]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
mm: simplify lock_page_memcg()
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock and
180  * lock_page_memcg().
181  */
182 void __delete_from_page_cache(struct page *page, void *shadow)
183 {
184         struct address_space *mapping = page->mapping;
185
186         trace_mm_filemap_delete_from_page_cache(page);
187         /*
188          * if we're uptodate, flush out into the cleancache, otherwise
189          * invalidate any existing cleancache entries.  We can't leave
190          * stale data around in the cleancache once our page is gone
191          */
192         if (PageUptodate(page) && PageMappedToDisk(page))
193                 cleancache_put_page(page);
194         else
195                 cleancache_invalidate_page(mapping, page);
196
197         VM_BUG_ON_PAGE(page_mapped(page), page);
198         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
199                 int mapcount;
200
201                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
202                          current->comm, page_to_pfn(page));
203                 dump_page(page, "still mapped when deleted");
204                 dump_stack();
205                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
206
207                 mapcount = page_mapcount(page);
208                 if (mapping_exiting(mapping) &&
209                     page_count(page) >= mapcount + 2) {
210                         /*
211                          * All vmas have already been torn down, so it's
212                          * a good bet that actually the page is unmapped,
213                          * and we'd prefer not to leak it: if we're wrong,
214                          * some other bad page check should catch it later.
215                          */
216                         page_mapcount_reset(page);
217                         atomic_sub(mapcount, &page->_count);
218                 }
219         }
220
221         page_cache_tree_delete(mapping, page, shadow);
222
223         page->mapping = NULL;
224         /* Leave page->index set: truncation lookup relies upon it */
225
226         /* hugetlb pages do not participate in page cache accounting. */
227         if (!PageHuge(page))
228                 __dec_zone_page_state(page, NR_FILE_PAGES);
229         if (PageSwapBacked(page))
230                 __dec_zone_page_state(page, NR_SHMEM);
231
232         /*
233          * At this point page must be either written or cleaned by truncate.
234          * Dirty page here signals a bug and loss of unwritten data.
235          *
236          * This fixes dirty accounting after removing the page entirely but
237          * leaves PageDirty set: it has no effect for truncated page and
238          * anyway will be cleared before returning page into buddy allocator.
239          */
240         if (WARN_ON_ONCE(PageDirty(page)))
241                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
242 }
243
244 /**
245  * delete_from_page_cache - delete page from page cache
246  * @page: the page which the kernel is trying to remove from page cache
247  *
248  * This must be called only on pages that have been verified to be in the page
249  * cache and locked.  It will never put the page into the free list, the caller
250  * has a reference on the page.
251  */
252 void delete_from_page_cache(struct page *page)
253 {
254         struct address_space *mapping = page->mapping;
255         unsigned long flags;
256
257         void (*freepage)(struct page *);
258
259         BUG_ON(!PageLocked(page));
260
261         freepage = mapping->a_ops->freepage;
262
263         lock_page_memcg(page);
264         spin_lock_irqsave(&mapping->tree_lock, flags);
265         __delete_from_page_cache(page, NULL);
266         spin_unlock_irqrestore(&mapping->tree_lock, flags);
267         unlock_page_memcg(page);
268
269         if (freepage)
270                 freepage(page);
271         page_cache_release(page);
272 }
273 EXPORT_SYMBOL(delete_from_page_cache);
274
275 static int filemap_check_errors(struct address_space *mapping)
276 {
277         int ret = 0;
278         /* Check for outstanding write errors */
279         if (test_bit(AS_ENOSPC, &mapping->flags) &&
280             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281                 ret = -ENOSPC;
282         if (test_bit(AS_EIO, &mapping->flags) &&
283             test_and_clear_bit(AS_EIO, &mapping->flags))
284                 ret = -EIO;
285         return ret;
286 }
287
288 /**
289  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
290  * @mapping:    address space structure to write
291  * @start:      offset in bytes where the range starts
292  * @end:        offset in bytes where the range ends (inclusive)
293  * @sync_mode:  enable synchronous operation
294  *
295  * Start writeback against all of a mapping's dirty pages that lie
296  * within the byte offsets <start, end> inclusive.
297  *
298  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
299  * opposed to a regular memory cleansing writeback.  The difference between
300  * these two operations is that if a dirty page/buffer is encountered, it must
301  * be waited upon, and not just skipped over.
302  */
303 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
304                                 loff_t end, int sync_mode)
305 {
306         int ret;
307         struct writeback_control wbc = {
308                 .sync_mode = sync_mode,
309                 .nr_to_write = LONG_MAX,
310                 .range_start = start,
311                 .range_end = end,
312         };
313
314         if (!mapping_cap_writeback_dirty(mapping))
315                 return 0;
316
317         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
318         ret = do_writepages(mapping, &wbc);
319         wbc_detach_inode(&wbc);
320         return ret;
321 }
322
323 static inline int __filemap_fdatawrite(struct address_space *mapping,
324         int sync_mode)
325 {
326         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
327 }
328
329 int filemap_fdatawrite(struct address_space *mapping)
330 {
331         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
332 }
333 EXPORT_SYMBOL(filemap_fdatawrite);
334
335 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
336                                 loff_t end)
337 {
338         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
339 }
340 EXPORT_SYMBOL(filemap_fdatawrite_range);
341
342 /**
343  * filemap_flush - mostly a non-blocking flush
344  * @mapping:    target address_space
345  *
346  * This is a mostly non-blocking flush.  Not suitable for data-integrity
347  * purposes - I/O may not be started against all dirty pages.
348  */
349 int filemap_flush(struct address_space *mapping)
350 {
351         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
352 }
353 EXPORT_SYMBOL(filemap_flush);
354
355 static int __filemap_fdatawait_range(struct address_space *mapping,
356                                      loff_t start_byte, loff_t end_byte)
357 {
358         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
359         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
360         struct pagevec pvec;
361         int nr_pages;
362         int ret = 0;
363
364         if (end_byte < start_byte)
365                 goto out;
366
367         pagevec_init(&pvec, 0);
368         while ((index <= end) &&
369                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
370                         PAGECACHE_TAG_WRITEBACK,
371                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
372                 unsigned i;
373
374                 for (i = 0; i < nr_pages; i++) {
375                         struct page *page = pvec.pages[i];
376
377                         /* until radix tree lookup accepts end_index */
378                         if (page->index > end)
379                                 continue;
380
381                         wait_on_page_writeback(page);
382                         if (TestClearPageError(page))
383                                 ret = -EIO;
384                 }
385                 pagevec_release(&pvec);
386                 cond_resched();
387         }
388 out:
389         return ret;
390 }
391
392 /**
393  * filemap_fdatawait_range - wait for writeback to complete
394  * @mapping:            address space structure to wait for
395  * @start_byte:         offset in bytes where the range starts
396  * @end_byte:           offset in bytes where the range ends (inclusive)
397  *
398  * Walk the list of under-writeback pages of the given address space
399  * in the given range and wait for all of them.  Check error status of
400  * the address space and return it.
401  *
402  * Since the error status of the address space is cleared by this function,
403  * callers are responsible for checking the return value and handling and/or
404  * reporting the error.
405  */
406 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
407                             loff_t end_byte)
408 {
409         int ret, ret2;
410
411         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
412         ret2 = filemap_check_errors(mapping);
413         if (!ret)
414                 ret = ret2;
415
416         return ret;
417 }
418 EXPORT_SYMBOL(filemap_fdatawait_range);
419
420 /**
421  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
422  * @mapping: address space structure to wait for
423  *
424  * Walk the list of under-writeback pages of the given address space
425  * and wait for all of them.  Unlike filemap_fdatawait(), this function
426  * does not clear error status of the address space.
427  *
428  * Use this function if callers don't handle errors themselves.  Expected
429  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
430  * fsfreeze(8)
431  */
432 void filemap_fdatawait_keep_errors(struct address_space *mapping)
433 {
434         loff_t i_size = i_size_read(mapping->host);
435
436         if (i_size == 0)
437                 return;
438
439         __filemap_fdatawait_range(mapping, 0, i_size - 1);
440 }
441
442 /**
443  * filemap_fdatawait - wait for all under-writeback pages to complete
444  * @mapping: address space structure to wait for
445  *
446  * Walk the list of under-writeback pages of the given address space
447  * and wait for all of them.  Check error status of the address space
448  * and return it.
449  *
450  * Since the error status of the address space is cleared by this function,
451  * callers are responsible for checking the return value and handling and/or
452  * reporting the error.
453  */
454 int filemap_fdatawait(struct address_space *mapping)
455 {
456         loff_t i_size = i_size_read(mapping->host);
457
458         if (i_size == 0)
459                 return 0;
460
461         return filemap_fdatawait_range(mapping, 0, i_size - 1);
462 }
463 EXPORT_SYMBOL(filemap_fdatawait);
464
465 int filemap_write_and_wait(struct address_space *mapping)
466 {
467         int err = 0;
468
469         if ((!dax_mapping(mapping) && mapping->nrpages) ||
470             (dax_mapping(mapping) && mapping->nrexceptional)) {
471                 err = filemap_fdatawrite(mapping);
472                 /*
473                  * Even if the above returned error, the pages may be
474                  * written partially (e.g. -ENOSPC), so we wait for it.
475                  * But the -EIO is special case, it may indicate the worst
476                  * thing (e.g. bug) happened, so we avoid waiting for it.
477                  */
478                 if (err != -EIO) {
479                         int err2 = filemap_fdatawait(mapping);
480                         if (!err)
481                                 err = err2;
482                 }
483         } else {
484                 err = filemap_check_errors(mapping);
485         }
486         return err;
487 }
488 EXPORT_SYMBOL(filemap_write_and_wait);
489
490 /**
491  * filemap_write_and_wait_range - write out & wait on a file range
492  * @mapping:    the address_space for the pages
493  * @lstart:     offset in bytes where the range starts
494  * @lend:       offset in bytes where the range ends (inclusive)
495  *
496  * Write out and wait upon file offsets lstart->lend, inclusive.
497  *
498  * Note that `lend' is inclusive (describes the last byte to be written) so
499  * that this function can be used to write to the very end-of-file (end = -1).
500  */
501 int filemap_write_and_wait_range(struct address_space *mapping,
502                                  loff_t lstart, loff_t lend)
503 {
504         int err = 0;
505
506         if ((!dax_mapping(mapping) && mapping->nrpages) ||
507             (dax_mapping(mapping) && mapping->nrexceptional)) {
508                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
509                                                  WB_SYNC_ALL);
510                 /* See comment of filemap_write_and_wait() */
511                 if (err != -EIO) {
512                         int err2 = filemap_fdatawait_range(mapping,
513                                                 lstart, lend);
514                         if (!err)
515                                 err = err2;
516                 }
517         } else {
518                 err = filemap_check_errors(mapping);
519         }
520         return err;
521 }
522 EXPORT_SYMBOL(filemap_write_and_wait_range);
523
524 /**
525  * replace_page_cache_page - replace a pagecache page with a new one
526  * @old:        page to be replaced
527  * @new:        page to replace with
528  * @gfp_mask:   allocation mode
529  *
530  * This function replaces a page in the pagecache with a new one.  On
531  * success it acquires the pagecache reference for the new page and
532  * drops it for the old page.  Both the old and new pages must be
533  * locked.  This function does not add the new page to the LRU, the
534  * caller must do that.
535  *
536  * The remove + add is atomic.  The only way this function can fail is
537  * memory allocation failure.
538  */
539 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
540 {
541         int error;
542
543         VM_BUG_ON_PAGE(!PageLocked(old), old);
544         VM_BUG_ON_PAGE(!PageLocked(new), new);
545         VM_BUG_ON_PAGE(new->mapping, new);
546
547         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
548         if (!error) {
549                 struct address_space *mapping = old->mapping;
550                 void (*freepage)(struct page *);
551                 unsigned long flags;
552
553                 pgoff_t offset = old->index;
554                 freepage = mapping->a_ops->freepage;
555
556                 page_cache_get(new);
557                 new->mapping = mapping;
558                 new->index = offset;
559
560                 lock_page_memcg(old);
561                 spin_lock_irqsave(&mapping->tree_lock, flags);
562                 __delete_from_page_cache(old, NULL);
563                 error = radix_tree_insert(&mapping->page_tree, offset, new);
564                 BUG_ON(error);
565                 mapping->nrpages++;
566
567                 /*
568                  * hugetlb pages do not participate in page cache accounting.
569                  */
570                 if (!PageHuge(new))
571                         __inc_zone_page_state(new, NR_FILE_PAGES);
572                 if (PageSwapBacked(new))
573                         __inc_zone_page_state(new, NR_SHMEM);
574                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
575                 unlock_page_memcg(old);
576                 mem_cgroup_migrate(old, new);
577                 radix_tree_preload_end();
578                 if (freepage)
579                         freepage(old);
580                 page_cache_release(old);
581         }
582
583         return error;
584 }
585 EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
587 static int page_cache_tree_insert(struct address_space *mapping,
588                                   struct page *page, void **shadowp)
589 {
590         struct radix_tree_node *node;
591         void **slot;
592         int error;
593
594         error = __radix_tree_create(&mapping->page_tree, page->index,
595                                     &node, &slot);
596         if (error)
597                 return error;
598         if (*slot) {
599                 void *p;
600
601                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602                 if (!radix_tree_exceptional_entry(p))
603                         return -EEXIST;
604
605                 if (WARN_ON(dax_mapping(mapping)))
606                         return -EINVAL;
607
608                 if (shadowp)
609                         *shadowp = p;
610                 mapping->nrexceptional--;
611                 if (node)
612                         workingset_node_shadows_dec(node);
613         }
614         radix_tree_replace_slot(slot, page);
615         mapping->nrpages++;
616         if (node) {
617                 workingset_node_pages_inc(node);
618                 /*
619                  * Don't track node that contains actual pages.
620                  *
621                  * Avoid acquiring the list_lru lock if already
622                  * untracked.  The list_empty() test is safe as
623                  * node->private_list is protected by
624                  * mapping->tree_lock.
625                  */
626                 if (!list_empty(&node->private_list))
627                         list_lru_del(&workingset_shadow_nodes,
628                                      &node->private_list);
629         }
630         return 0;
631 }
632
633 static int __add_to_page_cache_locked(struct page *page,
634                                       struct address_space *mapping,
635                                       pgoff_t offset, gfp_t gfp_mask,
636                                       void **shadowp)
637 {
638         int huge = PageHuge(page);
639         struct mem_cgroup *memcg;
640         int error;
641
642         VM_BUG_ON_PAGE(!PageLocked(page), page);
643         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
644
645         if (!huge) {
646                 error = mem_cgroup_try_charge(page, current->mm,
647                                               gfp_mask, &memcg, false);
648                 if (error)
649                         return error;
650         }
651
652         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
653         if (error) {
654                 if (!huge)
655                         mem_cgroup_cancel_charge(page, memcg, false);
656                 return error;
657         }
658
659         page_cache_get(page);
660         page->mapping = mapping;
661         page->index = offset;
662
663         spin_lock_irq(&mapping->tree_lock);
664         error = page_cache_tree_insert(mapping, page, shadowp);
665         radix_tree_preload_end();
666         if (unlikely(error))
667                 goto err_insert;
668
669         /* hugetlb pages do not participate in page cache accounting. */
670         if (!huge)
671                 __inc_zone_page_state(page, NR_FILE_PAGES);
672         spin_unlock_irq(&mapping->tree_lock);
673         if (!huge)
674                 mem_cgroup_commit_charge(page, memcg, false, false);
675         trace_mm_filemap_add_to_page_cache(page);
676         return 0;
677 err_insert:
678         page->mapping = NULL;
679         /* Leave page->index set: truncation relies upon it */
680         spin_unlock_irq(&mapping->tree_lock);
681         if (!huge)
682                 mem_cgroup_cancel_charge(page, memcg, false);
683         page_cache_release(page);
684         return error;
685 }
686
687 /**
688  * add_to_page_cache_locked - add a locked page to the pagecache
689  * @page:       page to add
690  * @mapping:    the page's address_space
691  * @offset:     page index
692  * @gfp_mask:   page allocation mode
693  *
694  * This function is used to add a page to the pagecache. It must be locked.
695  * This function does not add the page to the LRU.  The caller must do that.
696  */
697 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
698                 pgoff_t offset, gfp_t gfp_mask)
699 {
700         return __add_to_page_cache_locked(page, mapping, offset,
701                                           gfp_mask, NULL);
702 }
703 EXPORT_SYMBOL(add_to_page_cache_locked);
704
705 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
706                                 pgoff_t offset, gfp_t gfp_mask)
707 {
708         void *shadow = NULL;
709         int ret;
710
711         __SetPageLocked(page);
712         ret = __add_to_page_cache_locked(page, mapping, offset,
713                                          gfp_mask, &shadow);
714         if (unlikely(ret))
715                 __ClearPageLocked(page);
716         else {
717                 /*
718                  * The page might have been evicted from cache only
719                  * recently, in which case it should be activated like
720                  * any other repeatedly accessed page.
721                  */
722                 if (shadow && workingset_refault(shadow)) {
723                         SetPageActive(page);
724                         workingset_activation(page);
725                 } else
726                         ClearPageActive(page);
727                 lru_cache_add(page);
728         }
729         return ret;
730 }
731 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
732
733 #ifdef CONFIG_NUMA
734 struct page *__page_cache_alloc(gfp_t gfp)
735 {
736         int n;
737         struct page *page;
738
739         if (cpuset_do_page_mem_spread()) {
740                 unsigned int cpuset_mems_cookie;
741                 do {
742                         cpuset_mems_cookie = read_mems_allowed_begin();
743                         n = cpuset_mem_spread_node();
744                         page = __alloc_pages_node(n, gfp, 0);
745                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
746
747                 return page;
748         }
749         return alloc_pages(gfp, 0);
750 }
751 EXPORT_SYMBOL(__page_cache_alloc);
752 #endif
753
754 /*
755  * In order to wait for pages to become available there must be
756  * waitqueues associated with pages. By using a hash table of
757  * waitqueues where the bucket discipline is to maintain all
758  * waiters on the same queue and wake all when any of the pages
759  * become available, and for the woken contexts to check to be
760  * sure the appropriate page became available, this saves space
761  * at a cost of "thundering herd" phenomena during rare hash
762  * collisions.
763  */
764 wait_queue_head_t *page_waitqueue(struct page *page)
765 {
766         const struct zone *zone = page_zone(page);
767
768         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
769 }
770 EXPORT_SYMBOL(page_waitqueue);
771
772 void wait_on_page_bit(struct page *page, int bit_nr)
773 {
774         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
775
776         if (test_bit(bit_nr, &page->flags))
777                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
778                                                         TASK_UNINTERRUPTIBLE);
779 }
780 EXPORT_SYMBOL(wait_on_page_bit);
781
782 int wait_on_page_bit_killable(struct page *page, int bit_nr)
783 {
784         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
785
786         if (!test_bit(bit_nr, &page->flags))
787                 return 0;
788
789         return __wait_on_bit(page_waitqueue(page), &wait,
790                              bit_wait_io, TASK_KILLABLE);
791 }
792
793 int wait_on_page_bit_killable_timeout(struct page *page,
794                                        int bit_nr, unsigned long timeout)
795 {
796         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
797
798         wait.key.timeout = jiffies + timeout;
799         if (!test_bit(bit_nr, &page->flags))
800                 return 0;
801         return __wait_on_bit(page_waitqueue(page), &wait,
802                              bit_wait_io_timeout, TASK_KILLABLE);
803 }
804 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
805
806 /**
807  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
808  * @page: Page defining the wait queue of interest
809  * @waiter: Waiter to add to the queue
810  *
811  * Add an arbitrary @waiter to the wait queue for the nominated @page.
812  */
813 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
814 {
815         wait_queue_head_t *q = page_waitqueue(page);
816         unsigned long flags;
817
818         spin_lock_irqsave(&q->lock, flags);
819         __add_wait_queue(q, waiter);
820         spin_unlock_irqrestore(&q->lock, flags);
821 }
822 EXPORT_SYMBOL_GPL(add_page_wait_queue);
823
824 /**
825  * unlock_page - unlock a locked page
826  * @page: the page
827  *
828  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
829  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
830  * mechanism between PageLocked pages and PageWriteback pages is shared.
831  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
832  *
833  * The mb is necessary to enforce ordering between the clear_bit and the read
834  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
835  */
836 void unlock_page(struct page *page)
837 {
838         page = compound_head(page);
839         VM_BUG_ON_PAGE(!PageLocked(page), page);
840         clear_bit_unlock(PG_locked, &page->flags);
841         smp_mb__after_atomic();
842         wake_up_page(page, PG_locked);
843 }
844 EXPORT_SYMBOL(unlock_page);
845
846 /**
847  * end_page_writeback - end writeback against a page
848  * @page: the page
849  */
850 void end_page_writeback(struct page *page)
851 {
852         /*
853          * TestClearPageReclaim could be used here but it is an atomic
854          * operation and overkill in this particular case. Failing to
855          * shuffle a page marked for immediate reclaim is too mild to
856          * justify taking an atomic operation penalty at the end of
857          * ever page writeback.
858          */
859         if (PageReclaim(page)) {
860                 ClearPageReclaim(page);
861                 rotate_reclaimable_page(page);
862         }
863
864         if (!test_clear_page_writeback(page))
865                 BUG();
866
867         smp_mb__after_atomic();
868         wake_up_page(page, PG_writeback);
869 }
870 EXPORT_SYMBOL(end_page_writeback);
871
872 /*
873  * After completing I/O on a page, call this routine to update the page
874  * flags appropriately
875  */
876 void page_endio(struct page *page, int rw, int err)
877 {
878         if (rw == READ) {
879                 if (!err) {
880                         SetPageUptodate(page);
881                 } else {
882                         ClearPageUptodate(page);
883                         SetPageError(page);
884                 }
885                 unlock_page(page);
886         } else { /* rw == WRITE */
887                 if (err) {
888                         SetPageError(page);
889                         if (page->mapping)
890                                 mapping_set_error(page->mapping, err);
891                 }
892                 end_page_writeback(page);
893         }
894 }
895 EXPORT_SYMBOL_GPL(page_endio);
896
897 /**
898  * __lock_page - get a lock on the page, assuming we need to sleep to get it
899  * @page: the page to lock
900  */
901 void __lock_page(struct page *page)
902 {
903         struct page *page_head = compound_head(page);
904         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
905
906         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
907                                                         TASK_UNINTERRUPTIBLE);
908 }
909 EXPORT_SYMBOL(__lock_page);
910
911 int __lock_page_killable(struct page *page)
912 {
913         struct page *page_head = compound_head(page);
914         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
915
916         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
917                                         bit_wait_io, TASK_KILLABLE);
918 }
919 EXPORT_SYMBOL_GPL(__lock_page_killable);
920
921 /*
922  * Return values:
923  * 1 - page is locked; mmap_sem is still held.
924  * 0 - page is not locked.
925  *     mmap_sem has been released (up_read()), unless flags had both
926  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
927  *     which case mmap_sem is still held.
928  *
929  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
930  * with the page locked and the mmap_sem unperturbed.
931  */
932 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
933                          unsigned int flags)
934 {
935         if (flags & FAULT_FLAG_ALLOW_RETRY) {
936                 /*
937                  * CAUTION! In this case, mmap_sem is not released
938                  * even though return 0.
939                  */
940                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
941                         return 0;
942
943                 up_read(&mm->mmap_sem);
944                 if (flags & FAULT_FLAG_KILLABLE)
945                         wait_on_page_locked_killable(page);
946                 else
947                         wait_on_page_locked(page);
948                 return 0;
949         } else {
950                 if (flags & FAULT_FLAG_KILLABLE) {
951                         int ret;
952
953                         ret = __lock_page_killable(page);
954                         if (ret) {
955                                 up_read(&mm->mmap_sem);
956                                 return 0;
957                         }
958                 } else
959                         __lock_page(page);
960                 return 1;
961         }
962 }
963
964 /**
965  * page_cache_next_hole - find the next hole (not-present entry)
966  * @mapping: mapping
967  * @index: index
968  * @max_scan: maximum range to search
969  *
970  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
971  * lowest indexed hole.
972  *
973  * Returns: the index of the hole if found, otherwise returns an index
974  * outside of the set specified (in which case 'return - index >=
975  * max_scan' will be true). In rare cases of index wrap-around, 0 will
976  * be returned.
977  *
978  * page_cache_next_hole may be called under rcu_read_lock. However,
979  * like radix_tree_gang_lookup, this will not atomically search a
980  * snapshot of the tree at a single point in time. For example, if a
981  * hole is created at index 5, then subsequently a hole is created at
982  * index 10, page_cache_next_hole covering both indexes may return 10
983  * if called under rcu_read_lock.
984  */
985 pgoff_t page_cache_next_hole(struct address_space *mapping,
986                              pgoff_t index, unsigned long max_scan)
987 {
988         unsigned long i;
989
990         for (i = 0; i < max_scan; i++) {
991                 struct page *page;
992
993                 page = radix_tree_lookup(&mapping->page_tree, index);
994                 if (!page || radix_tree_exceptional_entry(page))
995                         break;
996                 index++;
997                 if (index == 0)
998                         break;
999         }
1000
1001         return index;
1002 }
1003 EXPORT_SYMBOL(page_cache_next_hole);
1004
1005 /**
1006  * page_cache_prev_hole - find the prev hole (not-present entry)
1007  * @mapping: mapping
1008  * @index: index
1009  * @max_scan: maximum range to search
1010  *
1011  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1012  * the first hole.
1013  *
1014  * Returns: the index of the hole if found, otherwise returns an index
1015  * outside of the set specified (in which case 'index - return >=
1016  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1017  * will be returned.
1018  *
1019  * page_cache_prev_hole may be called under rcu_read_lock. However,
1020  * like radix_tree_gang_lookup, this will not atomically search a
1021  * snapshot of the tree at a single point in time. For example, if a
1022  * hole is created at index 10, then subsequently a hole is created at
1023  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1024  * called under rcu_read_lock.
1025  */
1026 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1027                              pgoff_t index, unsigned long max_scan)
1028 {
1029         unsigned long i;
1030
1031         for (i = 0; i < max_scan; i++) {
1032                 struct page *page;
1033
1034                 page = radix_tree_lookup(&mapping->page_tree, index);
1035                 if (!page || radix_tree_exceptional_entry(page))
1036                         break;
1037                 index--;
1038                 if (index == ULONG_MAX)
1039                         break;
1040         }
1041
1042         return index;
1043 }
1044 EXPORT_SYMBOL(page_cache_prev_hole);
1045
1046 /**
1047  * find_get_entry - find and get a page cache entry
1048  * @mapping: the address_space to search
1049  * @offset: the page cache index
1050  *
1051  * Looks up the page cache slot at @mapping & @offset.  If there is a
1052  * page cache page, it is returned with an increased refcount.
1053  *
1054  * If the slot holds a shadow entry of a previously evicted page, or a
1055  * swap entry from shmem/tmpfs, it is returned.
1056  *
1057  * Otherwise, %NULL is returned.
1058  */
1059 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1060 {
1061         void **pagep;
1062         struct page *page;
1063
1064         rcu_read_lock();
1065 repeat:
1066         page = NULL;
1067         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1068         if (pagep) {
1069                 page = radix_tree_deref_slot(pagep);
1070                 if (unlikely(!page))
1071                         goto out;
1072                 if (radix_tree_exception(page)) {
1073                         if (radix_tree_deref_retry(page))
1074                                 goto repeat;
1075                         /*
1076                          * A shadow entry of a recently evicted page,
1077                          * or a swap entry from shmem/tmpfs.  Return
1078                          * it without attempting to raise page count.
1079                          */
1080                         goto out;
1081                 }
1082                 if (!page_cache_get_speculative(page))
1083                         goto repeat;
1084
1085                 /*
1086                  * Has the page moved?
1087                  * This is part of the lockless pagecache protocol. See
1088                  * include/linux/pagemap.h for details.
1089                  */
1090                 if (unlikely(page != *pagep)) {
1091                         page_cache_release(page);
1092                         goto repeat;
1093                 }
1094         }
1095 out:
1096         rcu_read_unlock();
1097
1098         return page;
1099 }
1100 EXPORT_SYMBOL(find_get_entry);
1101
1102 /**
1103  * find_lock_entry - locate, pin and lock a page cache entry
1104  * @mapping: the address_space to search
1105  * @offset: the page cache index
1106  *
1107  * Looks up the page cache slot at @mapping & @offset.  If there is a
1108  * page cache page, it is returned locked and with an increased
1109  * refcount.
1110  *
1111  * If the slot holds a shadow entry of a previously evicted page, or a
1112  * swap entry from shmem/tmpfs, it is returned.
1113  *
1114  * Otherwise, %NULL is returned.
1115  *
1116  * find_lock_entry() may sleep.
1117  */
1118 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1119 {
1120         struct page *page;
1121
1122 repeat:
1123         page = find_get_entry(mapping, offset);
1124         if (page && !radix_tree_exception(page)) {
1125                 lock_page(page);
1126                 /* Has the page been truncated? */
1127                 if (unlikely(page->mapping != mapping)) {
1128                         unlock_page(page);
1129                         page_cache_release(page);
1130                         goto repeat;
1131                 }
1132                 VM_BUG_ON_PAGE(page->index != offset, page);
1133         }
1134         return page;
1135 }
1136 EXPORT_SYMBOL(find_lock_entry);
1137
1138 /**
1139  * pagecache_get_page - find and get a page reference
1140  * @mapping: the address_space to search
1141  * @offset: the page index
1142  * @fgp_flags: PCG flags
1143  * @gfp_mask: gfp mask to use for the page cache data page allocation
1144  *
1145  * Looks up the page cache slot at @mapping & @offset.
1146  *
1147  * PCG flags modify how the page is returned.
1148  *
1149  * FGP_ACCESSED: the page will be marked accessed
1150  * FGP_LOCK: Page is return locked
1151  * FGP_CREAT: If page is not present then a new page is allocated using
1152  *              @gfp_mask and added to the page cache and the VM's LRU
1153  *              list. The page is returned locked and with an increased
1154  *              refcount. Otherwise, %NULL is returned.
1155  *
1156  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1157  * if the GFP flags specified for FGP_CREAT are atomic.
1158  *
1159  * If there is a page cache page, it is returned with an increased refcount.
1160  */
1161 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1162         int fgp_flags, gfp_t gfp_mask)
1163 {
1164         struct page *page;
1165
1166 repeat:
1167         page = find_get_entry(mapping, offset);
1168         if (radix_tree_exceptional_entry(page))
1169                 page = NULL;
1170         if (!page)
1171                 goto no_page;
1172
1173         if (fgp_flags & FGP_LOCK) {
1174                 if (fgp_flags & FGP_NOWAIT) {
1175                         if (!trylock_page(page)) {
1176                                 page_cache_release(page);
1177                                 return NULL;
1178                         }
1179                 } else {
1180                         lock_page(page);
1181                 }
1182
1183                 /* Has the page been truncated? */
1184                 if (unlikely(page->mapping != mapping)) {
1185                         unlock_page(page);
1186                         page_cache_release(page);
1187                         goto repeat;
1188                 }
1189                 VM_BUG_ON_PAGE(page->index != offset, page);
1190         }
1191
1192         if (page && (fgp_flags & FGP_ACCESSED))
1193                 mark_page_accessed(page);
1194
1195 no_page:
1196         if (!page && (fgp_flags & FGP_CREAT)) {
1197                 int err;
1198                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1199                         gfp_mask |= __GFP_WRITE;
1200                 if (fgp_flags & FGP_NOFS)
1201                         gfp_mask &= ~__GFP_FS;
1202
1203                 page = __page_cache_alloc(gfp_mask);
1204                 if (!page)
1205                         return NULL;
1206
1207                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1208                         fgp_flags |= FGP_LOCK;
1209
1210                 /* Init accessed so avoid atomic mark_page_accessed later */
1211                 if (fgp_flags & FGP_ACCESSED)
1212                         __SetPageReferenced(page);
1213
1214                 err = add_to_page_cache_lru(page, mapping, offset,
1215                                 gfp_mask & GFP_RECLAIM_MASK);
1216                 if (unlikely(err)) {
1217                         page_cache_release(page);
1218                         page = NULL;
1219                         if (err == -EEXIST)
1220                                 goto repeat;
1221                 }
1222         }
1223
1224         return page;
1225 }
1226 EXPORT_SYMBOL(pagecache_get_page);
1227
1228 /**
1229  * find_get_entries - gang pagecache lookup
1230  * @mapping:    The address_space to search
1231  * @start:      The starting page cache index
1232  * @nr_entries: The maximum number of entries
1233  * @entries:    Where the resulting entries are placed
1234  * @indices:    The cache indices corresponding to the entries in @entries
1235  *
1236  * find_get_entries() will search for and return a group of up to
1237  * @nr_entries entries in the mapping.  The entries are placed at
1238  * @entries.  find_get_entries() takes a reference against any actual
1239  * pages it returns.
1240  *
1241  * The search returns a group of mapping-contiguous page cache entries
1242  * with ascending indexes.  There may be holes in the indices due to
1243  * not-present pages.
1244  *
1245  * Any shadow entries of evicted pages, or swap entries from
1246  * shmem/tmpfs, are included in the returned array.
1247  *
1248  * find_get_entries() returns the number of pages and shadow entries
1249  * which were found.
1250  */
1251 unsigned find_get_entries(struct address_space *mapping,
1252                           pgoff_t start, unsigned int nr_entries,
1253                           struct page **entries, pgoff_t *indices)
1254 {
1255         void **slot;
1256         unsigned int ret = 0;
1257         struct radix_tree_iter iter;
1258
1259         if (!nr_entries)
1260                 return 0;
1261
1262         rcu_read_lock();
1263 restart:
1264         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1265                 struct page *page;
1266 repeat:
1267                 page = radix_tree_deref_slot(slot);
1268                 if (unlikely(!page))
1269                         continue;
1270                 if (radix_tree_exception(page)) {
1271                         if (radix_tree_deref_retry(page))
1272                                 goto restart;
1273                         /*
1274                          * A shadow entry of a recently evicted page, a swap
1275                          * entry from shmem/tmpfs or a DAX entry.  Return it
1276                          * without attempting to raise page count.
1277                          */
1278                         goto export;
1279                 }
1280                 if (!page_cache_get_speculative(page))
1281                         goto repeat;
1282
1283                 /* Has the page moved? */
1284                 if (unlikely(page != *slot)) {
1285                         page_cache_release(page);
1286                         goto repeat;
1287                 }
1288 export:
1289                 indices[ret] = iter.index;
1290                 entries[ret] = page;
1291                 if (++ret == nr_entries)
1292                         break;
1293         }
1294         rcu_read_unlock();
1295         return ret;
1296 }
1297
1298 /**
1299  * find_get_pages - gang pagecache lookup
1300  * @mapping:    The address_space to search
1301  * @start:      The starting page index
1302  * @nr_pages:   The maximum number of pages
1303  * @pages:      Where the resulting pages are placed
1304  *
1305  * find_get_pages() will search for and return a group of up to
1306  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1307  * find_get_pages() takes a reference against the returned pages.
1308  *
1309  * The search returns a group of mapping-contiguous pages with ascending
1310  * indexes.  There may be holes in the indices due to not-present pages.
1311  *
1312  * find_get_pages() returns the number of pages which were found.
1313  */
1314 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1315                             unsigned int nr_pages, struct page **pages)
1316 {
1317         struct radix_tree_iter iter;
1318         void **slot;
1319         unsigned ret = 0;
1320
1321         if (unlikely(!nr_pages))
1322                 return 0;
1323
1324         rcu_read_lock();
1325 restart:
1326         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1327                 struct page *page;
1328 repeat:
1329                 page = radix_tree_deref_slot(slot);
1330                 if (unlikely(!page))
1331                         continue;
1332
1333                 if (radix_tree_exception(page)) {
1334                         if (radix_tree_deref_retry(page)) {
1335                                 /*
1336                                  * Transient condition which can only trigger
1337                                  * when entry at index 0 moves out of or back
1338                                  * to root: none yet gotten, safe to restart.
1339                                  */
1340                                 WARN_ON(iter.index);
1341                                 goto restart;
1342                         }
1343                         /*
1344                          * A shadow entry of a recently evicted page,
1345                          * or a swap entry from shmem/tmpfs.  Skip
1346                          * over it.
1347                          */
1348                         continue;
1349                 }
1350
1351                 if (!page_cache_get_speculative(page))
1352                         goto repeat;
1353
1354                 /* Has the page moved? */
1355                 if (unlikely(page != *slot)) {
1356                         page_cache_release(page);
1357                         goto repeat;
1358                 }
1359
1360                 pages[ret] = page;
1361                 if (++ret == nr_pages)
1362                         break;
1363         }
1364
1365         rcu_read_unlock();
1366         return ret;
1367 }
1368
1369 /**
1370  * find_get_pages_contig - gang contiguous pagecache lookup
1371  * @mapping:    The address_space to search
1372  * @index:      The starting page index
1373  * @nr_pages:   The maximum number of pages
1374  * @pages:      Where the resulting pages are placed
1375  *
1376  * find_get_pages_contig() works exactly like find_get_pages(), except
1377  * that the returned number of pages are guaranteed to be contiguous.
1378  *
1379  * find_get_pages_contig() returns the number of pages which were found.
1380  */
1381 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1382                                unsigned int nr_pages, struct page **pages)
1383 {
1384         struct radix_tree_iter iter;
1385         void **slot;
1386         unsigned int ret = 0;
1387
1388         if (unlikely(!nr_pages))
1389                 return 0;
1390
1391         rcu_read_lock();
1392 restart:
1393         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1394                 struct page *page;
1395 repeat:
1396                 page = radix_tree_deref_slot(slot);
1397                 /* The hole, there no reason to continue */
1398                 if (unlikely(!page))
1399                         break;
1400
1401                 if (radix_tree_exception(page)) {
1402                         if (radix_tree_deref_retry(page)) {
1403                                 /*
1404                                  * Transient condition which can only trigger
1405                                  * when entry at index 0 moves out of or back
1406                                  * to root: none yet gotten, safe to restart.
1407                                  */
1408                                 goto restart;
1409                         }
1410                         /*
1411                          * A shadow entry of a recently evicted page,
1412                          * or a swap entry from shmem/tmpfs.  Stop
1413                          * looking for contiguous pages.
1414                          */
1415                         break;
1416                 }
1417
1418                 if (!page_cache_get_speculative(page))
1419                         goto repeat;
1420
1421                 /* Has the page moved? */
1422                 if (unlikely(page != *slot)) {
1423                         page_cache_release(page);
1424                         goto repeat;
1425                 }
1426
1427                 /*
1428                  * must check mapping and index after taking the ref.
1429                  * otherwise we can get both false positives and false
1430                  * negatives, which is just confusing to the caller.
1431                  */
1432                 if (page->mapping == NULL || page->index != iter.index) {
1433                         page_cache_release(page);
1434                         break;
1435                 }
1436
1437                 pages[ret] = page;
1438                 if (++ret == nr_pages)
1439                         break;
1440         }
1441         rcu_read_unlock();
1442         return ret;
1443 }
1444 EXPORT_SYMBOL(find_get_pages_contig);
1445
1446 /**
1447  * find_get_pages_tag - find and return pages that match @tag
1448  * @mapping:    the address_space to search
1449  * @index:      the starting page index
1450  * @tag:        the tag index
1451  * @nr_pages:   the maximum number of pages
1452  * @pages:      where the resulting pages are placed
1453  *
1454  * Like find_get_pages, except we only return pages which are tagged with
1455  * @tag.   We update @index to index the next page for the traversal.
1456  */
1457 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1458                         int tag, unsigned int nr_pages, struct page **pages)
1459 {
1460         struct radix_tree_iter iter;
1461         void **slot;
1462         unsigned ret = 0;
1463
1464         if (unlikely(!nr_pages))
1465                 return 0;
1466
1467         rcu_read_lock();
1468 restart:
1469         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1470                                    &iter, *index, tag) {
1471                 struct page *page;
1472 repeat:
1473                 page = radix_tree_deref_slot(slot);
1474                 if (unlikely(!page))
1475                         continue;
1476
1477                 if (radix_tree_exception(page)) {
1478                         if (radix_tree_deref_retry(page)) {
1479                                 /*
1480                                  * Transient condition which can only trigger
1481                                  * when entry at index 0 moves out of or back
1482                                  * to root: none yet gotten, safe to restart.
1483                                  */
1484                                 goto restart;
1485                         }
1486                         /*
1487                          * A shadow entry of a recently evicted page.
1488                          *
1489                          * Those entries should never be tagged, but
1490                          * this tree walk is lockless and the tags are
1491                          * looked up in bulk, one radix tree node at a
1492                          * time, so there is a sizable window for page
1493                          * reclaim to evict a page we saw tagged.
1494                          *
1495                          * Skip over it.
1496                          */
1497                         continue;
1498                 }
1499
1500                 if (!page_cache_get_speculative(page))
1501                         goto repeat;
1502
1503                 /* Has the page moved? */
1504                 if (unlikely(page != *slot)) {
1505                         page_cache_release(page);
1506                         goto repeat;
1507                 }
1508
1509                 pages[ret] = page;
1510                 if (++ret == nr_pages)
1511                         break;
1512         }
1513
1514         rcu_read_unlock();
1515
1516         if (ret)
1517                 *index = pages[ret - 1]->index + 1;
1518
1519         return ret;
1520 }
1521 EXPORT_SYMBOL(find_get_pages_tag);
1522
1523 /**
1524  * find_get_entries_tag - find and return entries that match @tag
1525  * @mapping:    the address_space to search
1526  * @start:      the starting page cache index
1527  * @tag:        the tag index
1528  * @nr_entries: the maximum number of entries
1529  * @entries:    where the resulting entries are placed
1530  * @indices:    the cache indices corresponding to the entries in @entries
1531  *
1532  * Like find_get_entries, except we only return entries which are tagged with
1533  * @tag.
1534  */
1535 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1536                         int tag, unsigned int nr_entries,
1537                         struct page **entries, pgoff_t *indices)
1538 {
1539         void **slot;
1540         unsigned int ret = 0;
1541         struct radix_tree_iter iter;
1542
1543         if (!nr_entries)
1544                 return 0;
1545
1546         rcu_read_lock();
1547 restart:
1548         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1549                                    &iter, start, tag) {
1550                 struct page *page;
1551 repeat:
1552                 page = radix_tree_deref_slot(slot);
1553                 if (unlikely(!page))
1554                         continue;
1555                 if (radix_tree_exception(page)) {
1556                         if (radix_tree_deref_retry(page)) {
1557                                 /*
1558                                  * Transient condition which can only trigger
1559                                  * when entry at index 0 moves out of or back
1560                                  * to root: none yet gotten, safe to restart.
1561                                  */
1562                                 goto restart;
1563                         }
1564
1565                         /*
1566                          * A shadow entry of a recently evicted page, a swap
1567                          * entry from shmem/tmpfs or a DAX entry.  Return it
1568                          * without attempting to raise page count.
1569                          */
1570                         goto export;
1571                 }
1572                 if (!page_cache_get_speculative(page))
1573                         goto repeat;
1574
1575                 /* Has the page moved? */
1576                 if (unlikely(page != *slot)) {
1577                         page_cache_release(page);
1578                         goto repeat;
1579                 }
1580 export:
1581                 indices[ret] = iter.index;
1582                 entries[ret] = page;
1583                 if (++ret == nr_entries)
1584                         break;
1585         }
1586         rcu_read_unlock();
1587         return ret;
1588 }
1589 EXPORT_SYMBOL(find_get_entries_tag);
1590
1591 /*
1592  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1593  * a _large_ part of the i/o request. Imagine the worst scenario:
1594  *
1595  *      ---R__________________________________________B__________
1596  *         ^ reading here                             ^ bad block(assume 4k)
1597  *
1598  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1599  * => failing the whole request => read(R) => read(R+1) =>
1600  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1601  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1602  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1603  *
1604  * It is going insane. Fix it by quickly scaling down the readahead size.
1605  */
1606 static void shrink_readahead_size_eio(struct file *filp,
1607                                         struct file_ra_state *ra)
1608 {
1609         ra->ra_pages /= 4;
1610 }
1611
1612 /**
1613  * do_generic_file_read - generic file read routine
1614  * @filp:       the file to read
1615  * @ppos:       current file position
1616  * @iter:       data destination
1617  * @written:    already copied
1618  *
1619  * This is a generic file read routine, and uses the
1620  * mapping->a_ops->readpage() function for the actual low-level stuff.
1621  *
1622  * This is really ugly. But the goto's actually try to clarify some
1623  * of the logic when it comes to error handling etc.
1624  */
1625 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1626                 struct iov_iter *iter, ssize_t written)
1627 {
1628         struct address_space *mapping = filp->f_mapping;
1629         struct inode *inode = mapping->host;
1630         struct file_ra_state *ra = &filp->f_ra;
1631         pgoff_t index;
1632         pgoff_t last_index;
1633         pgoff_t prev_index;
1634         unsigned long offset;      /* offset into pagecache page */
1635         unsigned int prev_offset;
1636         int error = 0;
1637
1638         index = *ppos >> PAGE_CACHE_SHIFT;
1639         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1640         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1641         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1642         offset = *ppos & ~PAGE_CACHE_MASK;
1643
1644         for (;;) {
1645                 struct page *page;
1646                 pgoff_t end_index;
1647                 loff_t isize;
1648                 unsigned long nr, ret;
1649
1650                 cond_resched();
1651 find_page:
1652                 page = find_get_page(mapping, index);
1653                 if (!page) {
1654                         page_cache_sync_readahead(mapping,
1655                                         ra, filp,
1656                                         index, last_index - index);
1657                         page = find_get_page(mapping, index);
1658                         if (unlikely(page == NULL))
1659                                 goto no_cached_page;
1660                 }
1661                 if (PageReadahead(page)) {
1662                         page_cache_async_readahead(mapping,
1663                                         ra, filp, page,
1664                                         index, last_index - index);
1665                 }
1666                 if (!PageUptodate(page)) {
1667                         /*
1668                          * See comment in do_read_cache_page on why
1669                          * wait_on_page_locked is used to avoid unnecessarily
1670                          * serialisations and why it's safe.
1671                          */
1672                         wait_on_page_locked_killable(page);
1673                         if (PageUptodate(page))
1674                                 goto page_ok;
1675
1676                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1677                                         !mapping->a_ops->is_partially_uptodate)
1678                                 goto page_not_up_to_date;
1679                         if (!trylock_page(page))
1680                                 goto page_not_up_to_date;
1681                         /* Did it get truncated before we got the lock? */
1682                         if (!page->mapping)
1683                                 goto page_not_up_to_date_locked;
1684                         if (!mapping->a_ops->is_partially_uptodate(page,
1685                                                         offset, iter->count))
1686                                 goto page_not_up_to_date_locked;
1687                         unlock_page(page);
1688                 }
1689 page_ok:
1690                 /*
1691                  * i_size must be checked after we know the page is Uptodate.
1692                  *
1693                  * Checking i_size after the check allows us to calculate
1694                  * the correct value for "nr", which means the zero-filled
1695                  * part of the page is not copied back to userspace (unless
1696                  * another truncate extends the file - this is desired though).
1697                  */
1698
1699                 isize = i_size_read(inode);
1700                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1701                 if (unlikely(!isize || index > end_index)) {
1702                         page_cache_release(page);
1703                         goto out;
1704                 }
1705
1706                 /* nr is the maximum number of bytes to copy from this page */
1707                 nr = PAGE_CACHE_SIZE;
1708                 if (index == end_index) {
1709                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710                         if (nr <= offset) {
1711                                 page_cache_release(page);
1712                                 goto out;
1713                         }
1714                 }
1715                 nr = nr - offset;
1716
1717                 /* If users can be writing to this page using arbitrary
1718                  * virtual addresses, take care about potential aliasing
1719                  * before reading the page on the kernel side.
1720                  */
1721                 if (mapping_writably_mapped(mapping))
1722                         flush_dcache_page(page);
1723
1724                 /*
1725                  * When a sequential read accesses a page several times,
1726                  * only mark it as accessed the first time.
1727                  */
1728                 if (prev_index != index || offset != prev_offset)
1729                         mark_page_accessed(page);
1730                 prev_index = index;
1731
1732                 /*
1733                  * Ok, we have the page, and it's up-to-date, so
1734                  * now we can copy it to user space...
1735                  */
1736
1737                 ret = copy_page_to_iter(page, offset, nr, iter);
1738                 offset += ret;
1739                 index += offset >> PAGE_CACHE_SHIFT;
1740                 offset &= ~PAGE_CACHE_MASK;
1741                 prev_offset = offset;
1742
1743                 page_cache_release(page);
1744                 written += ret;
1745                 if (!iov_iter_count(iter))
1746                         goto out;
1747                 if (ret < nr) {
1748                         error = -EFAULT;
1749                         goto out;
1750                 }
1751                 continue;
1752
1753 page_not_up_to_date:
1754                 /* Get exclusive access to the page ... */
1755                 error = lock_page_killable(page);
1756                 if (unlikely(error))
1757                         goto readpage_error;
1758
1759 page_not_up_to_date_locked:
1760                 /* Did it get truncated before we got the lock? */
1761                 if (!page->mapping) {
1762                         unlock_page(page);
1763                         page_cache_release(page);
1764                         continue;
1765                 }
1766
1767                 /* Did somebody else fill it already? */
1768                 if (PageUptodate(page)) {
1769                         unlock_page(page);
1770                         goto page_ok;
1771                 }
1772
1773 readpage:
1774                 /*
1775                  * A previous I/O error may have been due to temporary
1776                  * failures, eg. multipath errors.
1777                  * PG_error will be set again if readpage fails.
1778                  */
1779                 ClearPageError(page);
1780                 /* Start the actual read. The read will unlock the page. */
1781                 error = mapping->a_ops->readpage(filp, page);
1782
1783                 if (unlikely(error)) {
1784                         if (error == AOP_TRUNCATED_PAGE) {
1785                                 page_cache_release(page);
1786                                 error = 0;
1787                                 goto find_page;
1788                         }
1789                         goto readpage_error;
1790                 }
1791
1792                 if (!PageUptodate(page)) {
1793                         error = lock_page_killable(page);
1794                         if (unlikely(error))
1795                                 goto readpage_error;
1796                         if (!PageUptodate(page)) {
1797                                 if (page->mapping == NULL) {
1798                                         /*
1799                                          * invalidate_mapping_pages got it
1800                                          */
1801                                         unlock_page(page);
1802                                         page_cache_release(page);
1803                                         goto find_page;
1804                                 }
1805                                 unlock_page(page);
1806                                 shrink_readahead_size_eio(filp, ra);
1807                                 error = -EIO;
1808                                 goto readpage_error;
1809                         }
1810                         unlock_page(page);
1811                 }
1812
1813                 goto page_ok;
1814
1815 readpage_error:
1816                 /* UHHUH! A synchronous read error occurred. Report it */
1817                 page_cache_release(page);
1818                 goto out;
1819
1820 no_cached_page:
1821                 /*
1822                  * Ok, it wasn't cached, so we need to create a new
1823                  * page..
1824                  */
1825                 page = page_cache_alloc_cold(mapping);
1826                 if (!page) {
1827                         error = -ENOMEM;
1828                         goto out;
1829                 }
1830                 error = add_to_page_cache_lru(page, mapping, index,
1831                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1832                 if (error) {
1833                         page_cache_release(page);
1834                         if (error == -EEXIST) {
1835                                 error = 0;
1836                                 goto find_page;
1837                         }
1838                         goto out;
1839                 }
1840                 goto readpage;
1841         }
1842
1843 out:
1844         ra->prev_pos = prev_index;
1845         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1846         ra->prev_pos |= prev_offset;
1847
1848         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1849         file_accessed(filp);
1850         return written ? written : error;
1851 }
1852
1853 /**
1854  * generic_file_read_iter - generic filesystem read routine
1855  * @iocb:       kernel I/O control block
1856  * @iter:       destination for the data read
1857  *
1858  * This is the "read_iter()" routine for all filesystems
1859  * that can use the page cache directly.
1860  */
1861 ssize_t
1862 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1863 {
1864         struct file *file = iocb->ki_filp;
1865         ssize_t retval = 0;
1866         loff_t *ppos = &iocb->ki_pos;
1867         loff_t pos = *ppos;
1868
1869         if (iocb->ki_flags & IOCB_DIRECT) {
1870                 struct address_space *mapping = file->f_mapping;
1871                 struct inode *inode = mapping->host;
1872                 size_t count = iov_iter_count(iter);
1873                 loff_t size;
1874
1875                 if (!count)
1876                         goto out; /* skip atime */
1877                 size = i_size_read(inode);
1878                 retval = filemap_write_and_wait_range(mapping, pos,
1879                                         pos + count - 1);
1880                 if (!retval) {
1881                         struct iov_iter data = *iter;
1882                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1883                 }
1884
1885                 if (retval > 0) {
1886                         *ppos = pos + retval;
1887                         iov_iter_advance(iter, retval);
1888                 }
1889
1890                 /*
1891                  * Btrfs can have a short DIO read if we encounter
1892                  * compressed extents, so if there was an error, or if
1893                  * we've already read everything we wanted to, or if
1894                  * there was a short read because we hit EOF, go ahead
1895                  * and return.  Otherwise fallthrough to buffered io for
1896                  * the rest of the read.  Buffered reads will not work for
1897                  * DAX files, so don't bother trying.
1898                  */
1899                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1900                     IS_DAX(inode)) {
1901                         file_accessed(file);
1902                         goto out;
1903                 }
1904         }
1905
1906         retval = do_generic_file_read(file, ppos, iter, retval);
1907 out:
1908         return retval;
1909 }
1910 EXPORT_SYMBOL(generic_file_read_iter);
1911
1912 #ifdef CONFIG_MMU
1913 /**
1914  * page_cache_read - adds requested page to the page cache if not already there
1915  * @file:       file to read
1916  * @offset:     page index
1917  * @gfp_mask:   memory allocation flags
1918  *
1919  * This adds the requested page to the page cache if it isn't already there,
1920  * and schedules an I/O to read in its contents from disk.
1921  */
1922 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1923 {
1924         struct address_space *mapping = file->f_mapping;
1925         struct page *page;
1926         int ret;
1927
1928         do {
1929                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1930                 if (!page)
1931                         return -ENOMEM;
1932
1933                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1934                 if (ret == 0)
1935                         ret = mapping->a_ops->readpage(file, page);
1936                 else if (ret == -EEXIST)
1937                         ret = 0; /* losing race to add is OK */
1938
1939                 page_cache_release(page);
1940
1941         } while (ret == AOP_TRUNCATED_PAGE);
1942
1943         return ret;
1944 }
1945
1946 #define MMAP_LOTSAMISS  (100)
1947
1948 /*
1949  * Synchronous readahead happens when we don't even find
1950  * a page in the page cache at all.
1951  */
1952 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1953                                    struct file_ra_state *ra,
1954                                    struct file *file,
1955                                    pgoff_t offset)
1956 {
1957         struct address_space *mapping = file->f_mapping;
1958
1959         /* If we don't want any read-ahead, don't bother */
1960         if (vma->vm_flags & VM_RAND_READ)
1961                 return;
1962         if (!ra->ra_pages)
1963                 return;
1964
1965         if (vma->vm_flags & VM_SEQ_READ) {
1966                 page_cache_sync_readahead(mapping, ra, file, offset,
1967                                           ra->ra_pages);
1968                 return;
1969         }
1970
1971         /* Avoid banging the cache line if not needed */
1972         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1973                 ra->mmap_miss++;
1974
1975         /*
1976          * Do we miss much more than hit in this file? If so,
1977          * stop bothering with read-ahead. It will only hurt.
1978          */
1979         if (ra->mmap_miss > MMAP_LOTSAMISS)
1980                 return;
1981
1982         /*
1983          * mmap read-around
1984          */
1985         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1986         ra->size = ra->ra_pages;
1987         ra->async_size = ra->ra_pages / 4;
1988         ra_submit(ra, mapping, file);
1989 }
1990
1991 /*
1992  * Asynchronous readahead happens when we find the page and PG_readahead,
1993  * so we want to possibly extend the readahead further..
1994  */
1995 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1996                                     struct file_ra_state *ra,
1997                                     struct file *file,
1998                                     struct page *page,
1999                                     pgoff_t offset)
2000 {
2001         struct address_space *mapping = file->f_mapping;
2002
2003         /* If we don't want any read-ahead, don't bother */
2004         if (vma->vm_flags & VM_RAND_READ)
2005                 return;
2006         if (ra->mmap_miss > 0)
2007                 ra->mmap_miss--;
2008         if (PageReadahead(page))
2009                 page_cache_async_readahead(mapping, ra, file,
2010                                            page, offset, ra->ra_pages);
2011 }
2012
2013 /**
2014  * filemap_fault - read in file data for page fault handling
2015  * @vma:        vma in which the fault was taken
2016  * @vmf:        struct vm_fault containing details of the fault
2017  *
2018  * filemap_fault() is invoked via the vma operations vector for a
2019  * mapped memory region to read in file data during a page fault.
2020  *
2021  * The goto's are kind of ugly, but this streamlines the normal case of having
2022  * it in the page cache, and handles the special cases reasonably without
2023  * having a lot of duplicated code.
2024  *
2025  * vma->vm_mm->mmap_sem must be held on entry.
2026  *
2027  * If our return value has VM_FAULT_RETRY set, it's because
2028  * lock_page_or_retry() returned 0.
2029  * The mmap_sem has usually been released in this case.
2030  * See __lock_page_or_retry() for the exception.
2031  *
2032  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2033  * has not been released.
2034  *
2035  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2036  */
2037 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2038 {
2039         int error;
2040         struct file *file = vma->vm_file;
2041         struct address_space *mapping = file->f_mapping;
2042         struct file_ra_state *ra = &file->f_ra;
2043         struct inode *inode = mapping->host;
2044         pgoff_t offset = vmf->pgoff;
2045         struct page *page;
2046         loff_t size;
2047         int ret = 0;
2048
2049         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2050         if (offset >= size >> PAGE_CACHE_SHIFT)
2051                 return VM_FAULT_SIGBUS;
2052
2053         /*
2054          * Do we have something in the page cache already?
2055          */
2056         page = find_get_page(mapping, offset);
2057         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2058                 /*
2059                  * We found the page, so try async readahead before
2060                  * waiting for the lock.
2061                  */
2062                 do_async_mmap_readahead(vma, ra, file, page, offset);
2063         } else if (!page) {
2064                 /* No page in the page cache at all */
2065                 do_sync_mmap_readahead(vma, ra, file, offset);
2066                 count_vm_event(PGMAJFAULT);
2067                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2068                 ret = VM_FAULT_MAJOR;
2069 retry_find:
2070                 page = find_get_page(mapping, offset);
2071                 if (!page)
2072                         goto no_cached_page;
2073         }
2074
2075         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2076                 page_cache_release(page);
2077                 return ret | VM_FAULT_RETRY;
2078         }
2079
2080         /* Did it get truncated? */
2081         if (unlikely(page->mapping != mapping)) {
2082                 unlock_page(page);
2083                 put_page(page);
2084                 goto retry_find;
2085         }
2086         VM_BUG_ON_PAGE(page->index != offset, page);
2087
2088         /*
2089          * We have a locked page in the page cache, now we need to check
2090          * that it's up-to-date. If not, it is going to be due to an error.
2091          */
2092         if (unlikely(!PageUptodate(page)))
2093                 goto page_not_uptodate;
2094
2095         /*
2096          * Found the page and have a reference on it.
2097          * We must recheck i_size under page lock.
2098          */
2099         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2100         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2101                 unlock_page(page);
2102                 page_cache_release(page);
2103                 return VM_FAULT_SIGBUS;
2104         }
2105
2106         vmf->page = page;
2107         return ret | VM_FAULT_LOCKED;
2108
2109 no_cached_page:
2110         /*
2111          * We're only likely to ever get here if MADV_RANDOM is in
2112          * effect.
2113          */
2114         error = page_cache_read(file, offset, vmf->gfp_mask);
2115
2116         /*
2117          * The page we want has now been added to the page cache.
2118          * In the unlikely event that someone removed it in the
2119          * meantime, we'll just come back here and read it again.
2120          */
2121         if (error >= 0)
2122                 goto retry_find;
2123
2124         /*
2125          * An error return from page_cache_read can result if the
2126          * system is low on memory, or a problem occurs while trying
2127          * to schedule I/O.
2128          */
2129         if (error == -ENOMEM)
2130                 return VM_FAULT_OOM;
2131         return VM_FAULT_SIGBUS;
2132
2133 page_not_uptodate:
2134         /*
2135          * Umm, take care of errors if the page isn't up-to-date.
2136          * Try to re-read it _once_. We do this synchronously,
2137          * because there really aren't any performance issues here
2138          * and we need to check for errors.
2139          */
2140         ClearPageError(page);
2141         error = mapping->a_ops->readpage(file, page);
2142         if (!error) {
2143                 wait_on_page_locked(page);
2144                 if (!PageUptodate(page))
2145                         error = -EIO;
2146         }
2147         page_cache_release(page);
2148
2149         if (!error || error == AOP_TRUNCATED_PAGE)
2150                 goto retry_find;
2151
2152         /* Things didn't work out. Return zero to tell the mm layer so. */
2153         shrink_readahead_size_eio(file, ra);
2154         return VM_FAULT_SIGBUS;
2155 }
2156 EXPORT_SYMBOL(filemap_fault);
2157
2158 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2159 {
2160         struct radix_tree_iter iter;
2161         void **slot;
2162         struct file *file = vma->vm_file;
2163         struct address_space *mapping = file->f_mapping;
2164         loff_t size;
2165         struct page *page;
2166         unsigned long address = (unsigned long) vmf->virtual_address;
2167         unsigned long addr;
2168         pte_t *pte;
2169
2170         rcu_read_lock();
2171         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2172                 if (iter.index > vmf->max_pgoff)
2173                         break;
2174 repeat:
2175                 page = radix_tree_deref_slot(slot);
2176                 if (unlikely(!page))
2177                         goto next;
2178                 if (radix_tree_exception(page)) {
2179                         if (radix_tree_deref_retry(page))
2180                                 break;
2181                         else
2182                                 goto next;
2183                 }
2184
2185                 if (!page_cache_get_speculative(page))
2186                         goto repeat;
2187
2188                 /* Has the page moved? */
2189                 if (unlikely(page != *slot)) {
2190                         page_cache_release(page);
2191                         goto repeat;
2192                 }
2193
2194                 if (!PageUptodate(page) ||
2195                                 PageReadahead(page) ||
2196                                 PageHWPoison(page))
2197                         goto skip;
2198                 if (!trylock_page(page))
2199                         goto skip;
2200
2201                 if (page->mapping != mapping || !PageUptodate(page))
2202                         goto unlock;
2203
2204                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2205                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2206                         goto unlock;
2207
2208                 pte = vmf->pte + page->index - vmf->pgoff;
2209                 if (!pte_none(*pte))
2210                         goto unlock;
2211
2212                 if (file->f_ra.mmap_miss > 0)
2213                         file->f_ra.mmap_miss--;
2214                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2215                 do_set_pte(vma, addr, page, pte, false, false);
2216                 unlock_page(page);
2217                 goto next;
2218 unlock:
2219                 unlock_page(page);
2220 skip:
2221                 page_cache_release(page);
2222 next:
2223                 if (iter.index == vmf->max_pgoff)
2224                         break;
2225         }
2226         rcu_read_unlock();
2227 }
2228 EXPORT_SYMBOL(filemap_map_pages);
2229
2230 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2231 {
2232         struct page *page = vmf->page;
2233         struct inode *inode = file_inode(vma->vm_file);
2234         int ret = VM_FAULT_LOCKED;
2235
2236         sb_start_pagefault(inode->i_sb);
2237         file_update_time(vma->vm_file);
2238         lock_page(page);
2239         if (page->mapping != inode->i_mapping) {
2240                 unlock_page(page);
2241                 ret = VM_FAULT_NOPAGE;
2242                 goto out;
2243         }
2244         /*
2245          * We mark the page dirty already here so that when freeze is in
2246          * progress, we are guaranteed that writeback during freezing will
2247          * see the dirty page and writeprotect it again.
2248          */
2249         set_page_dirty(page);
2250         wait_for_stable_page(page);
2251 out:
2252         sb_end_pagefault(inode->i_sb);
2253         return ret;
2254 }
2255 EXPORT_SYMBOL(filemap_page_mkwrite);
2256
2257 const struct vm_operations_struct generic_file_vm_ops = {
2258         .fault          = filemap_fault,
2259         .map_pages      = filemap_map_pages,
2260         .page_mkwrite   = filemap_page_mkwrite,
2261 };
2262
2263 /* This is used for a general mmap of a disk file */
2264
2265 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2266 {
2267         struct address_space *mapping = file->f_mapping;
2268
2269         if (!mapping->a_ops->readpage)
2270                 return -ENOEXEC;
2271         file_accessed(file);
2272         vma->vm_ops = &generic_file_vm_ops;
2273         return 0;
2274 }
2275
2276 /*
2277  * This is for filesystems which do not implement ->writepage.
2278  */
2279 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2280 {
2281         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2282                 return -EINVAL;
2283         return generic_file_mmap(file, vma);
2284 }
2285 #else
2286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287 {
2288         return -ENOSYS;
2289 }
2290 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2291 {
2292         return -ENOSYS;
2293 }
2294 #endif /* CONFIG_MMU */
2295
2296 EXPORT_SYMBOL(generic_file_mmap);
2297 EXPORT_SYMBOL(generic_file_readonly_mmap);
2298
2299 static struct page *wait_on_page_read(struct page *page)
2300 {
2301         if (!IS_ERR(page)) {
2302                 wait_on_page_locked(page);
2303                 if (!PageUptodate(page)) {
2304                         page_cache_release(page);
2305                         page = ERR_PTR(-EIO);
2306                 }
2307         }
2308         return page;
2309 }
2310
2311 static struct page *do_read_cache_page(struct address_space *mapping,
2312                                 pgoff_t index,
2313                                 int (*filler)(void *, struct page *),
2314                                 void *data,
2315                                 gfp_t gfp)
2316 {
2317         struct page *page;
2318         int err;
2319 repeat:
2320         page = find_get_page(mapping, index);
2321         if (!page) {
2322                 page = __page_cache_alloc(gfp | __GFP_COLD);
2323                 if (!page)
2324                         return ERR_PTR(-ENOMEM);
2325                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2326                 if (unlikely(err)) {
2327                         page_cache_release(page);
2328                         if (err == -EEXIST)
2329                                 goto repeat;
2330                         /* Presumably ENOMEM for radix tree node */
2331                         return ERR_PTR(err);
2332                 }
2333
2334 filler:
2335                 err = filler(data, page);
2336                 if (err < 0) {
2337                         page_cache_release(page);
2338                         return ERR_PTR(err);
2339                 }
2340
2341                 page = wait_on_page_read(page);
2342                 if (IS_ERR(page))
2343                         return page;
2344                 goto out;
2345         }
2346         if (PageUptodate(page))
2347                 goto out;
2348
2349         /*
2350          * Page is not up to date and may be locked due one of the following
2351          * case a: Page is being filled and the page lock is held
2352          * case b: Read/write error clearing the page uptodate status
2353          * case c: Truncation in progress (page locked)
2354          * case d: Reclaim in progress
2355          *
2356          * Case a, the page will be up to date when the page is unlocked.
2357          *    There is no need to serialise on the page lock here as the page
2358          *    is pinned so the lock gives no additional protection. Even if the
2359          *    the page is truncated, the data is still valid if PageUptodate as
2360          *    it's a race vs truncate race.
2361          * Case b, the page will not be up to date
2362          * Case c, the page may be truncated but in itself, the data may still
2363          *    be valid after IO completes as it's a read vs truncate race. The
2364          *    operation must restart if the page is not uptodate on unlock but
2365          *    otherwise serialising on page lock to stabilise the mapping gives
2366          *    no additional guarantees to the caller as the page lock is
2367          *    released before return.
2368          * Case d, similar to truncation. If reclaim holds the page lock, it
2369          *    will be a race with remove_mapping that determines if the mapping
2370          *    is valid on unlock but otherwise the data is valid and there is
2371          *    no need to serialise with page lock.
2372          *
2373          * As the page lock gives no additional guarantee, we optimistically
2374          * wait on the page to be unlocked and check if it's up to date and
2375          * use the page if it is. Otherwise, the page lock is required to
2376          * distinguish between the different cases. The motivation is that we
2377          * avoid spurious serialisations and wakeups when multiple processes
2378          * wait on the same page for IO to complete.
2379          */
2380         wait_on_page_locked(page);
2381         if (PageUptodate(page))
2382                 goto out;
2383
2384         /* Distinguish between all the cases under the safety of the lock */
2385         lock_page(page);
2386
2387         /* Case c or d, restart the operation */
2388         if (!page->mapping) {
2389                 unlock_page(page);
2390                 page_cache_release(page);
2391                 goto repeat;
2392         }
2393
2394         /* Someone else locked and filled the page in a very small window */
2395         if (PageUptodate(page)) {
2396                 unlock_page(page);
2397                 goto out;
2398         }
2399         goto filler;
2400
2401 out:
2402         mark_page_accessed(page);
2403         return page;
2404 }
2405
2406 /**
2407  * read_cache_page - read into page cache, fill it if needed
2408  * @mapping:    the page's address_space
2409  * @index:      the page index
2410  * @filler:     function to perform the read
2411  * @data:       first arg to filler(data, page) function, often left as NULL
2412  *
2413  * Read into the page cache. If a page already exists, and PageUptodate() is
2414  * not set, try to fill the page and wait for it to become unlocked.
2415  *
2416  * If the page does not get brought uptodate, return -EIO.
2417  */
2418 struct page *read_cache_page(struct address_space *mapping,
2419                                 pgoff_t index,
2420                                 int (*filler)(void *, struct page *),
2421                                 void *data)
2422 {
2423         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2424 }
2425 EXPORT_SYMBOL(read_cache_page);
2426
2427 /**
2428  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2429  * @mapping:    the page's address_space
2430  * @index:      the page index
2431  * @gfp:        the page allocator flags to use if allocating
2432  *
2433  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2434  * any new page allocations done using the specified allocation flags.
2435  *
2436  * If the page does not get brought uptodate, return -EIO.
2437  */
2438 struct page *read_cache_page_gfp(struct address_space *mapping,
2439                                 pgoff_t index,
2440                                 gfp_t gfp)
2441 {
2442         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2443
2444         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2445 }
2446 EXPORT_SYMBOL(read_cache_page_gfp);
2447
2448 /*
2449  * Performs necessary checks before doing a write
2450  *
2451  * Can adjust writing position or amount of bytes to write.
2452  * Returns appropriate error code that caller should return or
2453  * zero in case that write should be allowed.
2454  */
2455 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2456 {
2457         struct file *file = iocb->ki_filp;
2458         struct inode *inode = file->f_mapping->host;
2459         unsigned long limit = rlimit(RLIMIT_FSIZE);
2460         loff_t pos;
2461
2462         if (!iov_iter_count(from))
2463                 return 0;
2464
2465         /* FIXME: this is for backwards compatibility with 2.4 */
2466         if (iocb->ki_flags & IOCB_APPEND)
2467                 iocb->ki_pos = i_size_read(inode);
2468
2469         pos = iocb->ki_pos;
2470
2471         if (limit != RLIM_INFINITY) {
2472                 if (iocb->ki_pos >= limit) {
2473                         send_sig(SIGXFSZ, current, 0);
2474                         return -EFBIG;
2475                 }
2476                 iov_iter_truncate(from, limit - (unsigned long)pos);
2477         }
2478
2479         /*
2480          * LFS rule
2481          */
2482         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2483                                 !(file->f_flags & O_LARGEFILE))) {
2484                 if (pos >= MAX_NON_LFS)
2485                         return -EFBIG;
2486                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2487         }
2488
2489         /*
2490          * Are we about to exceed the fs block limit ?
2491          *
2492          * If we have written data it becomes a short write.  If we have
2493          * exceeded without writing data we send a signal and return EFBIG.
2494          * Linus frestrict idea will clean these up nicely..
2495          */
2496         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2497                 return -EFBIG;
2498
2499         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2500         return iov_iter_count(from);
2501 }
2502 EXPORT_SYMBOL(generic_write_checks);
2503
2504 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2505                                 loff_t pos, unsigned len, unsigned flags,
2506                                 struct page **pagep, void **fsdata)
2507 {
2508         const struct address_space_operations *aops = mapping->a_ops;
2509
2510         return aops->write_begin(file, mapping, pos, len, flags,
2511                                                         pagep, fsdata);
2512 }
2513 EXPORT_SYMBOL(pagecache_write_begin);
2514
2515 int pagecache_write_end(struct file *file, struct address_space *mapping,
2516                                 loff_t pos, unsigned len, unsigned copied,
2517                                 struct page *page, void *fsdata)
2518 {
2519         const struct address_space_operations *aops = mapping->a_ops;
2520
2521         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2522 }
2523 EXPORT_SYMBOL(pagecache_write_end);
2524
2525 ssize_t
2526 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2527 {
2528         struct file     *file = iocb->ki_filp;
2529         struct address_space *mapping = file->f_mapping;
2530         struct inode    *inode = mapping->host;
2531         ssize_t         written;
2532         size_t          write_len;
2533         pgoff_t         end;
2534         struct iov_iter data;
2535
2536         write_len = iov_iter_count(from);
2537         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2538
2539         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2540         if (written)
2541                 goto out;
2542
2543         /*
2544          * After a write we want buffered reads to be sure to go to disk to get
2545          * the new data.  We invalidate clean cached page from the region we're
2546          * about to write.  We do this *before* the write so that we can return
2547          * without clobbering -EIOCBQUEUED from ->direct_IO().
2548          */
2549         if (mapping->nrpages) {
2550                 written = invalidate_inode_pages2_range(mapping,
2551                                         pos >> PAGE_CACHE_SHIFT, end);
2552                 /*
2553                  * If a page can not be invalidated, return 0 to fall back
2554                  * to buffered write.
2555                  */
2556                 if (written) {
2557                         if (written == -EBUSY)
2558                                 return 0;
2559                         goto out;
2560                 }
2561         }
2562
2563         data = *from;
2564         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2565
2566         /*
2567          * Finally, try again to invalidate clean pages which might have been
2568          * cached by non-direct readahead, or faulted in by get_user_pages()
2569          * if the source of the write was an mmap'ed region of the file
2570          * we're writing.  Either one is a pretty crazy thing to do,
2571          * so we don't support it 100%.  If this invalidation
2572          * fails, tough, the write still worked...
2573          */
2574         if (mapping->nrpages) {
2575                 invalidate_inode_pages2_range(mapping,
2576                                               pos >> PAGE_CACHE_SHIFT, end);
2577         }
2578
2579         if (written > 0) {
2580                 pos += written;
2581                 iov_iter_advance(from, written);
2582                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2583                         i_size_write(inode, pos);
2584                         mark_inode_dirty(inode);
2585                 }
2586                 iocb->ki_pos = pos;
2587         }
2588 out:
2589         return written;
2590 }
2591 EXPORT_SYMBOL(generic_file_direct_write);
2592
2593 /*
2594  * Find or create a page at the given pagecache position. Return the locked
2595  * page. This function is specifically for buffered writes.
2596  */
2597 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2598                                         pgoff_t index, unsigned flags)
2599 {
2600         struct page *page;
2601         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2602
2603         if (flags & AOP_FLAG_NOFS)
2604                 fgp_flags |= FGP_NOFS;
2605
2606         page = pagecache_get_page(mapping, index, fgp_flags,
2607                         mapping_gfp_mask(mapping));
2608         if (page)
2609                 wait_for_stable_page(page);
2610
2611         return page;
2612 }
2613 EXPORT_SYMBOL(grab_cache_page_write_begin);
2614
2615 ssize_t generic_perform_write(struct file *file,
2616                                 struct iov_iter *i, loff_t pos)
2617 {
2618         struct address_space *mapping = file->f_mapping;
2619         const struct address_space_operations *a_ops = mapping->a_ops;
2620         long status = 0;
2621         ssize_t written = 0;
2622         unsigned int flags = 0;
2623
2624         /*
2625          * Copies from kernel address space cannot fail (NFSD is a big user).
2626          */
2627         if (!iter_is_iovec(i))
2628                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2629
2630         do {
2631                 struct page *page;
2632                 unsigned long offset;   /* Offset into pagecache page */
2633                 unsigned long bytes;    /* Bytes to write to page */
2634                 size_t copied;          /* Bytes copied from user */
2635                 void *fsdata;
2636
2637                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2638                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2639                                                 iov_iter_count(i));
2640
2641 again:
2642                 /*
2643                  * Bring in the user page that we will copy from _first_.
2644                  * Otherwise there's a nasty deadlock on copying from the
2645                  * same page as we're writing to, without it being marked
2646                  * up-to-date.
2647                  *
2648                  * Not only is this an optimisation, but it is also required
2649                  * to check that the address is actually valid, when atomic
2650                  * usercopies are used, below.
2651                  */
2652                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2653                         status = -EFAULT;
2654                         break;
2655                 }
2656
2657                 if (fatal_signal_pending(current)) {
2658                         status = -EINTR;
2659                         break;
2660                 }
2661
2662                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2663                                                 &page, &fsdata);
2664                 if (unlikely(status < 0))
2665                         break;
2666
2667                 if (mapping_writably_mapped(mapping))
2668                         flush_dcache_page(page);
2669
2670                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2671                 flush_dcache_page(page);
2672
2673                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2674                                                 page, fsdata);
2675                 if (unlikely(status < 0))
2676                         break;
2677                 copied = status;
2678
2679                 cond_resched();
2680
2681                 iov_iter_advance(i, copied);
2682                 if (unlikely(copied == 0)) {
2683                         /*
2684                          * If we were unable to copy any data at all, we must
2685                          * fall back to a single segment length write.
2686                          *
2687                          * If we didn't fallback here, we could livelock
2688                          * because not all segments in the iov can be copied at
2689                          * once without a pagefault.
2690                          */
2691                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2692                                                 iov_iter_single_seg_count(i));
2693                         goto again;
2694                 }
2695                 pos += copied;
2696                 written += copied;
2697
2698                 balance_dirty_pages_ratelimited(mapping);
2699         } while (iov_iter_count(i));
2700
2701         return written ? written : status;
2702 }
2703 EXPORT_SYMBOL(generic_perform_write);
2704
2705 /**
2706  * __generic_file_write_iter - write data to a file
2707  * @iocb:       IO state structure (file, offset, etc.)
2708  * @from:       iov_iter with data to write
2709  *
2710  * This function does all the work needed for actually writing data to a
2711  * file. It does all basic checks, removes SUID from the file, updates
2712  * modification times and calls proper subroutines depending on whether we
2713  * do direct IO or a standard buffered write.
2714  *
2715  * It expects i_mutex to be grabbed unless we work on a block device or similar
2716  * object which does not need locking at all.
2717  *
2718  * This function does *not* take care of syncing data in case of O_SYNC write.
2719  * A caller has to handle it. This is mainly due to the fact that we want to
2720  * avoid syncing under i_mutex.
2721  */
2722 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2723 {
2724         struct file *file = iocb->ki_filp;
2725         struct address_space * mapping = file->f_mapping;
2726         struct inode    *inode = mapping->host;
2727         ssize_t         written = 0;
2728         ssize_t         err;
2729         ssize_t         status;
2730
2731         /* We can write back this queue in page reclaim */
2732         current->backing_dev_info = inode_to_bdi(inode);
2733         err = file_remove_privs(file);
2734         if (err)
2735                 goto out;
2736
2737         err = file_update_time(file);
2738         if (err)
2739                 goto out;
2740
2741         if (iocb->ki_flags & IOCB_DIRECT) {
2742                 loff_t pos, endbyte;
2743
2744                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2745                 /*
2746                  * If the write stopped short of completing, fall back to
2747                  * buffered writes.  Some filesystems do this for writes to
2748                  * holes, for example.  For DAX files, a buffered write will
2749                  * not succeed (even if it did, DAX does not handle dirty
2750                  * page-cache pages correctly).
2751                  */
2752                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2753                         goto out;
2754
2755                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2756                 /*
2757                  * If generic_perform_write() returned a synchronous error
2758                  * then we want to return the number of bytes which were
2759                  * direct-written, or the error code if that was zero.  Note
2760                  * that this differs from normal direct-io semantics, which
2761                  * will return -EFOO even if some bytes were written.
2762                  */
2763                 if (unlikely(status < 0)) {
2764                         err = status;
2765                         goto out;
2766                 }
2767                 /*
2768                  * We need to ensure that the page cache pages are written to
2769                  * disk and invalidated to preserve the expected O_DIRECT
2770                  * semantics.
2771                  */
2772                 endbyte = pos + status - 1;
2773                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2774                 if (err == 0) {
2775                         iocb->ki_pos = endbyte + 1;
2776                         written += status;
2777                         invalidate_mapping_pages(mapping,
2778                                                  pos >> PAGE_CACHE_SHIFT,
2779                                                  endbyte >> PAGE_CACHE_SHIFT);
2780                 } else {
2781                         /*
2782                          * We don't know how much we wrote, so just return
2783                          * the number of bytes which were direct-written
2784                          */
2785                 }
2786         } else {
2787                 written = generic_perform_write(file, from, iocb->ki_pos);
2788                 if (likely(written > 0))
2789                         iocb->ki_pos += written;
2790         }
2791 out:
2792         current->backing_dev_info = NULL;
2793         return written ? written : err;
2794 }
2795 EXPORT_SYMBOL(__generic_file_write_iter);
2796
2797 /**
2798  * generic_file_write_iter - write data to a file
2799  * @iocb:       IO state structure
2800  * @from:       iov_iter with data to write
2801  *
2802  * This is a wrapper around __generic_file_write_iter() to be used by most
2803  * filesystems. It takes care of syncing the file in case of O_SYNC file
2804  * and acquires i_mutex as needed.
2805  */
2806 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2807 {
2808         struct file *file = iocb->ki_filp;
2809         struct inode *inode = file->f_mapping->host;
2810         ssize_t ret;
2811
2812         inode_lock(inode);
2813         ret = generic_write_checks(iocb, from);
2814         if (ret > 0)
2815                 ret = __generic_file_write_iter(iocb, from);
2816         inode_unlock(inode);
2817
2818         if (ret > 0) {
2819                 ssize_t err;
2820
2821                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2822                 if (err < 0)
2823                         ret = err;
2824         }
2825         return ret;
2826 }
2827 EXPORT_SYMBOL(generic_file_write_iter);
2828
2829 /**
2830  * try_to_release_page() - release old fs-specific metadata on a page
2831  *
2832  * @page: the page which the kernel is trying to free
2833  * @gfp_mask: memory allocation flags (and I/O mode)
2834  *
2835  * The address_space is to try to release any data against the page
2836  * (presumably at page->private).  If the release was successful, return `1'.
2837  * Otherwise return zero.
2838  *
2839  * This may also be called if PG_fscache is set on a page, indicating that the
2840  * page is known to the local caching routines.
2841  *
2842  * The @gfp_mask argument specifies whether I/O may be performed to release
2843  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2844  *
2845  */
2846 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2847 {
2848         struct address_space * const mapping = page->mapping;
2849
2850         BUG_ON(!PageLocked(page));
2851         if (PageWriteback(page))
2852                 return 0;
2853
2854         if (mapping && mapping->a_ops->releasepage)
2855                 return mapping->a_ops->releasepage(page, gfp_mask);
2856         return try_to_free_buffers(page);
2857 }
2858
2859 EXPORT_SYMBOL(try_to_release_page);