]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kexec_file.c
NFC: Close a race condition in llcp_sock_getname()
[karo-tx-linux.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <linux/syscalls.h>
24 #include <linux/vmalloc.h>
25 #include "kexec_internal.h"
26
27 /*
28  * Declare these symbols weak so that if architecture provides a purgatory,
29  * these will be overridden.
30  */
31 char __weak kexec_purgatory[0];
32 size_t __weak kexec_purgatory_size = 0;
33
34 static int kexec_calculate_store_digests(struct kimage *image);
35
36 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
37 {
38         struct fd f = fdget(fd);
39         int ret;
40         struct kstat stat;
41         loff_t pos;
42         ssize_t bytes = 0;
43
44         if (!f.file)
45                 return -EBADF;
46
47         ret = vfs_getattr(&f.file->f_path, &stat);
48         if (ret)
49                 goto out;
50
51         if (stat.size > INT_MAX) {
52                 ret = -EFBIG;
53                 goto out;
54         }
55
56         /* Don't hand 0 to vmalloc, it whines. */
57         if (stat.size == 0) {
58                 ret = -EINVAL;
59                 goto out;
60         }
61
62         *buf = vmalloc(stat.size);
63         if (!*buf) {
64                 ret = -ENOMEM;
65                 goto out;
66         }
67
68         pos = 0;
69         while (pos < stat.size) {
70                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
71                                     stat.size - pos);
72                 if (bytes < 0) {
73                         vfree(*buf);
74                         ret = bytes;
75                         goto out;
76                 }
77
78                 if (bytes == 0)
79                         break;
80                 pos += bytes;
81         }
82
83         if (pos != stat.size) {
84                 ret = -EBADF;
85                 vfree(*buf);
86                 goto out;
87         }
88
89         *buf_len = pos;
90 out:
91         fdput(f);
92         return ret;
93 }
94
95 /* Architectures can provide this probe function */
96 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
97                                          unsigned long buf_len)
98 {
99         return -ENOEXEC;
100 }
101
102 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
103 {
104         return ERR_PTR(-ENOEXEC);
105 }
106
107 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
108 {
109         return -EINVAL;
110 }
111
112 #ifdef CONFIG_KEXEC_VERIFY_SIG
113 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
114                                         unsigned long buf_len)
115 {
116         return -EKEYREJECTED;
117 }
118 #endif
119
120 /* Apply relocations of type RELA */
121 int __weak
122 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
123                                  unsigned int relsec)
124 {
125         pr_err("RELA relocation unsupported.\n");
126         return -ENOEXEC;
127 }
128
129 /* Apply relocations of type REL */
130 int __weak
131 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
132                              unsigned int relsec)
133 {
134         pr_err("REL relocation unsupported.\n");
135         return -ENOEXEC;
136 }
137
138 /*
139  * Free up memory used by kernel, initrd, and command line. This is temporary
140  * memory allocation which is not needed any more after these buffers have
141  * been loaded into separate segments and have been copied elsewhere.
142  */
143 void kimage_file_post_load_cleanup(struct kimage *image)
144 {
145         struct purgatory_info *pi = &image->purgatory_info;
146
147         vfree(image->kernel_buf);
148         image->kernel_buf = NULL;
149
150         vfree(image->initrd_buf);
151         image->initrd_buf = NULL;
152
153         kfree(image->cmdline_buf);
154         image->cmdline_buf = NULL;
155
156         vfree(pi->purgatory_buf);
157         pi->purgatory_buf = NULL;
158
159         vfree(pi->sechdrs);
160         pi->sechdrs = NULL;
161
162         /* See if architecture has anything to cleanup post load */
163         arch_kimage_file_post_load_cleanup(image);
164
165         /*
166          * Above call should have called into bootloader to free up
167          * any data stored in kimage->image_loader_data. It should
168          * be ok now to free it up.
169          */
170         kfree(image->image_loader_data);
171         image->image_loader_data = NULL;
172 }
173
174 /*
175  * In file mode list of segments is prepared by kernel. Copy relevant
176  * data from user space, do error checking, prepare segment list
177  */
178 static int
179 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
180                              const char __user *cmdline_ptr,
181                              unsigned long cmdline_len, unsigned flags)
182 {
183         int ret = 0;
184         void *ldata;
185
186         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
187                                 &image->kernel_buf_len);
188         if (ret)
189                 return ret;
190
191         /* Call arch image probe handlers */
192         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
193                                             image->kernel_buf_len);
194
195         if (ret)
196                 goto out;
197
198 #ifdef CONFIG_KEXEC_VERIFY_SIG
199         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
200                                            image->kernel_buf_len);
201         if (ret) {
202                 pr_debug("kernel signature verification failed.\n");
203                 goto out;
204         }
205         pr_debug("kernel signature verification successful.\n");
206 #endif
207         /* It is possible that there no initramfs is being loaded */
208         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
209                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
210                                         &image->initrd_buf_len);
211                 if (ret)
212                         goto out;
213         }
214
215         if (cmdline_len) {
216                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
217                 if (!image->cmdline_buf) {
218                         ret = -ENOMEM;
219                         goto out;
220                 }
221
222                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
223                                      cmdline_len);
224                 if (ret) {
225                         ret = -EFAULT;
226                         goto out;
227                 }
228
229                 image->cmdline_buf_len = cmdline_len;
230
231                 /* command line should be a string with last byte null */
232                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
233                         ret = -EINVAL;
234                         goto out;
235                 }
236         }
237
238         /* Call arch image load handlers */
239         ldata = arch_kexec_kernel_image_load(image);
240
241         if (IS_ERR(ldata)) {
242                 ret = PTR_ERR(ldata);
243                 goto out;
244         }
245
246         image->image_loader_data = ldata;
247 out:
248         /* In case of error, free up all allocated memory in this function */
249         if (ret)
250                 kimage_file_post_load_cleanup(image);
251         return ret;
252 }
253
254 static int
255 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
256                        int initrd_fd, const char __user *cmdline_ptr,
257                        unsigned long cmdline_len, unsigned long flags)
258 {
259         int ret;
260         struct kimage *image;
261         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
262
263         image = do_kimage_alloc_init();
264         if (!image)
265                 return -ENOMEM;
266
267         image->file_mode = 1;
268
269         if (kexec_on_panic) {
270                 /* Enable special crash kernel control page alloc policy. */
271                 image->control_page = crashk_res.start;
272                 image->type = KEXEC_TYPE_CRASH;
273         }
274
275         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
276                                            cmdline_ptr, cmdline_len, flags);
277         if (ret)
278                 goto out_free_image;
279
280         ret = sanity_check_segment_list(image);
281         if (ret)
282                 goto out_free_post_load_bufs;
283
284         ret = -ENOMEM;
285         image->control_code_page = kimage_alloc_control_pages(image,
286                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
287         if (!image->control_code_page) {
288                 pr_err("Could not allocate control_code_buffer\n");
289                 goto out_free_post_load_bufs;
290         }
291
292         if (!kexec_on_panic) {
293                 image->swap_page = kimage_alloc_control_pages(image, 0);
294                 if (!image->swap_page) {
295                         pr_err("Could not allocate swap buffer\n");
296                         goto out_free_control_pages;
297                 }
298         }
299
300         *rimage = image;
301         return 0;
302 out_free_control_pages:
303         kimage_free_page_list(&image->control_pages);
304 out_free_post_load_bufs:
305         kimage_file_post_load_cleanup(image);
306 out_free_image:
307         kfree(image);
308         return ret;
309 }
310
311 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
312                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
313                 unsigned long, flags)
314 {
315         int ret = 0, i;
316         struct kimage **dest_image, *image;
317
318         /* We only trust the superuser with rebooting the system. */
319         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
320                 return -EPERM;
321
322         /* Make sure we have a legal set of flags */
323         if (flags != (flags & KEXEC_FILE_FLAGS))
324                 return -EINVAL;
325
326         image = NULL;
327
328         if (!mutex_trylock(&kexec_mutex))
329                 return -EBUSY;
330
331         dest_image = &kexec_image;
332         if (flags & KEXEC_FILE_ON_CRASH)
333                 dest_image = &kexec_crash_image;
334
335         if (flags & KEXEC_FILE_UNLOAD)
336                 goto exchange;
337
338         /*
339          * In case of crash, new kernel gets loaded in reserved region. It is
340          * same memory where old crash kernel might be loaded. Free any
341          * current crash dump kernel before we corrupt it.
342          */
343         if (flags & KEXEC_FILE_ON_CRASH)
344                 kimage_free(xchg(&kexec_crash_image, NULL));
345
346         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
347                                      cmdline_len, flags);
348         if (ret)
349                 goto out;
350
351         ret = machine_kexec_prepare(image);
352         if (ret)
353                 goto out;
354
355         ret = kexec_calculate_store_digests(image);
356         if (ret)
357                 goto out;
358
359         for (i = 0; i < image->nr_segments; i++) {
360                 struct kexec_segment *ksegment;
361
362                 ksegment = &image->segment[i];
363                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
364                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
365                          ksegment->memsz);
366
367                 ret = kimage_load_segment(image, &image->segment[i]);
368                 if (ret)
369                         goto out;
370         }
371
372         kimage_terminate(image);
373
374         /*
375          * Free up any temporary buffers allocated which are not needed
376          * after image has been loaded
377          */
378         kimage_file_post_load_cleanup(image);
379 exchange:
380         image = xchg(dest_image, image);
381 out:
382         mutex_unlock(&kexec_mutex);
383         kimage_free(image);
384         return ret;
385 }
386
387 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
388                                     struct kexec_buf *kbuf)
389 {
390         struct kimage *image = kbuf->image;
391         unsigned long temp_start, temp_end;
392
393         temp_end = min(end, kbuf->buf_max);
394         temp_start = temp_end - kbuf->memsz;
395
396         do {
397                 /* align down start */
398                 temp_start = temp_start & (~(kbuf->buf_align - 1));
399
400                 if (temp_start < start || temp_start < kbuf->buf_min)
401                         return 0;
402
403                 temp_end = temp_start + kbuf->memsz - 1;
404
405                 /*
406                  * Make sure this does not conflict with any of existing
407                  * segments
408                  */
409                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
410                         temp_start = temp_start - PAGE_SIZE;
411                         continue;
412                 }
413
414                 /* We found a suitable memory range */
415                 break;
416         } while (1);
417
418         /* If we are here, we found a suitable memory range */
419         kbuf->mem = temp_start;
420
421         /* Success, stop navigating through remaining System RAM ranges */
422         return 1;
423 }
424
425 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
426                                      struct kexec_buf *kbuf)
427 {
428         struct kimage *image = kbuf->image;
429         unsigned long temp_start, temp_end;
430
431         temp_start = max(start, kbuf->buf_min);
432
433         do {
434                 temp_start = ALIGN(temp_start, kbuf->buf_align);
435                 temp_end = temp_start + kbuf->memsz - 1;
436
437                 if (temp_end > end || temp_end > kbuf->buf_max)
438                         return 0;
439                 /*
440                  * Make sure this does not conflict with any of existing
441                  * segments
442                  */
443                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
444                         temp_start = temp_start + PAGE_SIZE;
445                         continue;
446                 }
447
448                 /* We found a suitable memory range */
449                 break;
450         } while (1);
451
452         /* If we are here, we found a suitable memory range */
453         kbuf->mem = temp_start;
454
455         /* Success, stop navigating through remaining System RAM ranges */
456         return 1;
457 }
458
459 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
460 {
461         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
462         unsigned long sz = end - start + 1;
463
464         /* Returning 0 will take to next memory range */
465         if (sz < kbuf->memsz)
466                 return 0;
467
468         if (end < kbuf->buf_min || start > kbuf->buf_max)
469                 return 0;
470
471         /*
472          * Allocate memory top down with-in ram range. Otherwise bottom up
473          * allocation.
474          */
475         if (kbuf->top_down)
476                 return locate_mem_hole_top_down(start, end, kbuf);
477         return locate_mem_hole_bottom_up(start, end, kbuf);
478 }
479
480 /*
481  * Helper function for placing a buffer in a kexec segment. This assumes
482  * that kexec_mutex is held.
483  */
484 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
485                      unsigned long memsz, unsigned long buf_align,
486                      unsigned long buf_min, unsigned long buf_max,
487                      bool top_down, unsigned long *load_addr)
488 {
489
490         struct kexec_segment *ksegment;
491         struct kexec_buf buf, *kbuf;
492         int ret;
493
494         /* Currently adding segment this way is allowed only in file mode */
495         if (!image->file_mode)
496                 return -EINVAL;
497
498         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
499                 return -EINVAL;
500
501         /*
502          * Make sure we are not trying to add buffer after allocating
503          * control pages. All segments need to be placed first before
504          * any control pages are allocated. As control page allocation
505          * logic goes through list of segments to make sure there are
506          * no destination overlaps.
507          */
508         if (!list_empty(&image->control_pages)) {
509                 WARN_ON(1);
510                 return -EINVAL;
511         }
512
513         memset(&buf, 0, sizeof(struct kexec_buf));
514         kbuf = &buf;
515         kbuf->image = image;
516         kbuf->buffer = buffer;
517         kbuf->bufsz = bufsz;
518
519         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
520         kbuf->buf_align = max(buf_align, PAGE_SIZE);
521         kbuf->buf_min = buf_min;
522         kbuf->buf_max = buf_max;
523         kbuf->top_down = top_down;
524
525         /* Walk the RAM ranges and allocate a suitable range for the buffer */
526         if (image->type == KEXEC_TYPE_CRASH)
527                 ret = walk_iomem_res("Crash kernel",
528                                      IORESOURCE_MEM | IORESOURCE_BUSY,
529                                      crashk_res.start, crashk_res.end, kbuf,
530                                      locate_mem_hole_callback);
531         else
532                 ret = walk_system_ram_res(0, -1, kbuf,
533                                           locate_mem_hole_callback);
534         if (ret != 1) {
535                 /* A suitable memory range could not be found for buffer */
536                 return -EADDRNOTAVAIL;
537         }
538
539         /* Found a suitable memory range */
540         ksegment = &image->segment[image->nr_segments];
541         ksegment->kbuf = kbuf->buffer;
542         ksegment->bufsz = kbuf->bufsz;
543         ksegment->mem = kbuf->mem;
544         ksegment->memsz = kbuf->memsz;
545         image->nr_segments++;
546         *load_addr = ksegment->mem;
547         return 0;
548 }
549
550 /* Calculate and store the digest of segments */
551 static int kexec_calculate_store_digests(struct kimage *image)
552 {
553         struct crypto_shash *tfm;
554         struct shash_desc *desc;
555         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
556         size_t desc_size, nullsz;
557         char *digest;
558         void *zero_buf;
559         struct kexec_sha_region *sha_regions;
560         struct purgatory_info *pi = &image->purgatory_info;
561
562         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
563         zero_buf_sz = PAGE_SIZE;
564
565         tfm = crypto_alloc_shash("sha256", 0, 0);
566         if (IS_ERR(tfm)) {
567                 ret = PTR_ERR(tfm);
568                 goto out;
569         }
570
571         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
572         desc = kzalloc(desc_size, GFP_KERNEL);
573         if (!desc) {
574                 ret = -ENOMEM;
575                 goto out_free_tfm;
576         }
577
578         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
579         sha_regions = vzalloc(sha_region_sz);
580         if (!sha_regions)
581                 goto out_free_desc;
582
583         desc->tfm   = tfm;
584         desc->flags = 0;
585
586         ret = crypto_shash_init(desc);
587         if (ret < 0)
588                 goto out_free_sha_regions;
589
590         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
591         if (!digest) {
592                 ret = -ENOMEM;
593                 goto out_free_sha_regions;
594         }
595
596         for (j = i = 0; i < image->nr_segments; i++) {
597                 struct kexec_segment *ksegment;
598
599                 ksegment = &image->segment[i];
600                 /*
601                  * Skip purgatory as it will be modified once we put digest
602                  * info in purgatory.
603                  */
604                 if (ksegment->kbuf == pi->purgatory_buf)
605                         continue;
606
607                 ret = crypto_shash_update(desc, ksegment->kbuf,
608                                           ksegment->bufsz);
609                 if (ret)
610                         break;
611
612                 /*
613                  * Assume rest of the buffer is filled with zero and
614                  * update digest accordingly.
615                  */
616                 nullsz = ksegment->memsz - ksegment->bufsz;
617                 while (nullsz) {
618                         unsigned long bytes = nullsz;
619
620                         if (bytes > zero_buf_sz)
621                                 bytes = zero_buf_sz;
622                         ret = crypto_shash_update(desc, zero_buf, bytes);
623                         if (ret)
624                                 break;
625                         nullsz -= bytes;
626                 }
627
628                 if (ret)
629                         break;
630
631                 sha_regions[j].start = ksegment->mem;
632                 sha_regions[j].len = ksegment->memsz;
633                 j++;
634         }
635
636         if (!ret) {
637                 ret = crypto_shash_final(desc, digest);
638                 if (ret)
639                         goto out_free_digest;
640                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
641                                                 sha_regions, sha_region_sz, 0);
642                 if (ret)
643                         goto out_free_digest;
644
645                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
646                                                 digest, SHA256_DIGEST_SIZE, 0);
647                 if (ret)
648                         goto out_free_digest;
649         }
650
651 out_free_digest:
652         kfree(digest);
653 out_free_sha_regions:
654         vfree(sha_regions);
655 out_free_desc:
656         kfree(desc);
657 out_free_tfm:
658         kfree(tfm);
659 out:
660         return ret;
661 }
662
663 /* Actually load purgatory. Lot of code taken from kexec-tools */
664 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
665                                   unsigned long max, int top_down)
666 {
667         struct purgatory_info *pi = &image->purgatory_info;
668         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
669         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
670         unsigned char *buf_addr, *src;
671         int i, ret = 0, entry_sidx = -1;
672         const Elf_Shdr *sechdrs_c;
673         Elf_Shdr *sechdrs = NULL;
674         void *purgatory_buf = NULL;
675
676         /*
677          * sechdrs_c points to section headers in purgatory and are read
678          * only. No modifications allowed.
679          */
680         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
681
682         /*
683          * We can not modify sechdrs_c[] and its fields. It is read only.
684          * Copy it over to a local copy where one can store some temporary
685          * data and free it at the end. We need to modify ->sh_addr and
686          * ->sh_offset fields to keep track of permanent and temporary
687          * locations of sections.
688          */
689         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
690         if (!sechdrs)
691                 return -ENOMEM;
692
693         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
694
695         /*
696          * We seem to have multiple copies of sections. First copy is which
697          * is embedded in kernel in read only section. Some of these sections
698          * will be copied to a temporary buffer and relocated. And these
699          * sections will finally be copied to their final destination at
700          * segment load time.
701          *
702          * Use ->sh_offset to reflect section address in memory. It will
703          * point to original read only copy if section is not allocatable.
704          * Otherwise it will point to temporary copy which will be relocated.
705          *
706          * Use ->sh_addr to contain final address of the section where it
707          * will go during execution time.
708          */
709         for (i = 0; i < pi->ehdr->e_shnum; i++) {
710                 if (sechdrs[i].sh_type == SHT_NOBITS)
711                         continue;
712
713                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
714                                                 sechdrs[i].sh_offset;
715         }
716
717         /*
718          * Identify entry point section and make entry relative to section
719          * start.
720          */
721         entry = pi->ehdr->e_entry;
722         for (i = 0; i < pi->ehdr->e_shnum; i++) {
723                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
724                         continue;
725
726                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
727                         continue;
728
729                 /* Make entry section relative */
730                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
731                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
732                      pi->ehdr->e_entry)) {
733                         entry_sidx = i;
734                         entry -= sechdrs[i].sh_addr;
735                         break;
736                 }
737         }
738
739         /* Determine how much memory is needed to load relocatable object. */
740         buf_align = 1;
741         bss_align = 1;
742         buf_sz = 0;
743         bss_sz = 0;
744
745         for (i = 0; i < pi->ehdr->e_shnum; i++) {
746                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
747                         continue;
748
749                 align = sechdrs[i].sh_addralign;
750                 if (sechdrs[i].sh_type != SHT_NOBITS) {
751                         if (buf_align < align)
752                                 buf_align = align;
753                         buf_sz = ALIGN(buf_sz, align);
754                         buf_sz += sechdrs[i].sh_size;
755                 } else {
756                         /* bss section */
757                         if (bss_align < align)
758                                 bss_align = align;
759                         bss_sz = ALIGN(bss_sz, align);
760                         bss_sz += sechdrs[i].sh_size;
761                 }
762         }
763
764         /* Determine the bss padding required to align bss properly */
765         bss_pad = 0;
766         if (buf_sz & (bss_align - 1))
767                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
768
769         memsz = buf_sz + bss_pad + bss_sz;
770
771         /* Allocate buffer for purgatory */
772         purgatory_buf = vzalloc(buf_sz);
773         if (!purgatory_buf) {
774                 ret = -ENOMEM;
775                 goto out;
776         }
777
778         if (buf_align < bss_align)
779                 buf_align = bss_align;
780
781         /* Add buffer to segment list */
782         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
783                                 buf_align, min, max, top_down,
784                                 &pi->purgatory_load_addr);
785         if (ret)
786                 goto out;
787
788         /* Load SHF_ALLOC sections */
789         buf_addr = purgatory_buf;
790         load_addr = curr_load_addr = pi->purgatory_load_addr;
791         bss_addr = load_addr + buf_sz + bss_pad;
792
793         for (i = 0; i < pi->ehdr->e_shnum; i++) {
794                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
795                         continue;
796
797                 align = sechdrs[i].sh_addralign;
798                 if (sechdrs[i].sh_type != SHT_NOBITS) {
799                         curr_load_addr = ALIGN(curr_load_addr, align);
800                         offset = curr_load_addr - load_addr;
801                         /* We already modifed ->sh_offset to keep src addr */
802                         src = (char *) sechdrs[i].sh_offset;
803                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
804
805                         /* Store load address and source address of section */
806                         sechdrs[i].sh_addr = curr_load_addr;
807
808                         /*
809                          * This section got copied to temporary buffer. Update
810                          * ->sh_offset accordingly.
811                          */
812                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
813
814                         /* Advance to the next address */
815                         curr_load_addr += sechdrs[i].sh_size;
816                 } else {
817                         bss_addr = ALIGN(bss_addr, align);
818                         sechdrs[i].sh_addr = bss_addr;
819                         bss_addr += sechdrs[i].sh_size;
820                 }
821         }
822
823         /* Update entry point based on load address of text section */
824         if (entry_sidx >= 0)
825                 entry += sechdrs[entry_sidx].sh_addr;
826
827         /* Make kernel jump to purgatory after shutdown */
828         image->start = entry;
829
830         /* Used later to get/set symbol values */
831         pi->sechdrs = sechdrs;
832
833         /*
834          * Used later to identify which section is purgatory and skip it
835          * from checksumming.
836          */
837         pi->purgatory_buf = purgatory_buf;
838         return ret;
839 out:
840         vfree(sechdrs);
841         vfree(purgatory_buf);
842         return ret;
843 }
844
845 static int kexec_apply_relocations(struct kimage *image)
846 {
847         int i, ret;
848         struct purgatory_info *pi = &image->purgatory_info;
849         Elf_Shdr *sechdrs = pi->sechdrs;
850
851         /* Apply relocations */
852         for (i = 0; i < pi->ehdr->e_shnum; i++) {
853                 Elf_Shdr *section, *symtab;
854
855                 if (sechdrs[i].sh_type != SHT_RELA &&
856                     sechdrs[i].sh_type != SHT_REL)
857                         continue;
858
859                 /*
860                  * For section of type SHT_RELA/SHT_REL,
861                  * ->sh_link contains section header index of associated
862                  * symbol table. And ->sh_info contains section header
863                  * index of section to which relocations apply.
864                  */
865                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
866                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
867                         return -ENOEXEC;
868
869                 section = &sechdrs[sechdrs[i].sh_info];
870                 symtab = &sechdrs[sechdrs[i].sh_link];
871
872                 if (!(section->sh_flags & SHF_ALLOC))
873                         continue;
874
875                 /*
876                  * symtab->sh_link contain section header index of associated
877                  * string table.
878                  */
879                 if (symtab->sh_link >= pi->ehdr->e_shnum)
880                         /* Invalid section number? */
881                         continue;
882
883                 /*
884                  * Respective architecture needs to provide support for applying
885                  * relocations of type SHT_RELA/SHT_REL.
886                  */
887                 if (sechdrs[i].sh_type == SHT_RELA)
888                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
889                                                                sechdrs, i);
890                 else if (sechdrs[i].sh_type == SHT_REL)
891                         ret = arch_kexec_apply_relocations(pi->ehdr,
892                                                            sechdrs, i);
893                 if (ret)
894                         return ret;
895         }
896
897         return 0;
898 }
899
900 /* Load relocatable purgatory object and relocate it appropriately */
901 int kexec_load_purgatory(struct kimage *image, unsigned long min,
902                          unsigned long max, int top_down,
903                          unsigned long *load_addr)
904 {
905         struct purgatory_info *pi = &image->purgatory_info;
906         int ret;
907
908         if (kexec_purgatory_size <= 0)
909                 return -EINVAL;
910
911         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
912                 return -ENOEXEC;
913
914         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
915
916         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
917             || pi->ehdr->e_type != ET_REL
918             || !elf_check_arch(pi->ehdr)
919             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
920                 return -ENOEXEC;
921
922         if (pi->ehdr->e_shoff >= kexec_purgatory_size
923             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
924             kexec_purgatory_size - pi->ehdr->e_shoff))
925                 return -ENOEXEC;
926
927         ret = __kexec_load_purgatory(image, min, max, top_down);
928         if (ret)
929                 return ret;
930
931         ret = kexec_apply_relocations(image);
932         if (ret)
933                 goto out;
934
935         *load_addr = pi->purgatory_load_addr;
936         return 0;
937 out:
938         vfree(pi->sechdrs);
939         vfree(pi->purgatory_buf);
940         return ret;
941 }
942
943 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
944                                             const char *name)
945 {
946         Elf_Sym *syms;
947         Elf_Shdr *sechdrs;
948         Elf_Ehdr *ehdr;
949         int i, k;
950         const char *strtab;
951
952         if (!pi->sechdrs || !pi->ehdr)
953                 return NULL;
954
955         sechdrs = pi->sechdrs;
956         ehdr = pi->ehdr;
957
958         for (i = 0; i < ehdr->e_shnum; i++) {
959                 if (sechdrs[i].sh_type != SHT_SYMTAB)
960                         continue;
961
962                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
963                         /* Invalid strtab section number */
964                         continue;
965                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
966                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
967
968                 /* Go through symbols for a match */
969                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
970                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
971                                 continue;
972
973                         if (strcmp(strtab + syms[k].st_name, name) != 0)
974                                 continue;
975
976                         if (syms[k].st_shndx == SHN_UNDEF ||
977                             syms[k].st_shndx >= ehdr->e_shnum) {
978                                 pr_debug("Symbol: %s has bad section index %d.\n",
979                                                 name, syms[k].st_shndx);
980                                 return NULL;
981                         }
982
983                         /* Found the symbol we are looking for */
984                         return &syms[k];
985                 }
986         }
987
988         return NULL;
989 }
990
991 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
992 {
993         struct purgatory_info *pi = &image->purgatory_info;
994         Elf_Sym *sym;
995         Elf_Shdr *sechdr;
996
997         sym = kexec_purgatory_find_symbol(pi, name);
998         if (!sym)
999                 return ERR_PTR(-EINVAL);
1000
1001         sechdr = &pi->sechdrs[sym->st_shndx];
1002
1003         /*
1004          * Returns the address where symbol will finally be loaded after
1005          * kexec_load_segment()
1006          */
1007         return (void *)(sechdr->sh_addr + sym->st_value);
1008 }
1009
1010 /*
1011  * Get or set value of a symbol. If "get_value" is true, symbol value is
1012  * returned in buf otherwise symbol value is set based on value in buf.
1013  */
1014 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1015                                    void *buf, unsigned int size, bool get_value)
1016 {
1017         Elf_Sym *sym;
1018         Elf_Shdr *sechdrs;
1019         struct purgatory_info *pi = &image->purgatory_info;
1020         char *sym_buf;
1021
1022         sym = kexec_purgatory_find_symbol(pi, name);
1023         if (!sym)
1024                 return -EINVAL;
1025
1026         if (sym->st_size != size) {
1027                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1028                        name, (unsigned long)sym->st_size, size);
1029                 return -EINVAL;
1030         }
1031
1032         sechdrs = pi->sechdrs;
1033
1034         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1035                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1036                        get_value ? "get" : "set");
1037                 return -EINVAL;
1038         }
1039
1040         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1041                                         sym->st_value;
1042
1043         if (get_value)
1044                 memcpy((void *)buf, sym_buf, size);
1045         else
1046                 memcpy((void *)sym_buf, buf, size);
1047
1048         return 0;
1049 }