]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/sched_clock.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / kernel / time / sched_clock.c
1 /*
2  * sched_clock.c: support for extending counters to full 64-bit ns counter
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20
21 struct clock_data {
22         ktime_t wrap_kt;
23         u64 epoch_ns;
24         u64 epoch_cyc;
25         seqcount_t seq;
26         unsigned long rate;
27         u32 mult;
28         u32 shift;
29         bool suspended;
30 };
31
32 static struct hrtimer sched_clock_timer;
33 static int irqtime = -1;
34
35 core_param(irqtime, irqtime, int, 0400);
36
37 static struct clock_data cd = {
38         .mult   = NSEC_PER_SEC / HZ,
39 };
40
41 static u64 __read_mostly sched_clock_mask;
42
43 static u64 notrace jiffy_sched_clock_read(void)
44 {
45         /*
46          * We don't need to use get_jiffies_64 on 32-bit arches here
47          * because we register with BITS_PER_LONG
48          */
49         return (u64)(jiffies - INITIAL_JIFFIES);
50 }
51
52 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
53
54 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
55 {
56         return (cyc * mult) >> shift;
57 }
58
59 unsigned long long notrace sched_clock(void)
60 {
61         u64 epoch_ns;
62         u64 epoch_cyc;
63         u64 cyc;
64         unsigned long seq;
65
66         if (cd.suspended)
67                 return cd.epoch_ns;
68
69         do {
70                 seq = raw_read_seqcount_begin(&cd.seq);
71                 epoch_cyc = cd.epoch_cyc;
72                 epoch_ns = cd.epoch_ns;
73         } while (read_seqcount_retry(&cd.seq, seq));
74
75         cyc = read_sched_clock();
76         cyc = (cyc - epoch_cyc) & sched_clock_mask;
77         return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
78 }
79
80 /*
81  * Atomically update the sched_clock epoch.
82  */
83 static void notrace update_sched_clock(void)
84 {
85         unsigned long flags;
86         u64 cyc;
87         u64 ns;
88
89         cyc = read_sched_clock();
90         ns = cd.epoch_ns +
91                 cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
92                           cd.mult, cd.shift);
93
94         raw_local_irq_save(flags);
95         raw_write_seqcount_begin(&cd.seq);
96         cd.epoch_ns = ns;
97         cd.epoch_cyc = cyc;
98         raw_write_seqcount_end(&cd.seq);
99         raw_local_irq_restore(flags);
100 }
101
102 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
103 {
104         update_sched_clock();
105         hrtimer_forward_now(hrt, cd.wrap_kt);
106         return HRTIMER_RESTART;
107 }
108
109 void __init sched_clock_register(u64 (*read)(void), int bits,
110                                  unsigned long rate)
111 {
112         u64 res, wrap, new_mask, new_epoch, cyc, ns;
113         u32 new_mult, new_shift;
114         ktime_t new_wrap_kt;
115         unsigned long r;
116         char r_unit;
117
118         if (cd.rate > rate)
119                 return;
120
121         WARN_ON(!irqs_disabled());
122
123         /* calculate the mult/shift to convert counter ticks to ns. */
124         clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
125
126         new_mask = CLOCKSOURCE_MASK(bits);
127
128         /* calculate how many ns until we wrap */
129         wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
130         new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
131
132         /* update epoch for new counter and update epoch_ns from old counter*/
133         new_epoch = read();
134         cyc = read_sched_clock();
135         ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
136                           cd.mult, cd.shift);
137
138         raw_write_seqcount_begin(&cd.seq);
139         read_sched_clock = read;
140         sched_clock_mask = new_mask;
141         cd.rate = rate;
142         cd.wrap_kt = new_wrap_kt;
143         cd.mult = new_mult;
144         cd.shift = new_shift;
145         cd.epoch_cyc = new_epoch;
146         cd.epoch_ns = ns;
147         raw_write_seqcount_end(&cd.seq);
148
149         r = rate;
150         if (r >= 4000000) {
151                 r /= 1000000;
152                 r_unit = 'M';
153         } else if (r >= 1000) {
154                 r /= 1000;
155                 r_unit = 'k';
156         } else
157                 r_unit = ' ';
158
159         /* calculate the ns resolution of this counter */
160         res = cyc_to_ns(1ULL, new_mult, new_shift);
161
162         pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
163                 bits, r, r_unit, res, wrap);
164
165         /* Enable IRQ time accounting if we have a fast enough sched_clock */
166         if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
167                 enable_sched_clock_irqtime();
168
169         pr_debug("Registered %pF as sched_clock source\n", read);
170 }
171
172 void __init sched_clock_postinit(void)
173 {
174         /*
175          * If no sched_clock function has been provided at that point,
176          * make it the final one one.
177          */
178         if (read_sched_clock == jiffy_sched_clock_read)
179                 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
180
181         update_sched_clock();
182
183         /*
184          * Start the timer to keep sched_clock() properly updated and
185          * sets the initial epoch.
186          */
187         hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188         sched_clock_timer.function = sched_clock_poll;
189         hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
190 }
191
192 static int sched_clock_suspend(void)
193 {
194         update_sched_clock();
195         hrtimer_cancel(&sched_clock_timer);
196         cd.suspended = true;
197         return 0;
198 }
199
200 static void sched_clock_resume(void)
201 {
202         cd.epoch_cyc = read_sched_clock();
203         hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
204         cd.suspended = false;
205 }
206
207 static struct syscore_ops sched_clock_ops = {
208         .suspend = sched_clock_suspend,
209         .resume = sched_clock_resume,
210 };
211
212 static int __init sched_clock_syscore_init(void)
213 {
214         register_syscore_ops(&sched_clock_ops);
215         return 0;
216 }
217 device_initcall(sched_clock_syscore_init);