
1861                 if (unlikely(ret)) {
1862                         double_unlock_hb(hb1, hb2);
1863                         hb_waiters_dec(hb2);
1864
1865                         ret = get_user(curval, uaddr1);
1866                         if (ret)
1867                                 goto out_put_keys;
1868
1869                         if (!(flags & FLAGS_SHARED))
1870                                 goto retry_private;
1871
1872                         put_futex_key(&key2);
1873                         put_futex_key(&key1);
1874                         goto retry;
1875                 }
1876                 if (curval != *cmpval) {
1877                         ret = -EAGAIN;
1878                         goto out_unlock;
1879                 }
1880         }
1881
1882         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1883                 /*
1884                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1885                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1886                  * bit.  We force this here where we are able to easily handle
1887                  * faults rather in the requeue loop below.
1888                  */
1889                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1890                                                  &key2, &pi_state, nr_requeue);
1891
1892                 /*
1893                  * At this point the top_waiter has either taken uaddr2 or is
1894                  * waiting on it.  If the former, then the pi_state will not
1895                  * exist yet, look it up one more time to ensure we have a
1896                  * reference to it. If the lock was taken, ret contains the
1897                  * vpid of the top waiter task.
1898                  * If the lock was not taken, we have pi_state and an initial
1899                  * refcount on it. In case of an error we have nothing.
1900                  */
1901                 if (ret > 0) {
1902                         WARN_ON(pi_state);
1903                         drop_count++;
1904                         task_count++;
1905                         /*
1906                          * If we acquired the lock, then the user space value
1907                          * of uaddr2 should be vpid. It cannot be changed by
1908                          * the top waiter as it is blocked on hb2 lock if it
1909                          * tries to do so. If something fiddled with it behind
1910                          * our back the pi state lookup might unearth it. So
1911                          * we rather use the known value than rereading and
1912                          * handing potential crap to lookup_pi_state.
1913                          *
1914                          * If that call succeeds then we have pi_state and an
1915                          * initial refcount on it.
1916                          */
1917                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1918                 }
1919
1920                 switch (ret) {
1921                 case 0:
1922                         /* We hold a reference on the pi state. */
1923                         break;
1924
1925                         /* If the above failed, then pi_state is NULL */
1926                 case -EFAULT:
1927                         double_unlock_hb(hb1, hb2);
1928                         hb_waiters_dec(hb2);
1929                         put_futex_key(&key2);
1930                         put_futex_key(&key1);
1931                         ret = fault_in_user_writeable(uaddr2);
1932                         if (!ret)
1933                                 goto retry;
1934                         goto out;
1935                 case -EAGAIN:
1936                         /*
1937                          * Two reasons for this:
1938                          * - Owner is exiting and we just wait for the
1939                          *   exit to complete.
1940                          * - The user space value changed.
1941                          */
1942                         double_unlock_hb(hb1, hb2);
1943                         hb_waiters_dec(hb2);
1944                         put_futex_key(&key2);
1945                         put_futex_key(&key1);
1946                         cond_resched();
1947                         goto retry;
1948                 default:
1949                         goto out_unlock;
1950                 }
1951         }
1952
1953         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1954                 if (task_count - nr_wake >= nr_requeue)
1955                         break;
1956
1957                 if (!match_futex(&this->key, &key1))
1958                         continue;
1959
1960                 /*
1961                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1962                  * be paired with each other and no other futex ops.
1963                  *
1964                  * We should never be requeueing a futex_q with a pi_state,
1965                  * which is awaiting a futex_unlock_pi().
1966                  */
1967                 if ((requeue_pi && !this->rt_waiter) ||
1968                     (!requeue_pi && this->rt_waiter) ||
1969                     this->pi_state) {
1970                         ret = -EINVAL;
1971                         break;
1972                 }
1973
1974                 /*
1975                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1976                  * lock, we already woke the top_waiter.  If not, it will be
1977                  * woken by futex_unlock_pi().
1978                  */
1979                 if (++task_count <= nr_wake && !requeue_pi) {
1980                         mark_wake_futex(&wake_q, this);
1981                         continue;
1982                 }
1983
1984                 /* Ensure we requeue to the expected futex for requeue_pi. */
1985                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1986                         ret = -EINVAL;
1987                         break;
1988                 }
1989
1990                 /*
1991                  * Requeue nr_requeue waiters and possibly one more in the case
1992                  * of requeue_pi if we couldn't acquire the lock atomically.
1993                  */
1994                 if (requeue_pi) {
1995                         /*
1996                          * Prepare the waiter to take the rt_mutex. Take a
1997                          * refcount on the pi_state and store the pointer in
1998                          * the futex_q object of the waiter.
1999                          */
2000                         get_pi_state(pi_state);
2001                         this->pi_state = pi_state;
2002                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2003                                                         this->rt_waiter,
2004                                                         this->task);
2005                         if (ret == 1) {
2006                                 /*
2007                                  * We got the lock. We do neither drop the
2008                                  * refcount on pi_state nor clear
2009                                  * this->pi_state because the waiter needs the
2010                                  * pi_state for cleaning up the user space
2011                                  * value. It will drop the refcount after
2012                                  * doing so.
2013                                  */
2014                                 requeue_pi_wake_futex(this, &key2, hb2);
2015                                 drop_count++;
2016                                 continue;
2017                         } else if (ret) {
2018                                 /*
2019                                  * rt_mutex_start_proxy_lock() detected a
2020                                  * potential deadlock when we tried to queue
2021                                  * that waiter. Drop the pi_state reference
2022                                  * which we took above and remove the pointer
2023                                  * to the state from the waiters futex_q
2024                                  * object.
2025                                  */
2026                                 this->pi_state = NULL;
2027                                 put_pi_state(pi_state);
2028                                 /*
2029                                  * We stop queueing more waiters and let user
2030                                  * space deal with the mess.
2031                                  */
2032                                 break;
2033                         }
2034                 }
2035                 requeue_futex(this, hb1, hb2, &key2);
2036                 drop_count++;
2037         }
2038
2039         /*
2040          * We took an extra initial reference to the pi_state either
2041          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2042          * need to drop it here again.
2043          */
2044         put_pi_state(pi_state);
2045
2046 out_unlock:
2047         double_unlock_hb(hb1, hb2);
2048         wake_up_q(&wake_q);
2049         hb_waiters_dec(hb2);
2050
2051         /*
2052          * drop_futex_key_refs() must be called outside the spinlocks. During
2053          * the requeue we moved futex_q's from the hash bucket at key1 to the
2054          * one at key2 and updated their key pointer.  We no longer need to
2055          * hold the references to key1.
2056          */
2057         while (--drop_count >= 0)
2058                 drop_futex_key_refs(&key1);
2059
2060 out_put_keys:
2061         put_futex_key(&key2);
2062 out_put_key1:
2063         put_futex_key(&key1);
2064 out:
2065         return ret ? ret : task_count;
2066 }
2067
2068 /* The key must be already stored in q->key. */
2069 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2070         __acquires(&hb->lock)
2071 {
2072         struct futex_hash_bucket *hb;
2073
2074         hb = hash_futex(&q->key);
2075
2076         /*
2077          * Increment the counter before taking the lock so that
2078          * a potential waker won't miss a to-be-slept task that is
2079          * waiting for the spinlock. This is safe as all queue_lock()
2080          * users end up calling queue_me(). Similarly, for housekeeping,
2081          * decrement the counter at queue_unlock() when some error has
2082          * occurred and we don't end up adding the task to the list.
2083          */
2084         hb_waiters_inc(hb);
2085
2086         q->lock_ptr = &hb->lock;
2087
2088         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2089         return hb;
2090 }
2091
2092 static inline void
2093 queue_unlock(struct futex_hash_bucket *hb)
2094         __releases(&hb->lock)
2095 {
2096         spin_unlock(&hb->lock);
2097         hb_waiters_dec(hb);
2098 }
2099
2100 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2101 {
2102         int prio;
2103
2104         /*
2105          * The priority used to register this element is
2106          * - either the real thread-priority for the real-time threads
2107          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2108          * - or MAX_RT_PRIO for non-RT threads.
2109          * Thus, all RT-threads are woken first in priority order, and
2110          * the others are woken last, in FIFO order.
2111          */
2112         prio = min(current->normal_prio, MAX_RT_PRIO);
2113
2114         plist_node_init(&q->list, prio);
2115         plist_add(&q->list, &hb->chain);
2116         q->task = current;
2117 }
2118
2119 /**
2120  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2121  * @q:  The futex_q to enqueue
2122  * @hb: The destination hash bucket
2123  *
2124  * The hb->lock must be held by the caller, and is released here. A call to
2125  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2126  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2127  * or nothing if the unqueue is done as part of the wake process and the unqueue
2128  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2129  * an example).
2130  */
2131 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2132         __releases(&hb->lock)
2133 {
2134         __queue_me(q, hb);
2135         spin_unlock(&hb->lock);
2136 }
2137
2138 /**
2139  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2140  * @q:  The futex_q to unqueue
2141  *
2142  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2143  * be paired with exactly one earlier call to queue_me().
2144  *
2145  * Return:
2146  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2147  *  - 0 - if the futex_q was already removed by the waking thread
2148  */
2149 static int unqueue_me(struct futex_q *q)
2150 {
2151         spinlock_t *lock_ptr;
2152         int ret = 0;
2153
2154         /* In the common case we don't take the spinlock, which is nice. */
2155 retry:
2156         /*
2157          * q->lock_ptr can change between this read and the following spin_lock.
2158          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2159          * optimizing lock_ptr out of the logic below.
2160          */
2161         lock_ptr = READ_ONCE(q->lock_ptr);
2162         if (lock_ptr != NULL) {
2163                 spin_lock(lock_ptr);
2164                 /*
2165                  * q->lock_ptr can change between reading it and
2166                  * spin_lock(), causing us to take the wrong lock.  This
2167                  * corrects the race condition.
2168                  *
2169                  * Reasoning goes like this: if we have the wrong lock,
2170                  * q->lock_ptr must have changed (maybe several times)
2171                  * between reading it and the spin_lock().  It can
2172                  * change again after the spin_lock() but only if it was
2173                  * already changed before the spin_lock().  It cannot,
2174                  * however, change back to the original value.  Therefore
2175                  * we can detect whether we acquired the correct lock.
2176                  */
2177                 if (unlikely(lock_ptr != q->lock_ptr)) {
2178                         spin_unlock(lock_ptr);
2179                         goto retry;
2180                 }
2181                 __unqueue_futex(q);
2182
2183                 BUG_ON(q->pi_state);
2184
2185                 spin_unlock(lock_ptr);
2186                 ret = 1;
2187         }
2188
2189         drop_futex_key_refs(&q->key);
2190         return ret;
2191 }
2192
2193 /*
2194  * PI futexes can not be requeued and must remove themself from the
2195  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2196  * and dropped here.
2197  */
2198 static void unqueue_me_pi(struct futex_q *q)
2199         __releases(q->lock_ptr)
2200 {
2201         __unqueue_futex(q);
2202
2203         BUG_ON(!q->pi_state);
2204         put_pi_state(q->pi_state);
2205         q->pi_state = NULL;
2206
2207         spin_unlock(q->lock_ptr);
2208 }
2209
2210 /*
2211  * Fixup the pi_state owner with the new owner.
2212  *
2213  * Must be called with hash bucket lock held and mm->sem held for non
2214  * private futexes.
2215  */
2216 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2217                                 struct task_struct *newowner)
2218 {
2219         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2220         struct futex_pi_state *pi_state = q->pi_state;
2221         u32 uval, uninitialized_var(curval), newval;
2222         struct task_struct *oldowner;
2223         int ret;
2224
2225         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2226
2227         oldowner = pi_state->owner;
2228         /* Owner died? */
2229         if (!pi_state->owner)
2230                 newtid |= FUTEX_OWNER_DIED;
2231
2232         /*
2233          * We are here either because we stole the rtmutex from the
2234          * previous highest priority waiter or we are the highest priority
2235          * waiter but have failed to get the rtmutex the first time.
2236          *
2237          * We have to replace the newowner TID in the user space variable.
2238          * This must be atomic as we have to preserve the owner died bit here.
2239          *
2240          * Note: We write the user space value _before_ changing the pi_state
2241          * because we can fault here. Imagine swapped out pages or a fork
2242          * that marked all the anonymous memory readonly for cow.
2243          *
2244          * Modifying pi_state _before_ the user space value would leave the
2245          * pi_state in an inconsistent state when we fault here, because we
2246          * need to drop the locks to handle the fault. This might be observed
2247          * in the PID check in lookup_pi_state.
2248          */
2249 retry:
2250         if (get_futex_value_locked(&uval, uaddr))
2251                 goto handle_fault;
2252
2253         for (;;) {
2254                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2255
2256                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2257                         goto handle_fault;
2258                 if (curval == uval)
2259                         break;
2260                 uval = curval;
2261         }
2262
2263         /*
2264          * We fixed up user space. Now we need to fix the pi_state
2265          * itself.
2266          */
2267         if (pi_state->owner != NULL) {
2268                 raw_spin_lock(&pi_state->owner->pi_lock);
2269                 WARN_ON(list_empty(&pi_state->list));
2270                 list_del_init(&pi_state->list);
2271                 raw_spin_unlock(&pi_state->owner->pi_lock);
2272         }
2273
2274         pi_state->owner = newowner;
2275
2276         raw_spin_lock(&newowner->pi_lock);
2277         WARN_ON(!list_empty(&pi_state->list));
2278         list_add(&pi_state->list, &newowner->pi_state_list);
2279         raw_spin_unlock(&newowner->pi_lock);
2280         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2281
2282         return 0;
2283
2284         /*
2285          * To handle the page fault we need to drop the locks here. That gives
2286          * the other task (either the highest priority waiter itself or the
2287          * task which stole the rtmutex) the chance to try the fixup of the
2288          * pi_state. So once we are back from handling the fault we need to
2289          * check the pi_state after reacquiring the locks and before trying to
2290          * do another fixup. When the fixup has been done already we simply
2291          * return.
2292          *
2293          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2294          * drop hb->lock since the caller owns the hb -> futex_q relation.
2295          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2296          */
2297 handle_fault:
2298         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2299         spin_unlock(q->lock_ptr);
2300
2301         ret = fault_in_user_writeable(uaddr);
2302
2303         spin_lock(q->lock_ptr);
2304         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2305
2306         /*
2307          * Check if someone else fixed it for us:
2308          */
2309         if (pi_state->owner != oldowner) {
2310                 ret = 0;
2311                 goto out_unlock;
2312         }
2313
2314         if (ret)
2315                 goto out_unlock;
2316
2317         goto retry;
2318
2319 out_unlock:
2320         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2321         return ret;
2322 }
2323
2324 static long futex_wait_restart(struct restart_block *restart);
2325
2326 /**
2327  * fixup_owner() - Post lock pi_state and corner case management
2328  * @uaddr:      user address of the futex
2329  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2330  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2331  *
2332  * After attempting to lock an rt_mutex, this function is called to cleanup
2333  * the pi_state owner as well as handle race conditions that may allow us to
2334  * acquire the lock. Must be called with the hb lock held.
2335  *
2336  * Return:
2337  *  -  1 - success, lock taken;
2338  *  -  0 - success, lock not taken;
2339  *  - <0 - on error (-EFAULT)
2340  */
2341 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2342 {
2343         int ret = 0;
2344
2345         if (locked) {
2346                 /*
2347                  * Got the lock. We might not be the anticipated owner if we
2348                  * did a lock-steal - fix up the PI-state in that case:
2349                  *
2350                  * We can safely read pi_state->owner without holding wait_lock
2351                  * because we now own the rt_mutex, only the owner will attempt
2352                  * to change it.
2353                  */
2354                 if (q->pi_state->owner != current)
2355                         ret = fixup_pi_state_owner(uaddr, q, current);
2356                 goto out;
2357         }
2358
2359         /*
2360          * Paranoia check. If we did not take the lock, then we should not be
2361          * the owner of the rt_mutex.
2362          */
2363         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2364                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2365                                 "pi-state %p\n", ret,
2366                                 q->pi_state->pi_mutex.owner,
2367                                 q->pi_state->owner);
2368         }
2369
2370 out:
2371         return ret ? ret : locked;
2372 }
2373
2374 /**
2375  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2376  * @hb:         the futex hash bucket, must be locked by the caller
2377  * @q:          the futex_q to queue up on
2378  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2379  */
2380 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2381                                 struct hrtimer_sleeper *timeout)
2382 {
2383         /*
2384          * The task state is guaranteed to be set before another task can
2385          * wake it. set_current_state() is implemented using smp_store_mb() and
2386          * queue_me() calls spin_unlock() upon completion, both serializing
2387          * access to the hash list and forcing another memory barrier.
2388          */
2389         set_current_state(TASK_INTERRUPTIBLE);
2390         queue_me(q, hb);
2391
2392         /* Arm the timer */
2393         if (timeout)
2394                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2395
2396         /*
2397          * If we have been removed from the hash list, then another task
2398          * has tried to wake us, and we can skip the call to schedule().
2399          */
2400         if (likely(!plist_node_empty(&q->list))) {
2401                 /*
2402                  * If the timer has already expired, current will already be
2403                  * flagged for rescheduling. Only call schedule if there
2404                  * is no timeout, or if it has yet to expire.
2405                  */
2406                 if (!timeout || timeout->task)
2407                         freezable_schedule();
2408         }
2409         __set_current_state(TASK_RUNNING);
2410 }
2411
2412 /**
2413  * futex_wait_setup() - Prepare to wait on a futex
2414  * @uaddr:      the futex userspace address
2415  * @val:        the expected value
2416  * @flags:      futex flags (FLAGS_SHARED, etc.)
2417  * @q:          the associated futex_q
2418  * @hb:         storage for hash_bucket pointer to be returned to caller
2419  *
2420  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2421  * compare it with the expected value.  Handle atomic faults internally.
2422  * Return with the hb lock held and a q.key reference on success, and unlocked
2423  * with no q.key reference on failure.
2424  *
2425  * Return:
2426  *  -  0 - uaddr contains val and hb has been locked;
2427  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2428  */
2429 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2430                            struct futex_q *q, struct futex_hash_bucket **hb)
2431 {
2432         u32 uval;
2433         int ret;
2434
2435         /*
2436          * Access the page AFTER the hash-bucket is locked.
2437          * Order is important:
2438          *
2439          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2440          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2441          *
2442          * The basic logical guarantee of a futex is that it blocks ONLY
2443          * if cond(var) is known to be true at the time of blocking, for
2444          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2445          * would open a race condition where we could block indefinitely with
2446          * cond(var) false, which would violate the guarantee.
2447          *
2448          * On the other hand, we insert q and release the hash-bucket only
2449          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2450          * absorb a wakeup if *uaddr does not match the desired values
2451          * while the syscall executes.
2452          */
2453 retry:
2454         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2455         if (unlikely(ret != 0))
2456                 return ret;
2457
2458 retry_private:
2459         *hb = queue_lock(q);
2460
2461         ret = get_futex_value_locked(&uval, uaddr);
2462
2463         if (ret) {
2464                 queue_unlock(*hb);
2465
2466                 ret = get_user(uval, uaddr);
2467                 if (ret)
2468                         goto out;
2469
2470                 if (!(flags & FLAGS_SHARED))
2471                         goto retry_private;
2472
2473                 put_futex_key(&q->key);
2474                 goto retry;
2475         }
2476
2477         if (uval != val) {
2478                 queue_unlock(*hb);
2479                 ret = -EWOULDBLOCK;
2480         }
2481
2482 out:
2483         if (ret)
2484                 put_futex_key(&q->key);
2485         return ret;
2486 }
2487
2488 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2489                       ktime_t *abs_time, u32 bitset)
2490 {
2491         struct hrtimer_sleeper timeout, *to = NULL;
2492         struct restart_block *restart;
2493         struct futex_hash_bucket *hb;
2494         struct futex_q q = futex_q_init;
2495         int ret;
2496
2497         if (!bitset)
2498                 return -EINVAL;
2499         q.bitset = bitset;
2500
2501         if (abs_time) {
2502                 to = &timeout;
2503
2504                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2505                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2506                                       HRTIMER_MODE_ABS);
2507                 hrtimer_init_sleeper(to, current);
2508                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2509                                              current->timer_slack_ns);
2510         }
2511
2512 retry:
2513         /*
2514          * Prepare to wait on uaddr. On success, holds hb lock and increments
2515          * q.key refs.
2516          */
2517         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2518         if (ret)
2519                 goto out;
2520
2521         /* queue_me and wait for wakeup, timeout, or a signal. */
2522         futex_wait_queue_me(hb, &q, to);
2523
2524         /* If we were woken (and unqueued), we succeeded, whatever. */
2525         ret = 0;
2526         /* unqueue_me() drops q.key ref */
2527         if (!unqueue_me(&q))
2528                 goto out;
2529         ret = -ETIMEDOUT;
2530         if (to && !to->task)
2531                 goto out;
2532
2533         /*
2534          * We expect signal_pending(current), but we might be the
2535          * victim of a spurious wakeup as well.
2536          */
2537         if (!signal_pending(current))
2538                 goto retry;
2539
2540         ret = -ERESTARTSYS;
2541         if (!abs_time)
2542                 goto out;
2543
2544         restart = &current->restart_block;
2545         restart->fn = futex_wait_restart;
2546         restart->futex.uaddr = uaddr;
2547         restart->futex.val = val;
2548         restart->futex.time = *abs_time;
2549         restart->futex.bitset = bitset;
2550         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2551
2552         ret = -ERESTART_RESTARTBLOCK;
2553
2554 out:
2555         if (to) {
2556                 hrtimer_cancel(&to->timer);
2557                 destroy_hrtimer_on_stack(&to->timer);
2558         }
2559         return ret;
2560 }
2561
2562
2563 static long futex_wait_restart(struct restart_block *restart)
2564 {
2565         u32 __user *uaddr = restart->futex.uaddr;
2566         ktime_t t, *tp = NULL;
2567
2568         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2569                 t = restart->futex.time;
2570                 tp = &t;
2571         }
2572         restart->fn = do_no_restart_syscall;
2573
2574         return (long)futex_wait(uaddr, restart->futex.flags,
2575                                 restart->futex.val, tp, restart->futex.bitset);
2576 }
2577
2578
2579 /*
2580  * Userspace tried a 0 -> TID atomic transition of the futex value
2581  * and failed. The kernel side here does the whole locking operation:
2582  * if there are waiters then it will block as a consequence of relying
2583  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2584  * a 0 value of the futex too.).
2585  *
2586  * Also serves as futex trylock_pi()'ing, and due semantics.
2587  */
2588 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2589                          ktime_t *time, int trylock)
2590 {
2591         struct hrtimer_sleeper timeout, *to = NULL;
2592         struct futex_pi_state *pi_state = NULL;
2593         struct rt_mutex_waiter rt_waiter;
2594         struct futex_hash_bucket *hb;
2595         struct futex_q q = futex_q_init;
2596         int res, ret;
2597
2598         if (refill_pi_state_cache())
2599                 return -ENOMEM;
2600
2601         if (time) {
2602                 to = &timeout;
2603                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2604                                       HRTIMER_MODE_ABS);
2605                 hrtimer_init_sleeper(to, current);
2606                 hrtimer_set_expires(&to->timer, *time);
2607         }
2608
2609 retry:
2610         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2611         if (unlikely(ret != 0))
2612                 goto out;
2613
2614 retry_private:
2615         hb = queue_lock(&q);
2616
2617         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2618         if (unlikely(ret)) {
2619                 /*
2620                  * Atomic work succeeded and we got the lock,
2621                  * or failed. Either way, we do _not_ block.
2622                  */
2623                 switch (ret) {
2624                 case 1:
2625                         /* We got the lock. */
2626                         ret = 0;
2627                         goto out_unlock_put_key;
2628                 case -EFAULT:
2629                         goto uaddr_faulted;
2630                 case -EAGAIN:
2631                         /*
2632                          * Two reasons for this:
2633                          * - Task is exiting and we just wait for the
2634                          *   exit to complete.
2635                          * - The user space value changed.
2636                          */
2637                         queue_unlock(hb);
2638                         put_futex_key(&q.key);
2639                         cond_resched();
2640                         goto retry;
2641                 default:
2642                         goto out_unlock_put_key;
2643                 }
2644         }
2645
2646         WARN_ON(!q.pi_state);
2647
2648         /*
2649          * Only actually queue now that the atomic ops are done:
2650          */
2651         __queue_me(&q, hb);
2652
2653         if (trylock) {
2654                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2655                 /* Fixup the trylock return value: */
2656                 ret = ret ? 0 : -EWOULDBLOCK;
2657                 goto no_block;
2658         }
2659
2660         rt_mutex_init_waiter(&rt_waiter);
2661
2662         /*
2663          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2664          * hold it while doing rt_mutex_start_proxy(), because then it will
2665          * include hb->lock in the blocking chain, even through we'll not in
2666          * fact hold it while blocking. This will lead it to report -EDEADLK
2667          * and BUG when futex_unlock_pi() interleaves with this.
2668          *
2669          * Therefore acquire wait_lock while holding hb->lock, but drop the
2670          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2671          * serializes against futex_unlock_pi() as that does the exact same
2672          * lock handoff sequence.
2673          */
2674         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2675         spin_unlock(q.lock_ptr);
2676         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2677         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2678
2679         if (ret) {
2680                 if (ret == 1)
2681                         ret = 0;
2682
2683                 spin_lock(q.lock_ptr);
2684                 goto no_block;
2685         }
2686
2687
2688         if (unlikely(to))
2689                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2690
2691         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2692
2693         spin_lock(q.lock_ptr);
2694         /*
2695          * If we failed to acquire the lock (signal/timeout), we must
2696          * first acquire the hb->lock before removing the lock from the
2697          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2698          * wait lists consistent.
2699          *
2700          * In particular; it is important that futex_unlock_pi() can not
2701          * observe this inconsistency.
2702          */
2703         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2704                 ret = 0;
2705
2706 no_block:
2707         /*
2708          * Fixup the pi_state owner and possibly acquire the lock if we
2709          * haven't already.
2710          */
2711         res = fixup_owner(uaddr, &q, !ret);
2712         /*
2713          * If fixup_owner() returned an error, proprogate that.  If it acquired
2714          * the lock, clear our -ETIMEDOUT or -EINTR.
2715          */
2716         if (res)
2717                 ret = (res < 0) ? res : 0;
2718
2719         /*
2720          * If fixup_owner() faulted and was unable to handle the fault, unlock
2721          * it and return the fault to userspace.
2722          */
2723         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2724                 pi_state = q.pi_state;
2725                 get_pi_state(pi_state);
2726         }
2727
2728         /* Unqueue and drop the lock */
2729         unqueue_me_pi(&q);
2730
2731         if (pi_state) {
2732                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2733                 put_pi_state(pi_state);
2734         }
2735
2736         goto out_put_key;
2737
2738 out_unlock_put_key:
2739         queue_unlock(hb);
2740
2741 out_put_key:
2742         put_futex_key(&q.key);
2743 out:
2744         if (to) {
2745                 hrtimer_cancel(&to->timer);
2746                 destroy_hrtimer_on_stack(&to->timer);
2747         }
2748         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2749
2750 uaddr_faulted:
2751         queue_unlock(hb);
2752
2753         ret = fault_in_user_writeable(uaddr);
2754         if (ret)
2755                 goto out_put_key;
2756
2757         if (!(flags & FLAGS_SHARED))
2758                 goto retry_private;
2759
2760         put_futex_key(&q.key);
2761         goto retry;
2762 }
2763
2764 /*
2765  * Userspace attempted a TID -> 0 atomic transition, and failed.
2766  * This is the in-kernel slowpath: we look up the PI state (if any),
2767  * and do the rt-mutex unlock.
2768  */
2769 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2770 {
2771         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2772         union futex_key key = FUTEX_KEY_INIT;
2773         struct futex_hash_bucket *hb;
2774         struct futex_q *top_waiter;
2775         int ret;
2776
2777 retry:
2778         if (get_user(uval, uaddr))
2779                 return -EFAULT;
2780         /*
2781          * We release only a lock we actually own:
2782          */
2783         if ((uval & FUTEX_TID_MASK) != vpid)
2784                 return -EPERM;
2785
2786         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2787         if (ret)
2788                 return ret;
2789
2790         hb = hash_futex(&key);
2791         spin_lock(&hb->lock);
2792
2793         /*
2794          * Check waiters first. We do not trust user space values at
2795          * all and we at least want to know if user space fiddled
2796          * with the futex value instead of blindly unlocking.
2797          */
2798         top_waiter = futex_top_waiter(hb, &key);
2799         if (top_waiter) {
2800                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2801
2802                 ret = -EINVAL;
2803                 if (!pi_state)
2804                         goto out_unlock;
2805
2806                 /*
2807                  * If current does not own the pi_state then the futex is
2808                  * inconsistent and user space fiddled with the futex value.
2809                  */
2810                 if (pi_state->owner != current)
2811                         goto out_unlock;
2812
2813                 get_pi_state(pi_state);
2814                 /*
2815                  * By taking wait_lock while still holding hb->lock, we ensure
2816                  * there is no point where we hold neither; and therefore
2817                  * wake_futex_pi() must observe a state consistent with what we
2818                  * observed.
2819                  */
2820                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2821                 spin_unlock(&hb->lock);
2822
2823                 ret = wake_futex_pi(uaddr, uval, pi_state);
2824
2825                 put_pi_state(pi_state);
2826
2827                 /*
2828                  * Success, we're done! No tricky corner cases.
2829                  */
2830                 if (!ret)
2831                         goto out_putkey;
2832                 /*
2833                  * The atomic access to the futex value generated a
2834                  * pagefault, so retry the user-access and the wakeup:
2835                  */
2836                 if (ret == -EFAULT)
2837                         goto pi_faulted;
2838                 /*
2839                  * A unconditional UNLOCK_PI op raced against a waiter
2840                  * setting the FUTEX_WAITERS bit. Try again.
2841                  */
2842                 if (ret == -EAGAIN) {
2843                         put_futex_key(&key);
2844                         goto retry;
2845                 }
2846                 /*
2847                  * wake_futex_pi has detected invalid state. Tell user
2848                  * space.
2849                  */
2850                 goto out_putkey;
2851         }
2852
2853         /*
2854          * We have no kernel internal state, i.e. no waiters in the
2855          * kernel. Waiters which are about to queue themselves are stuck
2856          * on hb->lock. So we can safely ignore them. We do neither
2857          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2858          * owner.
2859          */
2860         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2861                 spin_unlock(&hb->lock);
2862                 goto pi_faulted;
2863         }
2864
2865         /*
2866          * If uval has changed, let user space handle it.
2867          */
2868         ret = (curval == uval) ? 0 : -EAGAIN;
2869
2870 out_unlock:
2871         spin_unlock(&hb->lock);
2872 out_putkey:
2873         put_futex_key(&key);
2874         return ret;
2875
2876 pi_faulted:
2877         put_futex_key(&key);
2878
2879         ret = fault_in_user_writeable(uaddr);
2880         if (!ret)
2881                 goto retry;
2882
2883         return ret;
2884 }
2885
2886 /**
2887  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2888  * @hb:         the hash_bucket futex_q was original enqueued on
2889  * @q:          the futex_q woken while waiting to be requeued
2890  * @key2:       the futex_key of the requeue target futex
2891  * @timeout:    the timeout associated with the wait (NULL if none)
2892  *
2893  * Detect if the task was woken on the initial futex as opposed to the requeue
2894  * target futex.  If so, determine if it was a timeout or a signal that caused
2895  * the wakeup and return the appropriate error code to the caller.  Must be
2896  * called with the hb lock held.
2897  *
2898  * Return:
2899  *  -  0 = no early wakeup detected;
2900  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2901  */
2902 static inline
2903 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2904                                    struct futex_q *q, union futex_key *key2,
2905                                    struct hrtimer_sleeper *timeout)
2906 {
2907         int ret = 0;
2908
2909         /*
2910          * With the hb lock held, we avoid races while we process the wakeup.
2911          * We only need to hold hb (and not hb2) to ensure atomicity as the
2912          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2913          * It can't be requeued from uaddr2 to something else since we don't
2914          * support a PI aware source futex for requeue.
2915          */
2916         if (!match_futex(&q->key, key2)) {
2917                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2918                 /*
2919                  * We were woken prior to requeue by a timeout or a signal.
2920                  * Unqueue the futex_q and determine which it was.
2921                  */
2922                 plist_del(&q->list, &hb->chain);
2923                 hb_waiters_dec(hb);
2924
2925                 /* Handle spurious wakeups gracefully */
2926                 ret = -EWOULDBLOCK;
2927                 if (timeout && !timeout->task)
2928                         ret = -ETIMEDOUT;
2929                 else if (signal_pending(current))
2930                         ret = -ERESTARTNOINTR;
2931         }
2932         return ret;
2933 }
2934
2935 /**
2936  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2937  * @uaddr:      the futex we initially wait on (non-pi)
2938  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2939  *              the same type, no requeueing from private to shared, etc.
2940  * @val:        the expected value of uaddr
2941  * @abs_time:   absolute timeout
2942  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2943  * @uaddr2:     the pi futex we will take prior to returning to user-space
2944  *
2945  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2946  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2947  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2948  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2949  * without one, the pi logic would not know which task to boost/deboost, if
2950  * there was a need to.
2951  *
2952  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2953  * via the following--
2954  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2955  * 2) wakeup on uaddr2 after a requeue
2956  * 3) signal
2957  * 4) timeout
2958  *
2959  * If 3, cleanup and return -ERESTARTNOINTR.
2960  *
2961  * If 2, we may then block on trying to take the rt_mutex and return via:
2962  * 5) successful lock
2963  * 6) signal
2964  * 7) timeout
2965  * 8) other lock acquisition failure
2966  *
2967  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2968  *
2969  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2970  *
2971  * Return:
2972  *  -  0 - On success;
2973  *  - <0 - On error
2974  */
2975 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2976                                  u32 val, ktime_t *abs_time, u32 bitset,
2977                                  u32 __user *uaddr2)
2978 {
2979         struct hrtimer_sleeper timeout, *to = NULL;
2980         struct futex_pi_state *pi_state = NULL;
2981         struct rt_mutex_waiter rt_waiter;
2982         struct futex_hash_bucket *hb;
2983         union futex_key key2 = FUTEX_KEY_INIT;
2984         struct futex_q q = futex_q_init;
2985         int res, ret;
2986
2987         if (uaddr == uaddr2)
2988                 return -EINVAL;
2989
2990         if (!bitset)
2991                 return -EINVAL;
2992
2993         if (abs_time) {
2994                 to = &timeout;
2995                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2996                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2997                                       HRTIMER_MODE_ABS);
2998                 hrtimer_init_sleeper(to, current);
2999                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3000                                              current->timer_slack_ns);
3001         }
3002
3003         /*
3004          * The waiter is allocated on our stack, manipulated by the requeue
3005          * code while we sleep on uaddr.
3006          */
3007         rt_mutex_init_waiter(&rt_waiter);
3008
3009         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3010         if (unlikely(ret != 0))
3011                 goto out;
3012
3013         q.bitset = bitset;
3014         q.rt_waiter = &rt_waiter;
3015         q.requeue_pi_key = &key2;
3016
3017         /*
3018          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3019          * count.
3020          */
3021         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3022         if (ret)
3023                 goto out_key2;
3024
3025         /*
3026          * The check above which compares uaddrs is not sufficient for
3027          * shared futexes. We need to compare the keys:
3028          */
3029         if (match_futex(&q.key, &key2)) {
3030                 queue_unlock(hb);
3031                 ret = -EINVAL;
3032                 goto out_put_keys;
3033         }
3034
3035         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3036         futex_wait_queue_me(hb, &q, to);
3037
3038         spin_lock(&hb->lock);
3039         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3040         spin_unlock(&hb->lock);
3041         if (ret)
3042                 goto out_put_keys;
3043
3044         /*
3045          * In order for us to be here, we know our q.key == key2, and since
3046          * we took the hb->lock above, we also know that futex_requeue() has
3047          * completed and we no longer have to concern ourselves with a wakeup
3048          * race with the atomic proxy lock acquisition by the requeue code. The
3049          * futex_requeue dropped our key1 reference and incremented our key2
3050          * reference count.
3051          */
3052
3053         /* Check if the requeue code acquired the second futex for us. */
3054         if (!q.rt_waiter) {
3055                 /*
3056                  * Got the lock. We might not be the anticipated owner if we
3057                  * did a lock-steal - fix up the PI-state in that case.
3058                  */
3059                 if (q.pi_state && (q.pi_state->owner != current)) {
3060                         spin_lock(q.lock_ptr);
3061                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3062                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3063                                 pi_state = q.pi_state;
3064                                 get_pi_state(pi_state);
3065                         }
3066                         /*
3067                          * Drop the reference to the pi state which
3068                          * the requeue_pi() code acquired for us.
3069                          */
3070                         put_pi_state(q.pi_state);
3071                         spin_unlock(q.lock_ptr);
3072                 }
3073         } else {
3074                 struct rt_mutex *pi_mutex;
3075
3076                 /*
3077                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3078                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3079                  * the pi_state.
3080                  */
3081                 WARN_ON(!q.pi_state);
3082                 pi_mutex = &q.pi_state->pi_mutex;
3083                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3084
3085                 spin_lock(q.lock_ptr);
3086                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3087                         ret = 0;
3088
3089                 debug_rt_mutex_free_waiter(&rt_waiter);
3090                 /*
3091                  * Fixup the pi_state owner and possibly acquire the lock if we
3092                  * haven't already.
3093                  */
3094                 res = fixup_owner(uaddr2, &q, !ret);
3095                 /*
3096                  * If fixup_owner() returned an error, proprogate that.  If it
3097                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3098                  */
3099                 if (res)
3100                         ret = (res < 0) ? res : 0;
3101
3102                 /*
3103                  * If fixup_pi_state_owner() faulted and was unable to handle
3104                  * the fault, unlock the rt_mutex and return the fault to
3105                  * userspace.
3106                  */
3107                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3108                         pi_state = q.pi_state;
3109                         get_pi_state(pi_state);
3110                 }
3111
3112                 /* Unqueue and drop the lock. */
3113                 unqueue_me_pi(&q);
3114         }
3115
3116         if (pi_state) {
3117                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3118                 put_pi_state(pi_state);
3119         }
3120
3121         if (ret == -EINTR) {
3122                 /*
3123                  * We've already been requeued, but cannot restart by calling
3124                  * futex_lock_pi() directly. We could restart this syscall, but
3125                  * it would detect that the user space "val" changed and return
3126                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3127                  * -EWOULDBLOCK directly.
3128                  */
3129                 ret = -EWOULDBLOCK;
3130         }
3131
3132 out_put_keys:
3133         put_futex_key(&q.key);
3134 out_key2:
3135         put_futex_key(&key2);
3136
3137 out:
3138         if (to) {
3139                 hrtimer_cancel(&to->timer);
3140                 destroy_hrtimer_on_stack(&to->timer);
3141         }
3142         return ret;
3143 }
3144
3145 /*
3146  * Support for robust futexes: the kernel cleans up held futexes at
3147  * thread exit time.
3148  *
3149  * Implementation: user-space maintains a per-thread list of locks it
3150  * is holding. Upon do_exit(), the kernel carefully walks this list,
3151  * and marks all locks that are owned by this thread with the
3152  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3153  * always manipulated with the lock held, so the list is private and
3154  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3155  * field, to allow the kernel to clean up if the thread dies after
3156  * acquiring the lock, but just before it could have added itself to
3157  * the list. There can only be one such pending lock.
3158  */
3159
3160 /**
3161  * sys_set_robust_list() - Set the robust-futex list head of a task
3162  * @head:       pointer to the list-head
3163  * @len:        length of the list-head, as userspace expects
3164  */
3165 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3166                 size_t, len)
3167 {
3168         if (!futex_cmpxchg_enabled)
3169                 return -ENOSYS;
3170         /*
3171          * The kernel knows only one size for now:
3172          */
3173         if (unlikely(len != sizeof(*head)))
3174                 return -EINVAL;
3175
3176         current->robust_list = head;
3177
3178         return 0;
3179 }
3180
3181 /**
3182  * sys_get_robust_list() - Get the robust-futex list head of a task
3183  * @pid:        pid of the process [zero for current task]
3184  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3185  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3186  */
3187 SYSCALL_DEFINE3(get_robust_list, int, pid,
3188                 struct robust_list_head __user * __user *, head_ptr,
3189                 size_t __user *, len_ptr)
3190 {
3191         struct robust_list_head __user *head;
3192         unsigned long ret;
3193         struct task_struct *p;
3194
3195         if (!futex_cmpxchg_enabled)
3196                 return -ENOSYS;
3197
3198         rcu_read_lock();
3199
3200         ret = -ESRCH;
3201         if (!pid)
3202                 p = current;
3203         else {
3204                 p = find_task_by_vpid(pid);
3205                 if (!p)
3206                         goto err_unlock;
3207         }
3208
3209         ret = -EPERM;
3210         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3211                 goto err_unlock;
3212
3213         head = p->robust_list;
3214         rcu_read_unlock();
3215
3216         if (put_user(sizeof(*head), len_ptr))
3217                 return -EFAULT;
3218         return put_user(head, head_ptr);
3219
3220 err_unlock:
3221         rcu_read_unlock();
3222
3223         return ret;
3224 }
3225
3226 /*
3227  * Process a futex-list entry, check whether it's owned by the
3228  * dying task, and do notification if so:
3229  */
3230 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3231 {
3232         u32 uval, uninitialized_var(nval), mval;
3233
3234 retry:
3235         if (get_user(uval, uaddr))
3236                 return -1;
3237
3238         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3239                 /*
3240                  * Ok, this dying thread is truly holding a futex
3241                  * of interest. Set the OWNER_DIED bit atomically
3242                  * via cmpxchg, and if the value had FUTEX_WAITERS
3243                  * set, wake up a waiter (if any). (We have to do a
3244                  * futex_wake() even if OWNER_DIED is already set -
3245                  * to handle the rare but possible case of recursive
3246                  * thread-death.) The rest of the cleanup is done in
3247                  * userspace.
3248                  */
3249                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3250                 /*
3251                  * We are not holding a lock here, but we want to have
3252                  * the pagefault_disable/enable() protection because
3253                  * we want to handle the fault gracefully. If the
3254                  * access fails we try to fault in the futex with R/W
3255                  * verification via get_user_pages. get_user() above
3256                  * does not guarantee R/W access. If that fails we
3257                  * give up and leave the futex locked.
3258                  */
3259                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3260                         if (fault_in_user_writeable(uaddr))
3261                                 return -1;
3262                         goto retry;
3263                 }
3264                 if (nval != uval)
3265                         goto retry;
3266
3267                 /*
3268                  * Wake robust non-PI futexes here. The wakeup of
3269                  * PI futexes happens in exit_pi_state():
3270                  */
3271                 if (!pi && (uval & FUTEX_WAITERS))
3272                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3273         }
3274         return 0;
3275 }
3276
3277 /*
3278  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3279  */
3280 static inline int fetch_robust_entry(struct robust_list __user **entry,
3281                                      struct robust_list __user * __user *head,
3282                                      unsigned int *pi)
3283 {
3284         unsigned long uentry;
3285
3286         if (get_user(uentry, (unsigned long __user *)head))
3287                 return -EFAULT;
3288
3289         *entry = (void __user *)(uentry & ~1UL);
3290         *pi = uentry & 1;
3291
3292         return 0;
3293 }
3294
3295 /*
3296  * Walk curr->robust_list (very carefully, it's a userspace list!)
3297  * and mark any locks found there dead, and notify any waiters.
3298  *
3299  * We silently return on any sign of list-walking problem.
3300  */
3301 void exit_robust_list(struct task_struct *curr)
3302 {
3303         struct robust_list_head __user *head = curr->robust_list;
3304         struct robust_list __user *entry, *next_entry, *pending;
3305         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3306         unsigned int uninitialized_var(next_pi);
3307         unsigned long futex_offset;
3308         int rc;
3309
3310         if (!futex_cmpxchg_enabled)
3311                 return;
3312
3313         /*
3314          * Fetch the list head (which was registered earlier, via
3315          * sys_set_robust_list()):
3316          */
3317         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3318                 return;
3319         /*
3320          * Fetch the relative futex offset:
3321          */
3322         if (get_user(futex_offset, &head->futex_offset))
3323                 return;
3324         /*
3325          * Fetch any possibly pending lock-add first, and handle it
3326          * if it exists:
3327          */
3328         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3329                 return;
3330
3331         next_entry = NULL;      /* avoid warning with gcc */
3332         while (entry != &head->list) {
3333                 /*
3334                  * Fetch the next entry in the list before calling
3335                  * handle_futex_death:
3336                  */
3337                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3338                 /*
3339                  * A pending lock might already be on the list, so
3340                  * don't process it twice:
3341                  */
3342                 if (entry != pending)
3343                         if (handle_futex_death((void __user *)entry + futex_offset,
3344                                                 curr, pi))
3345                                 return;
3346                 if (rc)
3347                         return;
3348                 entry = next_entry;
3349                 pi = next_pi;
3350                 /*
3351                  * Avoid excessively long or circular lists:
3352                  */
3353                 if (!--limit)
3354                         break;
3355
3356                 cond_resched();
3357         }
3358
3359         if (pending)
3360                 handle_futex_death((void __user *)pending + futex_offset,
3361                                    curr, pip);
3362 }
3363
3364 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3365                 u32 __user *uaddr2, u32 val2, u32 val3)
3366 {
3367         int cmd = op & FUTEX_CMD_MASK;
3368         unsigned int flags = 0;
3369
3370         if (!(op & FUTEX_PRIVATE_FLAG))
3371                 flags |= FLAGS_SHARED;
3372
3373         if (op & FUTEX_CLOCK_REALTIME) {
3374                 flags |= FLAGS_CLOCKRT;
3375                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3376                     cmd != FUTEX_WAIT_REQUEUE_PI)
3377                         return -ENOSYS;
3378         }
3379
3380         switch (cmd) {
3381         case FUTEX_LOCK_PI:
3382         case FUTEX_UNLOCK_PI:
3383         case FUTEX_TRYLOCK_PI:
3384         case FUTEX_WAIT_REQUEUE_PI:
3385         case FUTEX_CMP_REQUEUE_PI:
3386                 if (!futex_cmpxchg_enabled)
3387                         return -ENOSYS;
3388         }
3389
3390         switch (cmd) {
3391         case FUTEX_WAIT:
3392                 val3 = FUTEX_BITSET_MATCH_ANY;
3393         case FUTEX_WAIT_BITSET:
3394                 return futex_wait(uaddr, flags, val, timeout, val3);
3395         case FUTEX_WAKE:
3396                 val3 = FUTEX_BITSET_MATCH_ANY;
3397         case FUTEX_WAKE_BITSET:
3398                 return futex_wake(uaddr, flags, val, val3);
3399         case FUTEX_REQUEUE:
3400                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3401         case FUTEX_CMP_REQUEUE:
3402                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3403         case FUTEX_WAKE_OP:
3404                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3405         case FUTEX_LOCK_PI:
3406                 return futex_lock_pi(uaddr, flags, timeout, 0);
3407         case FUTEX_UNLOCK_PI:
3408                 return futex_unlock_pi(uaddr, flags);
3409         case FUTEX_TRYLOCK_PI:
3410                 return futex_lock_pi(uaddr, flags, NULL, 1);
3411         case FUTEX_WAIT_REQUEUE_PI:
3412                 val3 = FUTEX_BITSET_MATCH_ANY;
3413                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3414                                              uaddr2);
3415         case FUTEX_CMP_REQUEUE_PI:
3416                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3417         }
3418         return -ENOSYS;
3419 }
3420
3421
3422 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3423                 struct timespec __user *, utime, u32 __user *, uaddr2,
3424                 u32, val3)
3425 {
3426         struct timespec ts;
3427         ktime_t t, *tp = NULL;
3428         u32 val2 = 0;
3429         int cmd = op & FUTEX_CMD_MASK;
3430
3431         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3432                       cmd == FUTEX_WAIT_BITSET ||
3433                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3434                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3435                         return -EFAULT;
3436                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3437                         return -EFAULT;
3438                 if (!timespec_valid(&ts))
3439                         return -EINVAL;
3440
3441                 t = timespec_to_ktime(ts);
3442                 if (cmd == FUTEX_WAIT)
3443                         t = ktime_add_safe(ktime_get(), t);
3444                 tp = &t;
3445         }
3446         /*
3447          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3448          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3449          */
3450         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3451             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3452                 val2 = (u32) (unsigned long) utime;
3453
3454         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3455 }
3456
3457 static void __init futex_detect_cmpxchg(void)
3458 {
3459 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3460         u32 curval;
3461
3462         /*
3463          * This will fail and we want it. Some arch implementations do
3464          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3465          * functionality. We want to know that before we call in any
3466          * of the complex code paths. Also we want to prevent
3467          * registration of robust lists in that case. NULL is
3468          * guaranteed to fault and we get -EFAULT on functional
3469          * implementation, the non-functional ones will return
3470          * -ENOSYS.
3471          */
3472         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3473                 futex_cmpxchg_enabled = 1;
3474 #endif
3475 }
3476
3477 static int __init futex_init(void)
3478 {
3479         unsigned int futex_shift;
3480         unsigned long i;
3481
3482 #if CONFIG_BASE_SMALL
3483         futex_hashsize = 16;
3484 #else
3485         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3486 #endif
3487
3488         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3489                                                futex_hashsize, 0,
3490                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3491                                                &futex_shift, NULL,
3492                                                futex_hashsize, futex_hashsize);
3493         futex_hashsize = 1UL << futex_shift;
3494
3495         futex_detect_cmpxchg();
3496
3497         for (i = 0; i < futex_hashsize; i++) {
3498                 atomic_set(&futex_queues[i].waiters, 0);
3499                 plist_head_init(&futex_queues[i].chain);
3500                 spin_lock_init(&futex_queues[i].lock);
3501         }
3502
3503         return 0;
3504 }
3505 core_initcall(futex_init);