]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246         io_schedule();
247         return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252         sleep_on_page(word);
253         return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_bit(AS_ENOSPC, &mapping->flags) &&
261             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262                 ret = -ENOSPC;
263         if (test_bit(AS_EIO, &mapping->flags) &&
264             test_and_clear_bit(AS_EIO, &mapping->flags))
265                 ret = -EIO;
266         return ret;
267 }
268
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:    address space structure to write
272  * @start:      offset in bytes where the range starts
273  * @end:        offset in bytes where the range ends (inclusive)
274  * @sync_mode:  enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285                                 loff_t end, int sync_mode)
286 {
287         int ret;
288         struct writeback_control wbc = {
289                 .sync_mode = sync_mode,
290                 .nr_to_write = LONG_MAX,
291                 .range_start = start,
292                 .range_end = end,
293         };
294
295         if (!mapping_cap_writeback_dirty(mapping))
296                 return 0;
297
298         ret = do_writepages(mapping, &wbc);
299         return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303         int sync_mode)
304 {
305         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315                                 loff_t end)
316 {
317         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:    target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:            address space structure to wait for
337  * @start_byte:         offset in bytes where the range starts
338  * @end_byte:           offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344                             loff_t end_byte)
345 {
346         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348         struct pagevec pvec;
349         int nr_pages;
350         int ret2, ret = 0;
351
352         if (end_byte < start_byte)
353                 goto out;
354
355         pagevec_init(&pvec, 0);
356         while ((index <= end) &&
357                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358                         PAGECACHE_TAG_WRITEBACK,
359                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360                 unsigned i;
361
362                 for (i = 0; i < nr_pages; i++) {
363                         struct page *page = pvec.pages[i];
364
365                         /* until radix tree lookup accepts end_index */
366                         if (page->index > end)
367                                 continue;
368
369                         wait_on_page_writeback(page);
370                         if (TestClearPageError(page))
371                                 ret = -EIO;
372                 }
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 out:
377         ret2 = filemap_check_errors(mapping);
378         if (!ret)
379                 ret = ret2;
380
381         return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394         loff_t i_size = i_size_read(mapping->host);
395
396         if (i_size == 0)
397                 return 0;
398
399         return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405         int err = 0;
406
407         if (mapping->nrpages) {
408                 err = filemap_fdatawrite(mapping);
409                 /*
410                  * Even if the above returned error, the pages may be
411                  * written partially (e.g. -ENOSPC), so we wait for it.
412                  * But the -EIO is special case, it may indicate the worst
413                  * thing (e.g. bug) happened, so we avoid waiting for it.
414                  */
415                 if (err != -EIO) {
416                         int err2 = filemap_fdatawait(mapping);
417                         if (!err)
418                                 err = err2;
419                 }
420         } else {
421                 err = filemap_check_errors(mapping);
422         }
423         return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:    the address_space for the pages
430  * @lstart:     offset in bytes where the range starts
431  * @lend:       offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439                                  loff_t lstart, loff_t lend)
440 {
441         int err = 0;
442
443         if (mapping->nrpages) {
444                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445                                                  WB_SYNC_ALL);
446                 /* See comment of filemap_write_and_wait() */
447                 if (err != -EIO) {
448                         int err2 = filemap_fdatawait_range(mapping,
449                                                 lstart, lend);
450                         if (!err)
451                                 err = err2;
452                 }
453         } else {
454                 err = filemap_check_errors(mapping);
455         }
456         return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:        page to be replaced
463  * @new:        page to replace with
464  * @gfp_mask:   allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477         int error;
478
479         VM_BUG_ON_PAGE(!PageLocked(old), old);
480         VM_BUG_ON_PAGE(!PageLocked(new), new);
481         VM_BUG_ON_PAGE(new->mapping, new);
482
483         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484         if (!error) {
485                 struct address_space *mapping = old->mapping;
486                 void (*freepage)(struct page *);
487
488                 pgoff_t offset = old->index;
489                 freepage = mapping->a_ops->freepage;
490
491                 page_cache_get(new);
492                 new->mapping = mapping;
493                 new->index = offset;
494
495                 spin_lock_irq(&mapping->tree_lock);
496                 __delete_from_page_cache(old, NULL);
497                 error = radix_tree_insert(&mapping->page_tree, offset, new);
498                 BUG_ON(error);
499                 mapping->nrpages++;
500                 __inc_zone_page_state(new, NR_FILE_PAGES);
501                 if (PageSwapBacked(new))
502                         __inc_zone_page_state(new, NR_SHMEM);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 /* mem_cgroup codes must not be called under tree_lock */
505                 mem_cgroup_replace_page_cache(old, new);
506                 radix_tree_preload_end();
507                 if (freepage)
508                         freepage(old);
509                 page_cache_release(old);
510         }
511
512         return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517                                   struct page *page, void **shadowp)
518 {
519         struct radix_tree_node *node;
520         void **slot;
521         int error;
522
523         error = __radix_tree_create(&mapping->page_tree, page->index,
524                                     &node, &slot);
525         if (error)
526                 return error;
527         if (*slot) {
528                 void *p;
529
530                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531                 if (!radix_tree_exceptional_entry(p))
532                         return -EEXIST;
533                 if (shadowp)
534                         *shadowp = p;
535                 mapping->nrshadows--;
536                 if (node)
537                         workingset_node_shadows_dec(node);
538         }
539         radix_tree_replace_slot(slot, page);
540         mapping->nrpages++;
541         if (node) {
542                 workingset_node_pages_inc(node);
543                 /*
544                  * Don't track node that contains actual pages.
545                  *
546                  * Avoid acquiring the list_lru lock if already
547                  * untracked.  The list_empty() test is safe as
548                  * node->private_list is protected by
549                  * mapping->tree_lock.
550                  */
551                 if (!list_empty(&node->private_list))
552                         list_lru_del(&workingset_shadow_nodes,
553                                      &node->private_list);
554         }
555         return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559                                       struct address_space *mapping,
560                                       pgoff_t offset, gfp_t gfp_mask,
561                                       void **shadowp)
562 {
563         int error;
564
565         VM_BUG_ON_PAGE(!PageLocked(page), page);
566         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568         error = mem_cgroup_charge_file(page, current->mm,
569                                         gfp_mask & GFP_RECLAIM_MASK);
570         if (error)
571                 return error;
572
573         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574         if (error) {
575                 mem_cgroup_uncharge_cache_page(page);
576                 return error;
577         }
578
579         page_cache_get(page);
580         page->mapping = mapping;
581         page->index = offset;
582
583         spin_lock_irq(&mapping->tree_lock);
584         error = page_cache_tree_insert(mapping, page, shadowp);
585         radix_tree_preload_end();
586         if (unlikely(error))
587                 goto err_insert;
588         __inc_zone_page_state(page, NR_FILE_PAGES);
589         spin_unlock_irq(&mapping->tree_lock);
590         trace_mm_filemap_add_to_page_cache(page);
591         return 0;
592 err_insert:
593         page->mapping = NULL;
594         /* Leave page->index set: truncation relies upon it */
595         spin_unlock_irq(&mapping->tree_lock);
596         mem_cgroup_uncharge_cache_page(page);
597         page_cache_release(page);
598         return error;
599 }
600
601 /**
602  * add_to_page_cache_locked - add a locked page to the pagecache
603  * @page:       page to add
604  * @mapping:    the page's address_space
605  * @offset:     page index
606  * @gfp_mask:   page allocation mode
607  *
608  * This function is used to add a page to the pagecache. It must be locked.
609  * This function does not add the page to the LRU.  The caller must do that.
610  */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612                 pgoff_t offset, gfp_t gfp_mask)
613 {
614         return __add_to_page_cache_locked(page, mapping, offset,
615                                           gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620                                 pgoff_t offset, gfp_t gfp_mask)
621 {
622         void *shadow = NULL;
623         int ret;
624
625         __set_page_locked(page);
626         ret = __add_to_page_cache_locked(page, mapping, offset,
627                                          gfp_mask, &shadow);
628         if (unlikely(ret))
629                 __clear_page_locked(page);
630         else {
631                 /*
632                  * The page might have been evicted from cache only
633                  * recently, in which case it should be activated like
634                  * any other repeatedly accessed page.
635                  */
636                 if (shadow && workingset_refault(shadow)) {
637                         SetPageActive(page);
638                         workingset_activation(page);
639                 } else
640                         ClearPageActive(page);
641                 lru_cache_add(page);
642         }
643         return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650         int n;
651         struct page *page;
652
653         if (cpuset_do_page_mem_spread()) {
654                 unsigned int cpuset_mems_cookie;
655                 do {
656                         cpuset_mems_cookie = read_mems_allowed_begin();
657                         n = cpuset_mem_spread_node();
658                         page = alloc_pages_exact_node(n, gfp, 0);
659                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661                 return page;
662         }
663         return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669  * In order to wait for pages to become available there must be
670  * waitqueues associated with pages. By using a hash table of
671  * waitqueues where the bucket discipline is to maintain all
672  * waiters on the same queue and wake all when any of the pages
673  * become available, and for the woken contexts to check to be
674  * sure the appropriate page became available, this saves space
675  * at a cost of "thundering herd" phenomena during rare hash
676  * collisions.
677  */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680         const struct zone *zone = page_zone(page);
681
682         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694         if (test_bit(bit_nr, &page->flags))
695                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696                                                         TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704         if (!test_bit(bit_nr, &page->flags))
705                 return 0;
706
707         return __wait_on_bit(page_waitqueue(page), &wait,
708                              sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713  * @page: Page defining the wait queue of interest
714  * @waiter: Waiter to add to the queue
715  *
716  * Add an arbitrary @waiter to the wait queue for the nominated @page.
717  */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720         wait_queue_head_t *q = page_waitqueue(page);
721         unsigned long flags;
722
723         spin_lock_irqsave(&q->lock, flags);
724         __add_wait_queue(q, waiter);
725         spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730  * unlock_page - unlock a locked page
731  * @page: the page
732  *
733  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735  * mechananism between PageLocked pages and PageWriteback pages is shared.
736  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737  *
738  * The mb is necessary to enforce ordering between the clear_bit and the read
739  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740  */
741 void unlock_page(struct page *page)
742 {
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         clear_bit_unlock(PG_locked, &page->flags);
745         smp_mb__after_atomic();
746         wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751  * end_page_writeback - end writeback against a page
752  * @page: the page
753  */
754 void end_page_writeback(struct page *page)
755 {
756         /*
757          * TestClearPageReclaim could be used here but it is an atomic
758          * operation and overkill in this particular case. Failing to
759          * shuffle a page marked for immediate reclaim is too mild to
760          * justify taking an atomic operation penalty at the end of
761          * ever page writeback.
762          */
763         if (PageReclaim(page)) {
764                 ClearPageReclaim(page);
765                 rotate_reclaimable_page(page);
766         }
767
768         if (!test_clear_page_writeback(page))
769                 BUG();
770
771         smp_mb__after_atomic();
772         wake_up_page(page, PG_writeback);
773 }
774 EXPORT_SYMBOL(end_page_writeback);
775
776 /*
777  * After completing I/O on a page, call this routine to update the page
778  * flags appropriately
779  */
780 void page_endio(struct page *page, int rw, int err)
781 {
782         if (rw == READ) {
783                 if (!err) {
784                         SetPageUptodate(page);
785                 } else {
786                         ClearPageUptodate(page);
787                         SetPageError(page);
788                 }
789                 unlock_page(page);
790         } else { /* rw == WRITE */
791                 if (err) {
792                         SetPageError(page);
793                         if (page->mapping)
794                                 mapping_set_error(page->mapping, err);
795                 }
796                 end_page_writeback(page);
797         }
798 }
799 EXPORT_SYMBOL_GPL(page_endio);
800
801 /**
802  * __lock_page - get a lock on the page, assuming we need to sleep to get it
803  * @page: the page to lock
804  */
805 void __lock_page(struct page *page)
806 {
807         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810                                                         TASK_UNINTERRUPTIBLE);
811 }
812 EXPORT_SYMBOL(__lock_page);
813
814 int __lock_page_killable(struct page *page)
815 {
816         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818         return __wait_on_bit_lock(page_waitqueue(page), &wait,
819                                         sleep_on_page_killable, TASK_KILLABLE);
820 }
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
822
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824                          unsigned int flags)
825 {
826         if (flags & FAULT_FLAG_ALLOW_RETRY) {
827                 /*
828                  * CAUTION! In this case, mmap_sem is not released
829                  * even though return 0.
830                  */
831                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832                         return 0;
833
834                 up_read(&mm->mmap_sem);
835                 if (flags & FAULT_FLAG_KILLABLE)
836                         wait_on_page_locked_killable(page);
837                 else
838                         wait_on_page_locked(page);
839                 return 0;
840         } else {
841                 if (flags & FAULT_FLAG_KILLABLE) {
842                         int ret;
843
844                         ret = __lock_page_killable(page);
845                         if (ret) {
846                                 up_read(&mm->mmap_sem);
847                                 return 0;
848                         }
849                 } else
850                         __lock_page(page);
851                 return 1;
852         }
853 }
854
855 /**
856  * page_cache_next_hole - find the next hole (not-present entry)
857  * @mapping: mapping
858  * @index: index
859  * @max_scan: maximum range to search
860  *
861  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862  * lowest indexed hole.
863  *
864  * Returns: the index of the hole if found, otherwise returns an index
865  * outside of the set specified (in which case 'return - index >=
866  * max_scan' will be true). In rare cases of index wrap-around, 0 will
867  * be returned.
868  *
869  * page_cache_next_hole may be called under rcu_read_lock. However,
870  * like radix_tree_gang_lookup, this will not atomically search a
871  * snapshot of the tree at a single point in time. For example, if a
872  * hole is created at index 5, then subsequently a hole is created at
873  * index 10, page_cache_next_hole covering both indexes may return 10
874  * if called under rcu_read_lock.
875  */
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877                              pgoff_t index, unsigned long max_scan)
878 {
879         unsigned long i;
880
881         for (i = 0; i < max_scan; i++) {
882                 struct page *page;
883
884                 page = radix_tree_lookup(&mapping->page_tree, index);
885                 if (!page || radix_tree_exceptional_entry(page))
886                         break;
887                 index++;
888                 if (index == 0)
889                         break;
890         }
891
892         return index;
893 }
894 EXPORT_SYMBOL(page_cache_next_hole);
895
896 /**
897  * page_cache_prev_hole - find the prev hole (not-present entry)
898  * @mapping: mapping
899  * @index: index
900  * @max_scan: maximum range to search
901  *
902  * Search backwards in the range [max(index-max_scan+1, 0), index] for
903  * the first hole.
904  *
905  * Returns: the index of the hole if found, otherwise returns an index
906  * outside of the set specified (in which case 'index - return >=
907  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908  * will be returned.
909  *
910  * page_cache_prev_hole may be called under rcu_read_lock. However,
911  * like radix_tree_gang_lookup, this will not atomically search a
912  * snapshot of the tree at a single point in time. For example, if a
913  * hole is created at index 10, then subsequently a hole is created at
914  * index 5, page_cache_prev_hole covering both indexes may return 5 if
915  * called under rcu_read_lock.
916  */
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918                              pgoff_t index, unsigned long max_scan)
919 {
920         unsigned long i;
921
922         for (i = 0; i < max_scan; i++) {
923                 struct page *page;
924
925                 page = radix_tree_lookup(&mapping->page_tree, index);
926                 if (!page || radix_tree_exceptional_entry(page))
927                         break;
928                 index--;
929                 if (index == ULONG_MAX)
930                         break;
931         }
932
933         return index;
934 }
935 EXPORT_SYMBOL(page_cache_prev_hole);
936
937 /**
938  * find_get_entry - find and get a page cache entry
939  * @mapping: the address_space to search
940  * @offset: the page cache index
941  *
942  * Looks up the page cache slot at @mapping & @offset.  If there is a
943  * page cache page, it is returned with an increased refcount.
944  *
945  * If the slot holds a shadow entry of a previously evicted page, or a
946  * swap entry from shmem/tmpfs, it is returned.
947  *
948  * Otherwise, %NULL is returned.
949  */
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
951 {
952         void **pagep;
953         struct page *page;
954
955         rcu_read_lock();
956 repeat:
957         page = NULL;
958         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959         if (pagep) {
960                 page = radix_tree_deref_slot(pagep);
961                 if (unlikely(!page))
962                         goto out;
963                 if (radix_tree_exception(page)) {
964                         if (radix_tree_deref_retry(page))
965                                 goto repeat;
966                         /*
967                          * A shadow entry of a recently evicted page,
968                          * or a swap entry from shmem/tmpfs.  Return
969                          * it without attempting to raise page count.
970                          */
971                         goto out;
972                 }
973                 if (!page_cache_get_speculative(page))
974                         goto repeat;
975
976                 /*
977                  * Has the page moved?
978                  * This is part of the lockless pagecache protocol. See
979                  * include/linux/pagemap.h for details.
980                  */
981                 if (unlikely(page != *pagep)) {
982                         page_cache_release(page);
983                         goto repeat;
984                 }
985         }
986 out:
987         rcu_read_unlock();
988
989         return page;
990 }
991 EXPORT_SYMBOL(find_get_entry);
992
993 /**
994  * find_lock_entry - locate, pin and lock a page cache entry
995  * @mapping: the address_space to search
996  * @offset: the page cache index
997  *
998  * Looks up the page cache slot at @mapping & @offset.  If there is a
999  * page cache page, it is returned locked and with an increased
1000  * refcount.
1001  *
1002  * If the slot holds a shadow entry of a previously evicted page, or a
1003  * swap entry from shmem/tmpfs, it is returned.
1004  *
1005  * Otherwise, %NULL is returned.
1006  *
1007  * find_lock_entry() may sleep.
1008  */
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1010 {
1011         struct page *page;
1012
1013 repeat:
1014         page = find_get_entry(mapping, offset);
1015         if (page && !radix_tree_exception(page)) {
1016                 lock_page(page);
1017                 /* Has the page been truncated? */
1018                 if (unlikely(page->mapping != mapping)) {
1019                         unlock_page(page);
1020                         page_cache_release(page);
1021                         goto repeat;
1022                 }
1023                 VM_BUG_ON_PAGE(page->index != offset, page);
1024         }
1025         return page;
1026 }
1027 EXPORT_SYMBOL(find_lock_entry);
1028
1029 /**
1030  * pagecache_get_page - find and get a page reference
1031  * @mapping: the address_space to search
1032  * @offset: the page index
1033  * @fgp_flags: PCG flags
1034  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1035  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1036  *
1037  * Looks up the page cache slot at @mapping & @offset.
1038  *
1039  * PCG flags modify how the page is returned.
1040  *
1041  * FGP_ACCESSED: the page will be marked accessed
1042  * FGP_LOCK: Page is return locked
1043  * FGP_CREAT: If page is not present then a new page is allocated using
1044  *              @cache_gfp_mask and added to the page cache and the VM's LRU
1045  *              list. If radix tree nodes are allocated during page cache
1046  *              insertion then @radix_gfp_mask is used. The page is returned
1047  *              locked and with an increased refcount. Otherwise, %NULL is
1048  *              returned.
1049  *
1050  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1051  * if the GFP flags specified for FGP_CREAT are atomic.
1052  *
1053  * If there is a page cache page, it is returned with an increased refcount.
1054  */
1055 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1056         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1057 {
1058         struct page *page;
1059
1060 repeat:
1061         page = find_get_entry(mapping, offset);
1062         if (radix_tree_exceptional_entry(page))
1063                 page = NULL;
1064         if (!page)
1065                 goto no_page;
1066
1067         if (fgp_flags & FGP_LOCK) {
1068                 if (fgp_flags & FGP_NOWAIT) {
1069                         if (!trylock_page(page)) {
1070                                 page_cache_release(page);
1071                                 return NULL;
1072                         }
1073                 } else {
1074                         lock_page(page);
1075                 }
1076
1077                 /* Has the page been truncated? */
1078                 if (unlikely(page->mapping != mapping)) {
1079                         unlock_page(page);
1080                         page_cache_release(page);
1081                         goto repeat;
1082                 }
1083                 VM_BUG_ON_PAGE(page->index != offset, page);
1084         }
1085
1086         if (page && (fgp_flags & FGP_ACCESSED))
1087                 mark_page_accessed(page);
1088
1089 no_page:
1090         if (!page && (fgp_flags & FGP_CREAT)) {
1091                 int err;
1092                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1093                         cache_gfp_mask |= __GFP_WRITE;
1094                 if (fgp_flags & FGP_NOFS) {
1095                         cache_gfp_mask &= ~__GFP_FS;
1096                         radix_gfp_mask &= ~__GFP_FS;
1097                 }
1098
1099                 page = __page_cache_alloc(cache_gfp_mask);
1100                 if (!page)
1101                         return NULL;
1102
1103                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1104                         fgp_flags |= FGP_LOCK;
1105
1106                 /* Init accessed so avoit atomic mark_page_accessed later */
1107                 if (fgp_flags & FGP_ACCESSED)
1108                         init_page_accessed(page);
1109
1110                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1111                 if (unlikely(err)) {
1112                         page_cache_release(page);
1113                         page = NULL;
1114                         if (err == -EEXIST)
1115                                 goto repeat;
1116                 }
1117         }
1118
1119         return page;
1120 }
1121 EXPORT_SYMBOL(pagecache_get_page);
1122
1123 /**
1124  * find_get_entries - gang pagecache lookup
1125  * @mapping:    The address_space to search
1126  * @start:      The starting page cache index
1127  * @nr_entries: The maximum number of entries
1128  * @entries:    Where the resulting entries are placed
1129  * @indices:    The cache indices corresponding to the entries in @entries
1130  *
1131  * find_get_entries() will search for and return a group of up to
1132  * @nr_entries entries in the mapping.  The entries are placed at
1133  * @entries.  find_get_entries() takes a reference against any actual
1134  * pages it returns.
1135  *
1136  * The search returns a group of mapping-contiguous page cache entries
1137  * with ascending indexes.  There may be holes in the indices due to
1138  * not-present pages.
1139  *
1140  * Any shadow entries of evicted pages, or swap entries from
1141  * shmem/tmpfs, are included in the returned array.
1142  *
1143  * find_get_entries() returns the number of pages and shadow entries
1144  * which were found.
1145  */
1146 unsigned find_get_entries(struct address_space *mapping,
1147                           pgoff_t start, unsigned int nr_entries,
1148                           struct page **entries, pgoff_t *indices)
1149 {
1150         void **slot;
1151         unsigned int ret = 0;
1152         struct radix_tree_iter iter;
1153
1154         if (!nr_entries)
1155                 return 0;
1156
1157         rcu_read_lock();
1158 restart:
1159         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1160                 struct page *page;
1161 repeat:
1162                 page = radix_tree_deref_slot(slot);
1163                 if (unlikely(!page))
1164                         continue;
1165                 if (radix_tree_exception(page)) {
1166                         if (radix_tree_deref_retry(page))
1167                                 goto restart;
1168                         /*
1169                          * A shadow entry of a recently evicted page,
1170                          * or a swap entry from shmem/tmpfs.  Return
1171                          * it without attempting to raise page count.
1172                          */
1173                         goto export;
1174                 }
1175                 if (!page_cache_get_speculative(page))
1176                         goto repeat;
1177
1178                 /* Has the page moved? */
1179                 if (unlikely(page != *slot)) {
1180                         page_cache_release(page);
1181                         goto repeat;
1182                 }
1183 export:
1184                 indices[ret] = iter.index;
1185                 entries[ret] = page;
1186                 if (++ret == nr_entries)
1187                         break;
1188         }
1189         rcu_read_unlock();
1190         return ret;
1191 }
1192
1193 /**
1194  * find_get_pages - gang pagecache lookup
1195  * @mapping:    The address_space to search
1196  * @start:      The starting page index
1197  * @nr_pages:   The maximum number of pages
1198  * @pages:      Where the resulting pages are placed
1199  *
1200  * find_get_pages() will search for and return a group of up to
1201  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1202  * find_get_pages() takes a reference against the returned pages.
1203  *
1204  * The search returns a group of mapping-contiguous pages with ascending
1205  * indexes.  There may be holes in the indices due to not-present pages.
1206  *
1207  * find_get_pages() returns the number of pages which were found.
1208  */
1209 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1210                             unsigned int nr_pages, struct page **pages)
1211 {
1212         struct radix_tree_iter iter;
1213         void **slot;
1214         unsigned ret = 0;
1215
1216         if (unlikely(!nr_pages))
1217                 return 0;
1218
1219         rcu_read_lock();
1220 restart:
1221         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1222                 struct page *page;
1223 repeat:
1224                 page = radix_tree_deref_slot(slot);
1225                 if (unlikely(!page))
1226                         continue;
1227
1228                 if (radix_tree_exception(page)) {
1229                         if (radix_tree_deref_retry(page)) {
1230                                 /*
1231                                  * Transient condition which can only trigger
1232                                  * when entry at index 0 moves out of or back
1233                                  * to root: none yet gotten, safe to restart.
1234                                  */
1235                                 WARN_ON(iter.index);
1236                                 goto restart;
1237                         }
1238                         /*
1239                          * A shadow entry of a recently evicted page,
1240                          * or a swap entry from shmem/tmpfs.  Skip
1241                          * over it.
1242                          */
1243                         continue;
1244                 }
1245
1246                 if (!page_cache_get_speculative(page))
1247                         goto repeat;
1248
1249                 /* Has the page moved? */
1250                 if (unlikely(page != *slot)) {
1251                         page_cache_release(page);
1252                         goto repeat;
1253                 }
1254
1255                 pages[ret] = page;
1256                 if (++ret == nr_pages)
1257                         break;
1258         }
1259
1260         rcu_read_unlock();
1261         return ret;
1262 }
1263
1264 /**
1265  * find_get_pages_contig - gang contiguous pagecache lookup
1266  * @mapping:    The address_space to search
1267  * @index:      The starting page index
1268  * @nr_pages:   The maximum number of pages
1269  * @pages:      Where the resulting pages are placed
1270  *
1271  * find_get_pages_contig() works exactly like find_get_pages(), except
1272  * that the returned number of pages are guaranteed to be contiguous.
1273  *
1274  * find_get_pages_contig() returns the number of pages which were found.
1275  */
1276 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1277                                unsigned int nr_pages, struct page **pages)
1278 {
1279         struct radix_tree_iter iter;
1280         void **slot;
1281         unsigned int ret = 0;
1282
1283         if (unlikely(!nr_pages))
1284                 return 0;
1285
1286         rcu_read_lock();
1287 restart:
1288         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1289                 struct page *page;
1290 repeat:
1291                 page = radix_tree_deref_slot(slot);
1292                 /* The hole, there no reason to continue */
1293                 if (unlikely(!page))
1294                         break;
1295
1296                 if (radix_tree_exception(page)) {
1297                         if (radix_tree_deref_retry(page)) {
1298                                 /*
1299                                  * Transient condition which can only trigger
1300                                  * when entry at index 0 moves out of or back
1301                                  * to root: none yet gotten, safe to restart.
1302                                  */
1303                                 goto restart;
1304                         }
1305                         /*
1306                          * A shadow entry of a recently evicted page,
1307                          * or a swap entry from shmem/tmpfs.  Stop
1308                          * looking for contiguous pages.
1309                          */
1310                         break;
1311                 }
1312
1313                 if (!page_cache_get_speculative(page))
1314                         goto repeat;
1315
1316                 /* Has the page moved? */
1317                 if (unlikely(page != *slot)) {
1318                         page_cache_release(page);
1319                         goto repeat;
1320                 }
1321
1322                 /*
1323                  * must check mapping and index after taking the ref.
1324                  * otherwise we can get both false positives and false
1325                  * negatives, which is just confusing to the caller.
1326                  */
1327                 if (page->mapping == NULL || page->index != iter.index) {
1328                         page_cache_release(page);
1329                         break;
1330                 }
1331
1332                 pages[ret] = page;
1333                 if (++ret == nr_pages)
1334                         break;
1335         }
1336         rcu_read_unlock();
1337         return ret;
1338 }
1339 EXPORT_SYMBOL(find_get_pages_contig);
1340
1341 /**
1342  * find_get_pages_tag - find and return pages that match @tag
1343  * @mapping:    the address_space to search
1344  * @index:      the starting page index
1345  * @tag:        the tag index
1346  * @nr_pages:   the maximum number of pages
1347  * @pages:      where the resulting pages are placed
1348  *
1349  * Like find_get_pages, except we only return pages which are tagged with
1350  * @tag.   We update @index to index the next page for the traversal.
1351  */
1352 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1353                         int tag, unsigned int nr_pages, struct page **pages)
1354 {
1355         struct radix_tree_iter iter;
1356         void **slot;
1357         unsigned ret = 0;
1358
1359         if (unlikely(!nr_pages))
1360                 return 0;
1361
1362         rcu_read_lock();
1363 restart:
1364         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1365                                    &iter, *index, tag) {
1366                 struct page *page;
1367 repeat:
1368                 page = radix_tree_deref_slot(slot);
1369                 if (unlikely(!page))
1370                         continue;
1371
1372                 if (radix_tree_exception(page)) {
1373                         if (radix_tree_deref_retry(page)) {
1374                                 /*
1375                                  * Transient condition which can only trigger
1376                                  * when entry at index 0 moves out of or back
1377                                  * to root: none yet gotten, safe to restart.
1378                                  */
1379                                 goto restart;
1380                         }
1381                         /*
1382                          * A shadow entry of a recently evicted page.
1383                          *
1384                          * Those entries should never be tagged, but
1385                          * this tree walk is lockless and the tags are
1386                          * looked up in bulk, one radix tree node at a
1387                          * time, so there is a sizable window for page
1388                          * reclaim to evict a page we saw tagged.
1389                          *
1390                          * Skip over it.
1391                          */
1392                         continue;
1393                 }
1394
1395                 if (!page_cache_get_speculative(page))
1396                         goto repeat;
1397
1398                 /* Has the page moved? */
1399                 if (unlikely(page != *slot)) {
1400                         page_cache_release(page);
1401                         goto repeat;
1402                 }
1403
1404                 pages[ret] = page;
1405                 if (++ret == nr_pages)
1406                         break;
1407         }
1408
1409         rcu_read_unlock();
1410
1411         if (ret)
1412                 *index = pages[ret - 1]->index + 1;
1413
1414         return ret;
1415 }
1416 EXPORT_SYMBOL(find_get_pages_tag);
1417
1418 /*
1419  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1420  * a _large_ part of the i/o request. Imagine the worst scenario:
1421  *
1422  *      ---R__________________________________________B__________
1423  *         ^ reading here                             ^ bad block(assume 4k)
1424  *
1425  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1426  * => failing the whole request => read(R) => read(R+1) =>
1427  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1428  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1429  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1430  *
1431  * It is going insane. Fix it by quickly scaling down the readahead size.
1432  */
1433 static void shrink_readahead_size_eio(struct file *filp,
1434                                         struct file_ra_state *ra)
1435 {
1436         ra->ra_pages /= 4;
1437 }
1438
1439 /**
1440  * do_generic_file_read - generic file read routine
1441  * @filp:       the file to read
1442  * @ppos:       current file position
1443  * @iter:       data destination
1444  * @written:    already copied
1445  *
1446  * This is a generic file read routine, and uses the
1447  * mapping->a_ops->readpage() function for the actual low-level stuff.
1448  *
1449  * This is really ugly. But the goto's actually try to clarify some
1450  * of the logic when it comes to error handling etc.
1451  */
1452 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1453                 struct iov_iter *iter, ssize_t written)
1454 {
1455         struct address_space *mapping = filp->f_mapping;
1456         struct inode *inode = mapping->host;
1457         struct file_ra_state *ra = &filp->f_ra;
1458         pgoff_t index;
1459         pgoff_t last_index;
1460         pgoff_t prev_index;
1461         unsigned long offset;      /* offset into pagecache page */
1462         unsigned int prev_offset;
1463         int error = 0;
1464
1465         index = *ppos >> PAGE_CACHE_SHIFT;
1466         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1467         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1468         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1469         offset = *ppos & ~PAGE_CACHE_MASK;
1470
1471         for (;;) {
1472                 struct page *page;
1473                 pgoff_t end_index;
1474                 loff_t isize;
1475                 unsigned long nr, ret;
1476
1477                 cond_resched();
1478 find_page:
1479                 page = find_get_page(mapping, index);
1480                 if (!page) {
1481                         page_cache_sync_readahead(mapping,
1482                                         ra, filp,
1483                                         index, last_index - index);
1484                         page = find_get_page(mapping, index);
1485                         if (unlikely(page == NULL))
1486                                 goto no_cached_page;
1487                 }
1488                 if (PageReadahead(page)) {
1489                         page_cache_async_readahead(mapping,
1490                                         ra, filp, page,
1491                                         index, last_index - index);
1492                 }
1493                 if (!PageUptodate(page)) {
1494                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1495                                         !mapping->a_ops->is_partially_uptodate)
1496                                 goto page_not_up_to_date;
1497                         if (!trylock_page(page))
1498                                 goto page_not_up_to_date;
1499                         /* Did it get truncated before we got the lock? */
1500                         if (!page->mapping)
1501                                 goto page_not_up_to_date_locked;
1502                         if (!mapping->a_ops->is_partially_uptodate(page,
1503                                                         offset, iter->count))
1504                                 goto page_not_up_to_date_locked;
1505                         unlock_page(page);
1506                 }
1507 page_ok:
1508                 /*
1509                  * i_size must be checked after we know the page is Uptodate.
1510                  *
1511                  * Checking i_size after the check allows us to calculate
1512                  * the correct value for "nr", which means the zero-filled
1513                  * part of the page is not copied back to userspace (unless
1514                  * another truncate extends the file - this is desired though).
1515                  */
1516
1517                 isize = i_size_read(inode);
1518                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1519                 if (unlikely(!isize || index > end_index)) {
1520                         page_cache_release(page);
1521                         goto out;
1522                 }
1523
1524                 /* nr is the maximum number of bytes to copy from this page */
1525                 nr = PAGE_CACHE_SIZE;
1526                 if (index == end_index) {
1527                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1528                         if (nr <= offset) {
1529                                 page_cache_release(page);
1530                                 goto out;
1531                         }
1532                 }
1533                 nr = nr - offset;
1534
1535                 /* If users can be writing to this page using arbitrary
1536                  * virtual addresses, take care about potential aliasing
1537                  * before reading the page on the kernel side.
1538                  */
1539                 if (mapping_writably_mapped(mapping))
1540                         flush_dcache_page(page);
1541
1542                 /*
1543                  * When a sequential read accesses a page several times,
1544                  * only mark it as accessed the first time.
1545                  */
1546                 if (prev_index != index || offset != prev_offset)
1547                         mark_page_accessed(page);
1548                 prev_index = index;
1549
1550                 /*
1551                  * Ok, we have the page, and it's up-to-date, so
1552                  * now we can copy it to user space...
1553                  */
1554
1555                 ret = copy_page_to_iter(page, offset, nr, iter);
1556                 offset += ret;
1557                 index += offset >> PAGE_CACHE_SHIFT;
1558                 offset &= ~PAGE_CACHE_MASK;
1559                 prev_offset = offset;
1560
1561                 page_cache_release(page);
1562                 written += ret;
1563                 if (!iov_iter_count(iter))
1564                         goto out;
1565                 if (ret < nr) {
1566                         error = -EFAULT;
1567                         goto out;
1568                 }
1569                 continue;
1570
1571 page_not_up_to_date:
1572                 /* Get exclusive access to the page ... */
1573                 error = lock_page_killable(page);
1574                 if (unlikely(error))
1575                         goto readpage_error;
1576
1577 page_not_up_to_date_locked:
1578                 /* Did it get truncated before we got the lock? */
1579                 if (!page->mapping) {
1580                         unlock_page(page);
1581                         page_cache_release(page);
1582                         continue;
1583                 }
1584
1585                 /* Did somebody else fill it already? */
1586                 if (PageUptodate(page)) {
1587                         unlock_page(page);
1588                         goto page_ok;
1589                 }
1590
1591 readpage:
1592                 /*
1593                  * A previous I/O error may have been due to temporary
1594                  * failures, eg. multipath errors.
1595                  * PG_error will be set again if readpage fails.
1596                  */
1597                 ClearPageError(page);
1598                 /* Start the actual read. The read will unlock the page. */
1599                 error = mapping->a_ops->readpage(filp, page);
1600
1601                 if (unlikely(error)) {
1602                         if (error == AOP_TRUNCATED_PAGE) {
1603                                 page_cache_release(page);
1604                                 error = 0;
1605                                 goto find_page;
1606                         }
1607                         goto readpage_error;
1608                 }
1609
1610                 if (!PageUptodate(page)) {
1611                         error = lock_page_killable(page);
1612                         if (unlikely(error))
1613                                 goto readpage_error;
1614                         if (!PageUptodate(page)) {
1615                                 if (page->mapping == NULL) {
1616                                         /*
1617                                          * invalidate_mapping_pages got it
1618                                          */
1619                                         unlock_page(page);
1620                                         page_cache_release(page);
1621                                         goto find_page;
1622                                 }
1623                                 unlock_page(page);
1624                                 shrink_readahead_size_eio(filp, ra);
1625                                 error = -EIO;
1626                                 goto readpage_error;
1627                         }
1628                         unlock_page(page);
1629                 }
1630
1631                 goto page_ok;
1632
1633 readpage_error:
1634                 /* UHHUH! A synchronous read error occurred. Report it */
1635                 page_cache_release(page);
1636                 goto out;
1637
1638 no_cached_page:
1639                 /*
1640                  * Ok, it wasn't cached, so we need to create a new
1641                  * page..
1642                  */
1643                 page = page_cache_alloc_cold(mapping);
1644                 if (!page) {
1645                         error = -ENOMEM;
1646                         goto out;
1647                 }
1648                 error = add_to_page_cache_lru(page, mapping,
1649                                                 index, GFP_KERNEL);
1650                 if (error) {
1651                         page_cache_release(page);
1652                         if (error == -EEXIST) {
1653                                 error = 0;
1654                                 goto find_page;
1655                         }
1656                         goto out;
1657                 }
1658                 goto readpage;
1659         }
1660
1661 out:
1662         ra->prev_pos = prev_index;
1663         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1664         ra->prev_pos |= prev_offset;
1665
1666         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1667         file_accessed(filp);
1668         return written ? written : error;
1669 }
1670
1671 /**
1672  * generic_file_read_iter - generic filesystem read routine
1673  * @iocb:       kernel I/O control block
1674  * @iter:       destination for the data read
1675  *
1676  * This is the "read_iter()" routine for all filesystems
1677  * that can use the page cache directly.
1678  */
1679 ssize_t
1680 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1681 {
1682         struct file *file = iocb->ki_filp;
1683         ssize_t retval = 0;
1684         loff_t *ppos = &iocb->ki_pos;
1685         loff_t pos = *ppos;
1686
1687         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1688         if (file->f_flags & O_DIRECT) {
1689                 struct address_space *mapping = file->f_mapping;
1690                 struct inode *inode = mapping->host;
1691                 size_t count = iov_iter_count(iter);
1692                 loff_t size;
1693
1694                 if (!count)
1695                         goto out; /* skip atime */
1696                 size = i_size_read(inode);
1697                 retval = filemap_write_and_wait_range(mapping, pos,
1698                                         pos + count - 1);
1699                 if (!retval) {
1700                         struct iov_iter data = *iter;
1701                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1702                 }
1703
1704                 if (retval > 0) {
1705                         *ppos = pos + retval;
1706                         iov_iter_advance(iter, retval);
1707                 }
1708
1709                 /*
1710                  * Btrfs can have a short DIO read if we encounter
1711                  * compressed extents, so if there was an error, or if
1712                  * we've already read everything we wanted to, or if
1713                  * there was a short read because we hit EOF, go ahead
1714                  * and return.  Otherwise fallthrough to buffered io for
1715                  * the rest of the read.
1716                  */
1717                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1718                         file_accessed(file);
1719                         goto out;
1720                 }
1721         }
1722
1723         retval = do_generic_file_read(file, ppos, iter, retval);
1724 out:
1725         return retval;
1726 }
1727 EXPORT_SYMBOL(generic_file_read_iter);
1728
1729 #ifdef CONFIG_MMU
1730 /**
1731  * page_cache_read - adds requested page to the page cache if not already there
1732  * @file:       file to read
1733  * @offset:     page index
1734  *
1735  * This adds the requested page to the page cache if it isn't already there,
1736  * and schedules an I/O to read in its contents from disk.
1737  */
1738 static int page_cache_read(struct file *file, pgoff_t offset)
1739 {
1740         struct address_space *mapping = file->f_mapping;
1741         struct page *page; 
1742         int ret;
1743
1744         do {
1745                 page = page_cache_alloc_cold(mapping);
1746                 if (!page)
1747                         return -ENOMEM;
1748
1749                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1750                 if (ret == 0)
1751                         ret = mapping->a_ops->readpage(file, page);
1752                 else if (ret == -EEXIST)
1753                         ret = 0; /* losing race to add is OK */
1754
1755                 page_cache_release(page);
1756
1757         } while (ret == AOP_TRUNCATED_PAGE);
1758                 
1759         return ret;
1760 }
1761
1762 #define MMAP_LOTSAMISS  (100)
1763
1764 /*
1765  * Synchronous readahead happens when we don't even find
1766  * a page in the page cache at all.
1767  */
1768 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1769                                    struct file_ra_state *ra,
1770                                    struct file *file,
1771                                    pgoff_t offset)
1772 {
1773         unsigned long ra_pages;
1774         struct address_space *mapping = file->f_mapping;
1775
1776         /* If we don't want any read-ahead, don't bother */
1777         if (vma->vm_flags & VM_RAND_READ)
1778                 return;
1779         if (!ra->ra_pages)
1780                 return;
1781
1782         if (vma->vm_flags & VM_SEQ_READ) {
1783                 page_cache_sync_readahead(mapping, ra, file, offset,
1784                                           ra->ra_pages);
1785                 return;
1786         }
1787
1788         /* Avoid banging the cache line if not needed */
1789         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1790                 ra->mmap_miss++;
1791
1792         /*
1793          * Do we miss much more than hit in this file? If so,
1794          * stop bothering with read-ahead. It will only hurt.
1795          */
1796         if (ra->mmap_miss > MMAP_LOTSAMISS)
1797                 return;
1798
1799         /*
1800          * mmap read-around
1801          */
1802         ra_pages = max_sane_readahead(ra->ra_pages);
1803         ra->start = max_t(long, 0, offset - ra_pages / 2);
1804         ra->size = ra_pages;
1805         ra->async_size = ra_pages / 4;
1806         ra_submit(ra, mapping, file);
1807 }
1808
1809 /*
1810  * Asynchronous readahead happens when we find the page and PG_readahead,
1811  * so we want to possibly extend the readahead further..
1812  */
1813 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1814                                     struct file_ra_state *ra,
1815                                     struct file *file,
1816                                     struct page *page,
1817                                     pgoff_t offset)
1818 {
1819         struct address_space *mapping = file->f_mapping;
1820
1821         /* If we don't want any read-ahead, don't bother */
1822         if (vma->vm_flags & VM_RAND_READ)
1823                 return;
1824         if (ra->mmap_miss > 0)
1825                 ra->mmap_miss--;
1826         if (PageReadahead(page))
1827                 page_cache_async_readahead(mapping, ra, file,
1828                                            page, offset, ra->ra_pages);
1829 }
1830
1831 /**
1832  * filemap_fault - read in file data for page fault handling
1833  * @vma:        vma in which the fault was taken
1834  * @vmf:        struct vm_fault containing details of the fault
1835  *
1836  * filemap_fault() is invoked via the vma operations vector for a
1837  * mapped memory region to read in file data during a page fault.
1838  *
1839  * The goto's are kind of ugly, but this streamlines the normal case of having
1840  * it in the page cache, and handles the special cases reasonably without
1841  * having a lot of duplicated code.
1842  */
1843 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1844 {
1845         int error;
1846         struct file *file = vma->vm_file;
1847         struct address_space *mapping = file->f_mapping;
1848         struct file_ra_state *ra = &file->f_ra;
1849         struct inode *inode = mapping->host;
1850         pgoff_t offset = vmf->pgoff;
1851         struct page *page;
1852         loff_t size;
1853         int ret = 0;
1854
1855         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1856         if (offset >= size >> PAGE_CACHE_SHIFT)
1857                 return VM_FAULT_SIGBUS;
1858
1859         /*
1860          * Do we have something in the page cache already?
1861          */
1862         page = find_get_page(mapping, offset);
1863         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1864                 /*
1865                  * We found the page, so try async readahead before
1866                  * waiting for the lock.
1867                  */
1868                 do_async_mmap_readahead(vma, ra, file, page, offset);
1869         } else if (!page) {
1870                 /* No page in the page cache at all */
1871                 do_sync_mmap_readahead(vma, ra, file, offset);
1872                 count_vm_event(PGMAJFAULT);
1873                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1874                 ret = VM_FAULT_MAJOR;
1875 retry_find:
1876                 page = find_get_page(mapping, offset);
1877                 if (!page)
1878                         goto no_cached_page;
1879         }
1880
1881         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1882                 page_cache_release(page);
1883                 return ret | VM_FAULT_RETRY;
1884         }
1885
1886         /* Did it get truncated? */
1887         if (unlikely(page->mapping != mapping)) {
1888                 unlock_page(page);
1889                 put_page(page);
1890                 goto retry_find;
1891         }
1892         VM_BUG_ON_PAGE(page->index != offset, page);
1893
1894         /*
1895          * We have a locked page in the page cache, now we need to check
1896          * that it's up-to-date. If not, it is going to be due to an error.
1897          */
1898         if (unlikely(!PageUptodate(page)))
1899                 goto page_not_uptodate;
1900
1901         /*
1902          * Found the page and have a reference on it.
1903          * We must recheck i_size under page lock.
1904          */
1905         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1906         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1907                 unlock_page(page);
1908                 page_cache_release(page);
1909                 return VM_FAULT_SIGBUS;
1910         }
1911
1912         vmf->page = page;
1913         return ret | VM_FAULT_LOCKED;
1914
1915 no_cached_page:
1916         /*
1917          * We're only likely to ever get here if MADV_RANDOM is in
1918          * effect.
1919          */
1920         error = page_cache_read(file, offset);
1921
1922         /*
1923          * The page we want has now been added to the page cache.
1924          * In the unlikely event that someone removed it in the
1925          * meantime, we'll just come back here and read it again.
1926          */
1927         if (error >= 0)
1928                 goto retry_find;
1929
1930         /*
1931          * An error return from page_cache_read can result if the
1932          * system is low on memory, or a problem occurs while trying
1933          * to schedule I/O.
1934          */
1935         if (error == -ENOMEM)
1936                 return VM_FAULT_OOM;
1937         return VM_FAULT_SIGBUS;
1938
1939 page_not_uptodate:
1940         /*
1941          * Umm, take care of errors if the page isn't up-to-date.
1942          * Try to re-read it _once_. We do this synchronously,
1943          * because there really aren't any performance issues here
1944          * and we need to check for errors.
1945          */
1946         ClearPageError(page);
1947         error = mapping->a_ops->readpage(file, page);
1948         if (!error) {
1949                 wait_on_page_locked(page);
1950                 if (!PageUptodate(page))
1951                         error = -EIO;
1952         }
1953         page_cache_release(page);
1954
1955         if (!error || error == AOP_TRUNCATED_PAGE)
1956                 goto retry_find;
1957
1958         /* Things didn't work out. Return zero to tell the mm layer so. */
1959         shrink_readahead_size_eio(file, ra);
1960         return VM_FAULT_SIGBUS;
1961 }
1962 EXPORT_SYMBOL(filemap_fault);
1963
1964 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1965 {
1966         struct radix_tree_iter iter;
1967         void **slot;
1968         struct file *file = vma->vm_file;
1969         struct address_space *mapping = file->f_mapping;
1970         loff_t size;
1971         struct page *page;
1972         unsigned long address = (unsigned long) vmf->virtual_address;
1973         unsigned long addr;
1974         pte_t *pte;
1975
1976         rcu_read_lock();
1977         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1978                 if (iter.index > vmf->max_pgoff)
1979                         break;
1980 repeat:
1981                 page = radix_tree_deref_slot(slot);
1982                 if (unlikely(!page))
1983                         goto next;
1984                 if (radix_tree_exception(page)) {
1985                         if (radix_tree_deref_retry(page))
1986                                 break;
1987                         else
1988                                 goto next;
1989                 }
1990
1991                 if (!page_cache_get_speculative(page))
1992                         goto repeat;
1993
1994                 /* Has the page moved? */
1995                 if (unlikely(page != *slot)) {
1996                         page_cache_release(page);
1997                         goto repeat;
1998                 }
1999
2000                 if (!PageUptodate(page) ||
2001                                 PageReadahead(page) ||
2002                                 PageHWPoison(page))
2003                         goto skip;
2004                 if (!trylock_page(page))
2005                         goto skip;
2006
2007                 if (page->mapping != mapping || !PageUptodate(page))
2008                         goto unlock;
2009
2010                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2011                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2012                         goto unlock;
2013
2014                 pte = vmf->pte + page->index - vmf->pgoff;
2015                 if (!pte_none(*pte))
2016                         goto unlock;
2017
2018                 if (file->f_ra.mmap_miss > 0)
2019                         file->f_ra.mmap_miss--;
2020                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2021                 do_set_pte(vma, addr, page, pte, false, false);
2022                 unlock_page(page);
2023                 goto next;
2024 unlock:
2025                 unlock_page(page);
2026 skip:
2027                 page_cache_release(page);
2028 next:
2029                 if (iter.index == vmf->max_pgoff)
2030                         break;
2031         }
2032         rcu_read_unlock();
2033 }
2034 EXPORT_SYMBOL(filemap_map_pages);
2035
2036 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2037 {
2038         struct page *page = vmf->page;
2039         struct inode *inode = file_inode(vma->vm_file);
2040         int ret = VM_FAULT_LOCKED;
2041
2042         sb_start_pagefault(inode->i_sb);
2043         file_update_time(vma->vm_file);
2044         lock_page(page);
2045         if (page->mapping != inode->i_mapping) {
2046                 unlock_page(page);
2047                 ret = VM_FAULT_NOPAGE;
2048                 goto out;
2049         }
2050         /*
2051          * We mark the page dirty already here so that when freeze is in
2052          * progress, we are guaranteed that writeback during freezing will
2053          * see the dirty page and writeprotect it again.
2054          */
2055         set_page_dirty(page);
2056         wait_for_stable_page(page);
2057 out:
2058         sb_end_pagefault(inode->i_sb);
2059         return ret;
2060 }
2061 EXPORT_SYMBOL(filemap_page_mkwrite);
2062
2063 const struct vm_operations_struct generic_file_vm_ops = {
2064         .fault          = filemap_fault,
2065         .map_pages      = filemap_map_pages,
2066         .page_mkwrite   = filemap_page_mkwrite,
2067         .remap_pages    = generic_file_remap_pages,
2068 };
2069
2070 /* This is used for a general mmap of a disk file */
2071
2072 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2073 {
2074         struct address_space *mapping = file->f_mapping;
2075
2076         if (!mapping->a_ops->readpage)
2077                 return -ENOEXEC;
2078         file_accessed(file);
2079         vma->vm_ops = &generic_file_vm_ops;
2080         return 0;
2081 }
2082
2083 /*
2084  * This is for filesystems which do not implement ->writepage.
2085  */
2086 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2087 {
2088         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2089                 return -EINVAL;
2090         return generic_file_mmap(file, vma);
2091 }
2092 #else
2093 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2094 {
2095         return -ENOSYS;
2096 }
2097 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2098 {
2099         return -ENOSYS;
2100 }
2101 #endif /* CONFIG_MMU */
2102
2103 EXPORT_SYMBOL(generic_file_mmap);
2104 EXPORT_SYMBOL(generic_file_readonly_mmap);
2105
2106 static struct page *wait_on_page_read(struct page *page)
2107 {
2108         if (!IS_ERR(page)) {
2109                 wait_on_page_locked(page);
2110                 if (!PageUptodate(page)) {
2111                         page_cache_release(page);
2112                         page = ERR_PTR(-EIO);
2113                 }
2114         }
2115         return page;
2116 }
2117
2118 static struct page *__read_cache_page(struct address_space *mapping,
2119                                 pgoff_t index,
2120                                 int (*filler)(void *, struct page *),
2121                                 void *data,
2122                                 gfp_t gfp)
2123 {
2124         struct page *page;
2125         int err;
2126 repeat:
2127         page = find_get_page(mapping, index);
2128         if (!page) {
2129                 page = __page_cache_alloc(gfp | __GFP_COLD);
2130                 if (!page)
2131                         return ERR_PTR(-ENOMEM);
2132                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2133                 if (unlikely(err)) {
2134                         page_cache_release(page);
2135                         if (err == -EEXIST)
2136                                 goto repeat;
2137                         /* Presumably ENOMEM for radix tree node */
2138                         return ERR_PTR(err);
2139                 }
2140                 err = filler(data, page);
2141                 if (err < 0) {
2142                         page_cache_release(page);
2143                         page = ERR_PTR(err);
2144                 } else {
2145                         page = wait_on_page_read(page);
2146                 }
2147         }
2148         return page;
2149 }
2150
2151 static struct page *do_read_cache_page(struct address_space *mapping,
2152                                 pgoff_t index,
2153                                 int (*filler)(void *, struct page *),
2154                                 void *data,
2155                                 gfp_t gfp)
2156
2157 {
2158         struct page *page;
2159         int err;
2160
2161 retry:
2162         page = __read_cache_page(mapping, index, filler, data, gfp);
2163         if (IS_ERR(page))
2164                 return page;
2165         if (PageUptodate(page))
2166                 goto out;
2167
2168         lock_page(page);
2169         if (!page->mapping) {
2170                 unlock_page(page);
2171                 page_cache_release(page);
2172                 goto retry;
2173         }
2174         if (PageUptodate(page)) {
2175                 unlock_page(page);
2176                 goto out;
2177         }
2178         err = filler(data, page);
2179         if (err < 0) {
2180                 page_cache_release(page);
2181                 return ERR_PTR(err);
2182         } else {
2183                 page = wait_on_page_read(page);
2184                 if (IS_ERR(page))
2185                         return page;
2186         }
2187 out:
2188         mark_page_accessed(page);
2189         return page;
2190 }
2191
2192 /**
2193  * read_cache_page - read into page cache, fill it if needed
2194  * @mapping:    the page's address_space
2195  * @index:      the page index
2196  * @filler:     function to perform the read
2197  * @data:       first arg to filler(data, page) function, often left as NULL
2198  *
2199  * Read into the page cache. If a page already exists, and PageUptodate() is
2200  * not set, try to fill the page and wait for it to become unlocked.
2201  *
2202  * If the page does not get brought uptodate, return -EIO.
2203  */
2204 struct page *read_cache_page(struct address_space *mapping,
2205                                 pgoff_t index,
2206                                 int (*filler)(void *, struct page *),
2207                                 void *data)
2208 {
2209         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2210 }
2211 EXPORT_SYMBOL(read_cache_page);
2212
2213 /**
2214  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2215  * @mapping:    the page's address_space
2216  * @index:      the page index
2217  * @gfp:        the page allocator flags to use if allocating
2218  *
2219  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2220  * any new page allocations done using the specified allocation flags.
2221  *
2222  * If the page does not get brought uptodate, return -EIO.
2223  */
2224 struct page *read_cache_page_gfp(struct address_space *mapping,
2225                                 pgoff_t index,
2226                                 gfp_t gfp)
2227 {
2228         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2229
2230         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2231 }
2232 EXPORT_SYMBOL(read_cache_page_gfp);
2233
2234 /*
2235  * Performs necessary checks before doing a write
2236  *
2237  * Can adjust writing position or amount of bytes to write.
2238  * Returns appropriate error code that caller should return or
2239  * zero in case that write should be allowed.
2240  */
2241 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2242 {
2243         struct inode *inode = file->f_mapping->host;
2244         unsigned long limit = rlimit(RLIMIT_FSIZE);
2245
2246         if (unlikely(*pos < 0))
2247                 return -EINVAL;
2248
2249         if (!isblk) {
2250                 /* FIXME: this is for backwards compatibility with 2.4 */
2251                 if (file->f_flags & O_APPEND)
2252                         *pos = i_size_read(inode);
2253
2254                 if (limit != RLIM_INFINITY) {
2255                         if (*pos >= limit) {
2256                                 send_sig(SIGXFSZ, current, 0);
2257                                 return -EFBIG;
2258                         }
2259                         if (*count > limit - (typeof(limit))*pos) {
2260                                 *count = limit - (typeof(limit))*pos;
2261                         }
2262                 }
2263         }
2264
2265         /*
2266          * LFS rule
2267          */
2268         if (unlikely(*pos + *count > MAX_NON_LFS &&
2269                                 !(file->f_flags & O_LARGEFILE))) {
2270                 if (*pos >= MAX_NON_LFS) {
2271                         return -EFBIG;
2272                 }
2273                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2274                         *count = MAX_NON_LFS - (unsigned long)*pos;
2275                 }
2276         }
2277
2278         /*
2279          * Are we about to exceed the fs block limit ?
2280          *
2281          * If we have written data it becomes a short write.  If we have
2282          * exceeded without writing data we send a signal and return EFBIG.
2283          * Linus frestrict idea will clean these up nicely..
2284          */
2285         if (likely(!isblk)) {
2286                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2287                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2288                                 return -EFBIG;
2289                         }
2290                         /* zero-length writes at ->s_maxbytes are OK */
2291                 }
2292
2293                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2294                         *count = inode->i_sb->s_maxbytes - *pos;
2295         } else {
2296 #ifdef CONFIG_BLOCK
2297                 loff_t isize;
2298                 if (bdev_read_only(I_BDEV(inode)))
2299                         return -EPERM;
2300                 isize = i_size_read(inode);
2301                 if (*pos >= isize) {
2302                         if (*count || *pos > isize)
2303                                 return -ENOSPC;
2304                 }
2305
2306                 if (*pos + *count > isize)
2307                         *count = isize - *pos;
2308 #else
2309                 return -EPERM;
2310 #endif
2311         }
2312         return 0;
2313 }
2314 EXPORT_SYMBOL(generic_write_checks);
2315
2316 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2317                                 loff_t pos, unsigned len, unsigned flags,
2318                                 struct page **pagep, void **fsdata)
2319 {
2320         const struct address_space_operations *aops = mapping->a_ops;
2321
2322         return aops->write_begin(file, mapping, pos, len, flags,
2323                                                         pagep, fsdata);
2324 }
2325 EXPORT_SYMBOL(pagecache_write_begin);
2326
2327 int pagecache_write_end(struct file *file, struct address_space *mapping,
2328                                 loff_t pos, unsigned len, unsigned copied,
2329                                 struct page *page, void *fsdata)
2330 {
2331         const struct address_space_operations *aops = mapping->a_ops;
2332
2333         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2334 }
2335 EXPORT_SYMBOL(pagecache_write_end);
2336
2337 ssize_t
2338 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2339 {
2340         struct file     *file = iocb->ki_filp;
2341         struct address_space *mapping = file->f_mapping;
2342         struct inode    *inode = mapping->host;
2343         ssize_t         written;
2344         size_t          write_len;
2345         pgoff_t         end;
2346         struct iov_iter data;
2347
2348         write_len = iov_iter_count(from);
2349         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2350
2351         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2352         if (written)
2353                 goto out;
2354
2355         /*
2356          * After a write we want buffered reads to be sure to go to disk to get
2357          * the new data.  We invalidate clean cached page from the region we're
2358          * about to write.  We do this *before* the write so that we can return
2359          * without clobbering -EIOCBQUEUED from ->direct_IO().
2360          */
2361         if (mapping->nrpages) {
2362                 written = invalidate_inode_pages2_range(mapping,
2363                                         pos >> PAGE_CACHE_SHIFT, end);
2364                 /*
2365                  * If a page can not be invalidated, return 0 to fall back
2366                  * to buffered write.
2367                  */
2368                 if (written) {
2369                         if (written == -EBUSY)
2370                                 return 0;
2371                         goto out;
2372                 }
2373         }
2374
2375         data = *from;
2376         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2377
2378         /*
2379          * Finally, try again to invalidate clean pages which might have been
2380          * cached by non-direct readahead, or faulted in by get_user_pages()
2381          * if the source of the write was an mmap'ed region of the file
2382          * we're writing.  Either one is a pretty crazy thing to do,
2383          * so we don't support it 100%.  If this invalidation
2384          * fails, tough, the write still worked...
2385          */
2386         if (mapping->nrpages) {
2387                 invalidate_inode_pages2_range(mapping,
2388                                               pos >> PAGE_CACHE_SHIFT, end);
2389         }
2390
2391         if (written > 0) {
2392                 pos += written;
2393                 iov_iter_advance(from, written);
2394                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2395                         i_size_write(inode, pos);
2396                         mark_inode_dirty(inode);
2397                 }
2398                 iocb->ki_pos = pos;
2399         }
2400 out:
2401         return written;
2402 }
2403 EXPORT_SYMBOL(generic_file_direct_write);
2404
2405 /*
2406  * Find or create a page at the given pagecache position. Return the locked
2407  * page. This function is specifically for buffered writes.
2408  */
2409 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2410                                         pgoff_t index, unsigned flags)
2411 {
2412         struct page *page;
2413         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2414
2415         if (flags & AOP_FLAG_NOFS)
2416                 fgp_flags |= FGP_NOFS;
2417
2418         page = pagecache_get_page(mapping, index, fgp_flags,
2419                         mapping_gfp_mask(mapping),
2420                         GFP_KERNEL);
2421         if (page)
2422                 wait_for_stable_page(page);
2423
2424         return page;
2425 }
2426 EXPORT_SYMBOL(grab_cache_page_write_begin);
2427
2428 ssize_t generic_perform_write(struct file *file,
2429                                 struct iov_iter *i, loff_t pos)
2430 {
2431         struct address_space *mapping = file->f_mapping;
2432         const struct address_space_operations *a_ops = mapping->a_ops;
2433         long status = 0;
2434         ssize_t written = 0;
2435         unsigned int flags = 0;
2436
2437         /*
2438          * Copies from kernel address space cannot fail (NFSD is a big user).
2439          */
2440         if (segment_eq(get_fs(), KERNEL_DS))
2441                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2442
2443         do {
2444                 struct page *page;
2445                 unsigned long offset;   /* Offset into pagecache page */
2446                 unsigned long bytes;    /* Bytes to write to page */
2447                 size_t copied;          /* Bytes copied from user */
2448                 void *fsdata;
2449
2450                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2451                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2452                                                 iov_iter_count(i));
2453
2454 again:
2455                 /*
2456                  * Bring in the user page that we will copy from _first_.
2457                  * Otherwise there's a nasty deadlock on copying from the
2458                  * same page as we're writing to, without it being marked
2459                  * up-to-date.
2460                  *
2461                  * Not only is this an optimisation, but it is also required
2462                  * to check that the address is actually valid, when atomic
2463                  * usercopies are used, below.
2464                  */
2465                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2466                         status = -EFAULT;
2467                         break;
2468                 }
2469
2470                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2471                                                 &page, &fsdata);
2472                 if (unlikely(status < 0))
2473                         break;
2474
2475                 if (mapping_writably_mapped(mapping))
2476                         flush_dcache_page(page);
2477
2478                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2479                 flush_dcache_page(page);
2480
2481                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2482                                                 page, fsdata);
2483                 if (unlikely(status < 0))
2484                         break;
2485                 copied = status;
2486
2487                 cond_resched();
2488
2489                 iov_iter_advance(i, copied);
2490                 if (unlikely(copied == 0)) {
2491                         /*
2492                          * If we were unable to copy any data at all, we must
2493                          * fall back to a single segment length write.
2494                          *
2495                          * If we didn't fallback here, we could livelock
2496                          * because not all segments in the iov can be copied at
2497                          * once without a pagefault.
2498                          */
2499                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2500                                                 iov_iter_single_seg_count(i));
2501                         goto again;
2502                 }
2503                 pos += copied;
2504                 written += copied;
2505
2506                 balance_dirty_pages_ratelimited(mapping);
2507                 if (fatal_signal_pending(current)) {
2508                         status = -EINTR;
2509                         break;
2510                 }
2511         } while (iov_iter_count(i));
2512
2513         return written ? written : status;
2514 }
2515 EXPORT_SYMBOL(generic_perform_write);
2516
2517 /**
2518  * __generic_file_write_iter - write data to a file
2519  * @iocb:       IO state structure (file, offset, etc.)
2520  * @from:       iov_iter with data to write
2521  *
2522  * This function does all the work needed for actually writing data to a
2523  * file. It does all basic checks, removes SUID from the file, updates
2524  * modification times and calls proper subroutines depending on whether we
2525  * do direct IO or a standard buffered write.
2526  *
2527  * It expects i_mutex to be grabbed unless we work on a block device or similar
2528  * object which does not need locking at all.
2529  *
2530  * This function does *not* take care of syncing data in case of O_SYNC write.
2531  * A caller has to handle it. This is mainly due to the fact that we want to
2532  * avoid syncing under i_mutex.
2533  */
2534 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2535 {
2536         struct file *file = iocb->ki_filp;
2537         struct address_space * mapping = file->f_mapping;
2538         struct inode    *inode = mapping->host;
2539         loff_t          pos = iocb->ki_pos;
2540         ssize_t         written = 0;
2541         ssize_t         err;
2542         ssize_t         status;
2543         size_t          count = iov_iter_count(from);
2544
2545         /* We can write back this queue in page reclaim */
2546         current->backing_dev_info = mapping->backing_dev_info;
2547         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2548         if (err)
2549                 goto out;
2550
2551         if (count == 0)
2552                 goto out;
2553
2554         iov_iter_truncate(from, count);
2555
2556         err = file_remove_suid(file);
2557         if (err)
2558                 goto out;
2559
2560         err = file_update_time(file);
2561         if (err)
2562                 goto out;
2563
2564         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2565         if (unlikely(file->f_flags & O_DIRECT)) {
2566                 loff_t endbyte;
2567
2568                 written = generic_file_direct_write(iocb, from, pos);
2569                 if (written < 0 || written == count)
2570                         goto out;
2571
2572                 /*
2573                  * direct-io write to a hole: fall through to buffered I/O
2574                  * for completing the rest of the request.
2575                  */
2576                 pos += written;
2577                 count -= written;
2578
2579                 status = generic_perform_write(file, from, pos);
2580                 /*
2581                  * If generic_perform_write() returned a synchronous error
2582                  * then we want to return the number of bytes which were
2583                  * direct-written, or the error code if that was zero.  Note
2584                  * that this differs from normal direct-io semantics, which
2585                  * will return -EFOO even if some bytes were written.
2586                  */
2587                 if (unlikely(status < 0) && !written) {
2588                         err = status;
2589                         goto out;
2590                 }
2591                 iocb->ki_pos = pos + status;
2592                 /*
2593                  * We need to ensure that the page cache pages are written to
2594                  * disk and invalidated to preserve the expected O_DIRECT
2595                  * semantics.
2596                  */
2597                 endbyte = pos + status - 1;
2598                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2599                 if (err == 0) {
2600                         written += status;
2601                         invalidate_mapping_pages(mapping,
2602                                                  pos >> PAGE_CACHE_SHIFT,
2603                                                  endbyte >> PAGE_CACHE_SHIFT);
2604                 } else {
2605                         /*
2606                          * We don't know how much we wrote, so just return
2607                          * the number of bytes which were direct-written
2608                          */
2609                 }
2610         } else {
2611                 written = generic_perform_write(file, from, pos);
2612                 if (likely(written >= 0))
2613                         iocb->ki_pos = pos + written;
2614         }
2615 out:
2616         current->backing_dev_info = NULL;
2617         return written ? written : err;
2618 }
2619 EXPORT_SYMBOL(__generic_file_write_iter);
2620
2621 /**
2622  * generic_file_write_iter - write data to a file
2623  * @iocb:       IO state structure
2624  * @from:       iov_iter with data to write
2625  *
2626  * This is a wrapper around __generic_file_write_iter() to be used by most
2627  * filesystems. It takes care of syncing the file in case of O_SYNC file
2628  * and acquires i_mutex as needed.
2629  */
2630 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2631 {
2632         struct file *file = iocb->ki_filp;
2633         struct inode *inode = file->f_mapping->host;
2634         ssize_t ret;
2635
2636         mutex_lock(&inode->i_mutex);
2637         ret = __generic_file_write_iter(iocb, from);
2638         mutex_unlock(&inode->i_mutex);
2639
2640         if (ret > 0) {
2641                 ssize_t err;
2642
2643                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2644                 if (err < 0)
2645                         ret = err;
2646         }
2647         return ret;
2648 }
2649 EXPORT_SYMBOL(generic_file_write_iter);
2650
2651 /**
2652  * try_to_release_page() - release old fs-specific metadata on a page
2653  *
2654  * @page: the page which the kernel is trying to free
2655  * @gfp_mask: memory allocation flags (and I/O mode)
2656  *
2657  * The address_space is to try to release any data against the page
2658  * (presumably at page->private).  If the release was successful, return `1'.
2659  * Otherwise return zero.
2660  *
2661  * This may also be called if PG_fscache is set on a page, indicating that the
2662  * page is known to the local caching routines.
2663  *
2664  * The @gfp_mask argument specifies whether I/O may be performed to release
2665  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2666  *
2667  */
2668 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2669 {
2670         struct address_space * const mapping = page->mapping;
2671
2672         BUG_ON(!PageLocked(page));
2673         if (PageWriteback(page))
2674                 return 0;
2675
2676         if (mapping && mapping->a_ops->releasepage)
2677                 return mapping->a_ops->releasepage(page, gfp_mask);
2678         return try_to_free_buffers(page);
2679 }
2680
2681 EXPORT_SYMBOL(try_to_release_page);