]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/compaction.c
mm, cma: prevent nr_isolated_* counters from going negative
[karo-tx-linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44         struct page *page, *next;
45         unsigned long high_pfn = 0;
46
47         list_for_each_entry_safe(page, next, freelist, lru) {
48                 unsigned long pfn = page_to_pfn(page);
49                 list_del(&page->lru);
50                 __free_page(page);
51                 if (pfn > high_pfn)
52                         high_pfn = pfn;
53         }
54
55         return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60         struct page *page;
61
62         list_for_each_entry(page, list, lru) {
63                 arch_alloc_page(page, 0);
64                 kernel_map_pages(page, 1, 1);
65                 kasan_alloc_pages(page, 0);
66         }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 /*
75  * Check that the whole (or subset of) a pageblock given by the interval of
76  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77  * with the migration of free compaction scanner. The scanners then need to
78  * use only pfn_valid_within() check for arches that allow holes within
79  * pageblocks.
80  *
81  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82  *
83  * It's possible on some configurations to have a setup like node0 node1 node0
84  * i.e. it's possible that all pages within a zones range of pages do not
85  * belong to a single zone. We assume that a border between node0 and node1
86  * can occur within a single pageblock, but not a node0 node1 node0
87  * interleaving within a single pageblock. It is therefore sufficient to check
88  * the first and last page of a pageblock and avoid checking each individual
89  * page in a pageblock.
90  */
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92                                 unsigned long end_pfn, struct zone *zone)
93 {
94         struct page *start_page;
95         struct page *end_page;
96
97         /* end_pfn is one past the range we are checking */
98         end_pfn--;
99
100         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101                 return NULL;
102
103         start_page = pfn_to_page(start_pfn);
104
105         if (page_zone(start_page) != zone)
106                 return NULL;
107
108         end_page = pfn_to_page(end_pfn);
109
110         /* This gives a shorter code than deriving page_zone(end_page) */
111         if (page_zone_id(start_page) != page_zone_id(end_page))
112                 return NULL;
113
114         return start_page;
115 }
116
117 #ifdef CONFIG_COMPACTION
118
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121
122 /*
123  * Compaction is deferred when compaction fails to result in a page
124  * allocation success. 1 << compact_defer_limit compactions are skipped up
125  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126  */
127 void defer_compaction(struct zone *zone, int order)
128 {
129         zone->compact_considered = 0;
130         zone->compact_defer_shift++;
131
132         if (order < zone->compact_order_failed)
133                 zone->compact_order_failed = order;
134
135         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137
138         trace_mm_compaction_defer_compaction(zone, order);
139 }
140
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
143 {
144         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145
146         if (order < zone->compact_order_failed)
147                 return false;
148
149         /* Avoid possible overflow */
150         if (++zone->compact_considered > defer_limit)
151                 zone->compact_considered = defer_limit;
152
153         if (zone->compact_considered >= defer_limit)
154                 return false;
155
156         trace_mm_compaction_deferred(zone, order);
157
158         return true;
159 }
160
161 /*
162  * Update defer tracking counters after successful compaction of given order,
163  * which means an allocation either succeeded (alloc_success == true) or is
164  * expected to succeed.
165  */
166 void compaction_defer_reset(struct zone *zone, int order,
167                 bool alloc_success)
168 {
169         if (alloc_success) {
170                 zone->compact_considered = 0;
171                 zone->compact_defer_shift = 0;
172         }
173         if (order >= zone->compact_order_failed)
174                 zone->compact_order_failed = order + 1;
175
176         trace_mm_compaction_defer_reset(zone, order);
177 }
178
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
181 {
182         if (order < zone->compact_order_failed)
183                 return false;
184
185         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191                                         struct page *page)
192 {
193         if (cc->ignore_skip_hint)
194                 return true;
195
196         return !get_pageblock_skip(page);
197 }
198
199 static void reset_cached_positions(struct zone *zone)
200 {
201         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203         zone->compact_cached_free_pfn = zone_end_pfn(zone);
204 }
205
206 /*
207  * This function is called to clear all cached information on pageblocks that
208  * should be skipped for page isolation when the migrate and free page scanner
209  * meet.
210  */
211 static void __reset_isolation_suitable(struct zone *zone)
212 {
213         unsigned long start_pfn = zone->zone_start_pfn;
214         unsigned long end_pfn = zone_end_pfn(zone);
215         unsigned long pfn;
216
217         zone->compact_blockskip_flush = false;
218
219         /* Walk the zone and mark every pageblock as suitable for isolation */
220         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
221                 struct page *page;
222
223                 cond_resched();
224
225                 if (!pfn_valid(pfn))
226                         continue;
227
228                 page = pfn_to_page(pfn);
229                 if (zone != page_zone(page))
230                         continue;
231
232                 clear_pageblock_skip(page);
233         }
234
235         reset_cached_positions(zone);
236 }
237
238 void reset_isolation_suitable(pg_data_t *pgdat)
239 {
240         int zoneid;
241
242         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
243                 struct zone *zone = &pgdat->node_zones[zoneid];
244                 if (!populated_zone(zone))
245                         continue;
246
247                 /* Only flush if a full compaction finished recently */
248                 if (zone->compact_blockskip_flush)
249                         __reset_isolation_suitable(zone);
250         }
251 }
252
253 /*
254  * If no pages were isolated then mark this pageblock to be skipped in the
255  * future. The information is later cleared by __reset_isolation_suitable().
256  */
257 static void update_pageblock_skip(struct compact_control *cc,
258                         struct page *page, unsigned long nr_isolated,
259                         bool migrate_scanner)
260 {
261         struct zone *zone = cc->zone;
262         unsigned long pfn;
263
264         if (cc->ignore_skip_hint)
265                 return;
266
267         if (!page)
268                 return;
269
270         if (nr_isolated)
271                 return;
272
273         set_pageblock_skip(page);
274
275         pfn = page_to_pfn(page);
276
277         /* Update where async and sync compaction should restart */
278         if (migrate_scanner) {
279                 if (pfn > zone->compact_cached_migrate_pfn[0])
280                         zone->compact_cached_migrate_pfn[0] = pfn;
281                 if (cc->mode != MIGRATE_ASYNC &&
282                     pfn > zone->compact_cached_migrate_pfn[1])
283                         zone->compact_cached_migrate_pfn[1] = pfn;
284         } else {
285                 if (pfn < zone->compact_cached_free_pfn)
286                         zone->compact_cached_free_pfn = pfn;
287         }
288 }
289 #else
290 static inline bool isolation_suitable(struct compact_control *cc,
291                                         struct page *page)
292 {
293         return true;
294 }
295
296 static void update_pageblock_skip(struct compact_control *cc,
297                         struct page *page, unsigned long nr_isolated,
298                         bool migrate_scanner)
299 {
300 }
301 #endif /* CONFIG_COMPACTION */
302
303 /*
304  * Compaction requires the taking of some coarse locks that are potentially
305  * very heavily contended. For async compaction, back out if the lock cannot
306  * be taken immediately. For sync compaction, spin on the lock if needed.
307  *
308  * Returns true if the lock is held
309  * Returns false if the lock is not held and compaction should abort
310  */
311 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
312                                                 struct compact_control *cc)
313 {
314         if (cc->mode == MIGRATE_ASYNC) {
315                 if (!spin_trylock_irqsave(lock, *flags)) {
316                         cc->contended = COMPACT_CONTENDED_LOCK;
317                         return false;
318                 }
319         } else {
320                 spin_lock_irqsave(lock, *flags);
321         }
322
323         return true;
324 }
325
326 /*
327  * Compaction requires the taking of some coarse locks that are potentially
328  * very heavily contended. The lock should be periodically unlocked to avoid
329  * having disabled IRQs for a long time, even when there is nobody waiting on
330  * the lock. It might also be that allowing the IRQs will result in
331  * need_resched() becoming true. If scheduling is needed, async compaction
332  * aborts. Sync compaction schedules.
333  * Either compaction type will also abort if a fatal signal is pending.
334  * In either case if the lock was locked, it is dropped and not regained.
335  *
336  * Returns true if compaction should abort due to fatal signal pending, or
337  *              async compaction due to need_resched()
338  * Returns false when compaction can continue (sync compaction might have
339  *              scheduled)
340  */
341 static bool compact_unlock_should_abort(spinlock_t *lock,
342                 unsigned long flags, bool *locked, struct compact_control *cc)
343 {
344         if (*locked) {
345                 spin_unlock_irqrestore(lock, flags);
346                 *locked = false;
347         }
348
349         if (fatal_signal_pending(current)) {
350                 cc->contended = COMPACT_CONTENDED_SCHED;
351                 return true;
352         }
353
354         if (need_resched()) {
355                 if (cc->mode == MIGRATE_ASYNC) {
356                         cc->contended = COMPACT_CONTENDED_SCHED;
357                         return true;
358                 }
359                 cond_resched();
360         }
361
362         return false;
363 }
364
365 /*
366  * Aside from avoiding lock contention, compaction also periodically checks
367  * need_resched() and either schedules in sync compaction or aborts async
368  * compaction. This is similar to what compact_unlock_should_abort() does, but
369  * is used where no lock is concerned.
370  *
371  * Returns false when no scheduling was needed, or sync compaction scheduled.
372  * Returns true when async compaction should abort.
373  */
374 static inline bool compact_should_abort(struct compact_control *cc)
375 {
376         /* async compaction aborts if contended */
377         if (need_resched()) {
378                 if (cc->mode == MIGRATE_ASYNC) {
379                         cc->contended = COMPACT_CONTENDED_SCHED;
380                         return true;
381                 }
382
383                 cond_resched();
384         }
385
386         return false;
387 }
388
389 /*
390  * Isolate free pages onto a private freelist. If @strict is true, will abort
391  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392  * (even though it may still end up isolating some pages).
393  */
394 static unsigned long isolate_freepages_block(struct compact_control *cc,
395                                 unsigned long *start_pfn,
396                                 unsigned long end_pfn,
397                                 struct list_head *freelist,
398                                 bool strict)
399 {
400         int nr_scanned = 0, total_isolated = 0;
401         struct page *cursor, *valid_page = NULL;
402         unsigned long flags = 0;
403         bool locked = false;
404         unsigned long blockpfn = *start_pfn;
405
406         cursor = pfn_to_page(blockpfn);
407
408         /* Isolate free pages. */
409         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
410                 int isolated, i;
411                 struct page *page = cursor;
412
413                 /*
414                  * Periodically drop the lock (if held) regardless of its
415                  * contention, to give chance to IRQs. Abort if fatal signal
416                  * pending or async compaction detects need_resched()
417                  */
418                 if (!(blockpfn % SWAP_CLUSTER_MAX)
419                     && compact_unlock_should_abort(&cc->zone->lock, flags,
420                                                                 &locked, cc))
421                         break;
422
423                 nr_scanned++;
424                 if (!pfn_valid_within(blockpfn))
425                         goto isolate_fail;
426
427                 if (!valid_page)
428                         valid_page = page;
429
430                 /*
431                  * For compound pages such as THP and hugetlbfs, we can save
432                  * potentially a lot of iterations if we skip them at once.
433                  * The check is racy, but we can consider only valid values
434                  * and the only danger is skipping too much.
435                  */
436                 if (PageCompound(page)) {
437                         unsigned int comp_order = compound_order(page);
438
439                         if (likely(comp_order < MAX_ORDER)) {
440                                 blockpfn += (1UL << comp_order) - 1;
441                                 cursor += (1UL << comp_order) - 1;
442                         }
443
444                         goto isolate_fail;
445                 }
446
447                 if (!PageBuddy(page))
448                         goto isolate_fail;
449
450                 /*
451                  * If we already hold the lock, we can skip some rechecking.
452                  * Note that if we hold the lock now, checked_pageblock was
453                  * already set in some previous iteration (or strict is true),
454                  * so it is correct to skip the suitable migration target
455                  * recheck as well.
456                  */
457                 if (!locked) {
458                         /*
459                          * The zone lock must be held to isolate freepages.
460                          * Unfortunately this is a very coarse lock and can be
461                          * heavily contended if there are parallel allocations
462                          * or parallel compactions. For async compaction do not
463                          * spin on the lock and we acquire the lock as late as
464                          * possible.
465                          */
466                         locked = compact_trylock_irqsave(&cc->zone->lock,
467                                                                 &flags, cc);
468                         if (!locked)
469                                 break;
470
471                         /* Recheck this is a buddy page under lock */
472                         if (!PageBuddy(page))
473                                 goto isolate_fail;
474                 }
475
476                 /* Found a free page, break it into order-0 pages */
477                 isolated = split_free_page(page);
478                 total_isolated += isolated;
479                 for (i = 0; i < isolated; i++) {
480                         list_add(&page->lru, freelist);
481                         page++;
482                 }
483
484                 /* If a page was split, advance to the end of it */
485                 if (isolated) {
486                         cc->nr_freepages += isolated;
487                         if (!strict &&
488                                 cc->nr_migratepages <= cc->nr_freepages) {
489                                 blockpfn += isolated;
490                                 break;
491                         }
492
493                         blockpfn += isolated - 1;
494                         cursor += isolated - 1;
495                         continue;
496                 }
497
498 isolate_fail:
499                 if (strict)
500                         break;
501                 else
502                         continue;
503
504         }
505
506         /*
507          * There is a tiny chance that we have read bogus compound_order(),
508          * so be careful to not go outside of the pageblock.
509          */
510         if (unlikely(blockpfn > end_pfn))
511                 blockpfn = end_pfn;
512
513         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
514                                         nr_scanned, total_isolated);
515
516         /* Record how far we have got within the block */
517         *start_pfn = blockpfn;
518
519         /*
520          * If strict isolation is requested by CMA then check that all the
521          * pages requested were isolated. If there were any failures, 0 is
522          * returned and CMA will fail.
523          */
524         if (strict && blockpfn < end_pfn)
525                 total_isolated = 0;
526
527         if (locked)
528                 spin_unlock_irqrestore(&cc->zone->lock, flags);
529
530         /* Update the pageblock-skip if the whole pageblock was scanned */
531         if (blockpfn == end_pfn)
532                 update_pageblock_skip(cc, valid_page, total_isolated, false);
533
534         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
535         if (total_isolated)
536                 count_compact_events(COMPACTISOLATED, total_isolated);
537         return total_isolated;
538 }
539
540 /**
541  * isolate_freepages_range() - isolate free pages.
542  * @start_pfn: The first PFN to start isolating.
543  * @end_pfn:   The one-past-last PFN.
544  *
545  * Non-free pages, invalid PFNs, or zone boundaries within the
546  * [start_pfn, end_pfn) range are considered errors, cause function to
547  * undo its actions and return zero.
548  *
549  * Otherwise, function returns one-past-the-last PFN of isolated page
550  * (which may be greater then end_pfn if end fell in a middle of
551  * a free page).
552  */
553 unsigned long
554 isolate_freepages_range(struct compact_control *cc,
555                         unsigned long start_pfn, unsigned long end_pfn)
556 {
557         unsigned long isolated, pfn, block_end_pfn;
558         LIST_HEAD(freelist);
559
560         pfn = start_pfn;
561         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
562
563         for (; pfn < end_pfn; pfn += isolated,
564                                 block_end_pfn += pageblock_nr_pages) {
565                 /* Protect pfn from changing by isolate_freepages_block */
566                 unsigned long isolate_start_pfn = pfn;
567
568                 block_end_pfn = min(block_end_pfn, end_pfn);
569
570                 /*
571                  * pfn could pass the block_end_pfn if isolated freepage
572                  * is more than pageblock order. In this case, we adjust
573                  * scanning range to right one.
574                  */
575                 if (pfn >= block_end_pfn) {
576                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
577                         block_end_pfn = min(block_end_pfn, end_pfn);
578                 }
579
580                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
581                         break;
582
583                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
584                                                 block_end_pfn, &freelist, true);
585
586                 /*
587                  * In strict mode, isolate_freepages_block() returns 0 if
588                  * there are any holes in the block (ie. invalid PFNs or
589                  * non-free pages).
590                  */
591                 if (!isolated)
592                         break;
593
594                 /*
595                  * If we managed to isolate pages, it is always (1 << n) *
596                  * pageblock_nr_pages for some non-negative n.  (Max order
597                  * page may span two pageblocks).
598                  */
599         }
600
601         /* split_free_page does not map the pages */
602         map_pages(&freelist);
603
604         if (pfn < end_pfn) {
605                 /* Loop terminated early, cleanup. */
606                 release_freepages(&freelist);
607                 return 0;
608         }
609
610         /* We don't use freelists for anything. */
611         return pfn;
612 }
613
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone *zone, struct compact_control *cc)
616 {
617         struct page *page;
618         unsigned int count[2] = { 0, };
619
620         if (list_empty(&cc->migratepages))
621                 return;
622
623         list_for_each_entry(page, &cc->migratepages, lru)
624                 count[!!page_is_file_cache(page)]++;
625
626         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
627         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
628 }
629
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone *zone)
632 {
633         unsigned long active, inactive, isolated;
634
635         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
636                                         zone_page_state(zone, NR_INACTIVE_ANON);
637         active = zone_page_state(zone, NR_ACTIVE_FILE) +
638                                         zone_page_state(zone, NR_ACTIVE_ANON);
639         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
640                                         zone_page_state(zone, NR_ISOLATED_ANON);
641
642         return isolated > (inactive + active) / 2;
643 }
644
645 /**
646  * isolate_migratepages_block() - isolate all migrate-able pages within
647  *                                a single pageblock
648  * @cc:         Compaction control structure.
649  * @low_pfn:    The first PFN to isolate
650  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
651  * @isolate_mode: Isolation mode to be used.
652  *
653  * Isolate all pages that can be migrated from the range specified by
654  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655  * Returns zero if there is a fatal signal pending, otherwise PFN of the
656  * first page that was not scanned (which may be both less, equal to or more
657  * than end_pfn).
658  *
659  * The pages are isolated on cc->migratepages list (not required to be empty),
660  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661  * is neither read nor updated.
662  */
663 static unsigned long
664 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
665                         unsigned long end_pfn, isolate_mode_t isolate_mode)
666 {
667         struct zone *zone = cc->zone;
668         unsigned long nr_scanned = 0, nr_isolated = 0;
669         struct list_head *migratelist = &cc->migratepages;
670         struct lruvec *lruvec;
671         unsigned long flags = 0;
672         bool locked = false;
673         struct page *page = NULL, *valid_page = NULL;
674         unsigned long start_pfn = low_pfn;
675
676         /*
677          * Ensure that there are not too many pages isolated from the LRU
678          * list by either parallel reclaimers or compaction. If there are,
679          * delay for some time until fewer pages are isolated
680          */
681         while (unlikely(too_many_isolated(zone))) {
682                 /* async migration should just abort */
683                 if (cc->mode == MIGRATE_ASYNC)
684                         return 0;
685
686                 congestion_wait(BLK_RW_ASYNC, HZ/10);
687
688                 if (fatal_signal_pending(current))
689                         return 0;
690         }
691
692         if (compact_should_abort(cc))
693                 return 0;
694
695         /* Time to isolate some pages for migration */
696         for (; low_pfn < end_pfn; low_pfn++) {
697                 bool is_lru;
698
699                 /*
700                  * Periodically drop the lock (if held) regardless of its
701                  * contention, to give chance to IRQs. Abort async compaction
702                  * if contended.
703                  */
704                 if (!(low_pfn % SWAP_CLUSTER_MAX)
705                     && compact_unlock_should_abort(&zone->lru_lock, flags,
706                                                                 &locked, cc))
707                         break;
708
709                 if (!pfn_valid_within(low_pfn))
710                         continue;
711                 nr_scanned++;
712
713                 page = pfn_to_page(low_pfn);
714
715                 if (!valid_page)
716                         valid_page = page;
717
718                 /*
719                  * Skip if free. We read page order here without zone lock
720                  * which is generally unsafe, but the race window is small and
721                  * the worst thing that can happen is that we skip some
722                  * potential isolation targets.
723                  */
724                 if (PageBuddy(page)) {
725                         unsigned long freepage_order = page_order_unsafe(page);
726
727                         /*
728                          * Without lock, we cannot be sure that what we got is
729                          * a valid page order. Consider only values in the
730                          * valid order range to prevent low_pfn overflow.
731                          */
732                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
733                                 low_pfn += (1UL << freepage_order) - 1;
734                         continue;
735                 }
736
737                 /*
738                  * Check may be lockless but that's ok as we recheck later.
739                  * It's possible to migrate LRU pages and balloon pages
740                  * Skip any other type of page
741                  */
742                 is_lru = PageLRU(page);
743                 if (!is_lru) {
744                         if (unlikely(balloon_page_movable(page))) {
745                                 if (balloon_page_isolate(page)) {
746                                         /* Successfully isolated */
747                                         goto isolate_success;
748                                 }
749                         }
750                 }
751
752                 /*
753                  * Regardless of being on LRU, compound pages such as THP and
754                  * hugetlbfs are not to be compacted. We can potentially save
755                  * a lot of iterations if we skip them at once. The check is
756                  * racy, but we can consider only valid values and the only
757                  * danger is skipping too much.
758                  */
759                 if (PageCompound(page)) {
760                         unsigned int comp_order = compound_order(page);
761
762                         if (likely(comp_order < MAX_ORDER))
763                                 low_pfn += (1UL << comp_order) - 1;
764
765                         continue;
766                 }
767
768                 if (!is_lru)
769                         continue;
770
771                 /*
772                  * Migration will fail if an anonymous page is pinned in memory,
773                  * so avoid taking lru_lock and isolating it unnecessarily in an
774                  * admittedly racy check.
775                  */
776                 if (!page_mapping(page) &&
777                     page_count(page) > page_mapcount(page))
778                         continue;
779
780                 /* If we already hold the lock, we can skip some rechecking */
781                 if (!locked) {
782                         locked = compact_trylock_irqsave(&zone->lru_lock,
783                                                                 &flags, cc);
784                         if (!locked)
785                                 break;
786
787                         /* Recheck PageLRU and PageCompound under lock */
788                         if (!PageLRU(page))
789                                 continue;
790
791                         /*
792                          * Page become compound since the non-locked check,
793                          * and it's on LRU. It can only be a THP so the order
794                          * is safe to read and it's 0 for tail pages.
795                          */
796                         if (unlikely(PageCompound(page))) {
797                                 low_pfn += (1UL << compound_order(page)) - 1;
798                                 continue;
799                         }
800                 }
801
802                 lruvec = mem_cgroup_page_lruvec(page, zone);
803
804                 /* Try isolate the page */
805                 if (__isolate_lru_page(page, isolate_mode) != 0)
806                         continue;
807
808                 VM_BUG_ON_PAGE(PageCompound(page), page);
809
810                 /* Successfully isolated */
811                 del_page_from_lru_list(page, lruvec, page_lru(page));
812
813 isolate_success:
814                 list_add(&page->lru, migratelist);
815                 cc->nr_migratepages++;
816                 nr_isolated++;
817
818                 /* Avoid isolating too much */
819                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
820                         ++low_pfn;
821                         break;
822                 }
823         }
824
825         /*
826          * The PageBuddy() check could have potentially brought us outside
827          * the range to be scanned.
828          */
829         if (unlikely(low_pfn > end_pfn))
830                 low_pfn = end_pfn;
831
832         if (locked)
833                 spin_unlock_irqrestore(&zone->lru_lock, flags);
834
835         /*
836          * Update the pageblock-skip information and cached scanner pfn,
837          * if the whole pageblock was scanned without isolating any page.
838          */
839         if (low_pfn == end_pfn)
840                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
841
842         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
843                                                 nr_scanned, nr_isolated);
844
845         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
846         if (nr_isolated)
847                 count_compact_events(COMPACTISOLATED, nr_isolated);
848
849         return low_pfn;
850 }
851
852 /**
853  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
854  * @cc:        Compaction control structure.
855  * @start_pfn: The first PFN to start isolating.
856  * @end_pfn:   The one-past-last PFN.
857  *
858  * Returns zero if isolation fails fatally due to e.g. pending signal.
859  * Otherwise, function returns one-past-the-last PFN of isolated page
860  * (which may be greater than end_pfn if end fell in a middle of a THP page).
861  */
862 unsigned long
863 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
864                                                         unsigned long end_pfn)
865 {
866         unsigned long pfn, block_end_pfn;
867
868         /* Scan block by block. First and last block may be incomplete */
869         pfn = start_pfn;
870         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
871
872         for (; pfn < end_pfn; pfn = block_end_pfn,
873                                 block_end_pfn += pageblock_nr_pages) {
874
875                 block_end_pfn = min(block_end_pfn, end_pfn);
876
877                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
878                         continue;
879
880                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
881                                                         ISOLATE_UNEVICTABLE);
882
883                 if (!pfn)
884                         break;
885
886                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
887                         break;
888         }
889         acct_isolated(cc->zone, cc);
890
891         return pfn;
892 }
893
894 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
895 #ifdef CONFIG_COMPACTION
896
897 /* Returns true if the page is within a block suitable for migration to */
898 static bool suitable_migration_target(struct page *page)
899 {
900         /* If the page is a large free page, then disallow migration */
901         if (PageBuddy(page)) {
902                 /*
903                  * We are checking page_order without zone->lock taken. But
904                  * the only small danger is that we skip a potentially suitable
905                  * pageblock, so it's not worth to check order for valid range.
906                  */
907                 if (page_order_unsafe(page) >= pageblock_order)
908                         return false;
909         }
910
911         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
912         if (migrate_async_suitable(get_pageblock_migratetype(page)))
913                 return true;
914
915         /* Otherwise skip the block */
916         return false;
917 }
918
919 /*
920  * Test whether the free scanner has reached the same or lower pageblock than
921  * the migration scanner, and compaction should thus terminate.
922  */
923 static inline bool compact_scanners_met(struct compact_control *cc)
924 {
925         return (cc->free_pfn >> pageblock_order)
926                 <= (cc->migrate_pfn >> pageblock_order);
927 }
928
929 /*
930  * Based on information in the current compact_control, find blocks
931  * suitable for isolating free pages from and then isolate them.
932  */
933 static void isolate_freepages(struct compact_control *cc)
934 {
935         struct zone *zone = cc->zone;
936         struct page *page;
937         unsigned long block_start_pfn;  /* start of current pageblock */
938         unsigned long isolate_start_pfn; /* exact pfn we start at */
939         unsigned long block_end_pfn;    /* end of current pageblock */
940         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
941         struct list_head *freelist = &cc->freepages;
942
943         /*
944          * Initialise the free scanner. The starting point is where we last
945          * successfully isolated from, zone-cached value, or the end of the
946          * zone when isolating for the first time. For looping we also need
947          * this pfn aligned down to the pageblock boundary, because we do
948          * block_start_pfn -= pageblock_nr_pages in the for loop.
949          * For ending point, take care when isolating in last pageblock of a
950          * a zone which ends in the middle of a pageblock.
951          * The low boundary is the end of the pageblock the migration scanner
952          * is using.
953          */
954         isolate_start_pfn = cc->free_pfn;
955         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
956         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
957                                                 zone_end_pfn(zone));
958         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
959
960         /*
961          * Isolate free pages until enough are available to migrate the
962          * pages on cc->migratepages. We stop searching if the migrate
963          * and free page scanners meet or enough free pages are isolated.
964          */
965         for (; block_start_pfn >= low_pfn;
966                                 block_end_pfn = block_start_pfn,
967                                 block_start_pfn -= pageblock_nr_pages,
968                                 isolate_start_pfn = block_start_pfn) {
969
970                 /*
971                  * This can iterate a massively long zone without finding any
972                  * suitable migration targets, so periodically check if we need
973                  * to schedule, or even abort async compaction.
974                  */
975                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
976                                                 && compact_should_abort(cc))
977                         break;
978
979                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
980                                                                         zone);
981                 if (!page)
982                         continue;
983
984                 /* Check the block is suitable for migration */
985                 if (!suitable_migration_target(page))
986                         continue;
987
988                 /* If isolation recently failed, do not retry */
989                 if (!isolation_suitable(cc, page))
990                         continue;
991
992                 /* Found a block suitable for isolating free pages from. */
993                 isolate_freepages_block(cc, &isolate_start_pfn,
994                                         block_end_pfn, freelist, false);
995
996                 /*
997                  * If we isolated enough freepages, or aborted due to async
998                  * compaction being contended, terminate the loop.
999                  * Remember where the free scanner should restart next time,
1000                  * which is where isolate_freepages_block() left off.
1001                  * But if it scanned the whole pageblock, isolate_start_pfn
1002                  * now points at block_end_pfn, which is the start of the next
1003                  * pageblock.
1004                  * In that case we will however want to restart at the start
1005                  * of the previous pageblock.
1006                  */
1007                 if ((cc->nr_freepages >= cc->nr_migratepages)
1008                                                         || cc->contended) {
1009                         if (isolate_start_pfn >= block_end_pfn)
1010                                 isolate_start_pfn =
1011                                         block_start_pfn - pageblock_nr_pages;
1012                         break;
1013                 } else {
1014                         /*
1015                          * isolate_freepages_block() should not terminate
1016                          * prematurely unless contended, or isolated enough
1017                          */
1018                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1019                 }
1020         }
1021
1022         /* split_free_page does not map the pages */
1023         map_pages(freelist);
1024
1025         /*
1026          * Record where the free scanner will restart next time. Either we
1027          * broke from the loop and set isolate_start_pfn based on the last
1028          * call to isolate_freepages_block(), or we met the migration scanner
1029          * and the loop terminated due to isolate_start_pfn < low_pfn
1030          */
1031         cc->free_pfn = isolate_start_pfn;
1032 }
1033
1034 /*
1035  * This is a migrate-callback that "allocates" freepages by taking pages
1036  * from the isolated freelists in the block we are migrating to.
1037  */
1038 static struct page *compaction_alloc(struct page *migratepage,
1039                                         unsigned long data,
1040                                         int **result)
1041 {
1042         struct compact_control *cc = (struct compact_control *)data;
1043         struct page *freepage;
1044
1045         /*
1046          * Isolate free pages if necessary, and if we are not aborting due to
1047          * contention.
1048          */
1049         if (list_empty(&cc->freepages)) {
1050                 if (!cc->contended)
1051                         isolate_freepages(cc);
1052
1053                 if (list_empty(&cc->freepages))
1054                         return NULL;
1055         }
1056
1057         freepage = list_entry(cc->freepages.next, struct page, lru);
1058         list_del(&freepage->lru);
1059         cc->nr_freepages--;
1060
1061         return freepage;
1062 }
1063
1064 /*
1065  * This is a migrate-callback that "frees" freepages back to the isolated
1066  * freelist.  All pages on the freelist are from the same zone, so there is no
1067  * special handling needed for NUMA.
1068  */
1069 static void compaction_free(struct page *page, unsigned long data)
1070 {
1071         struct compact_control *cc = (struct compact_control *)data;
1072
1073         list_add(&page->lru, &cc->freepages);
1074         cc->nr_freepages++;
1075 }
1076
1077 /* possible outcome of isolate_migratepages */
1078 typedef enum {
1079         ISOLATE_ABORT,          /* Abort compaction now */
1080         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1081         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1082 } isolate_migrate_t;
1083
1084 /*
1085  * Allow userspace to control policy on scanning the unevictable LRU for
1086  * compactable pages.
1087  */
1088 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1089
1090 /*
1091  * Isolate all pages that can be migrated from the first suitable block,
1092  * starting at the block pointed to by the migrate scanner pfn within
1093  * compact_control.
1094  */
1095 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1096                                         struct compact_control *cc)
1097 {
1098         unsigned long low_pfn, end_pfn;
1099         unsigned long isolate_start_pfn;
1100         struct page *page;
1101         const isolate_mode_t isolate_mode =
1102                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1103                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1104
1105         /*
1106          * Start at where we last stopped, or beginning of the zone as
1107          * initialized by compact_zone()
1108          */
1109         low_pfn = cc->migrate_pfn;
1110
1111         /* Only scan within a pageblock boundary */
1112         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1113
1114         /*
1115          * Iterate over whole pageblocks until we find the first suitable.
1116          * Do not cross the free scanner.
1117          */
1118         for (; end_pfn <= cc->free_pfn;
1119                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1120
1121                 /*
1122                  * This can potentially iterate a massively long zone with
1123                  * many pageblocks unsuitable, so periodically check if we
1124                  * need to schedule, or even abort async compaction.
1125                  */
1126                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1127                                                 && compact_should_abort(cc))
1128                         break;
1129
1130                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1131                 if (!page)
1132                         continue;
1133
1134                 /* If isolation recently failed, do not retry */
1135                 if (!isolation_suitable(cc, page))
1136                         continue;
1137
1138                 /*
1139                  * For async compaction, also only scan in MOVABLE blocks.
1140                  * Async compaction is optimistic to see if the minimum amount
1141                  * of work satisfies the allocation.
1142                  */
1143                 if (cc->mode == MIGRATE_ASYNC &&
1144                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1145                         continue;
1146
1147                 /* Perform the isolation */
1148                 isolate_start_pfn = low_pfn;
1149                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1150                                                                 isolate_mode);
1151
1152                 if (!low_pfn || cc->contended) {
1153                         acct_isolated(zone, cc);
1154                         return ISOLATE_ABORT;
1155                 }
1156
1157                 /*
1158                  * Record where we could have freed pages by migration and not
1159                  * yet flushed them to buddy allocator.
1160                  * - this is the lowest page that could have been isolated and
1161                  * then freed by migration.
1162                  */
1163                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1164                         cc->last_migrated_pfn = isolate_start_pfn;
1165
1166                 /*
1167                  * Either we isolated something and proceed with migration. Or
1168                  * we failed and compact_zone should decide if we should
1169                  * continue or not.
1170                  */
1171                 break;
1172         }
1173
1174         acct_isolated(zone, cc);
1175         /* Record where migration scanner will be restarted. */
1176         cc->migrate_pfn = low_pfn;
1177
1178         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1179 }
1180
1181 /*
1182  * order == -1 is expected when compacting via
1183  * /proc/sys/vm/compact_memory
1184  */
1185 static inline bool is_via_compact_memory(int order)
1186 {
1187         return order == -1;
1188 }
1189
1190 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1191                             const int migratetype)
1192 {
1193         unsigned int order;
1194         unsigned long watermark;
1195
1196         if (cc->contended || fatal_signal_pending(current))
1197                 return COMPACT_CONTENDED;
1198
1199         /* Compaction run completes if the migrate and free scanner meet */
1200         if (compact_scanners_met(cc)) {
1201                 /* Let the next compaction start anew. */
1202                 reset_cached_positions(zone);
1203
1204                 /*
1205                  * Mark that the PG_migrate_skip information should be cleared
1206                  * by kswapd when it goes to sleep. kswapd does not set the
1207                  * flag itself as the decision to be clear should be directly
1208                  * based on an allocation request.
1209                  */
1210                 if (!current_is_kswapd())
1211                         zone->compact_blockskip_flush = true;
1212
1213                 return COMPACT_COMPLETE;
1214         }
1215
1216         if (is_via_compact_memory(cc->order))
1217                 return COMPACT_CONTINUE;
1218
1219         /* Compaction run is not finished if the watermark is not met */
1220         watermark = low_wmark_pages(zone);
1221
1222         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1223                                                         cc->alloc_flags))
1224                 return COMPACT_CONTINUE;
1225
1226         /* Direct compactor: Is a suitable page free? */
1227         for (order = cc->order; order < MAX_ORDER; order++) {
1228                 struct free_area *area = &zone->free_area[order];
1229                 bool can_steal;
1230
1231                 /* Job done if page is free of the right migratetype */
1232                 if (!list_empty(&area->free_list[migratetype]))
1233                         return COMPACT_PARTIAL;
1234
1235 #ifdef CONFIG_CMA
1236                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1237                 if (migratetype == MIGRATE_MOVABLE &&
1238                         !list_empty(&area->free_list[MIGRATE_CMA]))
1239                         return COMPACT_PARTIAL;
1240 #endif
1241                 /*
1242                  * Job done if allocation would steal freepages from
1243                  * other migratetype buddy lists.
1244                  */
1245                 if (find_suitable_fallback(area, order, migratetype,
1246                                                 true, &can_steal) != -1)
1247                         return COMPACT_PARTIAL;
1248         }
1249
1250         return COMPACT_NO_SUITABLE_PAGE;
1251 }
1252
1253 static int compact_finished(struct zone *zone, struct compact_control *cc,
1254                             const int migratetype)
1255 {
1256         int ret;
1257
1258         ret = __compact_finished(zone, cc, migratetype);
1259         trace_mm_compaction_finished(zone, cc->order, ret);
1260         if (ret == COMPACT_NO_SUITABLE_PAGE)
1261                 ret = COMPACT_CONTINUE;
1262
1263         return ret;
1264 }
1265
1266 /*
1267  * compaction_suitable: Is this suitable to run compaction on this zone now?
1268  * Returns
1269  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1270  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1271  *   COMPACT_CONTINUE - If compaction should run now
1272  */
1273 static unsigned long __compaction_suitable(struct zone *zone, int order,
1274                                         int alloc_flags, int classzone_idx)
1275 {
1276         int fragindex;
1277         unsigned long watermark;
1278
1279         if (is_via_compact_memory(order))
1280                 return COMPACT_CONTINUE;
1281
1282         watermark = low_wmark_pages(zone);
1283         /*
1284          * If watermarks for high-order allocation are already met, there
1285          * should be no need for compaction at all.
1286          */
1287         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1288                                                                 alloc_flags))
1289                 return COMPACT_PARTIAL;
1290
1291         /*
1292          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1293          * This is because during migration, copies of pages need to be
1294          * allocated and for a short time, the footprint is higher
1295          */
1296         watermark += (2UL << order);
1297         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1298                 return COMPACT_SKIPPED;
1299
1300         /*
1301          * fragmentation index determines if allocation failures are due to
1302          * low memory or external fragmentation
1303          *
1304          * index of -1000 would imply allocations might succeed depending on
1305          * watermarks, but we already failed the high-order watermark check
1306          * index towards 0 implies failure is due to lack of memory
1307          * index towards 1000 implies failure is due to fragmentation
1308          *
1309          * Only compact if a failure would be due to fragmentation.
1310          */
1311         fragindex = fragmentation_index(zone, order);
1312         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1313                 return COMPACT_NOT_SUITABLE_ZONE;
1314
1315         return COMPACT_CONTINUE;
1316 }
1317
1318 unsigned long compaction_suitable(struct zone *zone, int order,
1319                                         int alloc_flags, int classzone_idx)
1320 {
1321         unsigned long ret;
1322
1323         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1324         trace_mm_compaction_suitable(zone, order, ret);
1325         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1326                 ret = COMPACT_SKIPPED;
1327
1328         return ret;
1329 }
1330
1331 static int compact_zone(struct zone *zone, struct compact_control *cc)
1332 {
1333         int ret;
1334         unsigned long start_pfn = zone->zone_start_pfn;
1335         unsigned long end_pfn = zone_end_pfn(zone);
1336         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1337         const bool sync = cc->mode != MIGRATE_ASYNC;
1338
1339         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1340                                                         cc->classzone_idx);
1341         switch (ret) {
1342         case COMPACT_PARTIAL:
1343         case COMPACT_SKIPPED:
1344                 /* Compaction is likely to fail */
1345                 return ret;
1346         case COMPACT_CONTINUE:
1347                 /* Fall through to compaction */
1348                 ;
1349         }
1350
1351         /*
1352          * Clear pageblock skip if there were failures recently and compaction
1353          * is about to be retried after being deferred. kswapd does not do
1354          * this reset as it'll reset the cached information when going to sleep.
1355          */
1356         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1357                 __reset_isolation_suitable(zone);
1358
1359         /*
1360          * Setup to move all movable pages to the end of the zone. Used cached
1361          * information on where the scanners should start but check that it
1362          * is initialised by ensuring the values are within zone boundaries.
1363          */
1364         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1365         cc->free_pfn = zone->compact_cached_free_pfn;
1366         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1367                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1368                 zone->compact_cached_free_pfn = cc->free_pfn;
1369         }
1370         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1371                 cc->migrate_pfn = start_pfn;
1372                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1373                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1374         }
1375         cc->last_migrated_pfn = 0;
1376
1377         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1378                                 cc->free_pfn, end_pfn, sync);
1379
1380         migrate_prep_local();
1381
1382         while ((ret = compact_finished(zone, cc, migratetype)) ==
1383                                                 COMPACT_CONTINUE) {
1384                 int err;
1385
1386                 switch (isolate_migratepages(zone, cc)) {
1387                 case ISOLATE_ABORT:
1388                         ret = COMPACT_CONTENDED;
1389                         putback_movable_pages(&cc->migratepages);
1390                         cc->nr_migratepages = 0;
1391                         goto out;
1392                 case ISOLATE_NONE:
1393                         /*
1394                          * We haven't isolated and migrated anything, but
1395                          * there might still be unflushed migrations from
1396                          * previous cc->order aligned block.
1397                          */
1398                         goto check_drain;
1399                 case ISOLATE_SUCCESS:
1400                         ;
1401                 }
1402
1403                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1404                                 compaction_free, (unsigned long)cc, cc->mode,
1405                                 MR_COMPACTION);
1406
1407                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1408                                                         &cc->migratepages);
1409
1410                 /* All pages were either migrated or will be released */
1411                 cc->nr_migratepages = 0;
1412                 if (err) {
1413                         putback_movable_pages(&cc->migratepages);
1414                         /*
1415                          * migrate_pages() may return -ENOMEM when scanners meet
1416                          * and we want compact_finished() to detect it
1417                          */
1418                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1419                                 ret = COMPACT_CONTENDED;
1420                                 goto out;
1421                         }
1422                 }
1423
1424 check_drain:
1425                 /*
1426                  * Has the migration scanner moved away from the previous
1427                  * cc->order aligned block where we migrated from? If yes,
1428                  * flush the pages that were freed, so that they can merge and
1429                  * compact_finished() can detect immediately if allocation
1430                  * would succeed.
1431                  */
1432                 if (cc->order > 0 && cc->last_migrated_pfn) {
1433                         int cpu;
1434                         unsigned long current_block_start =
1435                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1436
1437                         if (cc->last_migrated_pfn < current_block_start) {
1438                                 cpu = get_cpu();
1439                                 lru_add_drain_cpu(cpu);
1440                                 drain_local_pages(zone);
1441                                 put_cpu();
1442                                 /* No more flushing until we migrate again */
1443                                 cc->last_migrated_pfn = 0;
1444                         }
1445                 }
1446
1447         }
1448
1449 out:
1450         /*
1451          * Release free pages and update where the free scanner should restart,
1452          * so we don't leave any returned pages behind in the next attempt.
1453          */
1454         if (cc->nr_freepages > 0) {
1455                 unsigned long free_pfn = release_freepages(&cc->freepages);
1456
1457                 cc->nr_freepages = 0;
1458                 VM_BUG_ON(free_pfn == 0);
1459                 /* The cached pfn is always the first in a pageblock */
1460                 free_pfn &= ~(pageblock_nr_pages-1);
1461                 /*
1462                  * Only go back, not forward. The cached pfn might have been
1463                  * already reset to zone end in compact_finished()
1464                  */
1465                 if (free_pfn > zone->compact_cached_free_pfn)
1466                         zone->compact_cached_free_pfn = free_pfn;
1467         }
1468
1469         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1470                                 cc->free_pfn, end_pfn, sync, ret);
1471
1472         if (ret == COMPACT_CONTENDED)
1473                 ret = COMPACT_PARTIAL;
1474
1475         return ret;
1476 }
1477
1478 static unsigned long compact_zone_order(struct zone *zone, int order,
1479                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1480                 int alloc_flags, int classzone_idx)
1481 {
1482         unsigned long ret;
1483         struct compact_control cc = {
1484                 .nr_freepages = 0,
1485                 .nr_migratepages = 0,
1486                 .order = order,
1487                 .gfp_mask = gfp_mask,
1488                 .zone = zone,
1489                 .mode = mode,
1490                 .alloc_flags = alloc_flags,
1491                 .classzone_idx = classzone_idx,
1492         };
1493         INIT_LIST_HEAD(&cc.freepages);
1494         INIT_LIST_HEAD(&cc.migratepages);
1495
1496         ret = compact_zone(zone, &cc);
1497
1498         VM_BUG_ON(!list_empty(&cc.freepages));
1499         VM_BUG_ON(!list_empty(&cc.migratepages));
1500
1501         *contended = cc.contended;
1502         return ret;
1503 }
1504
1505 int sysctl_extfrag_threshold = 500;
1506
1507 /**
1508  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1509  * @gfp_mask: The GFP mask of the current allocation
1510  * @order: The order of the current allocation
1511  * @alloc_flags: The allocation flags of the current allocation
1512  * @ac: The context of current allocation
1513  * @mode: The migration mode for async, sync light, or sync migration
1514  * @contended: Return value that determines if compaction was aborted due to
1515  *             need_resched() or lock contention
1516  *
1517  * This is the main entry point for direct page compaction.
1518  */
1519 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1520                         int alloc_flags, const struct alloc_context *ac,
1521                         enum migrate_mode mode, int *contended)
1522 {
1523         int may_enter_fs = gfp_mask & __GFP_FS;
1524         int may_perform_io = gfp_mask & __GFP_IO;
1525         struct zoneref *z;
1526         struct zone *zone;
1527         int rc = COMPACT_DEFERRED;
1528         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1529
1530         *contended = COMPACT_CONTENDED_NONE;
1531
1532         /* Check if the GFP flags allow compaction */
1533         if (!order || !may_enter_fs || !may_perform_io)
1534                 return COMPACT_SKIPPED;
1535
1536         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1537
1538         /* Compact each zone in the list */
1539         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1540                                                                 ac->nodemask) {
1541                 int status;
1542                 int zone_contended;
1543
1544                 if (compaction_deferred(zone, order))
1545                         continue;
1546
1547                 status = compact_zone_order(zone, order, gfp_mask, mode,
1548                                 &zone_contended, alloc_flags,
1549                                 ac->classzone_idx);
1550                 rc = max(status, rc);
1551                 /*
1552                  * It takes at least one zone that wasn't lock contended
1553                  * to clear all_zones_contended.
1554                  */
1555                 all_zones_contended &= zone_contended;
1556
1557                 /* If a normal allocation would succeed, stop compacting */
1558                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1559                                         ac->classzone_idx, alloc_flags)) {
1560                         /*
1561                          * We think the allocation will succeed in this zone,
1562                          * but it is not certain, hence the false. The caller
1563                          * will repeat this with true if allocation indeed
1564                          * succeeds in this zone.
1565                          */
1566                         compaction_defer_reset(zone, order, false);
1567                         /*
1568                          * It is possible that async compaction aborted due to
1569                          * need_resched() and the watermarks were ok thanks to
1570                          * somebody else freeing memory. The allocation can
1571                          * however still fail so we better signal the
1572                          * need_resched() contention anyway (this will not
1573                          * prevent the allocation attempt).
1574                          */
1575                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1576                                 *contended = COMPACT_CONTENDED_SCHED;
1577
1578                         goto break_loop;
1579                 }
1580
1581                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1582                         /*
1583                          * We think that allocation won't succeed in this zone
1584                          * so we defer compaction there. If it ends up
1585                          * succeeding after all, it will be reset.
1586                          */
1587                         defer_compaction(zone, order);
1588                 }
1589
1590                 /*
1591                  * We might have stopped compacting due to need_resched() in
1592                  * async compaction, or due to a fatal signal detected. In that
1593                  * case do not try further zones and signal need_resched()
1594                  * contention.
1595                  */
1596                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1597                                         || fatal_signal_pending(current)) {
1598                         *contended = COMPACT_CONTENDED_SCHED;
1599                         goto break_loop;
1600                 }
1601
1602                 continue;
1603 break_loop:
1604                 /*
1605                  * We might not have tried all the zones, so  be conservative
1606                  * and assume they are not all lock contended.
1607                  */
1608                 all_zones_contended = 0;
1609                 break;
1610         }
1611
1612         /*
1613          * If at least one zone wasn't deferred or skipped, we report if all
1614          * zones that were tried were lock contended.
1615          */
1616         if (rc > COMPACT_SKIPPED && all_zones_contended)
1617                 *contended = COMPACT_CONTENDED_LOCK;
1618
1619         return rc;
1620 }
1621
1622
1623 /* Compact all zones within a node */
1624 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1625 {
1626         int zoneid;
1627         struct zone *zone;
1628
1629         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1630
1631                 zone = &pgdat->node_zones[zoneid];
1632                 if (!populated_zone(zone))
1633                         continue;
1634
1635                 cc->nr_freepages = 0;
1636                 cc->nr_migratepages = 0;
1637                 cc->zone = zone;
1638                 INIT_LIST_HEAD(&cc->freepages);
1639                 INIT_LIST_HEAD(&cc->migratepages);
1640
1641                 /*
1642                  * When called via /proc/sys/vm/compact_memory
1643                  * this makes sure we compact the whole zone regardless of
1644                  * cached scanner positions.
1645                  */
1646                 if (is_via_compact_memory(cc->order))
1647                         __reset_isolation_suitable(zone);
1648
1649                 if (is_via_compact_memory(cc->order) ||
1650                                 !compaction_deferred(zone, cc->order))
1651                         compact_zone(zone, cc);
1652
1653                 if (cc->order > 0) {
1654                         if (zone_watermark_ok(zone, cc->order,
1655                                                 low_wmark_pages(zone), 0, 0))
1656                                 compaction_defer_reset(zone, cc->order, false);
1657                 }
1658
1659                 VM_BUG_ON(!list_empty(&cc->freepages));
1660                 VM_BUG_ON(!list_empty(&cc->migratepages));
1661         }
1662 }
1663
1664 void compact_pgdat(pg_data_t *pgdat, int order)
1665 {
1666         struct compact_control cc = {
1667                 .order = order,
1668                 .mode = MIGRATE_ASYNC,
1669         };
1670
1671         if (!order)
1672                 return;
1673
1674         __compact_pgdat(pgdat, &cc);
1675 }
1676
1677 static void compact_node(int nid)
1678 {
1679         struct compact_control cc = {
1680                 .order = -1,
1681                 .mode = MIGRATE_SYNC,
1682                 .ignore_skip_hint = true,
1683         };
1684
1685         __compact_pgdat(NODE_DATA(nid), &cc);
1686 }
1687
1688 /* Compact all nodes in the system */
1689 static void compact_nodes(void)
1690 {
1691         int nid;
1692
1693         /* Flush pending updates to the LRU lists */
1694         lru_add_drain_all();
1695
1696         for_each_online_node(nid)
1697                 compact_node(nid);
1698 }
1699
1700 /* The written value is actually unused, all memory is compacted */
1701 int sysctl_compact_memory;
1702
1703 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1704 int sysctl_compaction_handler(struct ctl_table *table, int write,
1705                         void __user *buffer, size_t *length, loff_t *ppos)
1706 {
1707         if (write)
1708                 compact_nodes();
1709
1710         return 0;
1711 }
1712
1713 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1714                         void __user *buffer, size_t *length, loff_t *ppos)
1715 {
1716         proc_dointvec_minmax(table, write, buffer, length, ppos);
1717
1718         return 0;
1719 }
1720
1721 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1722 static ssize_t sysfs_compact_node(struct device *dev,
1723                         struct device_attribute *attr,
1724                         const char *buf, size_t count)
1725 {
1726         int nid = dev->id;
1727
1728         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1729                 /* Flush pending updates to the LRU lists */
1730                 lru_add_drain_all();
1731
1732                 compact_node(nid);
1733         }
1734
1735         return count;
1736 }
1737 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1738
1739 int compaction_register_node(struct node *node)
1740 {
1741         return device_create_file(&node->dev, &dev_attr_compact);
1742 }
1743
1744 void compaction_unregister_node(struct node *node)
1745 {
1746         return device_remove_file(&node->dev, &dev_attr_compact);
1747 }
1748 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1749
1750 #endif /* CONFIG_COMPACTION */