]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/compaction.c
mm: refactor TLB gathering API
[karo-tx-linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
24 #include "internal.h"
25
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item)
28 {
29         count_vm_event(item);
30 }
31
32 static inline void count_compact_events(enum vm_event_item item, long delta)
33 {
34         count_vm_events(item, delta);
35 }
36 #else
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
39 #endif
40
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
45
46 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
50
51 static unsigned long release_freepages(struct list_head *freelist)
52 {
53         struct page *page, *next;
54         unsigned long high_pfn = 0;
55
56         list_for_each_entry_safe(page, next, freelist, lru) {
57                 unsigned long pfn = page_to_pfn(page);
58                 list_del(&page->lru);
59                 __free_page(page);
60                 if (pfn > high_pfn)
61                         high_pfn = pfn;
62         }
63
64         return high_pfn;
65 }
66
67 static void map_pages(struct list_head *list)
68 {
69         unsigned int i, order, nr_pages;
70         struct page *page, *next;
71         LIST_HEAD(tmp_list);
72
73         list_for_each_entry_safe(page, next, list, lru) {
74                 list_del(&page->lru);
75
76                 order = page_private(page);
77                 nr_pages = 1 << order;
78
79                 post_alloc_hook(page, order, __GFP_MOVABLE);
80                 if (order)
81                         split_page(page, order);
82
83                 for (i = 0; i < nr_pages; i++) {
84                         list_add(&page->lru, &tmp_list);
85                         page++;
86                 }
87         }
88
89         list_splice(&tmp_list, list);
90 }
91
92 #ifdef CONFIG_COMPACTION
93
94 int PageMovable(struct page *page)
95 {
96         struct address_space *mapping;
97
98         VM_BUG_ON_PAGE(!PageLocked(page), page);
99         if (!__PageMovable(page))
100                 return 0;
101
102         mapping = page_mapping(page);
103         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
104                 return 1;
105
106         return 0;
107 }
108 EXPORT_SYMBOL(PageMovable);
109
110 void __SetPageMovable(struct page *page, struct address_space *mapping)
111 {
112         VM_BUG_ON_PAGE(!PageLocked(page), page);
113         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
114         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
115 }
116 EXPORT_SYMBOL(__SetPageMovable);
117
118 void __ClearPageMovable(struct page *page)
119 {
120         VM_BUG_ON_PAGE(!PageLocked(page), page);
121         VM_BUG_ON_PAGE(!PageMovable(page), page);
122         /*
123          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
124          * flag so that VM can catch up released page by driver after isolation.
125          * With it, VM migration doesn't try to put it back.
126          */
127         page->mapping = (void *)((unsigned long)page->mapping &
128                                 PAGE_MAPPING_MOVABLE);
129 }
130 EXPORT_SYMBOL(__ClearPageMovable);
131
132 /* Do not skip compaction more than 64 times */
133 #define COMPACT_MAX_DEFER_SHIFT 6
134
135 /*
136  * Compaction is deferred when compaction fails to result in a page
137  * allocation success. 1 << compact_defer_limit compactions are skipped up
138  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
139  */
140 void defer_compaction(struct zone *zone, int order)
141 {
142         zone->compact_considered = 0;
143         zone->compact_defer_shift++;
144
145         if (order < zone->compact_order_failed)
146                 zone->compact_order_failed = order;
147
148         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
149                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
150
151         trace_mm_compaction_defer_compaction(zone, order);
152 }
153
154 /* Returns true if compaction should be skipped this time */
155 bool compaction_deferred(struct zone *zone, int order)
156 {
157         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
158
159         if (order < zone->compact_order_failed)
160                 return false;
161
162         /* Avoid possible overflow */
163         if (++zone->compact_considered > defer_limit)
164                 zone->compact_considered = defer_limit;
165
166         if (zone->compact_considered >= defer_limit)
167                 return false;
168
169         trace_mm_compaction_deferred(zone, order);
170
171         return true;
172 }
173
174 /*
175  * Update defer tracking counters after successful compaction of given order,
176  * which means an allocation either succeeded (alloc_success == true) or is
177  * expected to succeed.
178  */
179 void compaction_defer_reset(struct zone *zone, int order,
180                 bool alloc_success)
181 {
182         if (alloc_success) {
183                 zone->compact_considered = 0;
184                 zone->compact_defer_shift = 0;
185         }
186         if (order >= zone->compact_order_failed)
187                 zone->compact_order_failed = order + 1;
188
189         trace_mm_compaction_defer_reset(zone, order);
190 }
191
192 /* Returns true if restarting compaction after many failures */
193 bool compaction_restarting(struct zone *zone, int order)
194 {
195         if (order < zone->compact_order_failed)
196                 return false;
197
198         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
199                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 }
201
202 /* Returns true if the pageblock should be scanned for pages to isolate. */
203 static inline bool isolation_suitable(struct compact_control *cc,
204                                         struct page *page)
205 {
206         if (cc->ignore_skip_hint)
207                 return true;
208
209         return !get_pageblock_skip(page);
210 }
211
212 static void reset_cached_positions(struct zone *zone)
213 {
214         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
215         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
216         zone->compact_cached_free_pfn =
217                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
218 }
219
220 /*
221  * This function is called to clear all cached information on pageblocks that
222  * should be skipped for page isolation when the migrate and free page scanner
223  * meet.
224  */
225 static void __reset_isolation_suitable(struct zone *zone)
226 {
227         unsigned long start_pfn = zone->zone_start_pfn;
228         unsigned long end_pfn = zone_end_pfn(zone);
229         unsigned long pfn;
230
231         zone->compact_blockskip_flush = false;
232
233         /* Walk the zone and mark every pageblock as suitable for isolation */
234         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
235                 struct page *page;
236
237                 cond_resched();
238
239                 page = pfn_to_online_page(pfn);
240                 if (!page)
241                         continue;
242                 if (zone != page_zone(page))
243                         continue;
244
245                 clear_pageblock_skip(page);
246         }
247
248         reset_cached_positions(zone);
249 }
250
251 void reset_isolation_suitable(pg_data_t *pgdat)
252 {
253         int zoneid;
254
255         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
256                 struct zone *zone = &pgdat->node_zones[zoneid];
257                 if (!populated_zone(zone))
258                         continue;
259
260                 /* Only flush if a full compaction finished recently */
261                 if (zone->compact_blockskip_flush)
262                         __reset_isolation_suitable(zone);
263         }
264 }
265
266 /*
267  * If no pages were isolated then mark this pageblock to be skipped in the
268  * future. The information is later cleared by __reset_isolation_suitable().
269  */
270 static void update_pageblock_skip(struct compact_control *cc,
271                         struct page *page, unsigned long nr_isolated,
272                         bool migrate_scanner)
273 {
274         struct zone *zone = cc->zone;
275         unsigned long pfn;
276
277         if (cc->ignore_skip_hint)
278                 return;
279
280         if (!page)
281                 return;
282
283         if (nr_isolated)
284                 return;
285
286         set_pageblock_skip(page);
287
288         pfn = page_to_pfn(page);
289
290         /* Update where async and sync compaction should restart */
291         if (migrate_scanner) {
292                 if (pfn > zone->compact_cached_migrate_pfn[0])
293                         zone->compact_cached_migrate_pfn[0] = pfn;
294                 if (cc->mode != MIGRATE_ASYNC &&
295                     pfn > zone->compact_cached_migrate_pfn[1])
296                         zone->compact_cached_migrate_pfn[1] = pfn;
297         } else {
298                 if (pfn < zone->compact_cached_free_pfn)
299                         zone->compact_cached_free_pfn = pfn;
300         }
301 }
302 #else
303 static inline bool isolation_suitable(struct compact_control *cc,
304                                         struct page *page)
305 {
306         return true;
307 }
308
309 static void update_pageblock_skip(struct compact_control *cc,
310                         struct page *page, unsigned long nr_isolated,
311                         bool migrate_scanner)
312 {
313 }
314 #endif /* CONFIG_COMPACTION */
315
316 /*
317  * Compaction requires the taking of some coarse locks that are potentially
318  * very heavily contended. For async compaction, back out if the lock cannot
319  * be taken immediately. For sync compaction, spin on the lock if needed.
320  *
321  * Returns true if the lock is held
322  * Returns false if the lock is not held and compaction should abort
323  */
324 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
325                                                 struct compact_control *cc)
326 {
327         if (cc->mode == MIGRATE_ASYNC) {
328                 if (!spin_trylock_irqsave(lock, *flags)) {
329                         cc->contended = true;
330                         return false;
331                 }
332         } else {
333                 spin_lock_irqsave(lock, *flags);
334         }
335
336         return true;
337 }
338
339 /*
340  * Compaction requires the taking of some coarse locks that are potentially
341  * very heavily contended. The lock should be periodically unlocked to avoid
342  * having disabled IRQs for a long time, even when there is nobody waiting on
343  * the lock. It might also be that allowing the IRQs will result in
344  * need_resched() becoming true. If scheduling is needed, async compaction
345  * aborts. Sync compaction schedules.
346  * Either compaction type will also abort if a fatal signal is pending.
347  * In either case if the lock was locked, it is dropped and not regained.
348  *
349  * Returns true if compaction should abort due to fatal signal pending, or
350  *              async compaction due to need_resched()
351  * Returns false when compaction can continue (sync compaction might have
352  *              scheduled)
353  */
354 static bool compact_unlock_should_abort(spinlock_t *lock,
355                 unsigned long flags, bool *locked, struct compact_control *cc)
356 {
357         if (*locked) {
358                 spin_unlock_irqrestore(lock, flags);
359                 *locked = false;
360         }
361
362         if (fatal_signal_pending(current)) {
363                 cc->contended = true;
364                 return true;
365         }
366
367         if (need_resched()) {
368                 if (cc->mode == MIGRATE_ASYNC) {
369                         cc->contended = true;
370                         return true;
371                 }
372                 cond_resched();
373         }
374
375         return false;
376 }
377
378 /*
379  * Aside from avoiding lock contention, compaction also periodically checks
380  * need_resched() and either schedules in sync compaction or aborts async
381  * compaction. This is similar to what compact_unlock_should_abort() does, but
382  * is used where no lock is concerned.
383  *
384  * Returns false when no scheduling was needed, or sync compaction scheduled.
385  * Returns true when async compaction should abort.
386  */
387 static inline bool compact_should_abort(struct compact_control *cc)
388 {
389         /* async compaction aborts if contended */
390         if (need_resched()) {
391                 if (cc->mode == MIGRATE_ASYNC) {
392                         cc->contended = true;
393                         return true;
394                 }
395
396                 cond_resched();
397         }
398
399         return false;
400 }
401
402 /*
403  * Isolate free pages onto a private freelist. If @strict is true, will abort
404  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
405  * (even though it may still end up isolating some pages).
406  */
407 static unsigned long isolate_freepages_block(struct compact_control *cc,
408                                 unsigned long *start_pfn,
409                                 unsigned long end_pfn,
410                                 struct list_head *freelist,
411                                 bool strict)
412 {
413         int nr_scanned = 0, total_isolated = 0;
414         struct page *cursor, *valid_page = NULL;
415         unsigned long flags = 0;
416         bool locked = false;
417         unsigned long blockpfn = *start_pfn;
418         unsigned int order;
419
420         cursor = pfn_to_page(blockpfn);
421
422         /* Isolate free pages. */
423         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
424                 int isolated;
425                 struct page *page = cursor;
426
427                 /*
428                  * Periodically drop the lock (if held) regardless of its
429                  * contention, to give chance to IRQs. Abort if fatal signal
430                  * pending or async compaction detects need_resched()
431                  */
432                 if (!(blockpfn % SWAP_CLUSTER_MAX)
433                     && compact_unlock_should_abort(&cc->zone->lock, flags,
434                                                                 &locked, cc))
435                         break;
436
437                 nr_scanned++;
438                 if (!pfn_valid_within(blockpfn))
439                         goto isolate_fail;
440
441                 if (!valid_page)
442                         valid_page = page;
443
444                 /*
445                  * For compound pages such as THP and hugetlbfs, we can save
446                  * potentially a lot of iterations if we skip them at once.
447                  * The check is racy, but we can consider only valid values
448                  * and the only danger is skipping too much.
449                  */
450                 if (PageCompound(page)) {
451                         unsigned int comp_order = compound_order(page);
452
453                         if (likely(comp_order < MAX_ORDER)) {
454                                 blockpfn += (1UL << comp_order) - 1;
455                                 cursor += (1UL << comp_order) - 1;
456                         }
457
458                         goto isolate_fail;
459                 }
460
461                 if (!PageBuddy(page))
462                         goto isolate_fail;
463
464                 /*
465                  * If we already hold the lock, we can skip some rechecking.
466                  * Note that if we hold the lock now, checked_pageblock was
467                  * already set in some previous iteration (or strict is true),
468                  * so it is correct to skip the suitable migration target
469                  * recheck as well.
470                  */
471                 if (!locked) {
472                         /*
473                          * The zone lock must be held to isolate freepages.
474                          * Unfortunately this is a very coarse lock and can be
475                          * heavily contended if there are parallel allocations
476                          * or parallel compactions. For async compaction do not
477                          * spin on the lock and we acquire the lock as late as
478                          * possible.
479                          */
480                         locked = compact_trylock_irqsave(&cc->zone->lock,
481                                                                 &flags, cc);
482                         if (!locked)
483                                 break;
484
485                         /* Recheck this is a buddy page under lock */
486                         if (!PageBuddy(page))
487                                 goto isolate_fail;
488                 }
489
490                 /* Found a free page, will break it into order-0 pages */
491                 order = page_order(page);
492                 isolated = __isolate_free_page(page, order);
493                 if (!isolated)
494                         break;
495                 set_page_private(page, order);
496
497                 total_isolated += isolated;
498                 cc->nr_freepages += isolated;
499                 list_add_tail(&page->lru, freelist);
500
501                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
502                         blockpfn += isolated;
503                         break;
504                 }
505                 /* Advance to the end of split page */
506                 blockpfn += isolated - 1;
507                 cursor += isolated - 1;
508                 continue;
509
510 isolate_fail:
511                 if (strict)
512                         break;
513                 else
514                         continue;
515
516         }
517
518         if (locked)
519                 spin_unlock_irqrestore(&cc->zone->lock, flags);
520
521         /*
522          * There is a tiny chance that we have read bogus compound_order(),
523          * so be careful to not go outside of the pageblock.
524          */
525         if (unlikely(blockpfn > end_pfn))
526                 blockpfn = end_pfn;
527
528         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
529                                         nr_scanned, total_isolated);
530
531         /* Record how far we have got within the block */
532         *start_pfn = blockpfn;
533
534         /*
535          * If strict isolation is requested by CMA then check that all the
536          * pages requested were isolated. If there were any failures, 0 is
537          * returned and CMA will fail.
538          */
539         if (strict && blockpfn < end_pfn)
540                 total_isolated = 0;
541
542         /* Update the pageblock-skip if the whole pageblock was scanned */
543         if (blockpfn == end_pfn)
544                 update_pageblock_skip(cc, valid_page, total_isolated, false);
545
546         cc->total_free_scanned += nr_scanned;
547         if (total_isolated)
548                 count_compact_events(COMPACTISOLATED, total_isolated);
549         return total_isolated;
550 }
551
552 /**
553  * isolate_freepages_range() - isolate free pages.
554  * @start_pfn: The first PFN to start isolating.
555  * @end_pfn:   The one-past-last PFN.
556  *
557  * Non-free pages, invalid PFNs, or zone boundaries within the
558  * [start_pfn, end_pfn) range are considered errors, cause function to
559  * undo its actions and return zero.
560  *
561  * Otherwise, function returns one-past-the-last PFN of isolated page
562  * (which may be greater then end_pfn if end fell in a middle of
563  * a free page).
564  */
565 unsigned long
566 isolate_freepages_range(struct compact_control *cc,
567                         unsigned long start_pfn, unsigned long end_pfn)
568 {
569         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
570         LIST_HEAD(freelist);
571
572         pfn = start_pfn;
573         block_start_pfn = pageblock_start_pfn(pfn);
574         if (block_start_pfn < cc->zone->zone_start_pfn)
575                 block_start_pfn = cc->zone->zone_start_pfn;
576         block_end_pfn = pageblock_end_pfn(pfn);
577
578         for (; pfn < end_pfn; pfn += isolated,
579                                 block_start_pfn = block_end_pfn,
580                                 block_end_pfn += pageblock_nr_pages) {
581                 /* Protect pfn from changing by isolate_freepages_block */
582                 unsigned long isolate_start_pfn = pfn;
583
584                 block_end_pfn = min(block_end_pfn, end_pfn);
585
586                 /*
587                  * pfn could pass the block_end_pfn if isolated freepage
588                  * is more than pageblock order. In this case, we adjust
589                  * scanning range to right one.
590                  */
591                 if (pfn >= block_end_pfn) {
592                         block_start_pfn = pageblock_start_pfn(pfn);
593                         block_end_pfn = pageblock_end_pfn(pfn);
594                         block_end_pfn = min(block_end_pfn, end_pfn);
595                 }
596
597                 if (!pageblock_pfn_to_page(block_start_pfn,
598                                         block_end_pfn, cc->zone))
599                         break;
600
601                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
602                                                 block_end_pfn, &freelist, true);
603
604                 /*
605                  * In strict mode, isolate_freepages_block() returns 0 if
606                  * there are any holes in the block (ie. invalid PFNs or
607                  * non-free pages).
608                  */
609                 if (!isolated)
610                         break;
611
612                 /*
613                  * If we managed to isolate pages, it is always (1 << n) *
614                  * pageblock_nr_pages for some non-negative n.  (Max order
615                  * page may span two pageblocks).
616                  */
617         }
618
619         /* __isolate_free_page() does not map the pages */
620         map_pages(&freelist);
621
622         if (pfn < end_pfn) {
623                 /* Loop terminated early, cleanup. */
624                 release_freepages(&freelist);
625                 return 0;
626         }
627
628         /* We don't use freelists for anything. */
629         return pfn;
630 }
631
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
634 {
635         unsigned long active, inactive, isolated;
636
637         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
638                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
639         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
640                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
641         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
642                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
643
644         return isolated > (inactive + active) / 2;
645 }
646
647 /**
648  * isolate_migratepages_block() - isolate all migrate-able pages within
649  *                                a single pageblock
650  * @cc:         Compaction control structure.
651  * @low_pfn:    The first PFN to isolate
652  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
653  * @isolate_mode: Isolation mode to be used.
654  *
655  * Isolate all pages that can be migrated from the range specified by
656  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657  * Returns zero if there is a fatal signal pending, otherwise PFN of the
658  * first page that was not scanned (which may be both less, equal to or more
659  * than end_pfn).
660  *
661  * The pages are isolated on cc->migratepages list (not required to be empty),
662  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663  * is neither read nor updated.
664  */
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667                         unsigned long end_pfn, isolate_mode_t isolate_mode)
668 {
669         struct zone *zone = cc->zone;
670         unsigned long nr_scanned = 0, nr_isolated = 0;
671         struct lruvec *lruvec;
672         unsigned long flags = 0;
673         bool locked = false;
674         struct page *page = NULL, *valid_page = NULL;
675         unsigned long start_pfn = low_pfn;
676         bool skip_on_failure = false;
677         unsigned long next_skip_pfn = 0;
678
679         /*
680          * Ensure that there are not too many pages isolated from the LRU
681          * list by either parallel reclaimers or compaction. If there are,
682          * delay for some time until fewer pages are isolated
683          */
684         while (unlikely(too_many_isolated(zone))) {
685                 /* async migration should just abort */
686                 if (cc->mode == MIGRATE_ASYNC)
687                         return 0;
688
689                 congestion_wait(BLK_RW_ASYNC, HZ/10);
690
691                 if (fatal_signal_pending(current))
692                         return 0;
693         }
694
695         if (compact_should_abort(cc))
696                 return 0;
697
698         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
699                 skip_on_failure = true;
700                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
701         }
702
703         /* Time to isolate some pages for migration */
704         for (; low_pfn < end_pfn; low_pfn++) {
705
706                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
707                         /*
708                          * We have isolated all migration candidates in the
709                          * previous order-aligned block, and did not skip it due
710                          * to failure. We should migrate the pages now and
711                          * hopefully succeed compaction.
712                          */
713                         if (nr_isolated)
714                                 break;
715
716                         /*
717                          * We failed to isolate in the previous order-aligned
718                          * block. Set the new boundary to the end of the
719                          * current block. Note we can't simply increase
720                          * next_skip_pfn by 1 << order, as low_pfn might have
721                          * been incremented by a higher number due to skipping
722                          * a compound or a high-order buddy page in the
723                          * previous loop iteration.
724                          */
725                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
726                 }
727
728                 /*
729                  * Periodically drop the lock (if held) regardless of its
730                  * contention, to give chance to IRQs. Abort async compaction
731                  * if contended.
732                  */
733                 if (!(low_pfn % SWAP_CLUSTER_MAX)
734                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
735                                                                 &locked, cc))
736                         break;
737
738                 if (!pfn_valid_within(low_pfn))
739                         goto isolate_fail;
740                 nr_scanned++;
741
742                 page = pfn_to_page(low_pfn);
743
744                 if (!valid_page)
745                         valid_page = page;
746
747                 /*
748                  * Skip if free. We read page order here without zone lock
749                  * which is generally unsafe, but the race window is small and
750                  * the worst thing that can happen is that we skip some
751                  * potential isolation targets.
752                  */
753                 if (PageBuddy(page)) {
754                         unsigned long freepage_order = page_order_unsafe(page);
755
756                         /*
757                          * Without lock, we cannot be sure that what we got is
758                          * a valid page order. Consider only values in the
759                          * valid order range to prevent low_pfn overflow.
760                          */
761                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
762                                 low_pfn += (1UL << freepage_order) - 1;
763                         continue;
764                 }
765
766                 /*
767                  * Regardless of being on LRU, compound pages such as THP and
768                  * hugetlbfs are not to be compacted. We can potentially save
769                  * a lot of iterations if we skip them at once. The check is
770                  * racy, but we can consider only valid values and the only
771                  * danger is skipping too much.
772                  */
773                 if (PageCompound(page)) {
774                         unsigned int comp_order = compound_order(page);
775
776                         if (likely(comp_order < MAX_ORDER))
777                                 low_pfn += (1UL << comp_order) - 1;
778
779                         goto isolate_fail;
780                 }
781
782                 /*
783                  * Check may be lockless but that's ok as we recheck later.
784                  * It's possible to migrate LRU and non-lru movable pages.
785                  * Skip any other type of page
786                  */
787                 if (!PageLRU(page)) {
788                         /*
789                          * __PageMovable can return false positive so we need
790                          * to verify it under page_lock.
791                          */
792                         if (unlikely(__PageMovable(page)) &&
793                                         !PageIsolated(page)) {
794                                 if (locked) {
795                                         spin_unlock_irqrestore(zone_lru_lock(zone),
796                                                                         flags);
797                                         locked = false;
798                                 }
799
800                                 if (!isolate_movable_page(page, isolate_mode))
801                                         goto isolate_success;
802                         }
803
804                         goto isolate_fail;
805                 }
806
807                 /*
808                  * Migration will fail if an anonymous page is pinned in memory,
809                  * so avoid taking lru_lock and isolating it unnecessarily in an
810                  * admittedly racy check.
811                  */
812                 if (!page_mapping(page) &&
813                     page_count(page) > page_mapcount(page))
814                         goto isolate_fail;
815
816                 /*
817                  * Only allow to migrate anonymous pages in GFP_NOFS context
818                  * because those do not depend on fs locks.
819                  */
820                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
821                         goto isolate_fail;
822
823                 /* If we already hold the lock, we can skip some rechecking */
824                 if (!locked) {
825                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
826                                                                 &flags, cc);
827                         if (!locked)
828                                 break;
829
830                         /* Recheck PageLRU and PageCompound under lock */
831                         if (!PageLRU(page))
832                                 goto isolate_fail;
833
834                         /*
835                          * Page become compound since the non-locked check,
836                          * and it's on LRU. It can only be a THP so the order
837                          * is safe to read and it's 0 for tail pages.
838                          */
839                         if (unlikely(PageCompound(page))) {
840                                 low_pfn += (1UL << compound_order(page)) - 1;
841                                 goto isolate_fail;
842                         }
843                 }
844
845                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
846
847                 /* Try isolate the page */
848                 if (__isolate_lru_page(page, isolate_mode) != 0)
849                         goto isolate_fail;
850
851                 VM_BUG_ON_PAGE(PageCompound(page), page);
852
853                 /* Successfully isolated */
854                 del_page_from_lru_list(page, lruvec, page_lru(page));
855                 inc_node_page_state(page,
856                                 NR_ISOLATED_ANON + page_is_file_cache(page));
857
858 isolate_success:
859                 list_add(&page->lru, &cc->migratepages);
860                 cc->nr_migratepages++;
861                 nr_isolated++;
862
863                 /*
864                  * Record where we could have freed pages by migration and not
865                  * yet flushed them to buddy allocator.
866                  * - this is the lowest page that was isolated and likely be
867                  * then freed by migration.
868                  */
869                 if (!cc->last_migrated_pfn)
870                         cc->last_migrated_pfn = low_pfn;
871
872                 /* Avoid isolating too much */
873                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
874                         ++low_pfn;
875                         break;
876                 }
877
878                 continue;
879 isolate_fail:
880                 if (!skip_on_failure)
881                         continue;
882
883                 /*
884                  * We have isolated some pages, but then failed. Release them
885                  * instead of migrating, as we cannot form the cc->order buddy
886                  * page anyway.
887                  */
888                 if (nr_isolated) {
889                         if (locked) {
890                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
891                                 locked = false;
892                         }
893                         putback_movable_pages(&cc->migratepages);
894                         cc->nr_migratepages = 0;
895                         cc->last_migrated_pfn = 0;
896                         nr_isolated = 0;
897                 }
898
899                 if (low_pfn < next_skip_pfn) {
900                         low_pfn = next_skip_pfn - 1;
901                         /*
902                          * The check near the loop beginning would have updated
903                          * next_skip_pfn too, but this is a bit simpler.
904                          */
905                         next_skip_pfn += 1UL << cc->order;
906                 }
907         }
908
909         /*
910          * The PageBuddy() check could have potentially brought us outside
911          * the range to be scanned.
912          */
913         if (unlikely(low_pfn > end_pfn))
914                 low_pfn = end_pfn;
915
916         if (locked)
917                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
918
919         /*
920          * Update the pageblock-skip information and cached scanner pfn,
921          * if the whole pageblock was scanned without isolating any page.
922          */
923         if (low_pfn == end_pfn)
924                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
925
926         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
927                                                 nr_scanned, nr_isolated);
928
929         cc->total_migrate_scanned += nr_scanned;
930         if (nr_isolated)
931                 count_compact_events(COMPACTISOLATED, nr_isolated);
932
933         return low_pfn;
934 }
935
936 /**
937  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
938  * @cc:        Compaction control structure.
939  * @start_pfn: The first PFN to start isolating.
940  * @end_pfn:   The one-past-last PFN.
941  *
942  * Returns zero if isolation fails fatally due to e.g. pending signal.
943  * Otherwise, function returns one-past-the-last PFN of isolated page
944  * (which may be greater than end_pfn if end fell in a middle of a THP page).
945  */
946 unsigned long
947 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
948                                                         unsigned long end_pfn)
949 {
950         unsigned long pfn, block_start_pfn, block_end_pfn;
951
952         /* Scan block by block. First and last block may be incomplete */
953         pfn = start_pfn;
954         block_start_pfn = pageblock_start_pfn(pfn);
955         if (block_start_pfn < cc->zone->zone_start_pfn)
956                 block_start_pfn = cc->zone->zone_start_pfn;
957         block_end_pfn = pageblock_end_pfn(pfn);
958
959         for (; pfn < end_pfn; pfn = block_end_pfn,
960                                 block_start_pfn = block_end_pfn,
961                                 block_end_pfn += pageblock_nr_pages) {
962
963                 block_end_pfn = min(block_end_pfn, end_pfn);
964
965                 if (!pageblock_pfn_to_page(block_start_pfn,
966                                         block_end_pfn, cc->zone))
967                         continue;
968
969                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
970                                                         ISOLATE_UNEVICTABLE);
971
972                 if (!pfn)
973                         break;
974
975                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
976                         break;
977         }
978
979         return pfn;
980 }
981
982 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
983 #ifdef CONFIG_COMPACTION
984
985 static bool suitable_migration_source(struct compact_control *cc,
986                                                         struct page *page)
987 {
988         int block_mt;
989
990         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
991                 return true;
992
993         block_mt = get_pageblock_migratetype(page);
994
995         if (cc->migratetype == MIGRATE_MOVABLE)
996                 return is_migrate_movable(block_mt);
997         else
998                 return block_mt == cc->migratetype;
999 }
1000
1001 /* Returns true if the page is within a block suitable for migration to */
1002 static bool suitable_migration_target(struct compact_control *cc,
1003                                                         struct page *page)
1004 {
1005         /* If the page is a large free page, then disallow migration */
1006         if (PageBuddy(page)) {
1007                 /*
1008                  * We are checking page_order without zone->lock taken. But
1009                  * the only small danger is that we skip a potentially suitable
1010                  * pageblock, so it's not worth to check order for valid range.
1011                  */
1012                 if (page_order_unsafe(page) >= pageblock_order)
1013                         return false;
1014         }
1015
1016         if (cc->ignore_block_suitable)
1017                 return true;
1018
1019         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1020         if (is_migrate_movable(get_pageblock_migratetype(page)))
1021                 return true;
1022
1023         /* Otherwise skip the block */
1024         return false;
1025 }
1026
1027 /*
1028  * Test whether the free scanner has reached the same or lower pageblock than
1029  * the migration scanner, and compaction should thus terminate.
1030  */
1031 static inline bool compact_scanners_met(struct compact_control *cc)
1032 {
1033         return (cc->free_pfn >> pageblock_order)
1034                 <= (cc->migrate_pfn >> pageblock_order);
1035 }
1036
1037 /*
1038  * Based on information in the current compact_control, find blocks
1039  * suitable for isolating free pages from and then isolate them.
1040  */
1041 static void isolate_freepages(struct compact_control *cc)
1042 {
1043         struct zone *zone = cc->zone;
1044         struct page *page;
1045         unsigned long block_start_pfn;  /* start of current pageblock */
1046         unsigned long isolate_start_pfn; /* exact pfn we start at */
1047         unsigned long block_end_pfn;    /* end of current pageblock */
1048         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1049         struct list_head *freelist = &cc->freepages;
1050
1051         /*
1052          * Initialise the free scanner. The starting point is where we last
1053          * successfully isolated from, zone-cached value, or the end of the
1054          * zone when isolating for the first time. For looping we also need
1055          * this pfn aligned down to the pageblock boundary, because we do
1056          * block_start_pfn -= pageblock_nr_pages in the for loop.
1057          * For ending point, take care when isolating in last pageblock of a
1058          * a zone which ends in the middle of a pageblock.
1059          * The low boundary is the end of the pageblock the migration scanner
1060          * is using.
1061          */
1062         isolate_start_pfn = cc->free_pfn;
1063         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1064         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1065                                                 zone_end_pfn(zone));
1066         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1067
1068         /*
1069          * Isolate free pages until enough are available to migrate the
1070          * pages on cc->migratepages. We stop searching if the migrate
1071          * and free page scanners meet or enough free pages are isolated.
1072          */
1073         for (; block_start_pfn >= low_pfn;
1074                                 block_end_pfn = block_start_pfn,
1075                                 block_start_pfn -= pageblock_nr_pages,
1076                                 isolate_start_pfn = block_start_pfn) {
1077                 /*
1078                  * This can iterate a massively long zone without finding any
1079                  * suitable migration targets, so periodically check if we need
1080                  * to schedule, or even abort async compaction.
1081                  */
1082                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1083                                                 && compact_should_abort(cc))
1084                         break;
1085
1086                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1087                                                                         zone);
1088                 if (!page)
1089                         continue;
1090
1091                 /* Check the block is suitable for migration */
1092                 if (!suitable_migration_target(cc, page))
1093                         continue;
1094
1095                 /* If isolation recently failed, do not retry */
1096                 if (!isolation_suitable(cc, page))
1097                         continue;
1098
1099                 /* Found a block suitable for isolating free pages from. */
1100                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1101                                         freelist, false);
1102
1103                 /*
1104                  * If we isolated enough freepages, or aborted due to lock
1105                  * contention, terminate.
1106                  */
1107                 if ((cc->nr_freepages >= cc->nr_migratepages)
1108                                                         || cc->contended) {
1109                         if (isolate_start_pfn >= block_end_pfn) {
1110                                 /*
1111                                  * Restart at previous pageblock if more
1112                                  * freepages can be isolated next time.
1113                                  */
1114                                 isolate_start_pfn =
1115                                         block_start_pfn - pageblock_nr_pages;
1116                         }
1117                         break;
1118                 } else if (isolate_start_pfn < block_end_pfn) {
1119                         /*
1120                          * If isolation failed early, do not continue
1121                          * needlessly.
1122                          */
1123                         break;
1124                 }
1125         }
1126
1127         /* __isolate_free_page() does not map the pages */
1128         map_pages(freelist);
1129
1130         /*
1131          * Record where the free scanner will restart next time. Either we
1132          * broke from the loop and set isolate_start_pfn based on the last
1133          * call to isolate_freepages_block(), or we met the migration scanner
1134          * and the loop terminated due to isolate_start_pfn < low_pfn
1135          */
1136         cc->free_pfn = isolate_start_pfn;
1137 }
1138
1139 /*
1140  * This is a migrate-callback that "allocates" freepages by taking pages
1141  * from the isolated freelists in the block we are migrating to.
1142  */
1143 static struct page *compaction_alloc(struct page *migratepage,
1144                                         unsigned long data,
1145                                         int **result)
1146 {
1147         struct compact_control *cc = (struct compact_control *)data;
1148         struct page *freepage;
1149
1150         /*
1151          * Isolate free pages if necessary, and if we are not aborting due to
1152          * contention.
1153          */
1154         if (list_empty(&cc->freepages)) {
1155                 if (!cc->contended)
1156                         isolate_freepages(cc);
1157
1158                 if (list_empty(&cc->freepages))
1159                         return NULL;
1160         }
1161
1162         freepage = list_entry(cc->freepages.next, struct page, lru);
1163         list_del(&freepage->lru);
1164         cc->nr_freepages--;
1165
1166         return freepage;
1167 }
1168
1169 /*
1170  * This is a migrate-callback that "frees" freepages back to the isolated
1171  * freelist.  All pages on the freelist are from the same zone, so there is no
1172  * special handling needed for NUMA.
1173  */
1174 static void compaction_free(struct page *page, unsigned long data)
1175 {
1176         struct compact_control *cc = (struct compact_control *)data;
1177
1178         list_add(&page->lru, &cc->freepages);
1179         cc->nr_freepages++;
1180 }
1181
1182 /* possible outcome of isolate_migratepages */
1183 typedef enum {
1184         ISOLATE_ABORT,          /* Abort compaction now */
1185         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1186         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1187 } isolate_migrate_t;
1188
1189 /*
1190  * Allow userspace to control policy on scanning the unevictable LRU for
1191  * compactable pages.
1192  */
1193 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1194
1195 /*
1196  * Isolate all pages that can be migrated from the first suitable block,
1197  * starting at the block pointed to by the migrate scanner pfn within
1198  * compact_control.
1199  */
1200 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1201                                         struct compact_control *cc)
1202 {
1203         unsigned long block_start_pfn;
1204         unsigned long block_end_pfn;
1205         unsigned long low_pfn;
1206         struct page *page;
1207         const isolate_mode_t isolate_mode =
1208                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1209                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1210
1211         /*
1212          * Start at where we last stopped, or beginning of the zone as
1213          * initialized by compact_zone()
1214          */
1215         low_pfn = cc->migrate_pfn;
1216         block_start_pfn = pageblock_start_pfn(low_pfn);
1217         if (block_start_pfn < zone->zone_start_pfn)
1218                 block_start_pfn = zone->zone_start_pfn;
1219
1220         /* Only scan within a pageblock boundary */
1221         block_end_pfn = pageblock_end_pfn(low_pfn);
1222
1223         /*
1224          * Iterate over whole pageblocks until we find the first suitable.
1225          * Do not cross the free scanner.
1226          */
1227         for (; block_end_pfn <= cc->free_pfn;
1228                         low_pfn = block_end_pfn,
1229                         block_start_pfn = block_end_pfn,
1230                         block_end_pfn += pageblock_nr_pages) {
1231
1232                 /*
1233                  * This can potentially iterate a massively long zone with
1234                  * many pageblocks unsuitable, so periodically check if we
1235                  * need to schedule, or even abort async compaction.
1236                  */
1237                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1238                                                 && compact_should_abort(cc))
1239                         break;
1240
1241                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1242                                                                         zone);
1243                 if (!page)
1244                         continue;
1245
1246                 /* If isolation recently failed, do not retry */
1247                 if (!isolation_suitable(cc, page))
1248                         continue;
1249
1250                 /*
1251                  * For async compaction, also only scan in MOVABLE blocks.
1252                  * Async compaction is optimistic to see if the minimum amount
1253                  * of work satisfies the allocation.
1254                  */
1255                 if (!suitable_migration_source(cc, page))
1256                         continue;
1257
1258                 /* Perform the isolation */
1259                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1260                                                 block_end_pfn, isolate_mode);
1261
1262                 if (!low_pfn || cc->contended)
1263                         return ISOLATE_ABORT;
1264
1265                 /*
1266                  * Either we isolated something and proceed with migration. Or
1267                  * we failed and compact_zone should decide if we should
1268                  * continue or not.
1269                  */
1270                 break;
1271         }
1272
1273         /* Record where migration scanner will be restarted. */
1274         cc->migrate_pfn = low_pfn;
1275
1276         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1277 }
1278
1279 /*
1280  * order == -1 is expected when compacting via
1281  * /proc/sys/vm/compact_memory
1282  */
1283 static inline bool is_via_compact_memory(int order)
1284 {
1285         return order == -1;
1286 }
1287
1288 static enum compact_result __compact_finished(struct zone *zone,
1289                                                 struct compact_control *cc)
1290 {
1291         unsigned int order;
1292         const int migratetype = cc->migratetype;
1293
1294         if (cc->contended || fatal_signal_pending(current))
1295                 return COMPACT_CONTENDED;
1296
1297         /* Compaction run completes if the migrate and free scanner meet */
1298         if (compact_scanners_met(cc)) {
1299                 /* Let the next compaction start anew. */
1300                 reset_cached_positions(zone);
1301
1302                 /*
1303                  * Mark that the PG_migrate_skip information should be cleared
1304                  * by kswapd when it goes to sleep. kcompactd does not set the
1305                  * flag itself as the decision to be clear should be directly
1306                  * based on an allocation request.
1307                  */
1308                 if (cc->direct_compaction)
1309                         zone->compact_blockskip_flush = true;
1310
1311                 if (cc->whole_zone)
1312                         return COMPACT_COMPLETE;
1313                 else
1314                         return COMPACT_PARTIAL_SKIPPED;
1315         }
1316
1317         if (is_via_compact_memory(cc->order))
1318                 return COMPACT_CONTINUE;
1319
1320         if (cc->finishing_block) {
1321                 /*
1322                  * We have finished the pageblock, but better check again that
1323                  * we really succeeded.
1324                  */
1325                 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1326                         cc->finishing_block = false;
1327                 else
1328                         return COMPACT_CONTINUE;
1329         }
1330
1331         /* Direct compactor: Is a suitable page free? */
1332         for (order = cc->order; order < MAX_ORDER; order++) {
1333                 struct free_area *area = &zone->free_area[order];
1334                 bool can_steal;
1335
1336                 /* Job done if page is free of the right migratetype */
1337                 if (!list_empty(&area->free_list[migratetype]))
1338                         return COMPACT_SUCCESS;
1339
1340 #ifdef CONFIG_CMA
1341                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1342                 if (migratetype == MIGRATE_MOVABLE &&
1343                         !list_empty(&area->free_list[MIGRATE_CMA]))
1344                         return COMPACT_SUCCESS;
1345 #endif
1346                 /*
1347                  * Job done if allocation would steal freepages from
1348                  * other migratetype buddy lists.
1349                  */
1350                 if (find_suitable_fallback(area, order, migratetype,
1351                                                 true, &can_steal) != -1) {
1352
1353                         /* movable pages are OK in any pageblock */
1354                         if (migratetype == MIGRATE_MOVABLE)
1355                                 return COMPACT_SUCCESS;
1356
1357                         /*
1358                          * We are stealing for a non-movable allocation. Make
1359                          * sure we finish compacting the current pageblock
1360                          * first so it is as free as possible and we won't
1361                          * have to steal another one soon. This only applies
1362                          * to sync compaction, as async compaction operates
1363                          * on pageblocks of the same migratetype.
1364                          */
1365                         if (cc->mode == MIGRATE_ASYNC ||
1366                                         IS_ALIGNED(cc->migrate_pfn,
1367                                                         pageblock_nr_pages)) {
1368                                 return COMPACT_SUCCESS;
1369                         }
1370
1371                         cc->finishing_block = true;
1372                         return COMPACT_CONTINUE;
1373                 }
1374         }
1375
1376         return COMPACT_NO_SUITABLE_PAGE;
1377 }
1378
1379 static enum compact_result compact_finished(struct zone *zone,
1380                         struct compact_control *cc)
1381 {
1382         int ret;
1383
1384         ret = __compact_finished(zone, cc);
1385         trace_mm_compaction_finished(zone, cc->order, ret);
1386         if (ret == COMPACT_NO_SUITABLE_PAGE)
1387                 ret = COMPACT_CONTINUE;
1388
1389         return ret;
1390 }
1391
1392 /*
1393  * compaction_suitable: Is this suitable to run compaction on this zone now?
1394  * Returns
1395  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1396  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1397  *   COMPACT_CONTINUE - If compaction should run now
1398  */
1399 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1400                                         unsigned int alloc_flags,
1401                                         int classzone_idx,
1402                                         unsigned long wmark_target)
1403 {
1404         unsigned long watermark;
1405
1406         if (is_via_compact_memory(order))
1407                 return COMPACT_CONTINUE;
1408
1409         watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1410         /*
1411          * If watermarks for high-order allocation are already met, there
1412          * should be no need for compaction at all.
1413          */
1414         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1415                                                                 alloc_flags))
1416                 return COMPACT_SUCCESS;
1417
1418         /*
1419          * Watermarks for order-0 must be met for compaction to be able to
1420          * isolate free pages for migration targets. This means that the
1421          * watermark and alloc_flags have to match, or be more pessimistic than
1422          * the check in __isolate_free_page(). We don't use the direct
1423          * compactor's alloc_flags, as they are not relevant for freepage
1424          * isolation. We however do use the direct compactor's classzone_idx to
1425          * skip over zones where lowmem reserves would prevent allocation even
1426          * if compaction succeeds.
1427          * For costly orders, we require low watermark instead of min for
1428          * compaction to proceed to increase its chances.
1429          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1430          * suitable migration targets
1431          */
1432         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1433                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1434         watermark += compact_gap(order);
1435         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1436                                                 ALLOC_CMA, wmark_target))
1437                 return COMPACT_SKIPPED;
1438
1439         return COMPACT_CONTINUE;
1440 }
1441
1442 enum compact_result compaction_suitable(struct zone *zone, int order,
1443                                         unsigned int alloc_flags,
1444                                         int classzone_idx)
1445 {
1446         enum compact_result ret;
1447         int fragindex;
1448
1449         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1450                                     zone_page_state(zone, NR_FREE_PAGES));
1451         /*
1452          * fragmentation index determines if allocation failures are due to
1453          * low memory or external fragmentation
1454          *
1455          * index of -1000 would imply allocations might succeed depending on
1456          * watermarks, but we already failed the high-order watermark check
1457          * index towards 0 implies failure is due to lack of memory
1458          * index towards 1000 implies failure is due to fragmentation
1459          *
1460          * Only compact if a failure would be due to fragmentation. Also
1461          * ignore fragindex for non-costly orders where the alternative to
1462          * a successful reclaim/compaction is OOM. Fragindex and the
1463          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1464          * excessive compaction for costly orders, but it should not be at the
1465          * expense of system stability.
1466          */
1467         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1468                 fragindex = fragmentation_index(zone, order);
1469                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1470                         ret = COMPACT_NOT_SUITABLE_ZONE;
1471         }
1472
1473         trace_mm_compaction_suitable(zone, order, ret);
1474         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1475                 ret = COMPACT_SKIPPED;
1476
1477         return ret;
1478 }
1479
1480 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1481                 int alloc_flags)
1482 {
1483         struct zone *zone;
1484         struct zoneref *z;
1485
1486         /*
1487          * Make sure at least one zone would pass __compaction_suitable if we continue
1488          * retrying the reclaim.
1489          */
1490         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1491                                         ac->nodemask) {
1492                 unsigned long available;
1493                 enum compact_result compact_result;
1494
1495                 /*
1496                  * Do not consider all the reclaimable memory because we do not
1497                  * want to trash just for a single high order allocation which
1498                  * is even not guaranteed to appear even if __compaction_suitable
1499                  * is happy about the watermark check.
1500                  */
1501                 available = zone_reclaimable_pages(zone) / order;
1502                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1503                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1504                                 ac_classzone_idx(ac), available);
1505                 if (compact_result != COMPACT_SKIPPED)
1506                         return true;
1507         }
1508
1509         return false;
1510 }
1511
1512 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1513 {
1514         enum compact_result ret;
1515         unsigned long start_pfn = zone->zone_start_pfn;
1516         unsigned long end_pfn = zone_end_pfn(zone);
1517         const bool sync = cc->mode != MIGRATE_ASYNC;
1518
1519         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1520         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1521                                                         cc->classzone_idx);
1522         /* Compaction is likely to fail */
1523         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1524                 return ret;
1525
1526         /* huh, compaction_suitable is returning something unexpected */
1527         VM_BUG_ON(ret != COMPACT_CONTINUE);
1528
1529         /*
1530          * Clear pageblock skip if there were failures recently and compaction
1531          * is about to be retried after being deferred.
1532          */
1533         if (compaction_restarting(zone, cc->order))
1534                 __reset_isolation_suitable(zone);
1535
1536         /*
1537          * Setup to move all movable pages to the end of the zone. Used cached
1538          * information on where the scanners should start (unless we explicitly
1539          * want to compact the whole zone), but check that it is initialised
1540          * by ensuring the values are within zone boundaries.
1541          */
1542         if (cc->whole_zone) {
1543                 cc->migrate_pfn = start_pfn;
1544                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1545         } else {
1546                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1547                 cc->free_pfn = zone->compact_cached_free_pfn;
1548                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1549                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1550                         zone->compact_cached_free_pfn = cc->free_pfn;
1551                 }
1552                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1553                         cc->migrate_pfn = start_pfn;
1554                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1555                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1556                 }
1557
1558                 if (cc->migrate_pfn == start_pfn)
1559                         cc->whole_zone = true;
1560         }
1561
1562         cc->last_migrated_pfn = 0;
1563
1564         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1565                                 cc->free_pfn, end_pfn, sync);
1566
1567         migrate_prep_local();
1568
1569         while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1570                 int err;
1571
1572                 switch (isolate_migratepages(zone, cc)) {
1573                 case ISOLATE_ABORT:
1574                         ret = COMPACT_CONTENDED;
1575                         putback_movable_pages(&cc->migratepages);
1576                         cc->nr_migratepages = 0;
1577                         goto out;
1578                 case ISOLATE_NONE:
1579                         /*
1580                          * We haven't isolated and migrated anything, but
1581                          * there might still be unflushed migrations from
1582                          * previous cc->order aligned block.
1583                          */
1584                         goto check_drain;
1585                 case ISOLATE_SUCCESS:
1586                         ;
1587                 }
1588
1589                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1590                                 compaction_free, (unsigned long)cc, cc->mode,
1591                                 MR_COMPACTION);
1592
1593                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1594                                                         &cc->migratepages);
1595
1596                 /* All pages were either migrated or will be released */
1597                 cc->nr_migratepages = 0;
1598                 if (err) {
1599                         putback_movable_pages(&cc->migratepages);
1600                         /*
1601                          * migrate_pages() may return -ENOMEM when scanners meet
1602                          * and we want compact_finished() to detect it
1603                          */
1604                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1605                                 ret = COMPACT_CONTENDED;
1606                                 goto out;
1607                         }
1608                         /*
1609                          * We failed to migrate at least one page in the current
1610                          * order-aligned block, so skip the rest of it.
1611                          */
1612                         if (cc->direct_compaction &&
1613                                                 (cc->mode == MIGRATE_ASYNC)) {
1614                                 cc->migrate_pfn = block_end_pfn(
1615                                                 cc->migrate_pfn - 1, cc->order);
1616                                 /* Draining pcplists is useless in this case */
1617                                 cc->last_migrated_pfn = 0;
1618
1619                         }
1620                 }
1621
1622 check_drain:
1623                 /*
1624                  * Has the migration scanner moved away from the previous
1625                  * cc->order aligned block where we migrated from? If yes,
1626                  * flush the pages that were freed, so that they can merge and
1627                  * compact_finished() can detect immediately if allocation
1628                  * would succeed.
1629                  */
1630                 if (cc->order > 0 && cc->last_migrated_pfn) {
1631                         int cpu;
1632                         unsigned long current_block_start =
1633                                 block_start_pfn(cc->migrate_pfn, cc->order);
1634
1635                         if (cc->last_migrated_pfn < current_block_start) {
1636                                 cpu = get_cpu();
1637                                 lru_add_drain_cpu(cpu);
1638                                 drain_local_pages(zone);
1639                                 put_cpu();
1640                                 /* No more flushing until we migrate again */
1641                                 cc->last_migrated_pfn = 0;
1642                         }
1643                 }
1644
1645         }
1646
1647 out:
1648         /*
1649          * Release free pages and update where the free scanner should restart,
1650          * so we don't leave any returned pages behind in the next attempt.
1651          */
1652         if (cc->nr_freepages > 0) {
1653                 unsigned long free_pfn = release_freepages(&cc->freepages);
1654
1655                 cc->nr_freepages = 0;
1656                 VM_BUG_ON(free_pfn == 0);
1657                 /* The cached pfn is always the first in a pageblock */
1658                 free_pfn = pageblock_start_pfn(free_pfn);
1659                 /*
1660                  * Only go back, not forward. The cached pfn might have been
1661                  * already reset to zone end in compact_finished()
1662                  */
1663                 if (free_pfn > zone->compact_cached_free_pfn)
1664                         zone->compact_cached_free_pfn = free_pfn;
1665         }
1666
1667         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1668         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1669
1670         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1671                                 cc->free_pfn, end_pfn, sync, ret);
1672
1673         return ret;
1674 }
1675
1676 static enum compact_result compact_zone_order(struct zone *zone, int order,
1677                 gfp_t gfp_mask, enum compact_priority prio,
1678                 unsigned int alloc_flags, int classzone_idx)
1679 {
1680         enum compact_result ret;
1681         struct compact_control cc = {
1682                 .nr_freepages = 0,
1683                 .nr_migratepages = 0,
1684                 .total_migrate_scanned = 0,
1685                 .total_free_scanned = 0,
1686                 .order = order,
1687                 .gfp_mask = gfp_mask,
1688                 .zone = zone,
1689                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1690                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1691                 .alloc_flags = alloc_flags,
1692                 .classzone_idx = classzone_idx,
1693                 .direct_compaction = true,
1694                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1695                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1696                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1697         };
1698         INIT_LIST_HEAD(&cc.freepages);
1699         INIT_LIST_HEAD(&cc.migratepages);
1700
1701         ret = compact_zone(zone, &cc);
1702
1703         VM_BUG_ON(!list_empty(&cc.freepages));
1704         VM_BUG_ON(!list_empty(&cc.migratepages));
1705
1706         return ret;
1707 }
1708
1709 int sysctl_extfrag_threshold = 500;
1710
1711 /**
1712  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1713  * @gfp_mask: The GFP mask of the current allocation
1714  * @order: The order of the current allocation
1715  * @alloc_flags: The allocation flags of the current allocation
1716  * @ac: The context of current allocation
1717  * @mode: The migration mode for async, sync light, or sync migration
1718  *
1719  * This is the main entry point for direct page compaction.
1720  */
1721 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1722                 unsigned int alloc_flags, const struct alloc_context *ac,
1723                 enum compact_priority prio)
1724 {
1725         int may_perform_io = gfp_mask & __GFP_IO;
1726         struct zoneref *z;
1727         struct zone *zone;
1728         enum compact_result rc = COMPACT_SKIPPED;
1729
1730         /*
1731          * Check if the GFP flags allow compaction - GFP_NOIO is really
1732          * tricky context because the migration might require IO
1733          */
1734         if (!may_perform_io)
1735                 return COMPACT_SKIPPED;
1736
1737         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1738
1739         /* Compact each zone in the list */
1740         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1741                                                                 ac->nodemask) {
1742                 enum compact_result status;
1743
1744                 if (prio > MIN_COMPACT_PRIORITY
1745                                         && compaction_deferred(zone, order)) {
1746                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1747                         continue;
1748                 }
1749
1750                 status = compact_zone_order(zone, order, gfp_mask, prio,
1751                                         alloc_flags, ac_classzone_idx(ac));
1752                 rc = max(status, rc);
1753
1754                 /* The allocation should succeed, stop compacting */
1755                 if (status == COMPACT_SUCCESS) {
1756                         /*
1757                          * We think the allocation will succeed in this zone,
1758                          * but it is not certain, hence the false. The caller
1759                          * will repeat this with true if allocation indeed
1760                          * succeeds in this zone.
1761                          */
1762                         compaction_defer_reset(zone, order, false);
1763
1764                         break;
1765                 }
1766
1767                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1768                                         status == COMPACT_PARTIAL_SKIPPED))
1769                         /*
1770                          * We think that allocation won't succeed in this zone
1771                          * so we defer compaction there. If it ends up
1772                          * succeeding after all, it will be reset.
1773                          */
1774                         defer_compaction(zone, order);
1775
1776                 /*
1777                  * We might have stopped compacting due to need_resched() in
1778                  * async compaction, or due to a fatal signal detected. In that
1779                  * case do not try further zones
1780                  */
1781                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1782                                         || fatal_signal_pending(current))
1783                         break;
1784         }
1785
1786         return rc;
1787 }
1788
1789
1790 /* Compact all zones within a node */
1791 static void compact_node(int nid)
1792 {
1793         pg_data_t *pgdat = NODE_DATA(nid);
1794         int zoneid;
1795         struct zone *zone;
1796         struct compact_control cc = {
1797                 .order = -1,
1798                 .total_migrate_scanned = 0,
1799                 .total_free_scanned = 0,
1800                 .mode = MIGRATE_SYNC,
1801                 .ignore_skip_hint = true,
1802                 .whole_zone = true,
1803                 .gfp_mask = GFP_KERNEL,
1804         };
1805
1806
1807         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1808
1809                 zone = &pgdat->node_zones[zoneid];
1810                 if (!populated_zone(zone))
1811                         continue;
1812
1813                 cc.nr_freepages = 0;
1814                 cc.nr_migratepages = 0;
1815                 cc.zone = zone;
1816                 INIT_LIST_HEAD(&cc.freepages);
1817                 INIT_LIST_HEAD(&cc.migratepages);
1818
1819                 compact_zone(zone, &cc);
1820
1821                 VM_BUG_ON(!list_empty(&cc.freepages));
1822                 VM_BUG_ON(!list_empty(&cc.migratepages));
1823         }
1824 }
1825
1826 /* Compact all nodes in the system */
1827 static void compact_nodes(void)
1828 {
1829         int nid;
1830
1831         /* Flush pending updates to the LRU lists */
1832         lru_add_drain_all();
1833
1834         for_each_online_node(nid)
1835                 compact_node(nid);
1836 }
1837
1838 /* The written value is actually unused, all memory is compacted */
1839 int sysctl_compact_memory;
1840
1841 /*
1842  * This is the entry point for compacting all nodes via
1843  * /proc/sys/vm/compact_memory
1844  */
1845 int sysctl_compaction_handler(struct ctl_table *table, int write,
1846                         void __user *buffer, size_t *length, loff_t *ppos)
1847 {
1848         if (write)
1849                 compact_nodes();
1850
1851         return 0;
1852 }
1853
1854 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1855                         void __user *buffer, size_t *length, loff_t *ppos)
1856 {
1857         proc_dointvec_minmax(table, write, buffer, length, ppos);
1858
1859         return 0;
1860 }
1861
1862 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1863 static ssize_t sysfs_compact_node(struct device *dev,
1864                         struct device_attribute *attr,
1865                         const char *buf, size_t count)
1866 {
1867         int nid = dev->id;
1868
1869         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1870                 /* Flush pending updates to the LRU lists */
1871                 lru_add_drain_all();
1872
1873                 compact_node(nid);
1874         }
1875
1876         return count;
1877 }
1878 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1879
1880 int compaction_register_node(struct node *node)
1881 {
1882         return device_create_file(&node->dev, &dev_attr_compact);
1883 }
1884
1885 void compaction_unregister_node(struct node *node)
1886 {
1887         return device_remove_file(&node->dev, &dev_attr_compact);
1888 }
1889 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1890
1891 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1892 {
1893         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1894 }
1895
1896 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1897 {
1898         int zoneid;
1899         struct zone *zone;
1900         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1901
1902         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1903                 zone = &pgdat->node_zones[zoneid];
1904
1905                 if (!populated_zone(zone))
1906                         continue;
1907
1908                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1909                                         classzone_idx) == COMPACT_CONTINUE)
1910                         return true;
1911         }
1912
1913         return false;
1914 }
1915
1916 static void kcompactd_do_work(pg_data_t *pgdat)
1917 {
1918         /*
1919          * With no special task, compact all zones so that a page of requested
1920          * order is allocatable.
1921          */
1922         int zoneid;
1923         struct zone *zone;
1924         struct compact_control cc = {
1925                 .order = pgdat->kcompactd_max_order,
1926                 .total_migrate_scanned = 0,
1927                 .total_free_scanned = 0,
1928                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1929                 .mode = MIGRATE_SYNC_LIGHT,
1930                 .ignore_skip_hint = true,
1931                 .gfp_mask = GFP_KERNEL,
1932
1933         };
1934         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1935                                                         cc.classzone_idx);
1936         count_compact_event(KCOMPACTD_WAKE);
1937
1938         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1939                 int status;
1940
1941                 zone = &pgdat->node_zones[zoneid];
1942                 if (!populated_zone(zone))
1943                         continue;
1944
1945                 if (compaction_deferred(zone, cc.order))
1946                         continue;
1947
1948                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1949                                                         COMPACT_CONTINUE)
1950                         continue;
1951
1952                 cc.nr_freepages = 0;
1953                 cc.nr_migratepages = 0;
1954                 cc.total_migrate_scanned = 0;
1955                 cc.total_free_scanned = 0;
1956                 cc.zone = zone;
1957                 INIT_LIST_HEAD(&cc.freepages);
1958                 INIT_LIST_HEAD(&cc.migratepages);
1959
1960                 if (kthread_should_stop())
1961                         return;
1962                 status = compact_zone(zone, &cc);
1963
1964                 if (status == COMPACT_SUCCESS) {
1965                         compaction_defer_reset(zone, cc.order, false);
1966                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1967                         /*
1968                          * We use sync migration mode here, so we defer like
1969                          * sync direct compaction does.
1970                          */
1971                         defer_compaction(zone, cc.order);
1972                 }
1973
1974                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1975                                      cc.total_migrate_scanned);
1976                 count_compact_events(KCOMPACTD_FREE_SCANNED,
1977                                      cc.total_free_scanned);
1978
1979                 VM_BUG_ON(!list_empty(&cc.freepages));
1980                 VM_BUG_ON(!list_empty(&cc.migratepages));
1981         }
1982
1983         /*
1984          * Regardless of success, we are done until woken up next. But remember
1985          * the requested order/classzone_idx in case it was higher/tighter than
1986          * our current ones
1987          */
1988         if (pgdat->kcompactd_max_order <= cc.order)
1989                 pgdat->kcompactd_max_order = 0;
1990         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1991                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1992 }
1993
1994 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1995 {
1996         if (!order)
1997                 return;
1998
1999         if (pgdat->kcompactd_max_order < order)
2000                 pgdat->kcompactd_max_order = order;
2001
2002         /*
2003          * Pairs with implicit barrier in wait_event_freezable()
2004          * such that wakeups are not missed in the lockless
2005          * waitqueue_active() call.
2006          */
2007         smp_acquire__after_ctrl_dep();
2008
2009         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2010                 pgdat->kcompactd_classzone_idx = classzone_idx;
2011
2012         if (!waitqueue_active(&pgdat->kcompactd_wait))
2013                 return;
2014
2015         if (!kcompactd_node_suitable(pgdat))
2016                 return;
2017
2018         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2019                                                         classzone_idx);
2020         wake_up_interruptible(&pgdat->kcompactd_wait);
2021 }
2022
2023 /*
2024  * The background compaction daemon, started as a kernel thread
2025  * from the init process.
2026  */
2027 static int kcompactd(void *p)
2028 {
2029         pg_data_t *pgdat = (pg_data_t*)p;
2030         struct task_struct *tsk = current;
2031
2032         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2033
2034         if (!cpumask_empty(cpumask))
2035                 set_cpus_allowed_ptr(tsk, cpumask);
2036
2037         set_freezable();
2038
2039         pgdat->kcompactd_max_order = 0;
2040         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2041
2042         while (!kthread_should_stop()) {
2043                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2044                 wait_event_freezable(pgdat->kcompactd_wait,
2045                                 kcompactd_work_requested(pgdat));
2046
2047                 kcompactd_do_work(pgdat);
2048         }
2049
2050         return 0;
2051 }
2052
2053 /*
2054  * This kcompactd start function will be called by init and node-hot-add.
2055  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2056  */
2057 int kcompactd_run(int nid)
2058 {
2059         pg_data_t *pgdat = NODE_DATA(nid);
2060         int ret = 0;
2061
2062         if (pgdat->kcompactd)
2063                 return 0;
2064
2065         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2066         if (IS_ERR(pgdat->kcompactd)) {
2067                 pr_err("Failed to start kcompactd on node %d\n", nid);
2068                 ret = PTR_ERR(pgdat->kcompactd);
2069                 pgdat->kcompactd = NULL;
2070         }
2071         return ret;
2072 }
2073
2074 /*
2075  * Called by memory hotplug when all memory in a node is offlined. Caller must
2076  * hold mem_hotplug_begin/end().
2077  */
2078 void kcompactd_stop(int nid)
2079 {
2080         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2081
2082         if (kcompactd) {
2083                 kthread_stop(kcompactd);
2084                 NODE_DATA(nid)->kcompactd = NULL;
2085         }
2086 }
2087
2088 /*
2089  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2090  * not required for correctness. So if the last cpu in a node goes
2091  * away, we get changed to run anywhere: as the first one comes back,
2092  * restore their cpu bindings.
2093  */
2094 static int kcompactd_cpu_online(unsigned int cpu)
2095 {
2096         int nid;
2097
2098         for_each_node_state(nid, N_MEMORY) {
2099                 pg_data_t *pgdat = NODE_DATA(nid);
2100                 const struct cpumask *mask;
2101
2102                 mask = cpumask_of_node(pgdat->node_id);
2103
2104                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2105                         /* One of our CPUs online: restore mask */
2106                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2107         }
2108         return 0;
2109 }
2110
2111 static int __init kcompactd_init(void)
2112 {
2113         int nid;
2114         int ret;
2115
2116         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2117                                         "mm/compaction:online",
2118                                         kcompactd_cpu_online, NULL);
2119         if (ret < 0) {
2120                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2121                 return ret;
2122         }
2123
2124         for_each_node_state(nid, N_MEMORY)
2125                 kcompactd_run(nid);
2126         return 0;
2127 }
2128 subsys_initcall(kcompactd_init)
2129
2130 #endif /* CONFIG_COMPACTION */