]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/clockevents.c
timer: Fix lock inversion between hrtimer_bases.lock and scheduler locks
[karo-tx-linux.git] / kernel / time / clockevents.c
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20
21 #include "tick-internal.h"
22
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30
31 struct ce_unbind {
32         struct clock_event_device *ce;
33         int res;
34 };
35
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37                         bool ismax)
38 {
39         u64 clc = (u64) latch << evt->shift;
40         u64 rnd;
41
42         if (unlikely(!evt->mult)) {
43                 evt->mult = 1;
44                 WARN_ON(1);
45         }
46         rnd = (u64) evt->mult - 1;
47
48         /*
49          * Upper bound sanity check. If the backwards conversion is
50          * not equal latch, we know that the above shift overflowed.
51          */
52         if ((clc >> evt->shift) != (u64)latch)
53                 clc = ~0ULL;
54
55         /*
56          * Scaled math oddities:
57          *
58          * For mult <= (1 << shift) we can safely add mult - 1 to
59          * prevent integer rounding loss. So the backwards conversion
60          * from nsec to device ticks will be correct.
61          *
62          * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63          * need to be careful. Adding mult - 1 will result in a value
64          * which when converted back to device ticks can be larger
65          * than latch by up to (mult - 1) >> shift. For the min_delta
66          * calculation we still want to apply this in order to stay
67          * above the minimum device ticks limit. For the upper limit
68          * we would end up with a latch value larger than the upper
69          * limit of the device, so we omit the add to stay below the
70          * device upper boundary.
71          *
72          * Also omit the add if it would overflow the u64 boundary.
73          */
74         if ((~0ULL - clc > rnd) &&
75             (!ismax || evt->mult <= (1U << evt->shift)))
76                 clc += rnd;
77
78         do_div(clc, evt->mult);
79
80         /* Deltas less than 1usec are pointless noise */
81         return clc > 1000 ? clc : 1000;
82 }
83
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:      value to convert
87  * @evt:        pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93         return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96
97 /**
98  * clockevents_set_mode - set the operating mode of a clock event device
99  * @dev:        device to modify
100  * @mode:       new mode
101  *
102  * Must be called with interrupts disabled !
103  */
104 void clockevents_set_mode(struct clock_event_device *dev,
105                                  enum clock_event_mode mode)
106 {
107         if (dev->mode != mode) {
108                 dev->set_mode(mode, dev);
109                 dev->mode = mode;
110
111                 /*
112                  * A nsec2cyc multiplicator of 0 is invalid and we'd crash
113                  * on it, so fix it up and emit a warning:
114                  */
115                 if (mode == CLOCK_EVT_MODE_ONESHOT) {
116                         if (unlikely(!dev->mult)) {
117                                 dev->mult = 1;
118                                 WARN_ON(1);
119                         }
120                 }
121         }
122 }
123
124 /**
125  * clockevents_shutdown - shutdown the device and clear next_event
126  * @dev:        device to shutdown
127  */
128 void clockevents_shutdown(struct clock_event_device *dev)
129 {
130         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
131         dev->next_event.tv64 = KTIME_MAX;
132 }
133
134 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
135
136 /* Limit min_delta to a jiffie */
137 #define MIN_DELTA_LIMIT         (NSEC_PER_SEC / HZ)
138
139 /**
140  * clockevents_increase_min_delta - raise minimum delta of a clock event device
141  * @dev:       device to increase the minimum delta
142  *
143  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
144  */
145 static int clockevents_increase_min_delta(struct clock_event_device *dev)
146 {
147         /* Nothing to do if we already reached the limit */
148         if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
149                 printk_deferred(KERN_WARNING
150                                 "CE: Reprogramming failure. Giving up\n");
151                 dev->next_event.tv64 = KTIME_MAX;
152                 return -ETIME;
153         }
154
155         if (dev->min_delta_ns < 5000)
156                 dev->min_delta_ns = 5000;
157         else
158                 dev->min_delta_ns += dev->min_delta_ns >> 1;
159
160         if (dev->min_delta_ns > MIN_DELTA_LIMIT)
161                 dev->min_delta_ns = MIN_DELTA_LIMIT;
162
163         printk_deferred(KERN_WARNING
164                         "CE: %s increased min_delta_ns to %llu nsec\n",
165                         dev->name ? dev->name : "?",
166                         (unsigned long long) dev->min_delta_ns);
167         return 0;
168 }
169
170 /**
171  * clockevents_program_min_delta - Set clock event device to the minimum delay.
172  * @dev:        device to program
173  *
174  * Returns 0 on success, -ETIME when the retry loop failed.
175  */
176 static int clockevents_program_min_delta(struct clock_event_device *dev)
177 {
178         unsigned long long clc;
179         int64_t delta;
180         int i;
181
182         for (i = 0;;) {
183                 delta = dev->min_delta_ns;
184                 dev->next_event = ktime_add_ns(ktime_get(), delta);
185
186                 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
187                         return 0;
188
189                 dev->retries++;
190                 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
191                 if (dev->set_next_event((unsigned long) clc, dev) == 0)
192                         return 0;
193
194                 if (++i > 2) {
195                         /*
196                          * We tried 3 times to program the device with the
197                          * given min_delta_ns. Try to increase the minimum
198                          * delta, if that fails as well get out of here.
199                          */
200                         if (clockevents_increase_min_delta(dev))
201                                 return -ETIME;
202                         i = 0;
203                 }
204         }
205 }
206
207 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
208
209 /**
210  * clockevents_program_min_delta - Set clock event device to the minimum delay.
211  * @dev:        device to program
212  *
213  * Returns 0 on success, -ETIME when the retry loop failed.
214  */
215 static int clockevents_program_min_delta(struct clock_event_device *dev)
216 {
217         unsigned long long clc;
218         int64_t delta;
219
220         delta = dev->min_delta_ns;
221         dev->next_event = ktime_add_ns(ktime_get(), delta);
222
223         if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
224                 return 0;
225
226         dev->retries++;
227         clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
228         return dev->set_next_event((unsigned long) clc, dev);
229 }
230
231 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
232
233 /**
234  * clockevents_program_event - Reprogram the clock event device.
235  * @dev:        device to program
236  * @expires:    absolute expiry time (monotonic clock)
237  * @force:      program minimum delay if expires can not be set
238  *
239  * Returns 0 on success, -ETIME when the event is in the past.
240  */
241 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
242                               bool force)
243 {
244         unsigned long long clc;
245         int64_t delta;
246         int rc;
247
248         if (unlikely(expires.tv64 < 0)) {
249                 WARN_ON_ONCE(1);
250                 return -ETIME;
251         }
252
253         dev->next_event = expires;
254
255         if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
256                 return 0;
257
258         /* Shortcut for clockevent devices that can deal with ktime. */
259         if (dev->features & CLOCK_EVT_FEAT_KTIME)
260                 return dev->set_next_ktime(expires, dev);
261
262         delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
263         if (delta <= 0)
264                 return force ? clockevents_program_min_delta(dev) : -ETIME;
265
266         delta = min(delta, (int64_t) dev->max_delta_ns);
267         delta = max(delta, (int64_t) dev->min_delta_ns);
268
269         clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
270         rc = dev->set_next_event((unsigned long) clc, dev);
271
272         return (rc && force) ? clockevents_program_min_delta(dev) : rc;
273 }
274
275 /*
276  * Called after a notify add to make devices available which were
277  * released from the notifier call.
278  */
279 static void clockevents_notify_released(void)
280 {
281         struct clock_event_device *dev;
282
283         while (!list_empty(&clockevents_released)) {
284                 dev = list_entry(clockevents_released.next,
285                                  struct clock_event_device, list);
286                 list_del(&dev->list);
287                 list_add(&dev->list, &clockevent_devices);
288                 tick_check_new_device(dev);
289         }
290 }
291
292 /*
293  * Try to install a replacement clock event device
294  */
295 static int clockevents_replace(struct clock_event_device *ced)
296 {
297         struct clock_event_device *dev, *newdev = NULL;
298
299         list_for_each_entry(dev, &clockevent_devices, list) {
300                 if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED)
301                         continue;
302
303                 if (!tick_check_replacement(newdev, dev))
304                         continue;
305
306                 if (!try_module_get(dev->owner))
307                         continue;
308
309                 if (newdev)
310                         module_put(newdev->owner);
311                 newdev = dev;
312         }
313         if (newdev) {
314                 tick_install_replacement(newdev);
315                 list_del_init(&ced->list);
316         }
317         return newdev ? 0 : -EBUSY;
318 }
319
320 /*
321  * Called with clockevents_mutex and clockevents_lock held
322  */
323 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
324 {
325         /* Fast track. Device is unused */
326         if (ced->mode == CLOCK_EVT_MODE_UNUSED) {
327                 list_del_init(&ced->list);
328                 return 0;
329         }
330
331         return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
332 }
333
334 /*
335  * SMP function call to unbind a device
336  */
337 static void __clockevents_unbind(void *arg)
338 {
339         struct ce_unbind *cu = arg;
340         int res;
341
342         raw_spin_lock(&clockevents_lock);
343         res = __clockevents_try_unbind(cu->ce, smp_processor_id());
344         if (res == -EAGAIN)
345                 res = clockevents_replace(cu->ce);
346         cu->res = res;
347         raw_spin_unlock(&clockevents_lock);
348 }
349
350 /*
351  * Issues smp function call to unbind a per cpu device. Called with
352  * clockevents_mutex held.
353  */
354 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
355 {
356         struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
357
358         smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
359         return cu.res;
360 }
361
362 /*
363  * Unbind a clockevents device.
364  */
365 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
366 {
367         int ret;
368
369         mutex_lock(&clockevents_mutex);
370         ret = clockevents_unbind(ced, cpu);
371         mutex_unlock(&clockevents_mutex);
372         return ret;
373 }
374 EXPORT_SYMBOL_GPL(clockevents_unbind);
375
376 /**
377  * clockevents_register_device - register a clock event device
378  * @dev:        device to register
379  */
380 void clockevents_register_device(struct clock_event_device *dev)
381 {
382         unsigned long flags;
383
384         BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
385         if (!dev->cpumask) {
386                 WARN_ON(num_possible_cpus() > 1);
387                 dev->cpumask = cpumask_of(smp_processor_id());
388         }
389
390         raw_spin_lock_irqsave(&clockevents_lock, flags);
391
392         list_add(&dev->list, &clockevent_devices);
393         tick_check_new_device(dev);
394         clockevents_notify_released();
395
396         raw_spin_unlock_irqrestore(&clockevents_lock, flags);
397 }
398 EXPORT_SYMBOL_GPL(clockevents_register_device);
399
400 void clockevents_config(struct clock_event_device *dev, u32 freq)
401 {
402         u64 sec;
403
404         if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
405                 return;
406
407         /*
408          * Calculate the maximum number of seconds we can sleep. Limit
409          * to 10 minutes for hardware which can program more than
410          * 32bit ticks so we still get reasonable conversion values.
411          */
412         sec = dev->max_delta_ticks;
413         do_div(sec, freq);
414         if (!sec)
415                 sec = 1;
416         else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
417                 sec = 600;
418
419         clockevents_calc_mult_shift(dev, freq, sec);
420         dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
421         dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
422 }
423
424 /**
425  * clockevents_config_and_register - Configure and register a clock event device
426  * @dev:        device to register
427  * @freq:       The clock frequency
428  * @min_delta:  The minimum clock ticks to program in oneshot mode
429  * @max_delta:  The maximum clock ticks to program in oneshot mode
430  *
431  * min/max_delta can be 0 for devices which do not support oneshot mode.
432  */
433 void clockevents_config_and_register(struct clock_event_device *dev,
434                                      u32 freq, unsigned long min_delta,
435                                      unsigned long max_delta)
436 {
437         dev->min_delta_ticks = min_delta;
438         dev->max_delta_ticks = max_delta;
439         clockevents_config(dev, freq);
440         clockevents_register_device(dev);
441 }
442 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
443
444 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
445 {
446         clockevents_config(dev, freq);
447
448         if (dev->mode == CLOCK_EVT_MODE_ONESHOT)
449                 return clockevents_program_event(dev, dev->next_event, false);
450
451         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
452                 dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
453
454         return 0;
455 }
456
457 /**
458  * clockevents_update_freq - Update frequency and reprogram a clock event device.
459  * @dev:        device to modify
460  * @freq:       new device frequency
461  *
462  * Reconfigure and reprogram a clock event device in oneshot
463  * mode. Must be called on the cpu for which the device delivers per
464  * cpu timer events. If called for the broadcast device the core takes
465  * care of serialization.
466  *
467  * Returns 0 on success, -ETIME when the event is in the past.
468  */
469 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
470 {
471         unsigned long flags;
472         int ret;
473
474         local_irq_save(flags);
475         ret = tick_broadcast_update_freq(dev, freq);
476         if (ret == -ENODEV)
477                 ret = __clockevents_update_freq(dev, freq);
478         local_irq_restore(flags);
479         return ret;
480 }
481
482 /*
483  * Noop handler when we shut down an event device
484  */
485 void clockevents_handle_noop(struct clock_event_device *dev)
486 {
487 }
488
489 /**
490  * clockevents_exchange_device - release and request clock devices
491  * @old:        device to release (can be NULL)
492  * @new:        device to request (can be NULL)
493  *
494  * Called from the notifier chain. clockevents_lock is held already
495  */
496 void clockevents_exchange_device(struct clock_event_device *old,
497                                  struct clock_event_device *new)
498 {
499         unsigned long flags;
500
501         local_irq_save(flags);
502         /*
503          * Caller releases a clock event device. We queue it into the
504          * released list and do a notify add later.
505          */
506         if (old) {
507                 module_put(old->owner);
508                 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
509                 list_del(&old->list);
510                 list_add(&old->list, &clockevents_released);
511         }
512
513         if (new) {
514                 BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
515                 clockevents_shutdown(new);
516         }
517         local_irq_restore(flags);
518 }
519
520 /**
521  * clockevents_suspend - suspend clock devices
522  */
523 void clockevents_suspend(void)
524 {
525         struct clock_event_device *dev;
526
527         list_for_each_entry_reverse(dev, &clockevent_devices, list)
528                 if (dev->suspend)
529                         dev->suspend(dev);
530 }
531
532 /**
533  * clockevents_resume - resume clock devices
534  */
535 void clockevents_resume(void)
536 {
537         struct clock_event_device *dev;
538
539         list_for_each_entry(dev, &clockevent_devices, list)
540                 if (dev->resume)
541                         dev->resume(dev);
542 }
543
544 #ifdef CONFIG_GENERIC_CLOCKEVENTS
545 /**
546  * clockevents_notify - notification about relevant events
547  * Returns 0 on success, any other value on error
548  */
549 int clockevents_notify(unsigned long reason, void *arg)
550 {
551         struct clock_event_device *dev, *tmp;
552         unsigned long flags;
553         int cpu, ret = 0;
554
555         raw_spin_lock_irqsave(&clockevents_lock, flags);
556
557         switch (reason) {
558         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
559         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
560         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
561                 tick_broadcast_on_off(reason, arg);
562                 break;
563
564         case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
565         case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
566                 ret = tick_broadcast_oneshot_control(reason);
567                 break;
568
569         case CLOCK_EVT_NOTIFY_CPU_DYING:
570                 tick_handover_do_timer(arg);
571                 break;
572
573         case CLOCK_EVT_NOTIFY_SUSPEND:
574                 tick_suspend();
575                 tick_suspend_broadcast();
576                 break;
577
578         case CLOCK_EVT_NOTIFY_RESUME:
579                 tick_resume();
580                 break;
581
582         case CLOCK_EVT_NOTIFY_CPU_DEAD:
583                 tick_shutdown_broadcast_oneshot(arg);
584                 tick_shutdown_broadcast(arg);
585                 tick_shutdown(arg);
586                 /*
587                  * Unregister the clock event devices which were
588                  * released from the users in the notify chain.
589                  */
590                 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
591                         list_del(&dev->list);
592                 /*
593                  * Now check whether the CPU has left unused per cpu devices
594                  */
595                 cpu = *((int *)arg);
596                 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
597                         if (cpumask_test_cpu(cpu, dev->cpumask) &&
598                             cpumask_weight(dev->cpumask) == 1 &&
599                             !tick_is_broadcast_device(dev)) {
600                                 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
601                                 list_del(&dev->list);
602                         }
603                 }
604                 break;
605         default:
606                 break;
607         }
608         raw_spin_unlock_irqrestore(&clockevents_lock, flags);
609         return ret;
610 }
611 EXPORT_SYMBOL_GPL(clockevents_notify);
612
613 #ifdef CONFIG_SYSFS
614 struct bus_type clockevents_subsys = {
615         .name           = "clockevents",
616         .dev_name       = "clockevent",
617 };
618
619 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
620 static struct tick_device *tick_get_tick_dev(struct device *dev);
621
622 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
623                                            struct device_attribute *attr,
624                                            char *buf)
625 {
626         struct tick_device *td;
627         ssize_t count = 0;
628
629         raw_spin_lock_irq(&clockevents_lock);
630         td = tick_get_tick_dev(dev);
631         if (td && td->evtdev)
632                 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
633         raw_spin_unlock_irq(&clockevents_lock);
634         return count;
635 }
636 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
637
638 /* We don't support the abomination of removable broadcast devices */
639 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
640                                      struct device_attribute *attr,
641                                      const char *buf, size_t count)
642 {
643         char name[CS_NAME_LEN];
644         ssize_t ret = sysfs_get_uname(buf, name, count);
645         struct clock_event_device *ce;
646
647         if (ret < 0)
648                 return ret;
649
650         ret = -ENODEV;
651         mutex_lock(&clockevents_mutex);
652         raw_spin_lock_irq(&clockevents_lock);
653         list_for_each_entry(ce, &clockevent_devices, list) {
654                 if (!strcmp(ce->name, name)) {
655                         ret = __clockevents_try_unbind(ce, dev->id);
656                         break;
657                 }
658         }
659         raw_spin_unlock_irq(&clockevents_lock);
660         /*
661          * We hold clockevents_mutex, so ce can't go away
662          */
663         if (ret == -EAGAIN)
664                 ret = clockevents_unbind(ce, dev->id);
665         mutex_unlock(&clockevents_mutex);
666         return ret ? ret : count;
667 }
668 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
669
670 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
671 static struct device tick_bc_dev = {
672         .init_name      = "broadcast",
673         .id             = 0,
674         .bus            = &clockevents_subsys,
675 };
676
677 static struct tick_device *tick_get_tick_dev(struct device *dev)
678 {
679         return dev == &tick_bc_dev ? tick_get_broadcast_device() :
680                 &per_cpu(tick_cpu_device, dev->id);
681 }
682
683 static __init int tick_broadcast_init_sysfs(void)
684 {
685         int err = device_register(&tick_bc_dev);
686
687         if (!err)
688                 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
689         return err;
690 }
691 #else
692 static struct tick_device *tick_get_tick_dev(struct device *dev)
693 {
694         return &per_cpu(tick_cpu_device, dev->id);
695 }
696 static inline int tick_broadcast_init_sysfs(void) { return 0; }
697 #endif
698
699 static int __init tick_init_sysfs(void)
700 {
701         int cpu;
702
703         for_each_possible_cpu(cpu) {
704                 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
705                 int err;
706
707                 dev->id = cpu;
708                 dev->bus = &clockevents_subsys;
709                 err = device_register(dev);
710                 if (!err)
711                         err = device_create_file(dev, &dev_attr_current_device);
712                 if (!err)
713                         err = device_create_file(dev, &dev_attr_unbind_device);
714                 if (err)
715                         return err;
716         }
717         return tick_broadcast_init_sysfs();
718 }
719
720 static int __init clockevents_init_sysfs(void)
721 {
722         int err = subsys_system_register(&clockevents_subsys, NULL);
723
724         if (!err)
725                 err = tick_init_sysfs();
726         return err;
727 }
728 device_initcall(clockevents_init_sysfs);
729 #endif /* SYSFS */
730
731 #endif /* GENERIC_CLOCK_EVENTS */