]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kexec_core.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / kernel / kexec_core.c
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/page.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
48
49 DEFINE_MUTEX(kexec_mutex);
50
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56
57
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60         .name  = "Crash kernel",
61         .start = 0,
62         .end   = 0,
63         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64         .desc  = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67         .name  = "Crash kernel",
68         .start = 0,
69         .end   = 0,
70         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71         .desc  = IORES_DESC_CRASH_KERNEL
72 };
73
74 int kexec_should_crash(struct task_struct *p)
75 {
76         /*
77          * If crash_kexec_post_notifiers is enabled, don't run
78          * crash_kexec() here yet, which must be run after panic
79          * notifiers in panic().
80          */
81         if (crash_kexec_post_notifiers)
82                 return 0;
83         /*
84          * There are 4 panic() calls in do_exit() path, each of which
85          * corresponds to each of these 4 conditions.
86          */
87         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88                 return 1;
89         return 0;
90 }
91
92 int kexec_crash_loaded(void)
93 {
94         return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97
98 /*
99  * When kexec transitions to the new kernel there is a one-to-one
100  * mapping between physical and virtual addresses.  On processors
101  * where you can disable the MMU this is trivial, and easy.  For
102  * others it is still a simple predictable page table to setup.
103  *
104  * In that environment kexec copies the new kernel to its final
105  * resting place.  This means I can only support memory whose
106  * physical address can fit in an unsigned long.  In particular
107  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108  * If the assembly stub has more restrictive requirements
109  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110  * defined more restrictively in <asm/kexec.h>.
111  *
112  * The code for the transition from the current kernel to the
113  * the new kernel is placed in the control_code_buffer, whose size
114  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
115  * page of memory is necessary, but some architectures require more.
116  * Because this memory must be identity mapped in the transition from
117  * virtual to physical addresses it must live in the range
118  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119  * modifiable.
120  *
121  * The assembly stub in the control code buffer is passed a linked list
122  * of descriptor pages detailing the source pages of the new kernel,
123  * and the destination addresses of those source pages.  As this data
124  * structure is not used in the context of the current OS, it must
125  * be self-contained.
126  *
127  * The code has been made to work with highmem pages and will use a
128  * destination page in its final resting place (if it happens
129  * to allocate it).  The end product of this is that most of the
130  * physical address space, and most of RAM can be used.
131  *
132  * Future directions include:
133  *  - allocating a page table with the control code buffer identity
134  *    mapped, to simplify machine_kexec and make kexec_on_panic more
135  *    reliable.
136  */
137
138 /*
139  * KIMAGE_NO_DEST is an impossible destination address..., for
140  * allocating pages whose destination address we do not care about.
141  */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144
145 static struct page *kimage_alloc_page(struct kimage *image,
146                                        gfp_t gfp_mask,
147                                        unsigned long dest);
148
149 int sanity_check_segment_list(struct kimage *image)
150 {
151         int i;
152         unsigned long nr_segments = image->nr_segments;
153         unsigned long total_pages = 0;
154
155         /*
156          * Verify we have good destination addresses.  The caller is
157          * responsible for making certain we don't attempt to load
158          * the new image into invalid or reserved areas of RAM.  This
159          * just verifies it is an address we can use.
160          *
161          * Since the kernel does everything in page size chunks ensure
162          * the destination addresses are page aligned.  Too many
163          * special cases crop of when we don't do this.  The most
164          * insidious is getting overlapping destination addresses
165          * simply because addresses are changed to page size
166          * granularity.
167          */
168         for (i = 0; i < nr_segments; i++) {
169                 unsigned long mstart, mend;
170
171                 mstart = image->segment[i].mem;
172                 mend   = mstart + image->segment[i].memsz;
173                 if (mstart > mend)
174                         return -EADDRNOTAVAIL;
175                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176                         return -EADDRNOTAVAIL;
177                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178                         return -EADDRNOTAVAIL;
179         }
180
181         /* Verify our destination addresses do not overlap.
182          * If we alloed overlapping destination addresses
183          * through very weird things can happen with no
184          * easy explanation as one segment stops on another.
185          */
186         for (i = 0; i < nr_segments; i++) {
187                 unsigned long mstart, mend;
188                 unsigned long j;
189
190                 mstart = image->segment[i].mem;
191                 mend   = mstart + image->segment[i].memsz;
192                 for (j = 0; j < i; j++) {
193                         unsigned long pstart, pend;
194
195                         pstart = image->segment[j].mem;
196                         pend   = pstart + image->segment[j].memsz;
197                         /* Do the segments overlap ? */
198                         if ((mend > pstart) && (mstart < pend))
199                                 return -EINVAL;
200                 }
201         }
202
203         /* Ensure our buffer sizes are strictly less than
204          * our memory sizes.  This should always be the case,
205          * and it is easier to check up front than to be surprised
206          * later on.
207          */
208         for (i = 0; i < nr_segments; i++) {
209                 if (image->segment[i].bufsz > image->segment[i].memsz)
210                         return -EINVAL;
211         }
212
213         /*
214          * Verify that no more than half of memory will be consumed. If the
215          * request from userspace is too large, a large amount of time will be
216          * wasted allocating pages, which can cause a soft lockup.
217          */
218         for (i = 0; i < nr_segments; i++) {
219                 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
220                         return -EINVAL;
221
222                 total_pages += PAGE_COUNT(image->segment[i].memsz);
223         }
224
225         if (total_pages > totalram_pages / 2)
226                 return -EINVAL;
227
228         /*
229          * Verify we have good destination addresses.  Normally
230          * the caller is responsible for making certain we don't
231          * attempt to load the new image into invalid or reserved
232          * areas of RAM.  But crash kernels are preloaded into a
233          * reserved area of ram.  We must ensure the addresses
234          * are in the reserved area otherwise preloading the
235          * kernel could corrupt things.
236          */
237
238         if (image->type == KEXEC_TYPE_CRASH) {
239                 for (i = 0; i < nr_segments; i++) {
240                         unsigned long mstart, mend;
241
242                         mstart = image->segment[i].mem;
243                         mend = mstart + image->segment[i].memsz - 1;
244                         /* Ensure we are within the crash kernel limits */
245                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246                             (mend > phys_to_boot_phys(crashk_res.end)))
247                                 return -EADDRNOTAVAIL;
248                 }
249         }
250
251         return 0;
252 }
253
254 struct kimage *do_kimage_alloc_init(void)
255 {
256         struct kimage *image;
257
258         /* Allocate a controlling structure */
259         image = kzalloc(sizeof(*image), GFP_KERNEL);
260         if (!image)
261                 return NULL;
262
263         image->head = 0;
264         image->entry = &image->head;
265         image->last_entry = &image->head;
266         image->control_page = ~0; /* By default this does not apply */
267         image->type = KEXEC_TYPE_DEFAULT;
268
269         /* Initialize the list of control pages */
270         INIT_LIST_HEAD(&image->control_pages);
271
272         /* Initialize the list of destination pages */
273         INIT_LIST_HEAD(&image->dest_pages);
274
275         /* Initialize the list of unusable pages */
276         INIT_LIST_HEAD(&image->unusable_pages);
277
278         return image;
279 }
280
281 int kimage_is_destination_range(struct kimage *image,
282                                         unsigned long start,
283                                         unsigned long end)
284 {
285         unsigned long i;
286
287         for (i = 0; i < image->nr_segments; i++) {
288                 unsigned long mstart, mend;
289
290                 mstart = image->segment[i].mem;
291                 mend = mstart + image->segment[i].memsz;
292                 if ((end > mstart) && (start < mend))
293                         return 1;
294         }
295
296         return 0;
297 }
298
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301         struct page *pages;
302
303         pages = alloc_pages(gfp_mask, order);
304         if (pages) {
305                 unsigned int count, i;
306
307                 pages->mapping = NULL;
308                 set_page_private(pages, order);
309                 count = 1 << order;
310                 for (i = 0; i < count; i++)
311                         SetPageReserved(pages + i);
312         }
313
314         return pages;
315 }
316
317 static void kimage_free_pages(struct page *page)
318 {
319         unsigned int order, count, i;
320
321         order = page_private(page);
322         count = 1 << order;
323         for (i = 0; i < count; i++)
324                 ClearPageReserved(page + i);
325         __free_pages(page, order);
326 }
327
328 void kimage_free_page_list(struct list_head *list)
329 {
330         struct page *page, *next;
331
332         list_for_each_entry_safe(page, next, list, lru) {
333                 list_del(&page->lru);
334                 kimage_free_pages(page);
335         }
336 }
337
338 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
339                                                         unsigned int order)
340 {
341         /* Control pages are special, they are the intermediaries
342          * that are needed while we copy the rest of the pages
343          * to their final resting place.  As such they must
344          * not conflict with either the destination addresses
345          * or memory the kernel is already using.
346          *
347          * The only case where we really need more than one of
348          * these are for architectures where we cannot disable
349          * the MMU and must instead generate an identity mapped
350          * page table for all of the memory.
351          *
352          * At worst this runs in O(N) of the image size.
353          */
354         struct list_head extra_pages;
355         struct page *pages;
356         unsigned int count;
357
358         count = 1 << order;
359         INIT_LIST_HEAD(&extra_pages);
360
361         /* Loop while I can allocate a page and the page allocated
362          * is a destination page.
363          */
364         do {
365                 unsigned long pfn, epfn, addr, eaddr;
366
367                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
368                 if (!pages)
369                         break;
370                 pfn   = page_to_boot_pfn(pages);
371                 epfn  = pfn + count;
372                 addr  = pfn << PAGE_SHIFT;
373                 eaddr = epfn << PAGE_SHIFT;
374                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
375                               kimage_is_destination_range(image, addr, eaddr)) {
376                         list_add(&pages->lru, &extra_pages);
377                         pages = NULL;
378                 }
379         } while (!pages);
380
381         if (pages) {
382                 /* Remember the allocated page... */
383                 list_add(&pages->lru, &image->control_pages);
384
385                 /* Because the page is already in it's destination
386                  * location we will never allocate another page at
387                  * that address.  Therefore kimage_alloc_pages
388                  * will not return it (again) and we don't need
389                  * to give it an entry in image->segment[].
390                  */
391         }
392         /* Deal with the destination pages I have inadvertently allocated.
393          *
394          * Ideally I would convert multi-page allocations into single
395          * page allocations, and add everything to image->dest_pages.
396          *
397          * For now it is simpler to just free the pages.
398          */
399         kimage_free_page_list(&extra_pages);
400
401         return pages;
402 }
403
404 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
405                                                       unsigned int order)
406 {
407         /* Control pages are special, they are the intermediaries
408          * that are needed while we copy the rest of the pages
409          * to their final resting place.  As such they must
410          * not conflict with either the destination addresses
411          * or memory the kernel is already using.
412          *
413          * Control pages are also the only pags we must allocate
414          * when loading a crash kernel.  All of the other pages
415          * are specified by the segments and we just memcpy
416          * into them directly.
417          *
418          * The only case where we really need more than one of
419          * these are for architectures where we cannot disable
420          * the MMU and must instead generate an identity mapped
421          * page table for all of the memory.
422          *
423          * Given the low demand this implements a very simple
424          * allocator that finds the first hole of the appropriate
425          * size in the reserved memory region, and allocates all
426          * of the memory up to and including the hole.
427          */
428         unsigned long hole_start, hole_end, size;
429         struct page *pages;
430
431         pages = NULL;
432         size = (1 << order) << PAGE_SHIFT;
433         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
434         hole_end   = hole_start + size - 1;
435         while (hole_end <= crashk_res.end) {
436                 unsigned long i;
437
438                 cond_resched();
439
440                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
441                         break;
442                 /* See if I overlap any of the segments */
443                 for (i = 0; i < image->nr_segments; i++) {
444                         unsigned long mstart, mend;
445
446                         mstart = image->segment[i].mem;
447                         mend   = mstart + image->segment[i].memsz - 1;
448                         if ((hole_end >= mstart) && (hole_start <= mend)) {
449                                 /* Advance the hole to the end of the segment */
450                                 hole_start = (mend + (size - 1)) & ~(size - 1);
451                                 hole_end   = hole_start + size - 1;
452                                 break;
453                         }
454                 }
455                 /* If I don't overlap any segments I have found my hole! */
456                 if (i == image->nr_segments) {
457                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
458                         image->control_page = hole_end;
459                         break;
460                 }
461         }
462
463         return pages;
464 }
465
466
467 struct page *kimage_alloc_control_pages(struct kimage *image,
468                                          unsigned int order)
469 {
470         struct page *pages = NULL;
471
472         switch (image->type) {
473         case KEXEC_TYPE_DEFAULT:
474                 pages = kimage_alloc_normal_control_pages(image, order);
475                 break;
476         case KEXEC_TYPE_CRASH:
477                 pages = kimage_alloc_crash_control_pages(image, order);
478                 break;
479         }
480
481         return pages;
482 }
483
484 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
485 {
486         if (*image->entry != 0)
487                 image->entry++;
488
489         if (image->entry == image->last_entry) {
490                 kimage_entry_t *ind_page;
491                 struct page *page;
492
493                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
494                 if (!page)
495                         return -ENOMEM;
496
497                 ind_page = page_address(page);
498                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
499                 image->entry = ind_page;
500                 image->last_entry = ind_page +
501                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
502         }
503         *image->entry = entry;
504         image->entry++;
505         *image->entry = 0;
506
507         return 0;
508 }
509
510 static int kimage_set_destination(struct kimage *image,
511                                    unsigned long destination)
512 {
513         int result;
514
515         destination &= PAGE_MASK;
516         result = kimage_add_entry(image, destination | IND_DESTINATION);
517
518         return result;
519 }
520
521
522 static int kimage_add_page(struct kimage *image, unsigned long page)
523 {
524         int result;
525
526         page &= PAGE_MASK;
527         result = kimage_add_entry(image, page | IND_SOURCE);
528
529         return result;
530 }
531
532
533 static void kimage_free_extra_pages(struct kimage *image)
534 {
535         /* Walk through and free any extra destination pages I may have */
536         kimage_free_page_list(&image->dest_pages);
537
538         /* Walk through and free any unusable pages I have cached */
539         kimage_free_page_list(&image->unusable_pages);
540
541 }
542 void kimage_terminate(struct kimage *image)
543 {
544         if (*image->entry != 0)
545                 image->entry++;
546
547         *image->entry = IND_DONE;
548 }
549
550 #define for_each_kimage_entry(image, ptr, entry) \
551         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
552                 ptr = (entry & IND_INDIRECTION) ? \
553                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
554
555 static void kimage_free_entry(kimage_entry_t entry)
556 {
557         struct page *page;
558
559         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
560         kimage_free_pages(page);
561 }
562
563 void kimage_free(struct kimage *image)
564 {
565         kimage_entry_t *ptr, entry;
566         kimage_entry_t ind = 0;
567
568         if (!image)
569                 return;
570
571         kimage_free_extra_pages(image);
572         for_each_kimage_entry(image, ptr, entry) {
573                 if (entry & IND_INDIRECTION) {
574                         /* Free the previous indirection page */
575                         if (ind & IND_INDIRECTION)
576                                 kimage_free_entry(ind);
577                         /* Save this indirection page until we are
578                          * done with it.
579                          */
580                         ind = entry;
581                 } else if (entry & IND_SOURCE)
582                         kimage_free_entry(entry);
583         }
584         /* Free the final indirection page */
585         if (ind & IND_INDIRECTION)
586                 kimage_free_entry(ind);
587
588         /* Handle any machine specific cleanup */
589         machine_kexec_cleanup(image);
590
591         /* Free the kexec control pages... */
592         kimage_free_page_list(&image->control_pages);
593
594         /*
595          * Free up any temporary buffers allocated. This might hit if
596          * error occurred much later after buffer allocation.
597          */
598         if (image->file_mode)
599                 kimage_file_post_load_cleanup(image);
600
601         kfree(image);
602 }
603
604 static kimage_entry_t *kimage_dst_used(struct kimage *image,
605                                         unsigned long page)
606 {
607         kimage_entry_t *ptr, entry;
608         unsigned long destination = 0;
609
610         for_each_kimage_entry(image, ptr, entry) {
611                 if (entry & IND_DESTINATION)
612                         destination = entry & PAGE_MASK;
613                 else if (entry & IND_SOURCE) {
614                         if (page == destination)
615                                 return ptr;
616                         destination += PAGE_SIZE;
617                 }
618         }
619
620         return NULL;
621 }
622
623 static struct page *kimage_alloc_page(struct kimage *image,
624                                         gfp_t gfp_mask,
625                                         unsigned long destination)
626 {
627         /*
628          * Here we implement safeguards to ensure that a source page
629          * is not copied to its destination page before the data on
630          * the destination page is no longer useful.
631          *
632          * To do this we maintain the invariant that a source page is
633          * either its own destination page, or it is not a
634          * destination page at all.
635          *
636          * That is slightly stronger than required, but the proof
637          * that no problems will not occur is trivial, and the
638          * implementation is simply to verify.
639          *
640          * When allocating all pages normally this algorithm will run
641          * in O(N) time, but in the worst case it will run in O(N^2)
642          * time.   If the runtime is a problem the data structures can
643          * be fixed.
644          */
645         struct page *page;
646         unsigned long addr;
647
648         /*
649          * Walk through the list of destination pages, and see if I
650          * have a match.
651          */
652         list_for_each_entry(page, &image->dest_pages, lru) {
653                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
654                 if (addr == destination) {
655                         list_del(&page->lru);
656                         return page;
657                 }
658         }
659         page = NULL;
660         while (1) {
661                 kimage_entry_t *old;
662
663                 /* Allocate a page, if we run out of memory give up */
664                 page = kimage_alloc_pages(gfp_mask, 0);
665                 if (!page)
666                         return NULL;
667                 /* If the page cannot be used file it away */
668                 if (page_to_boot_pfn(page) >
669                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
670                         list_add(&page->lru, &image->unusable_pages);
671                         continue;
672                 }
673                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
674
675                 /* If it is the destination page we want use it */
676                 if (addr == destination)
677                         break;
678
679                 /* If the page is not a destination page use it */
680                 if (!kimage_is_destination_range(image, addr,
681                                                   addr + PAGE_SIZE))
682                         break;
683
684                 /*
685                  * I know that the page is someones destination page.
686                  * See if there is already a source page for this
687                  * destination page.  And if so swap the source pages.
688                  */
689                 old = kimage_dst_used(image, addr);
690                 if (old) {
691                         /* If so move it */
692                         unsigned long old_addr;
693                         struct page *old_page;
694
695                         old_addr = *old & PAGE_MASK;
696                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
697                         copy_highpage(page, old_page);
698                         *old = addr | (*old & ~PAGE_MASK);
699
700                         /* The old page I have found cannot be a
701                          * destination page, so return it if it's
702                          * gfp_flags honor the ones passed in.
703                          */
704                         if (!(gfp_mask & __GFP_HIGHMEM) &&
705                             PageHighMem(old_page)) {
706                                 kimage_free_pages(old_page);
707                                 continue;
708                         }
709                         addr = old_addr;
710                         page = old_page;
711                         break;
712                 }
713                 /* Place the page on the destination list, to be used later */
714                 list_add(&page->lru, &image->dest_pages);
715         }
716
717         return page;
718 }
719
720 static int kimage_load_normal_segment(struct kimage *image,
721                                          struct kexec_segment *segment)
722 {
723         unsigned long maddr;
724         size_t ubytes, mbytes;
725         int result;
726         unsigned char __user *buf = NULL;
727         unsigned char *kbuf = NULL;
728
729         result = 0;
730         if (image->file_mode)
731                 kbuf = segment->kbuf;
732         else
733                 buf = segment->buf;
734         ubytes = segment->bufsz;
735         mbytes = segment->memsz;
736         maddr = segment->mem;
737
738         result = kimage_set_destination(image, maddr);
739         if (result < 0)
740                 goto out;
741
742         while (mbytes) {
743                 struct page *page;
744                 char *ptr;
745                 size_t uchunk, mchunk;
746
747                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
748                 if (!page) {
749                         result  = -ENOMEM;
750                         goto out;
751                 }
752                 result = kimage_add_page(image, page_to_boot_pfn(page)
753                                                                 << PAGE_SHIFT);
754                 if (result < 0)
755                         goto out;
756
757                 ptr = kmap(page);
758                 /* Start with a clear page */
759                 clear_page(ptr);
760                 ptr += maddr & ~PAGE_MASK;
761                 mchunk = min_t(size_t, mbytes,
762                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
763                 uchunk = min(ubytes, mchunk);
764
765                 /* For file based kexec, source pages are in kernel memory */
766                 if (image->file_mode)
767                         memcpy(ptr, kbuf, uchunk);
768                 else
769                         result = copy_from_user(ptr, buf, uchunk);
770                 kunmap(page);
771                 if (result) {
772                         result = -EFAULT;
773                         goto out;
774                 }
775                 ubytes -= uchunk;
776                 maddr  += mchunk;
777                 if (image->file_mode)
778                         kbuf += mchunk;
779                 else
780                         buf += mchunk;
781                 mbytes -= mchunk;
782         }
783 out:
784         return result;
785 }
786
787 static int kimage_load_crash_segment(struct kimage *image,
788                                         struct kexec_segment *segment)
789 {
790         /* For crash dumps kernels we simply copy the data from
791          * user space to it's destination.
792          * We do things a page at a time for the sake of kmap.
793          */
794         unsigned long maddr;
795         size_t ubytes, mbytes;
796         int result;
797         unsigned char __user *buf = NULL;
798         unsigned char *kbuf = NULL;
799
800         result = 0;
801         if (image->file_mode)
802                 kbuf = segment->kbuf;
803         else
804                 buf = segment->buf;
805         ubytes = segment->bufsz;
806         mbytes = segment->memsz;
807         maddr = segment->mem;
808         while (mbytes) {
809                 struct page *page;
810                 char *ptr;
811                 size_t uchunk, mchunk;
812
813                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
814                 if (!page) {
815                         result  = -ENOMEM;
816                         goto out;
817                 }
818                 ptr = kmap(page);
819                 ptr += maddr & ~PAGE_MASK;
820                 mchunk = min_t(size_t, mbytes,
821                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
822                 uchunk = min(ubytes, mchunk);
823                 if (mchunk > uchunk) {
824                         /* Zero the trailing part of the page */
825                         memset(ptr + uchunk, 0, mchunk - uchunk);
826                 }
827
828                 /* For file based kexec, source pages are in kernel memory */
829                 if (image->file_mode)
830                         memcpy(ptr, kbuf, uchunk);
831                 else
832                         result = copy_from_user(ptr, buf, uchunk);
833                 kexec_flush_icache_page(page);
834                 kunmap(page);
835                 if (result) {
836                         result = -EFAULT;
837                         goto out;
838                 }
839                 ubytes -= uchunk;
840                 maddr  += mchunk;
841                 if (image->file_mode)
842                         kbuf += mchunk;
843                 else
844                         buf += mchunk;
845                 mbytes -= mchunk;
846         }
847 out:
848         return result;
849 }
850
851 int kimage_load_segment(struct kimage *image,
852                                 struct kexec_segment *segment)
853 {
854         int result = -ENOMEM;
855
856         switch (image->type) {
857         case KEXEC_TYPE_DEFAULT:
858                 result = kimage_load_normal_segment(image, segment);
859                 break;
860         case KEXEC_TYPE_CRASH:
861                 result = kimage_load_crash_segment(image, segment);
862                 break;
863         }
864
865         return result;
866 }
867
868 struct kimage *kexec_image;
869 struct kimage *kexec_crash_image;
870 int kexec_load_disabled;
871
872 /*
873  * No panic_cpu check version of crash_kexec().  This function is called
874  * only when panic_cpu holds the current CPU number; this is the only CPU
875  * which processes crash_kexec routines.
876  */
877 void __crash_kexec(struct pt_regs *regs)
878 {
879         /* Take the kexec_mutex here to prevent sys_kexec_load
880          * running on one cpu from replacing the crash kernel
881          * we are using after a panic on a different cpu.
882          *
883          * If the crash kernel was not located in a fixed area
884          * of memory the xchg(&kexec_crash_image) would be
885          * sufficient.  But since I reuse the memory...
886          */
887         if (mutex_trylock(&kexec_mutex)) {
888                 if (kexec_crash_image) {
889                         struct pt_regs fixed_regs;
890
891                         crash_setup_regs(&fixed_regs, regs);
892                         crash_save_vmcoreinfo();
893                         machine_crash_shutdown(&fixed_regs);
894                         machine_kexec(kexec_crash_image);
895                 }
896                 mutex_unlock(&kexec_mutex);
897         }
898 }
899
900 void crash_kexec(struct pt_regs *regs)
901 {
902         int old_cpu, this_cpu;
903
904         /*
905          * Only one CPU is allowed to execute the crash_kexec() code as with
906          * panic().  Otherwise parallel calls of panic() and crash_kexec()
907          * may stop each other.  To exclude them, we use panic_cpu here too.
908          */
909         this_cpu = raw_smp_processor_id();
910         old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
911         if (old_cpu == PANIC_CPU_INVALID) {
912                 /* This is the 1st CPU which comes here, so go ahead. */
913                 printk_safe_flush_on_panic();
914                 __crash_kexec(regs);
915
916                 /*
917                  * Reset panic_cpu to allow another panic()/crash_kexec()
918                  * call.
919                  */
920                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
921         }
922 }
923
924 size_t crash_get_memory_size(void)
925 {
926         size_t size = 0;
927
928         mutex_lock(&kexec_mutex);
929         if (crashk_res.end != crashk_res.start)
930                 size = resource_size(&crashk_res);
931         mutex_unlock(&kexec_mutex);
932         return size;
933 }
934
935 void __weak crash_free_reserved_phys_range(unsigned long begin,
936                                            unsigned long end)
937 {
938         unsigned long addr;
939
940         for (addr = begin; addr < end; addr += PAGE_SIZE)
941                 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
942 }
943
944 int crash_shrink_memory(unsigned long new_size)
945 {
946         int ret = 0;
947         unsigned long start, end;
948         unsigned long old_size;
949         struct resource *ram_res;
950
951         mutex_lock(&kexec_mutex);
952
953         if (kexec_crash_image) {
954                 ret = -ENOENT;
955                 goto unlock;
956         }
957         start = crashk_res.start;
958         end = crashk_res.end;
959         old_size = (end == 0) ? 0 : end - start + 1;
960         if (new_size >= old_size) {
961                 ret = (new_size == old_size) ? 0 : -EINVAL;
962                 goto unlock;
963         }
964
965         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
966         if (!ram_res) {
967                 ret = -ENOMEM;
968                 goto unlock;
969         }
970
971         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
972         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
973
974         crash_free_reserved_phys_range(end, crashk_res.end);
975
976         if ((start == end) && (crashk_res.parent != NULL))
977                 release_resource(&crashk_res);
978
979         ram_res->start = end;
980         ram_res->end = crashk_res.end;
981         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
982         ram_res->name = "System RAM";
983
984         crashk_res.end = end - 1;
985
986         insert_resource(&iomem_resource, ram_res);
987
988 unlock:
989         mutex_unlock(&kexec_mutex);
990         return ret;
991 }
992
993 void crash_save_cpu(struct pt_regs *regs, int cpu)
994 {
995         struct elf_prstatus prstatus;
996         u32 *buf;
997
998         if ((cpu < 0) || (cpu >= nr_cpu_ids))
999                 return;
1000
1001         /* Using ELF notes here is opportunistic.
1002          * I need a well defined structure format
1003          * for the data I pass, and I need tags
1004          * on the data to indicate what information I have
1005          * squirrelled away.  ELF notes happen to provide
1006          * all of that, so there is no need to invent something new.
1007          */
1008         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1009         if (!buf)
1010                 return;
1011         memset(&prstatus, 0, sizeof(prstatus));
1012         prstatus.pr_pid = current->pid;
1013         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1014         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1015                               &prstatus, sizeof(prstatus));
1016         final_note(buf);
1017 }
1018
1019 static int __init crash_notes_memory_init(void)
1020 {
1021         /* Allocate memory for saving cpu registers. */
1022         size_t size, align;
1023
1024         /*
1025          * crash_notes could be allocated across 2 vmalloc pages when percpu
1026          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1027          * pages are also on 2 continuous physical pages. In this case the
1028          * 2nd part of crash_notes in 2nd page could be lost since only the
1029          * starting address and size of crash_notes are exported through sysfs.
1030          * Here round up the size of crash_notes to the nearest power of two
1031          * and pass it to __alloc_percpu as align value. This can make sure
1032          * crash_notes is allocated inside one physical page.
1033          */
1034         size = sizeof(note_buf_t);
1035         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1036
1037         /*
1038          * Break compile if size is bigger than PAGE_SIZE since crash_notes
1039          * definitely will be in 2 pages with that.
1040          */
1041         BUILD_BUG_ON(size > PAGE_SIZE);
1042
1043         crash_notes = __alloc_percpu(size, align);
1044         if (!crash_notes) {
1045                 pr_warn("Memory allocation for saving cpu register states failed\n");
1046                 return -ENOMEM;
1047         }
1048         return 0;
1049 }
1050 subsys_initcall(crash_notes_memory_init);
1051
1052
1053 /*
1054  * Move into place and start executing a preloaded standalone
1055  * executable.  If nothing was preloaded return an error.
1056  */
1057 int kernel_kexec(void)
1058 {
1059         int error = 0;
1060
1061         if (!mutex_trylock(&kexec_mutex))
1062                 return -EBUSY;
1063         if (!kexec_image) {
1064                 error = -EINVAL;
1065                 goto Unlock;
1066         }
1067
1068 #ifdef CONFIG_KEXEC_JUMP
1069         if (kexec_image->preserve_context) {
1070                 lock_system_sleep();
1071                 pm_prepare_console();
1072                 error = freeze_processes();
1073                 if (error) {
1074                         error = -EBUSY;
1075                         goto Restore_console;
1076                 }
1077                 suspend_console();
1078                 error = dpm_suspend_start(PMSG_FREEZE);
1079                 if (error)
1080                         goto Resume_console;
1081                 /* At this point, dpm_suspend_start() has been called,
1082                  * but *not* dpm_suspend_end(). We *must* call
1083                  * dpm_suspend_end() now.  Otherwise, drivers for
1084                  * some devices (e.g. interrupt controllers) become
1085                  * desynchronized with the actual state of the
1086                  * hardware at resume time, and evil weirdness ensues.
1087                  */
1088                 error = dpm_suspend_end(PMSG_FREEZE);
1089                 if (error)
1090                         goto Resume_devices;
1091                 error = disable_nonboot_cpus();
1092                 if (error)
1093                         goto Enable_cpus;
1094                 local_irq_disable();
1095                 error = syscore_suspend();
1096                 if (error)
1097                         goto Enable_irqs;
1098         } else
1099 #endif
1100         {
1101                 kexec_in_progress = true;
1102                 kernel_restart_prepare(NULL);
1103                 migrate_to_reboot_cpu();
1104
1105                 /*
1106                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1107                  * no further code needs to use CPU hotplug (which is true in
1108                  * the reboot case). However, the kexec path depends on using
1109                  * CPU hotplug again; so re-enable it here.
1110                  */
1111                 cpu_hotplug_enable();
1112                 pr_emerg("Starting new kernel\n");
1113                 machine_shutdown();
1114         }
1115
1116         machine_kexec(kexec_image);
1117
1118 #ifdef CONFIG_KEXEC_JUMP
1119         if (kexec_image->preserve_context) {
1120                 syscore_resume();
1121  Enable_irqs:
1122                 local_irq_enable();
1123  Enable_cpus:
1124                 enable_nonboot_cpus();
1125                 dpm_resume_start(PMSG_RESTORE);
1126  Resume_devices:
1127                 dpm_resume_end(PMSG_RESTORE);
1128  Resume_console:
1129                 resume_console();
1130                 thaw_processes();
1131  Restore_console:
1132                 pm_restore_console();
1133                 unlock_system_sleep();
1134         }
1135 #endif
1136
1137  Unlock:
1138         mutex_unlock(&kexec_mutex);
1139         return error;
1140 }
1141
1142 /*
1143  * Protection mechanism for crashkernel reserved memory after
1144  * the kdump kernel is loaded.
1145  *
1146  * Provide an empty default implementation here -- architecture
1147  * code may override this
1148  */
1149 void __weak arch_kexec_protect_crashkres(void)
1150 {}
1151
1152 void __weak arch_kexec_unprotect_crashkres(void)
1153 {}