]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
Merge tag 'dmaengine-fix-4.13-rc7' of git://git.infradead.org/users/vkoul/slave-dma
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default transparent hugepage support is disabled in order that avoid
43  * to risk increase the memory footprint of applications without a guaranteed
44  * benefit. When transparent hugepage support is enabled, is for all mappings,
45  * and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 static struct page *get_huge_zero_page(void)
66 {
67         struct page *zero_page;
68 retry:
69         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70                 return READ_ONCE(huge_zero_page);
71
72         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73                         HPAGE_PMD_ORDER);
74         if (!zero_page) {
75                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76                 return NULL;
77         }
78         count_vm_event(THP_ZERO_PAGE_ALLOC);
79         preempt_disable();
80         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81                 preempt_enable();
82                 __free_pages(zero_page, compound_order(zero_page));
83                 goto retry;
84         }
85
86         /* We take additional reference here. It will be put back by shrinker */
87         atomic_set(&huge_zero_refcount, 2);
88         preempt_enable();
89         return READ_ONCE(huge_zero_page);
90 }
91
92 static void put_huge_zero_page(void)
93 {
94         /*
95          * Counter should never go to zero here. Only shrinker can put
96          * last reference.
97          */
98         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104                 return READ_ONCE(huge_zero_page);
105
106         if (!get_huge_zero_page())
107                 return NULL;
108
109         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110                 put_huge_zero_page();
111
112         return READ_ONCE(huge_zero_page);
113 }
114
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118                 put_huge_zero_page();
119 }
120
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122                                         struct shrink_control *sc)
123 {
124         /* we can free zero page only if last reference remains */
125         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129                                        struct shrink_control *sc)
130 {
131         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132                 struct page *zero_page = xchg(&huge_zero_page, NULL);
133                 BUG_ON(zero_page == NULL);
134                 __free_pages(zero_page, compound_order(zero_page));
135                 return HPAGE_PMD_NR;
136         }
137
138         return 0;
139 }
140
141 static struct shrinker huge_zero_page_shrinker = {
142         .count_objects = shrink_huge_zero_page_count,
143         .scan_objects = shrink_huge_zero_page_scan,
144         .seeks = DEFAULT_SEEKS,
145 };
146
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149                             struct kobj_attribute *attr, char *buf)
150 {
151         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152                 return sprintf(buf, "[always] madvise never\n");
153         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154                 return sprintf(buf, "always [madvise] never\n");
155         else
156                 return sprintf(buf, "always madvise [never]\n");
157 }
158
159 static ssize_t enabled_store(struct kobject *kobj,
160                              struct kobj_attribute *attr,
161                              const char *buf, size_t count)
162 {
163         ssize_t ret = count;
164
165         if (!memcmp("always", buf,
166                     min(sizeof("always")-1, count))) {
167                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169         } else if (!memcmp("madvise", buf,
170                            min(sizeof("madvise")-1, count))) {
171                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173         } else if (!memcmp("never", buf,
174                            min(sizeof("never")-1, count))) {
175                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177         } else
178                 ret = -EINVAL;
179
180         if (ret > 0) {
181                 int err = start_stop_khugepaged();
182                 if (err)
183                         ret = err;
184         }
185         return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188         __ATTR(enabled, 0644, enabled_show, enabled_store);
189
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191                                 struct kobj_attribute *attr, char *buf,
192                                 enum transparent_hugepage_flag flag)
193 {
194         return sprintf(buf, "%d\n",
195                        !!test_bit(flag, &transparent_hugepage_flags));
196 }
197
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199                                  struct kobj_attribute *attr,
200                                  const char *buf, size_t count,
201                                  enum transparent_hugepage_flag flag)
202 {
203         unsigned long value;
204         int ret;
205
206         ret = kstrtoul(buf, 10, &value);
207         if (ret < 0)
208                 return ret;
209         if (value > 1)
210                 return -EINVAL;
211
212         if (value)
213                 set_bit(flag, &transparent_hugepage_flags);
214         else
215                 clear_bit(flag, &transparent_hugepage_flags);
216
217         return count;
218 }
219
220 static ssize_t defrag_show(struct kobject *kobj,
221                            struct kobj_attribute *attr, char *buf)
222 {
223         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233
234 static ssize_t defrag_store(struct kobject *kobj,
235                             struct kobj_attribute *attr,
236                             const char *buf, size_t count)
237 {
238         if (!memcmp("always", buf,
239                     min(sizeof("always")-1, count))) {
240                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244         } else if (!memcmp("defer+madvise", buf,
245                     min(sizeof("defer+madvise")-1, count))) {
246                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250         } else if (!memcmp("defer", buf,
251                     min(sizeof("defer")-1, count))) {
252                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256         } else if (!memcmp("madvise", buf,
257                            min(sizeof("madvise")-1, count))) {
258                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262         } else if (!memcmp("never", buf,
263                            min(sizeof("never")-1, count))) {
264                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268         } else
269                 return -EINVAL;
270
271         return count;
272 }
273 static struct kobj_attribute defrag_attr =
274         __ATTR(defrag, 0644, defrag_show, defrag_store);
275
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277                 struct kobj_attribute *attr, char *buf)
278 {
279         return single_hugepage_flag_show(kobj, attr, buf,
280                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283                 struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285         return single_hugepage_flag_store(kobj, attr, buf, count,
286                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292                 struct kobj_attribute *attr, char *buf)
293 {
294         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297         __ATTR_RO(hpage_pmd_size);
298
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301                                 struct kobj_attribute *attr, char *buf)
302 {
303         return single_hugepage_flag_show(kobj, attr, buf,
304                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307                                struct kobj_attribute *attr,
308                                const char *buf, size_t count)
309 {
310         return single_hugepage_flag_store(kobj, attr, buf, count,
311                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316
317 static struct attribute *hugepage_attr[] = {
318         &enabled_attr.attr,
319         &defrag_attr.attr,
320         &use_zero_page_attr.attr,
321         &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323         &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326         &debug_cow_attr.attr,
327 #endif
328         NULL,
329 };
330
331 static struct attribute_group hugepage_attr_group = {
332         .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337         int err;
338
339         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340         if (unlikely(!*hugepage_kobj)) {
341                 pr_err("failed to create transparent hugepage kobject\n");
342                 return -ENOMEM;
343         }
344
345         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346         if (err) {
347                 pr_err("failed to register transparent hugepage group\n");
348                 goto delete_obj;
349         }
350
351         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352         if (err) {
353                 pr_err("failed to register transparent hugepage group\n");
354                 goto remove_hp_group;
355         }
356
357         return 0;
358
359 remove_hp_group:
360         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362         kobject_put(*hugepage_kobj);
363         return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370         kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375         return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385         int err;
386         struct kobject *hugepage_kobj;
387
388         if (!has_transparent_hugepage()) {
389                 transparent_hugepage_flags = 0;
390                 return -EINVAL;
391         }
392
393         /*
394          * hugepages can't be allocated by the buddy allocator
395          */
396         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397         /*
398          * we use page->mapping and page->index in second tail page
399          * as list_head: assuming THP order >= 2
400          */
401         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
403         err = hugepage_init_sysfs(&hugepage_kobj);
404         if (err)
405                 goto err_sysfs;
406
407         err = khugepaged_init();
408         if (err)
409                 goto err_slab;
410
411         err = register_shrinker(&huge_zero_page_shrinker);
412         if (err)
413                 goto err_hzp_shrinker;
414         err = register_shrinker(&deferred_split_shrinker);
415         if (err)
416                 goto err_split_shrinker;
417
418         /*
419          * By default disable transparent hugepages on smaller systems,
420          * where the extra memory used could hurt more than TLB overhead
421          * is likely to save.  The admin can still enable it through /sys.
422          */
423         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424                 transparent_hugepage_flags = 0;
425                 return 0;
426         }
427
428         err = start_stop_khugepaged();
429         if (err)
430                 goto err_khugepaged;
431
432         return 0;
433 err_khugepaged:
434         unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436         unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438         khugepaged_destroy();
439 err_slab:
440         hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442         return err;
443 }
444 subsys_initcall(hugepage_init);
445
446 static int __init setup_transparent_hugepage(char *str)
447 {
448         int ret = 0;
449         if (!str)
450                 goto out;
451         if (!strcmp(str, "always")) {
452                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453                         &transparent_hugepage_flags);
454                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455                           &transparent_hugepage_flags);
456                 ret = 1;
457         } else if (!strcmp(str, "madvise")) {
458                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459                           &transparent_hugepage_flags);
460                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461                         &transparent_hugepage_flags);
462                 ret = 1;
463         } else if (!strcmp(str, "never")) {
464                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465                           &transparent_hugepage_flags);
466                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467                           &transparent_hugepage_flags);
468                 ret = 1;
469         }
470 out:
471         if (!ret)
472                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473         return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479         if (likely(vma->vm_flags & VM_WRITE))
480                 pmd = pmd_mkwrite(pmd);
481         return pmd;
482 }
483
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486         /*
487          * ->lru in the tail pages is occupied by compound_head.
488          * Let's use ->mapping + ->index in the second tail page as list_head.
489          */
490         return (struct list_head *)&page[2].mapping;
491 }
492
493 void prep_transhuge_page(struct page *page)
494 {
495         /*
496          * we use page->mapping and page->indexlru in second tail page
497          * as list_head: assuming THP order >= 2
498          */
499
500         INIT_LIST_HEAD(page_deferred_list(page));
501         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505                 loff_t off, unsigned long flags, unsigned long size)
506 {
507         unsigned long addr;
508         loff_t off_end = off + len;
509         loff_t off_align = round_up(off, size);
510         unsigned long len_pad;
511
512         if (off_end <= off_align || (off_end - off_align) < size)
513                 return 0;
514
515         len_pad = len + size;
516         if (len_pad < len || (off + len_pad) < off)
517                 return 0;
518
519         addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520                                               off >> PAGE_SHIFT, flags);
521         if (IS_ERR_VALUE(addr))
522                 return 0;
523
524         addr += (off - addr) & (size - 1);
525         return addr;
526 }
527
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529                 unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533         if (addr)
534                 goto out;
535         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536                 goto out;
537
538         addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539         if (addr)
540                 return addr;
541
542  out:
543         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548                 gfp_t gfp)
549 {
550         struct vm_area_struct *vma = vmf->vma;
551         struct mem_cgroup *memcg;
552         pgtable_t pgtable;
553         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554         int ret = 0;
555
556         VM_BUG_ON_PAGE(!PageCompound(page), page);
557
558         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559                 put_page(page);
560                 count_vm_event(THP_FAULT_FALLBACK);
561                 return VM_FAULT_FALLBACK;
562         }
563
564         pgtable = pte_alloc_one(vma->vm_mm, haddr);
565         if (unlikely(!pgtable)) {
566                 ret = VM_FAULT_OOM;
567                 goto release;
568         }
569
570         clear_huge_page(page, haddr, HPAGE_PMD_NR);
571         /*
572          * The memory barrier inside __SetPageUptodate makes sure that
573          * clear_huge_page writes become visible before the set_pmd_at()
574          * write.
575          */
576         __SetPageUptodate(page);
577
578         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579         if (unlikely(!pmd_none(*vmf->pmd))) {
580                 goto unlock_release;
581         } else {
582                 pmd_t entry;
583
584                 ret = check_stable_address_space(vma->vm_mm);
585                 if (ret)
586                         goto unlock_release;
587
588                 /* Deliver the page fault to userland */
589                 if (userfaultfd_missing(vma)) {
590                         int ret;
591
592                         spin_unlock(vmf->ptl);
593                         mem_cgroup_cancel_charge(page, memcg, true);
594                         put_page(page);
595                         pte_free(vma->vm_mm, pgtable);
596                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
597                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598                         return ret;
599                 }
600
601                 entry = mk_huge_pmd(page, vma->vm_page_prot);
602                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603                 page_add_new_anon_rmap(page, vma, haddr, true);
604                 mem_cgroup_commit_charge(page, memcg, false, true);
605                 lru_cache_add_active_or_unevictable(page, vma);
606                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609                 atomic_long_inc(&vma->vm_mm->nr_ptes);
610                 spin_unlock(vmf->ptl);
611                 count_vm_event(THP_FAULT_ALLOC);
612         }
613
614         return 0;
615 unlock_release:
616         spin_unlock(vmf->ptl);
617 release:
618         if (pgtable)
619                 pte_free(vma->vm_mm, pgtable);
620         mem_cgroup_cancel_charge(page, memcg, true);
621         put_page(page);
622         return ret;
623
624 }
625
626 /*
627  * always: directly stall for all thp allocations
628  * defer: wake kswapd and fail if not immediately available
629  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630  *                fail if not immediately available
631  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632  *          available
633  * never: never stall for any thp allocation
634  */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638
639         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644                 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645                                                              __GFP_KSWAPD_RECLAIM);
646         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647                 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648                                                              0);
649         return GFP_TRANSHUGE_LIGHT;
650 }
651
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655                 struct page *zero_page)
656 {
657         pmd_t entry;
658         if (!pmd_none(*pmd))
659                 return false;
660         entry = mk_pmd(zero_page, vma->vm_page_prot);
661         entry = pmd_mkhuge(entry);
662         if (pgtable)
663                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
664         set_pmd_at(mm, haddr, pmd, entry);
665         atomic_long_inc(&mm->nr_ptes);
666         return true;
667 }
668
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671         struct vm_area_struct *vma = vmf->vma;
672         gfp_t gfp;
673         struct page *page;
674         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675
676         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677                 return VM_FAULT_FALLBACK;
678         if (unlikely(anon_vma_prepare(vma)))
679                 return VM_FAULT_OOM;
680         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681                 return VM_FAULT_OOM;
682         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683                         !mm_forbids_zeropage(vma->vm_mm) &&
684                         transparent_hugepage_use_zero_page()) {
685                 pgtable_t pgtable;
686                 struct page *zero_page;
687                 bool set;
688                 int ret;
689                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
690                 if (unlikely(!pgtable))
691                         return VM_FAULT_OOM;
692                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
693                 if (unlikely(!zero_page)) {
694                         pte_free(vma->vm_mm, pgtable);
695                         count_vm_event(THP_FAULT_FALLBACK);
696                         return VM_FAULT_FALLBACK;
697                 }
698                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699                 ret = 0;
700                 set = false;
701                 if (pmd_none(*vmf->pmd)) {
702                         ret = check_stable_address_space(vma->vm_mm);
703                         if (ret) {
704                                 spin_unlock(vmf->ptl);
705                         } else if (userfaultfd_missing(vma)) {
706                                 spin_unlock(vmf->ptl);
707                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
708                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709                         } else {
710                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
711                                                    haddr, vmf->pmd, zero_page);
712                                 spin_unlock(vmf->ptl);
713                                 set = true;
714                         }
715                 } else
716                         spin_unlock(vmf->ptl);
717                 if (!set)
718                         pte_free(vma->vm_mm, pgtable);
719                 return ret;
720         }
721         gfp = alloc_hugepage_direct_gfpmask(vma);
722         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723         if (unlikely(!page)) {
724                 count_vm_event(THP_FAULT_FALLBACK);
725                 return VM_FAULT_FALLBACK;
726         }
727         prep_transhuge_page(page);
728         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733                 pgtable_t pgtable)
734 {
735         struct mm_struct *mm = vma->vm_mm;
736         pmd_t entry;
737         spinlock_t *ptl;
738
739         ptl = pmd_lock(mm, pmd);
740         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741         if (pfn_t_devmap(pfn))
742                 entry = pmd_mkdevmap(entry);
743         if (write) {
744                 entry = pmd_mkyoung(pmd_mkdirty(entry));
745                 entry = maybe_pmd_mkwrite(entry, vma);
746         }
747
748         if (pgtable) {
749                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750                 atomic_long_inc(&mm->nr_ptes);
751         }
752
753         set_pmd_at(mm, addr, pmd, entry);
754         update_mmu_cache_pmd(vma, addr, pmd);
755         spin_unlock(ptl);
756 }
757
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759                         pmd_t *pmd, pfn_t pfn, bool write)
760 {
761         pgprot_t pgprot = vma->vm_page_prot;
762         pgtable_t pgtable = NULL;
763         /*
764          * If we had pmd_special, we could avoid all these restrictions,
765          * but we need to be consistent with PTEs and architectures that
766          * can't support a 'special' bit.
767          */
768         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770                                                 (VM_PFNMAP|VM_MIXEDMAP));
771         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772         BUG_ON(!pfn_t_devmap(pfn));
773
774         if (addr < vma->vm_start || addr >= vma->vm_end)
775                 return VM_FAULT_SIGBUS;
776
777         if (arch_needs_pgtable_deposit()) {
778                 pgtable = pte_alloc_one(vma->vm_mm, addr);
779                 if (!pgtable)
780                         return VM_FAULT_OOM;
781         }
782
783         track_pfn_insert(vma, &pgprot, pfn);
784
785         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786         return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793         if (likely(vma->vm_flags & VM_WRITE))
794                 pud = pud_mkwrite(pud);
795         return pud;
796 }
797
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801         struct mm_struct *mm = vma->vm_mm;
802         pud_t entry;
803         spinlock_t *ptl;
804
805         ptl = pud_lock(mm, pud);
806         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807         if (pfn_t_devmap(pfn))
808                 entry = pud_mkdevmap(entry);
809         if (write) {
810                 entry = pud_mkyoung(pud_mkdirty(entry));
811                 entry = maybe_pud_mkwrite(entry, vma);
812         }
813         set_pud_at(mm, addr, pud, entry);
814         update_mmu_cache_pud(vma, addr, pud);
815         spin_unlock(ptl);
816 }
817
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819                         pud_t *pud, pfn_t pfn, bool write)
820 {
821         pgprot_t pgprot = vma->vm_page_prot;
822         /*
823          * If we had pud_special, we could avoid all these restrictions,
824          * but we need to be consistent with PTEs and architectures that
825          * can't support a 'special' bit.
826          */
827         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829                                                 (VM_PFNMAP|VM_MIXEDMAP));
830         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831         BUG_ON(!pfn_t_devmap(pfn));
832
833         if (addr < vma->vm_start || addr >= vma->vm_end)
834                 return VM_FAULT_SIGBUS;
835
836         track_pfn_insert(vma, &pgprot, pfn);
837
838         insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839         return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845                 pmd_t *pmd)
846 {
847         pmd_t _pmd;
848
849         /*
850          * We should set the dirty bit only for FOLL_WRITE but for now
851          * the dirty bit in the pmd is meaningless.  And if the dirty
852          * bit will become meaningful and we'll only set it with
853          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854          * set the young bit, instead of the current set_pmd_at.
855          */
856         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858                                 pmd, _pmd,  1))
859                 update_mmu_cache_pmd(vma, addr, pmd);
860 }
861
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863                 pmd_t *pmd, int flags)
864 {
865         unsigned long pfn = pmd_pfn(*pmd);
866         struct mm_struct *mm = vma->vm_mm;
867         struct dev_pagemap *pgmap;
868         struct page *page;
869
870         assert_spin_locked(pmd_lockptr(mm, pmd));
871
872         /*
873          * When we COW a devmap PMD entry, we split it into PTEs, so we should
874          * not be in this function with `flags & FOLL_COW` set.
875          */
876         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
878         if (flags & FOLL_WRITE && !pmd_write(*pmd))
879                 return NULL;
880
881         if (pmd_present(*pmd) && pmd_devmap(*pmd))
882                 /* pass */;
883         else
884                 return NULL;
885
886         if (flags & FOLL_TOUCH)
887                 touch_pmd(vma, addr, pmd);
888
889         /*
890          * device mapped pages can only be returned if the
891          * caller will manage the page reference count.
892          */
893         if (!(flags & FOLL_GET))
894                 return ERR_PTR(-EEXIST);
895
896         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897         pgmap = get_dev_pagemap(pfn, NULL);
898         if (!pgmap)
899                 return ERR_PTR(-EFAULT);
900         page = pfn_to_page(pfn);
901         get_page(page);
902         put_dev_pagemap(pgmap);
903
904         return page;
905 }
906
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909                   struct vm_area_struct *vma)
910 {
911         spinlock_t *dst_ptl, *src_ptl;
912         struct page *src_page;
913         pmd_t pmd;
914         pgtable_t pgtable = NULL;
915         int ret = -ENOMEM;
916
917         /* Skip if can be re-fill on fault */
918         if (!vma_is_anonymous(vma))
919                 return 0;
920
921         pgtable = pte_alloc_one(dst_mm, addr);
922         if (unlikely(!pgtable))
923                 goto out;
924
925         dst_ptl = pmd_lock(dst_mm, dst_pmd);
926         src_ptl = pmd_lockptr(src_mm, src_pmd);
927         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
928
929         ret = -EAGAIN;
930         pmd = *src_pmd;
931         if (unlikely(!pmd_trans_huge(pmd))) {
932                 pte_free(dst_mm, pgtable);
933                 goto out_unlock;
934         }
935         /*
936          * When page table lock is held, the huge zero pmd should not be
937          * under splitting since we don't split the page itself, only pmd to
938          * a page table.
939          */
940         if (is_huge_zero_pmd(pmd)) {
941                 struct page *zero_page;
942                 /*
943                  * get_huge_zero_page() will never allocate a new page here,
944                  * since we already have a zero page to copy. It just takes a
945                  * reference.
946                  */
947                 zero_page = mm_get_huge_zero_page(dst_mm);
948                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
949                                 zero_page);
950                 ret = 0;
951                 goto out_unlock;
952         }
953
954         src_page = pmd_page(pmd);
955         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
956         get_page(src_page);
957         page_dup_rmap(src_page, true);
958         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
959         atomic_long_inc(&dst_mm->nr_ptes);
960         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
961
962         pmdp_set_wrprotect(src_mm, addr, src_pmd);
963         pmd = pmd_mkold(pmd_wrprotect(pmd));
964         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
965
966         ret = 0;
967 out_unlock:
968         spin_unlock(src_ptl);
969         spin_unlock(dst_ptl);
970 out:
971         return ret;
972 }
973
974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
975 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
976                 pud_t *pud)
977 {
978         pud_t _pud;
979
980         /*
981          * We should set the dirty bit only for FOLL_WRITE but for now
982          * the dirty bit in the pud is meaningless.  And if the dirty
983          * bit will become meaningful and we'll only set it with
984          * FOLL_WRITE, an atomic set_bit will be required on the pud to
985          * set the young bit, instead of the current set_pud_at.
986          */
987         _pud = pud_mkyoung(pud_mkdirty(*pud));
988         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
989                                 pud, _pud,  1))
990                 update_mmu_cache_pud(vma, addr, pud);
991 }
992
993 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
994                 pud_t *pud, int flags)
995 {
996         unsigned long pfn = pud_pfn(*pud);
997         struct mm_struct *mm = vma->vm_mm;
998         struct dev_pagemap *pgmap;
999         struct page *page;
1000
1001         assert_spin_locked(pud_lockptr(mm, pud));
1002
1003         if (flags & FOLL_WRITE && !pud_write(*pud))
1004                 return NULL;
1005
1006         if (pud_present(*pud) && pud_devmap(*pud))
1007                 /* pass */;
1008         else
1009                 return NULL;
1010
1011         if (flags & FOLL_TOUCH)
1012                 touch_pud(vma, addr, pud);
1013
1014         /*
1015          * device mapped pages can only be returned if the
1016          * caller will manage the page reference count.
1017          */
1018         if (!(flags & FOLL_GET))
1019                 return ERR_PTR(-EEXIST);
1020
1021         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1022         pgmap = get_dev_pagemap(pfn, NULL);
1023         if (!pgmap)
1024                 return ERR_PTR(-EFAULT);
1025         page = pfn_to_page(pfn);
1026         get_page(page);
1027         put_dev_pagemap(pgmap);
1028
1029         return page;
1030 }
1031
1032 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1034                   struct vm_area_struct *vma)
1035 {
1036         spinlock_t *dst_ptl, *src_ptl;
1037         pud_t pud;
1038         int ret;
1039
1040         dst_ptl = pud_lock(dst_mm, dst_pud);
1041         src_ptl = pud_lockptr(src_mm, src_pud);
1042         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043
1044         ret = -EAGAIN;
1045         pud = *src_pud;
1046         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1047                 goto out_unlock;
1048
1049         /*
1050          * When page table lock is held, the huge zero pud should not be
1051          * under splitting since we don't split the page itself, only pud to
1052          * a page table.
1053          */
1054         if (is_huge_zero_pud(pud)) {
1055                 /* No huge zero pud yet */
1056         }
1057
1058         pudp_set_wrprotect(src_mm, addr, src_pud);
1059         pud = pud_mkold(pud_wrprotect(pud));
1060         set_pud_at(dst_mm, addr, dst_pud, pud);
1061
1062         ret = 0;
1063 out_unlock:
1064         spin_unlock(src_ptl);
1065         spin_unlock(dst_ptl);
1066         return ret;
1067 }
1068
1069 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1070 {
1071         pud_t entry;
1072         unsigned long haddr;
1073         bool write = vmf->flags & FAULT_FLAG_WRITE;
1074
1075         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1076         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1077                 goto unlock;
1078
1079         entry = pud_mkyoung(orig_pud);
1080         if (write)
1081                 entry = pud_mkdirty(entry);
1082         haddr = vmf->address & HPAGE_PUD_MASK;
1083         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1084                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1085
1086 unlock:
1087         spin_unlock(vmf->ptl);
1088 }
1089 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1090
1091 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1092 {
1093         pmd_t entry;
1094         unsigned long haddr;
1095         bool write = vmf->flags & FAULT_FLAG_WRITE;
1096
1097         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1098         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1099                 goto unlock;
1100
1101         entry = pmd_mkyoung(orig_pmd);
1102         if (write)
1103                 entry = pmd_mkdirty(entry);
1104         haddr = vmf->address & HPAGE_PMD_MASK;
1105         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1106                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1107
1108 unlock:
1109         spin_unlock(vmf->ptl);
1110 }
1111
1112 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1113                 struct page *page)
1114 {
1115         struct vm_area_struct *vma = vmf->vma;
1116         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1117         struct mem_cgroup *memcg;
1118         pgtable_t pgtable;
1119         pmd_t _pmd;
1120         int ret = 0, i;
1121         struct page **pages;
1122         unsigned long mmun_start;       /* For mmu_notifiers */
1123         unsigned long mmun_end;         /* For mmu_notifiers */
1124
1125         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1126                         GFP_KERNEL);
1127         if (unlikely(!pages)) {
1128                 ret |= VM_FAULT_OOM;
1129                 goto out;
1130         }
1131
1132         for (i = 0; i < HPAGE_PMD_NR; i++) {
1133                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1134                                                vmf->address, page_to_nid(page));
1135                 if (unlikely(!pages[i] ||
1136                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
1137                                      GFP_KERNEL, &memcg, false))) {
1138                         if (pages[i])
1139                                 put_page(pages[i]);
1140                         while (--i >= 0) {
1141                                 memcg = (void *)page_private(pages[i]);
1142                                 set_page_private(pages[i], 0);
1143                                 mem_cgroup_cancel_charge(pages[i], memcg,
1144                                                 false);
1145                                 put_page(pages[i]);
1146                         }
1147                         kfree(pages);
1148                         ret |= VM_FAULT_OOM;
1149                         goto out;
1150                 }
1151                 set_page_private(pages[i], (unsigned long)memcg);
1152         }
1153
1154         for (i = 0; i < HPAGE_PMD_NR; i++) {
1155                 copy_user_highpage(pages[i], page + i,
1156                                    haddr + PAGE_SIZE * i, vma);
1157                 __SetPageUptodate(pages[i]);
1158                 cond_resched();
1159         }
1160
1161         mmun_start = haddr;
1162         mmun_end   = haddr + HPAGE_PMD_SIZE;
1163         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1164
1165         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1166         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1167                 goto out_free_pages;
1168         VM_BUG_ON_PAGE(!PageHead(page), page);
1169
1170         pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1171         /* leave pmd empty until pte is filled */
1172
1173         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1174         pmd_populate(vma->vm_mm, &_pmd, pgtable);
1175
1176         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1177                 pte_t entry;
1178                 entry = mk_pte(pages[i], vma->vm_page_prot);
1179                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1180                 memcg = (void *)page_private(pages[i]);
1181                 set_page_private(pages[i], 0);
1182                 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1183                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1184                 lru_cache_add_active_or_unevictable(pages[i], vma);
1185                 vmf->pte = pte_offset_map(&_pmd, haddr);
1186                 VM_BUG_ON(!pte_none(*vmf->pte));
1187                 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1188                 pte_unmap(vmf->pte);
1189         }
1190         kfree(pages);
1191
1192         smp_wmb(); /* make pte visible before pmd */
1193         pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1194         page_remove_rmap(page, true);
1195         spin_unlock(vmf->ptl);
1196
1197         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1198
1199         ret |= VM_FAULT_WRITE;
1200         put_page(page);
1201
1202 out:
1203         return ret;
1204
1205 out_free_pages:
1206         spin_unlock(vmf->ptl);
1207         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1208         for (i = 0; i < HPAGE_PMD_NR; i++) {
1209                 memcg = (void *)page_private(pages[i]);
1210                 set_page_private(pages[i], 0);
1211                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1212                 put_page(pages[i]);
1213         }
1214         kfree(pages);
1215         goto out;
1216 }
1217
1218 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1219 {
1220         struct vm_area_struct *vma = vmf->vma;
1221         struct page *page = NULL, *new_page;
1222         struct mem_cgroup *memcg;
1223         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1224         unsigned long mmun_start;       /* For mmu_notifiers */
1225         unsigned long mmun_end;         /* For mmu_notifiers */
1226         gfp_t huge_gfp;                 /* for allocation and charge */
1227         int ret = 0;
1228
1229         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1230         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1231         if (is_huge_zero_pmd(orig_pmd))
1232                 goto alloc;
1233         spin_lock(vmf->ptl);
1234         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1235                 goto out_unlock;
1236
1237         page = pmd_page(orig_pmd);
1238         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1239         /*
1240          * We can only reuse the page if nobody else maps the huge page or it's
1241          * part.
1242          */
1243         if (page_trans_huge_mapcount(page, NULL) == 1) {
1244                 pmd_t entry;
1245                 entry = pmd_mkyoung(orig_pmd);
1246                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1247                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1248                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1249                 ret |= VM_FAULT_WRITE;
1250                 goto out_unlock;
1251         }
1252         get_page(page);
1253         spin_unlock(vmf->ptl);
1254 alloc:
1255         if (transparent_hugepage_enabled(vma) &&
1256             !transparent_hugepage_debug_cow()) {
1257                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1258                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1259         } else
1260                 new_page = NULL;
1261
1262         if (likely(new_page)) {
1263                 prep_transhuge_page(new_page);
1264         } else {
1265                 if (!page) {
1266                         split_huge_pmd(vma, vmf->pmd, vmf->address);
1267                         ret |= VM_FAULT_FALLBACK;
1268                 } else {
1269                         ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1270                         if (ret & VM_FAULT_OOM) {
1271                                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1272                                 ret |= VM_FAULT_FALLBACK;
1273                         }
1274                         put_page(page);
1275                 }
1276                 count_vm_event(THP_FAULT_FALLBACK);
1277                 goto out;
1278         }
1279
1280         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1281                                         huge_gfp, &memcg, true))) {
1282                 put_page(new_page);
1283                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1284                 if (page)
1285                         put_page(page);
1286                 ret |= VM_FAULT_FALLBACK;
1287                 count_vm_event(THP_FAULT_FALLBACK);
1288                 goto out;
1289         }
1290
1291         count_vm_event(THP_FAULT_ALLOC);
1292
1293         if (!page)
1294                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1295         else
1296                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1297         __SetPageUptodate(new_page);
1298
1299         mmun_start = haddr;
1300         mmun_end   = haddr + HPAGE_PMD_SIZE;
1301         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1302
1303         spin_lock(vmf->ptl);
1304         if (page)
1305                 put_page(page);
1306         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307                 spin_unlock(vmf->ptl);
1308                 mem_cgroup_cancel_charge(new_page, memcg, true);
1309                 put_page(new_page);
1310                 goto out_mn;
1311         } else {
1312                 pmd_t entry;
1313                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1314                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1315                 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1316                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1317                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1318                 lru_cache_add_active_or_unevictable(new_page, vma);
1319                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1320                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1321                 if (!page) {
1322                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1323                 } else {
1324                         VM_BUG_ON_PAGE(!PageHead(page), page);
1325                         page_remove_rmap(page, true);
1326                         put_page(page);
1327                 }
1328                 ret |= VM_FAULT_WRITE;
1329         }
1330         spin_unlock(vmf->ptl);
1331 out_mn:
1332         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1333 out:
1334         return ret;
1335 out_unlock:
1336         spin_unlock(vmf->ptl);
1337         return ret;
1338 }
1339
1340 /*
1341  * FOLL_FORCE can write to even unwritable pmd's, but only
1342  * after we've gone through a COW cycle and they are dirty.
1343  */
1344 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1345 {
1346         return pmd_write(pmd) ||
1347                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1348 }
1349
1350 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1351                                    unsigned long addr,
1352                                    pmd_t *pmd,
1353                                    unsigned int flags)
1354 {
1355         struct mm_struct *mm = vma->vm_mm;
1356         struct page *page = NULL;
1357
1358         assert_spin_locked(pmd_lockptr(mm, pmd));
1359
1360         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1361                 goto out;
1362
1363         /* Avoid dumping huge zero page */
1364         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1365                 return ERR_PTR(-EFAULT);
1366
1367         /* Full NUMA hinting faults to serialise migration in fault paths */
1368         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1369                 goto out;
1370
1371         page = pmd_page(*pmd);
1372         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1373         if (flags & FOLL_TOUCH)
1374                 touch_pmd(vma, addr, pmd);
1375         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1376                 /*
1377                  * We don't mlock() pte-mapped THPs. This way we can avoid
1378                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1379                  *
1380                  * For anon THP:
1381                  *
1382                  * In most cases the pmd is the only mapping of the page as we
1383                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1384                  * writable private mappings in populate_vma_page_range().
1385                  *
1386                  * The only scenario when we have the page shared here is if we
1387                  * mlocking read-only mapping shared over fork(). We skip
1388                  * mlocking such pages.
1389                  *
1390                  * For file THP:
1391                  *
1392                  * We can expect PageDoubleMap() to be stable under page lock:
1393                  * for file pages we set it in page_add_file_rmap(), which
1394                  * requires page to be locked.
1395                  */
1396
1397                 if (PageAnon(page) && compound_mapcount(page) != 1)
1398                         goto skip_mlock;
1399                 if (PageDoubleMap(page) || !page->mapping)
1400                         goto skip_mlock;
1401                 if (!trylock_page(page))
1402                         goto skip_mlock;
1403                 lru_add_drain();
1404                 if (page->mapping && !PageDoubleMap(page))
1405                         mlock_vma_page(page);
1406                 unlock_page(page);
1407         }
1408 skip_mlock:
1409         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1410         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1411         if (flags & FOLL_GET)
1412                 get_page(page);
1413
1414 out:
1415         return page;
1416 }
1417
1418 /* NUMA hinting page fault entry point for trans huge pmds */
1419 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1420 {
1421         struct vm_area_struct *vma = vmf->vma;
1422         struct anon_vma *anon_vma = NULL;
1423         struct page *page;
1424         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1425         int page_nid = -1, this_nid = numa_node_id();
1426         int target_nid, last_cpupid = -1;
1427         bool page_locked;
1428         bool migrated = false;
1429         bool was_writable;
1430         int flags = 0;
1431
1432         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1433         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1434                 goto out_unlock;
1435
1436         /*
1437          * If there are potential migrations, wait for completion and retry
1438          * without disrupting NUMA hinting information. Do not relock and
1439          * check_same as the page may no longer be mapped.
1440          */
1441         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1442                 page = pmd_page(*vmf->pmd);
1443                 if (!get_page_unless_zero(page))
1444                         goto out_unlock;
1445                 spin_unlock(vmf->ptl);
1446                 wait_on_page_locked(page);
1447                 put_page(page);
1448                 goto out;
1449         }
1450
1451         page = pmd_page(pmd);
1452         BUG_ON(is_huge_zero_page(page));
1453         page_nid = page_to_nid(page);
1454         last_cpupid = page_cpupid_last(page);
1455         count_vm_numa_event(NUMA_HINT_FAULTS);
1456         if (page_nid == this_nid) {
1457                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1458                 flags |= TNF_FAULT_LOCAL;
1459         }
1460
1461         /* See similar comment in do_numa_page for explanation */
1462         if (!pmd_savedwrite(pmd))
1463                 flags |= TNF_NO_GROUP;
1464
1465         /*
1466          * Acquire the page lock to serialise THP migrations but avoid dropping
1467          * page_table_lock if at all possible
1468          */
1469         page_locked = trylock_page(page);
1470         target_nid = mpol_misplaced(page, vma, haddr);
1471         if (target_nid == -1) {
1472                 /* If the page was locked, there are no parallel migrations */
1473                 if (page_locked)
1474                         goto clear_pmdnuma;
1475         }
1476
1477         /* Migration could have started since the pmd_trans_migrating check */
1478         if (!page_locked) {
1479                 page_nid = -1;
1480                 if (!get_page_unless_zero(page))
1481                         goto out_unlock;
1482                 spin_unlock(vmf->ptl);
1483                 wait_on_page_locked(page);
1484                 put_page(page);
1485                 goto out;
1486         }
1487
1488         /*
1489          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1490          * to serialises splits
1491          */
1492         get_page(page);
1493         spin_unlock(vmf->ptl);
1494         anon_vma = page_lock_anon_vma_read(page);
1495
1496         /* Confirm the PMD did not change while page_table_lock was released */
1497         spin_lock(vmf->ptl);
1498         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1499                 unlock_page(page);
1500                 put_page(page);
1501                 page_nid = -1;
1502                 goto out_unlock;
1503         }
1504
1505         /* Bail if we fail to protect against THP splits for any reason */
1506         if (unlikely(!anon_vma)) {
1507                 put_page(page);
1508                 page_nid = -1;
1509                 goto clear_pmdnuma;
1510         }
1511
1512         /*
1513          * The page_table_lock above provides a memory barrier
1514          * with change_protection_range.
1515          */
1516         if (mm_tlb_flush_pending(vma->vm_mm))
1517                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1518
1519         /*
1520          * Migrate the THP to the requested node, returns with page unlocked
1521          * and access rights restored.
1522          */
1523         spin_unlock(vmf->ptl);
1524         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1525                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1526         if (migrated) {
1527                 flags |= TNF_MIGRATED;
1528                 page_nid = target_nid;
1529         } else
1530                 flags |= TNF_MIGRATE_FAIL;
1531
1532         goto out;
1533 clear_pmdnuma:
1534         BUG_ON(!PageLocked(page));
1535         was_writable = pmd_savedwrite(pmd);
1536         pmd = pmd_modify(pmd, vma->vm_page_prot);
1537         pmd = pmd_mkyoung(pmd);
1538         if (was_writable)
1539                 pmd = pmd_mkwrite(pmd);
1540         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1542         unlock_page(page);
1543 out_unlock:
1544         spin_unlock(vmf->ptl);
1545
1546 out:
1547         if (anon_vma)
1548                 page_unlock_anon_vma_read(anon_vma);
1549
1550         if (page_nid != -1)
1551                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1552                                 flags);
1553
1554         return 0;
1555 }
1556
1557 /*
1558  * Return true if we do MADV_FREE successfully on entire pmd page.
1559  * Otherwise, return false.
1560  */
1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562                 pmd_t *pmd, unsigned long addr, unsigned long next)
1563 {
1564         spinlock_t *ptl;
1565         pmd_t orig_pmd;
1566         struct page *page;
1567         struct mm_struct *mm = tlb->mm;
1568         bool ret = false;
1569
1570         tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1571
1572         ptl = pmd_trans_huge_lock(pmd, vma);
1573         if (!ptl)
1574                 goto out_unlocked;
1575
1576         orig_pmd = *pmd;
1577         if (is_huge_zero_pmd(orig_pmd))
1578                 goto out;
1579
1580         page = pmd_page(orig_pmd);
1581         /*
1582          * If other processes are mapping this page, we couldn't discard
1583          * the page unless they all do MADV_FREE so let's skip the page.
1584          */
1585         if (page_mapcount(page) != 1)
1586                 goto out;
1587
1588         if (!trylock_page(page))
1589                 goto out;
1590
1591         /*
1592          * If user want to discard part-pages of THP, split it so MADV_FREE
1593          * will deactivate only them.
1594          */
1595         if (next - addr != HPAGE_PMD_SIZE) {
1596                 get_page(page);
1597                 spin_unlock(ptl);
1598                 split_huge_page(page);
1599                 unlock_page(page);
1600                 put_page(page);
1601                 goto out_unlocked;
1602         }
1603
1604         if (PageDirty(page))
1605                 ClearPageDirty(page);
1606         unlock_page(page);
1607
1608         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1609                 pmdp_invalidate(vma, addr, pmd);
1610                 orig_pmd = pmd_mkold(orig_pmd);
1611                 orig_pmd = pmd_mkclean(orig_pmd);
1612
1613                 set_pmd_at(mm, addr, pmd, orig_pmd);
1614                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1615         }
1616
1617         mark_page_lazyfree(page);
1618         ret = true;
1619 out:
1620         spin_unlock(ptl);
1621 out_unlocked:
1622         return ret;
1623 }
1624
1625 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1626 {
1627         pgtable_t pgtable;
1628
1629         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1630         pte_free(mm, pgtable);
1631         atomic_long_dec(&mm->nr_ptes);
1632 }
1633
1634 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1635                  pmd_t *pmd, unsigned long addr)
1636 {
1637         pmd_t orig_pmd;
1638         spinlock_t *ptl;
1639
1640         tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1641
1642         ptl = __pmd_trans_huge_lock(pmd, vma);
1643         if (!ptl)
1644                 return 0;
1645         /*
1646          * For architectures like ppc64 we look at deposited pgtable
1647          * when calling pmdp_huge_get_and_clear. So do the
1648          * pgtable_trans_huge_withdraw after finishing pmdp related
1649          * operations.
1650          */
1651         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652                         tlb->fullmm);
1653         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654         if (vma_is_dax(vma)) {
1655                 if (arch_needs_pgtable_deposit())
1656                         zap_deposited_table(tlb->mm, pmd);
1657                 spin_unlock(ptl);
1658                 if (is_huge_zero_pmd(orig_pmd))
1659                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1660         } else if (is_huge_zero_pmd(orig_pmd)) {
1661                 zap_deposited_table(tlb->mm, pmd);
1662                 spin_unlock(ptl);
1663                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1664         } else {
1665                 struct page *page = pmd_page(orig_pmd);
1666                 page_remove_rmap(page, true);
1667                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1668                 VM_BUG_ON_PAGE(!PageHead(page), page);
1669                 if (PageAnon(page)) {
1670                         zap_deposited_table(tlb->mm, pmd);
1671                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1672                 } else {
1673                         if (arch_needs_pgtable_deposit())
1674                                 zap_deposited_table(tlb->mm, pmd);
1675                         add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1676                 }
1677                 spin_unlock(ptl);
1678                 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1679         }
1680         return 1;
1681 }
1682
1683 #ifndef pmd_move_must_withdraw
1684 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1685                                          spinlock_t *old_pmd_ptl,
1686                                          struct vm_area_struct *vma)
1687 {
1688         /*
1689          * With split pmd lock we also need to move preallocated
1690          * PTE page table if new_pmd is on different PMD page table.
1691          *
1692          * We also don't deposit and withdraw tables for file pages.
1693          */
1694         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1695 }
1696 #endif
1697
1698 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1699                   unsigned long new_addr, unsigned long old_end,
1700                   pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1701 {
1702         spinlock_t *old_ptl, *new_ptl;
1703         pmd_t pmd;
1704         struct mm_struct *mm = vma->vm_mm;
1705         bool force_flush = false;
1706
1707         if ((old_addr & ~HPAGE_PMD_MASK) ||
1708             (new_addr & ~HPAGE_PMD_MASK) ||
1709             old_end - old_addr < HPAGE_PMD_SIZE)
1710                 return false;
1711
1712         /*
1713          * The destination pmd shouldn't be established, free_pgtables()
1714          * should have release it.
1715          */
1716         if (WARN_ON(!pmd_none(*new_pmd))) {
1717                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1718                 return false;
1719         }
1720
1721         /*
1722          * We don't have to worry about the ordering of src and dst
1723          * ptlocks because exclusive mmap_sem prevents deadlock.
1724          */
1725         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726         if (old_ptl) {
1727                 new_ptl = pmd_lockptr(mm, new_pmd);
1728                 if (new_ptl != old_ptl)
1729                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1730                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1731                 if (pmd_present(pmd) && pmd_dirty(pmd))
1732                         force_flush = true;
1733                 VM_BUG_ON(!pmd_none(*new_pmd));
1734
1735                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1736                         pgtable_t pgtable;
1737                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1739                 }
1740                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1741                 if (new_ptl != old_ptl)
1742                         spin_unlock(new_ptl);
1743                 if (force_flush)
1744                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1745                 else
1746                         *need_flush = true;
1747                 spin_unlock(old_ptl);
1748                 return true;
1749         }
1750         return false;
1751 }
1752
1753 /*
1754  * Returns
1755  *  - 0 if PMD could not be locked
1756  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758  */
1759 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760                 unsigned long addr, pgprot_t newprot, int prot_numa)
1761 {
1762         struct mm_struct *mm = vma->vm_mm;
1763         spinlock_t *ptl;
1764         pmd_t entry;
1765         bool preserve_write;
1766         int ret;
1767
1768         ptl = __pmd_trans_huge_lock(pmd, vma);
1769         if (!ptl)
1770                 return 0;
1771
1772         preserve_write = prot_numa && pmd_write(*pmd);
1773         ret = 1;
1774
1775         /*
1776          * Avoid trapping faults against the zero page. The read-only
1777          * data is likely to be read-cached on the local CPU and
1778          * local/remote hits to the zero page are not interesting.
1779          */
1780         if (prot_numa && is_huge_zero_pmd(*pmd))
1781                 goto unlock;
1782
1783         if (prot_numa && pmd_protnone(*pmd))
1784                 goto unlock;
1785
1786         /*
1787          * In case prot_numa, we are under down_read(mmap_sem). It's critical
1788          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1789          * which is also under down_read(mmap_sem):
1790          *
1791          *      CPU0:                           CPU1:
1792          *                              change_huge_pmd(prot_numa=1)
1793          *                               pmdp_huge_get_and_clear_notify()
1794          * madvise_dontneed()
1795          *  zap_pmd_range()
1796          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1797          *   // skip the pmd
1798          *                               set_pmd_at();
1799          *                               // pmd is re-established
1800          *
1801          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1802          * which may break userspace.
1803          *
1804          * pmdp_invalidate() is required to make sure we don't miss
1805          * dirty/young flags set by hardware.
1806          */
1807         entry = *pmd;
1808         pmdp_invalidate(vma, addr, pmd);
1809
1810         /*
1811          * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1812          * corrupt them.
1813          */
1814         if (pmd_dirty(*pmd))
1815                 entry = pmd_mkdirty(entry);
1816         if (pmd_young(*pmd))
1817                 entry = pmd_mkyoung(entry);
1818
1819         entry = pmd_modify(entry, newprot);
1820         if (preserve_write)
1821                 entry = pmd_mk_savedwrite(entry);
1822         ret = HPAGE_PMD_NR;
1823         set_pmd_at(mm, addr, pmd, entry);
1824         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1825 unlock:
1826         spin_unlock(ptl);
1827         return ret;
1828 }
1829
1830 /*
1831  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1832  *
1833  * Note that if it returns page table lock pointer, this routine returns without
1834  * unlocking page table lock. So callers must unlock it.
1835  */
1836 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1837 {
1838         spinlock_t *ptl;
1839         ptl = pmd_lock(vma->vm_mm, pmd);
1840         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1841                 return ptl;
1842         spin_unlock(ptl);
1843         return NULL;
1844 }
1845
1846 /*
1847  * Returns true if a given pud maps a thp, false otherwise.
1848  *
1849  * Note that if it returns true, this routine returns without unlocking page
1850  * table lock. So callers must unlock it.
1851  */
1852 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1853 {
1854         spinlock_t *ptl;
1855
1856         ptl = pud_lock(vma->vm_mm, pud);
1857         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1858                 return ptl;
1859         spin_unlock(ptl);
1860         return NULL;
1861 }
1862
1863 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1864 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1865                  pud_t *pud, unsigned long addr)
1866 {
1867         pud_t orig_pud;
1868         spinlock_t *ptl;
1869
1870         ptl = __pud_trans_huge_lock(pud, vma);
1871         if (!ptl)
1872                 return 0;
1873         /*
1874          * For architectures like ppc64 we look at deposited pgtable
1875          * when calling pudp_huge_get_and_clear. So do the
1876          * pgtable_trans_huge_withdraw after finishing pudp related
1877          * operations.
1878          */
1879         orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1880                         tlb->fullmm);
1881         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1882         if (vma_is_dax(vma)) {
1883                 spin_unlock(ptl);
1884                 /* No zero page support yet */
1885         } else {
1886                 /* No support for anonymous PUD pages yet */
1887                 BUG();
1888         }
1889         return 1;
1890 }
1891
1892 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1893                 unsigned long haddr)
1894 {
1895         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1896         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1897         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1898         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1899
1900         count_vm_event(THP_SPLIT_PUD);
1901
1902         pudp_huge_clear_flush_notify(vma, haddr, pud);
1903 }
1904
1905 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1906                 unsigned long address)
1907 {
1908         spinlock_t *ptl;
1909         struct mm_struct *mm = vma->vm_mm;
1910         unsigned long haddr = address & HPAGE_PUD_MASK;
1911
1912         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1913         ptl = pud_lock(mm, pud);
1914         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1915                 goto out;
1916         __split_huge_pud_locked(vma, pud, haddr);
1917
1918 out:
1919         spin_unlock(ptl);
1920         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1921 }
1922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1923
1924 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1925                 unsigned long haddr, pmd_t *pmd)
1926 {
1927         struct mm_struct *mm = vma->vm_mm;
1928         pgtable_t pgtable;
1929         pmd_t _pmd;
1930         int i;
1931
1932         /* leave pmd empty until pte is filled */
1933         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1934
1935         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1936         pmd_populate(mm, &_pmd, pgtable);
1937
1938         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1939                 pte_t *pte, entry;
1940                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1941                 entry = pte_mkspecial(entry);
1942                 pte = pte_offset_map(&_pmd, haddr);
1943                 VM_BUG_ON(!pte_none(*pte));
1944                 set_pte_at(mm, haddr, pte, entry);
1945                 pte_unmap(pte);
1946         }
1947         smp_wmb(); /* make pte visible before pmd */
1948         pmd_populate(mm, pmd, pgtable);
1949 }
1950
1951 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1952                 unsigned long haddr, bool freeze)
1953 {
1954         struct mm_struct *mm = vma->vm_mm;
1955         struct page *page;
1956         pgtable_t pgtable;
1957         pmd_t _pmd;
1958         bool young, write, dirty, soft_dirty;
1959         unsigned long addr;
1960         int i;
1961
1962         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1963         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1964         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1965         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1966
1967         count_vm_event(THP_SPLIT_PMD);
1968
1969         if (!vma_is_anonymous(vma)) {
1970                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1971                 /*
1972                  * We are going to unmap this huge page. So
1973                  * just go ahead and zap it
1974                  */
1975                 if (arch_needs_pgtable_deposit())
1976                         zap_deposited_table(mm, pmd);
1977                 if (vma_is_dax(vma))
1978                         return;
1979                 page = pmd_page(_pmd);
1980                 if (!PageReferenced(page) && pmd_young(_pmd))
1981                         SetPageReferenced(page);
1982                 page_remove_rmap(page, true);
1983                 put_page(page);
1984                 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1985                 return;
1986         } else if (is_huge_zero_pmd(*pmd)) {
1987                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1988         }
1989
1990         page = pmd_page(*pmd);
1991         VM_BUG_ON_PAGE(!page_count(page), page);
1992         page_ref_add(page, HPAGE_PMD_NR - 1);
1993         write = pmd_write(*pmd);
1994         young = pmd_young(*pmd);
1995         dirty = pmd_dirty(*pmd);
1996         soft_dirty = pmd_soft_dirty(*pmd);
1997
1998         pmdp_huge_split_prepare(vma, haddr, pmd);
1999         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2000         pmd_populate(mm, &_pmd, pgtable);
2001
2002         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2003                 pte_t entry, *pte;
2004                 /*
2005                  * Note that NUMA hinting access restrictions are not
2006                  * transferred to avoid any possibility of altering
2007                  * permissions across VMAs.
2008                  */
2009                 if (freeze) {
2010                         swp_entry_t swp_entry;
2011                         swp_entry = make_migration_entry(page + i, write);
2012                         entry = swp_entry_to_pte(swp_entry);
2013                         if (soft_dirty)
2014                                 entry = pte_swp_mksoft_dirty(entry);
2015                 } else {
2016                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2017                         entry = maybe_mkwrite(entry, vma);
2018                         if (!write)
2019                                 entry = pte_wrprotect(entry);
2020                         if (!young)
2021                                 entry = pte_mkold(entry);
2022                         if (soft_dirty)
2023                                 entry = pte_mksoft_dirty(entry);
2024                 }
2025                 if (dirty)
2026                         SetPageDirty(page + i);
2027                 pte = pte_offset_map(&_pmd, addr);
2028                 BUG_ON(!pte_none(*pte));
2029                 set_pte_at(mm, addr, pte, entry);
2030                 atomic_inc(&page[i]._mapcount);
2031                 pte_unmap(pte);
2032         }
2033
2034         /*
2035          * Set PG_double_map before dropping compound_mapcount to avoid
2036          * false-negative page_mapped().
2037          */
2038         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2039                 for (i = 0; i < HPAGE_PMD_NR; i++)
2040                         atomic_inc(&page[i]._mapcount);
2041         }
2042
2043         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2044                 /* Last compound_mapcount is gone. */
2045                 __dec_node_page_state(page, NR_ANON_THPS);
2046                 if (TestClearPageDoubleMap(page)) {
2047                         /* No need in mapcount reference anymore */
2048                         for (i = 0; i < HPAGE_PMD_NR; i++)
2049                                 atomic_dec(&page[i]._mapcount);
2050                 }
2051         }
2052
2053         smp_wmb(); /* make pte visible before pmd */
2054         /*
2055          * Up to this point the pmd is present and huge and userland has the
2056          * whole access to the hugepage during the split (which happens in
2057          * place). If we overwrite the pmd with the not-huge version pointing
2058          * to the pte here (which of course we could if all CPUs were bug
2059          * free), userland could trigger a small page size TLB miss on the
2060          * small sized TLB while the hugepage TLB entry is still established in
2061          * the huge TLB. Some CPU doesn't like that.
2062          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2063          * 383 on page 93. Intel should be safe but is also warns that it's
2064          * only safe if the permission and cache attributes of the two entries
2065          * loaded in the two TLB is identical (which should be the case here).
2066          * But it is generally safer to never allow small and huge TLB entries
2067          * for the same virtual address to be loaded simultaneously. So instead
2068          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2069          * current pmd notpresent (atomically because here the pmd_trans_huge
2070          * and pmd_trans_splitting must remain set at all times on the pmd
2071          * until the split is complete for this pmd), then we flush the SMP TLB
2072          * and finally we write the non-huge version of the pmd entry with
2073          * pmd_populate.
2074          */
2075         pmdp_invalidate(vma, haddr, pmd);
2076         pmd_populate(mm, pmd, pgtable);
2077
2078         if (freeze) {
2079                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2080                         page_remove_rmap(page + i, false);
2081                         put_page(page + i);
2082                 }
2083         }
2084 }
2085
2086 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2087                 unsigned long address, bool freeze, struct page *page)
2088 {
2089         spinlock_t *ptl;
2090         struct mm_struct *mm = vma->vm_mm;
2091         unsigned long haddr = address & HPAGE_PMD_MASK;
2092
2093         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2094         ptl = pmd_lock(mm, pmd);
2095
2096         /*
2097          * If caller asks to setup a migration entries, we need a page to check
2098          * pmd against. Otherwise we can end up replacing wrong page.
2099          */
2100         VM_BUG_ON(freeze && !page);
2101         if (page && page != pmd_page(*pmd))
2102                 goto out;
2103
2104         if (pmd_trans_huge(*pmd)) {
2105                 page = pmd_page(*pmd);
2106                 if (PageMlocked(page))
2107                         clear_page_mlock(page);
2108         } else if (!pmd_devmap(*pmd))
2109                 goto out;
2110         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2111 out:
2112         spin_unlock(ptl);
2113         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2114 }
2115
2116 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2117                 bool freeze, struct page *page)
2118 {
2119         pgd_t *pgd;
2120         p4d_t *p4d;
2121         pud_t *pud;
2122         pmd_t *pmd;
2123
2124         pgd = pgd_offset(vma->vm_mm, address);
2125         if (!pgd_present(*pgd))
2126                 return;
2127
2128         p4d = p4d_offset(pgd, address);
2129         if (!p4d_present(*p4d))
2130                 return;
2131
2132         pud = pud_offset(p4d, address);
2133         if (!pud_present(*pud))
2134                 return;
2135
2136         pmd = pmd_offset(pud, address);
2137
2138         __split_huge_pmd(vma, pmd, address, freeze, page);
2139 }
2140
2141 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2142                              unsigned long start,
2143                              unsigned long end,
2144                              long adjust_next)
2145 {
2146         /*
2147          * If the new start address isn't hpage aligned and it could
2148          * previously contain an hugepage: check if we need to split
2149          * an huge pmd.
2150          */
2151         if (start & ~HPAGE_PMD_MASK &&
2152             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2153             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2154                 split_huge_pmd_address(vma, start, false, NULL);
2155
2156         /*
2157          * If the new end address isn't hpage aligned and it could
2158          * previously contain an hugepage: check if we need to split
2159          * an huge pmd.
2160          */
2161         if (end & ~HPAGE_PMD_MASK &&
2162             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2163             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2164                 split_huge_pmd_address(vma, end, false, NULL);
2165
2166         /*
2167          * If we're also updating the vma->vm_next->vm_start, if the new
2168          * vm_next->vm_start isn't page aligned and it could previously
2169          * contain an hugepage: check if we need to split an huge pmd.
2170          */
2171         if (adjust_next > 0) {
2172                 struct vm_area_struct *next = vma->vm_next;
2173                 unsigned long nstart = next->vm_start;
2174                 nstart += adjust_next << PAGE_SHIFT;
2175                 if (nstart & ~HPAGE_PMD_MASK &&
2176                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2177                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2178                         split_huge_pmd_address(next, nstart, false, NULL);
2179         }
2180 }
2181
2182 static void freeze_page(struct page *page)
2183 {
2184         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2185                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2186         bool unmap_success;
2187
2188         VM_BUG_ON_PAGE(!PageHead(page), page);
2189
2190         if (PageAnon(page))
2191                 ttu_flags |= TTU_MIGRATION;
2192
2193         unmap_success = try_to_unmap(page, ttu_flags);
2194         VM_BUG_ON_PAGE(!unmap_success, page);
2195 }
2196
2197 static void unfreeze_page(struct page *page)
2198 {
2199         int i;
2200         if (PageTransHuge(page)) {
2201                 remove_migration_ptes(page, page, true);
2202         } else {
2203                 for (i = 0; i < HPAGE_PMD_NR; i++)
2204                         remove_migration_ptes(page + i, page + i, true);
2205         }
2206 }
2207
2208 static void __split_huge_page_tail(struct page *head, int tail,
2209                 struct lruvec *lruvec, struct list_head *list)
2210 {
2211         struct page *page_tail = head + tail;
2212
2213         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2214         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2215
2216         /*
2217          * tail_page->_refcount is zero and not changing from under us. But
2218          * get_page_unless_zero() may be running from under us on the
2219          * tail_page. If we used atomic_set() below instead of atomic_inc() or
2220          * atomic_add(), we would then run atomic_set() concurrently with
2221          * get_page_unless_zero(), and atomic_set() is implemented in C not
2222          * using locked ops. spin_unlock on x86 sometime uses locked ops
2223          * because of PPro errata 66, 92, so unless somebody can guarantee
2224          * atomic_set() here would be safe on all archs (and not only on x86),
2225          * it's safer to use atomic_inc()/atomic_add().
2226          */
2227         if (PageAnon(head) && !PageSwapCache(head)) {
2228                 page_ref_inc(page_tail);
2229         } else {
2230                 /* Additional pin to radix tree */
2231                 page_ref_add(page_tail, 2);
2232         }
2233
2234         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2235         page_tail->flags |= (head->flags &
2236                         ((1L << PG_referenced) |
2237                          (1L << PG_swapbacked) |
2238                          (1L << PG_swapcache) |
2239                          (1L << PG_mlocked) |
2240                          (1L << PG_uptodate) |
2241                          (1L << PG_active) |
2242                          (1L << PG_locked) |
2243                          (1L << PG_unevictable) |
2244                          (1L << PG_dirty)));
2245
2246         /*
2247          * After clearing PageTail the gup refcount can be released.
2248          * Page flags also must be visible before we make the page non-compound.
2249          */
2250         smp_wmb();
2251
2252         clear_compound_head(page_tail);
2253
2254         if (page_is_young(head))
2255                 set_page_young(page_tail);
2256         if (page_is_idle(head))
2257                 set_page_idle(page_tail);
2258
2259         /* ->mapping in first tail page is compound_mapcount */
2260         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2261                         page_tail);
2262         page_tail->mapping = head->mapping;
2263
2264         page_tail->index = head->index + tail;
2265         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2266         lru_add_page_tail(head, page_tail, lruvec, list);
2267 }
2268
2269 static void __split_huge_page(struct page *page, struct list_head *list,
2270                 unsigned long flags)
2271 {
2272         struct page *head = compound_head(page);
2273         struct zone *zone = page_zone(head);
2274         struct lruvec *lruvec;
2275         pgoff_t end = -1;
2276         int i;
2277
2278         lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2279
2280         /* complete memcg works before add pages to LRU */
2281         mem_cgroup_split_huge_fixup(head);
2282
2283         if (!PageAnon(page))
2284                 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2285
2286         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2287                 __split_huge_page_tail(head, i, lruvec, list);
2288                 /* Some pages can be beyond i_size: drop them from page cache */
2289                 if (head[i].index >= end) {
2290                         __ClearPageDirty(head + i);
2291                         __delete_from_page_cache(head + i, NULL);
2292                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2293                                 shmem_uncharge(head->mapping->host, 1);
2294                         put_page(head + i);
2295                 }
2296         }
2297
2298         ClearPageCompound(head);
2299         /* See comment in __split_huge_page_tail() */
2300         if (PageAnon(head)) {
2301                 /* Additional pin to radix tree of swap cache */
2302                 if (PageSwapCache(head))
2303                         page_ref_add(head, 2);
2304                 else
2305                         page_ref_inc(head);
2306         } else {
2307                 /* Additional pin to radix tree */
2308                 page_ref_add(head, 2);
2309                 spin_unlock(&head->mapping->tree_lock);
2310         }
2311
2312         spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2313
2314         unfreeze_page(head);
2315
2316         for (i = 0; i < HPAGE_PMD_NR; i++) {
2317                 struct page *subpage = head + i;
2318                 if (subpage == page)
2319                         continue;
2320                 unlock_page(subpage);
2321
2322                 /*
2323                  * Subpages may be freed if there wasn't any mapping
2324                  * like if add_to_swap() is running on a lru page that
2325                  * had its mapping zapped. And freeing these pages
2326                  * requires taking the lru_lock so we do the put_page
2327                  * of the tail pages after the split is complete.
2328                  */
2329                 put_page(subpage);
2330         }
2331 }
2332
2333 int total_mapcount(struct page *page)
2334 {
2335         int i, compound, ret;
2336
2337         VM_BUG_ON_PAGE(PageTail(page), page);
2338
2339         if (likely(!PageCompound(page)))
2340                 return atomic_read(&page->_mapcount) + 1;
2341
2342         compound = compound_mapcount(page);
2343         if (PageHuge(page))
2344                 return compound;
2345         ret = compound;
2346         for (i = 0; i < HPAGE_PMD_NR; i++)
2347                 ret += atomic_read(&page[i]._mapcount) + 1;
2348         /* File pages has compound_mapcount included in _mapcount */
2349         if (!PageAnon(page))
2350                 return ret - compound * HPAGE_PMD_NR;
2351         if (PageDoubleMap(page))
2352                 ret -= HPAGE_PMD_NR;
2353         return ret;
2354 }
2355
2356 /*
2357  * This calculates accurately how many mappings a transparent hugepage
2358  * has (unlike page_mapcount() which isn't fully accurate). This full
2359  * accuracy is primarily needed to know if copy-on-write faults can
2360  * reuse the page and change the mapping to read-write instead of
2361  * copying them. At the same time this returns the total_mapcount too.
2362  *
2363  * The function returns the highest mapcount any one of the subpages
2364  * has. If the return value is one, even if different processes are
2365  * mapping different subpages of the transparent hugepage, they can
2366  * all reuse it, because each process is reusing a different subpage.
2367  *
2368  * The total_mapcount is instead counting all virtual mappings of the
2369  * subpages. If the total_mapcount is equal to "one", it tells the
2370  * caller all mappings belong to the same "mm" and in turn the
2371  * anon_vma of the transparent hugepage can become the vma->anon_vma
2372  * local one as no other process may be mapping any of the subpages.
2373  *
2374  * It would be more accurate to replace page_mapcount() with
2375  * page_trans_huge_mapcount(), however we only use
2376  * page_trans_huge_mapcount() in the copy-on-write faults where we
2377  * need full accuracy to avoid breaking page pinning, because
2378  * page_trans_huge_mapcount() is slower than page_mapcount().
2379  */
2380 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2381 {
2382         int i, ret, _total_mapcount, mapcount;
2383
2384         /* hugetlbfs shouldn't call it */
2385         VM_BUG_ON_PAGE(PageHuge(page), page);
2386
2387         if (likely(!PageTransCompound(page))) {
2388                 mapcount = atomic_read(&page->_mapcount) + 1;
2389                 if (total_mapcount)
2390                         *total_mapcount = mapcount;
2391                 return mapcount;
2392         }
2393
2394         page = compound_head(page);
2395
2396         _total_mapcount = ret = 0;
2397         for (i = 0; i < HPAGE_PMD_NR; i++) {
2398                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2399                 ret = max(ret, mapcount);
2400                 _total_mapcount += mapcount;
2401         }
2402         if (PageDoubleMap(page)) {
2403                 ret -= 1;
2404                 _total_mapcount -= HPAGE_PMD_NR;
2405         }
2406         mapcount = compound_mapcount(page);
2407         ret += mapcount;
2408         _total_mapcount += mapcount;
2409         if (total_mapcount)
2410                 *total_mapcount = _total_mapcount;
2411         return ret;
2412 }
2413
2414 /* Racy check whether the huge page can be split */
2415 bool can_split_huge_page(struct page *page, int *pextra_pins)
2416 {
2417         int extra_pins;
2418
2419         /* Additional pins from radix tree */
2420         if (PageAnon(page))
2421                 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2422         else
2423                 extra_pins = HPAGE_PMD_NR;
2424         if (pextra_pins)
2425                 *pextra_pins = extra_pins;
2426         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2427 }
2428
2429 /*
2430  * This function splits huge page into normal pages. @page can point to any
2431  * subpage of huge page to split. Split doesn't change the position of @page.
2432  *
2433  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2434  * The huge page must be locked.
2435  *
2436  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2437  *
2438  * Both head page and tail pages will inherit mapping, flags, and so on from
2439  * the hugepage.
2440  *
2441  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2442  * they are not mapped.
2443  *
2444  * Returns 0 if the hugepage is split successfully.
2445  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2446  * us.
2447  */
2448 int split_huge_page_to_list(struct page *page, struct list_head *list)
2449 {
2450         struct page *head = compound_head(page);
2451         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2452         struct anon_vma *anon_vma = NULL;
2453         struct address_space *mapping = NULL;
2454         int count, mapcount, extra_pins, ret;
2455         bool mlocked;
2456         unsigned long flags;
2457
2458         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2459         VM_BUG_ON_PAGE(!PageLocked(page), page);
2460         VM_BUG_ON_PAGE(!PageCompound(page), page);
2461
2462         if (PageAnon(head)) {
2463                 /*
2464                  * The caller does not necessarily hold an mmap_sem that would
2465                  * prevent the anon_vma disappearing so we first we take a
2466                  * reference to it and then lock the anon_vma for write. This
2467                  * is similar to page_lock_anon_vma_read except the write lock
2468                  * is taken to serialise against parallel split or collapse
2469                  * operations.
2470                  */
2471                 anon_vma = page_get_anon_vma(head);
2472                 if (!anon_vma) {
2473                         ret = -EBUSY;
2474                         goto out;
2475                 }
2476                 mapping = NULL;
2477                 anon_vma_lock_write(anon_vma);
2478         } else {
2479                 mapping = head->mapping;
2480
2481                 /* Truncated ? */
2482                 if (!mapping) {
2483                         ret = -EBUSY;
2484                         goto out;
2485                 }
2486
2487                 anon_vma = NULL;
2488                 i_mmap_lock_read(mapping);
2489         }
2490
2491         /*
2492          * Racy check if we can split the page, before freeze_page() will
2493          * split PMDs
2494          */
2495         if (!can_split_huge_page(head, &extra_pins)) {
2496                 ret = -EBUSY;
2497                 goto out_unlock;
2498         }
2499
2500         mlocked = PageMlocked(page);
2501         freeze_page(head);
2502         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2503
2504         /* Make sure the page is not on per-CPU pagevec as it takes pin */
2505         if (mlocked)
2506                 lru_add_drain();
2507
2508         /* prevent PageLRU to go away from under us, and freeze lru stats */
2509         spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2510
2511         if (mapping) {
2512                 void **pslot;
2513
2514                 spin_lock(&mapping->tree_lock);
2515                 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2516                                 page_index(head));
2517                 /*
2518                  * Check if the head page is present in radix tree.
2519                  * We assume all tail are present too, if head is there.
2520                  */
2521                 if (radix_tree_deref_slot_protected(pslot,
2522                                         &mapping->tree_lock) != head)
2523                         goto fail;
2524         }
2525
2526         /* Prevent deferred_split_scan() touching ->_refcount */
2527         spin_lock(&pgdata->split_queue_lock);
2528         count = page_count(head);
2529         mapcount = total_mapcount(head);
2530         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2531                 if (!list_empty(page_deferred_list(head))) {
2532                         pgdata->split_queue_len--;
2533                         list_del(page_deferred_list(head));
2534                 }
2535                 if (mapping)
2536                         __dec_node_page_state(page, NR_SHMEM_THPS);
2537                 spin_unlock(&pgdata->split_queue_lock);
2538                 __split_huge_page(page, list, flags);
2539                 ret = 0;
2540         } else {
2541                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2542                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2543                                         mapcount, count);
2544                         if (PageTail(page))
2545                                 dump_page(head, NULL);
2546                         dump_page(page, "total_mapcount(head) > 0");
2547                         BUG();
2548                 }
2549                 spin_unlock(&pgdata->split_queue_lock);
2550 fail:           if (mapping)
2551                         spin_unlock(&mapping->tree_lock);
2552                 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2553                 unfreeze_page(head);
2554                 ret = -EBUSY;
2555         }
2556
2557 out_unlock:
2558         if (anon_vma) {
2559                 anon_vma_unlock_write(anon_vma);
2560                 put_anon_vma(anon_vma);
2561         }
2562         if (mapping)
2563                 i_mmap_unlock_read(mapping);
2564 out:
2565         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2566         return ret;
2567 }
2568
2569 void free_transhuge_page(struct page *page)
2570 {
2571         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2572         unsigned long flags;
2573
2574         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2575         if (!list_empty(page_deferred_list(page))) {
2576                 pgdata->split_queue_len--;
2577                 list_del(page_deferred_list(page));
2578         }
2579         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2580         free_compound_page(page);
2581 }
2582
2583 void deferred_split_huge_page(struct page *page)
2584 {
2585         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2586         unsigned long flags;
2587
2588         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2589
2590         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2591         if (list_empty(page_deferred_list(page))) {
2592                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2593                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2594                 pgdata->split_queue_len++;
2595         }
2596         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2597 }
2598
2599 static unsigned long deferred_split_count(struct shrinker *shrink,
2600                 struct shrink_control *sc)
2601 {
2602         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2603         return ACCESS_ONCE(pgdata->split_queue_len);
2604 }
2605
2606 static unsigned long deferred_split_scan(struct shrinker *shrink,
2607                 struct shrink_control *sc)
2608 {
2609         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2610         unsigned long flags;
2611         LIST_HEAD(list), *pos, *next;
2612         struct page *page;
2613         int split = 0;
2614
2615         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2616         /* Take pin on all head pages to avoid freeing them under us */
2617         list_for_each_safe(pos, next, &pgdata->split_queue) {
2618                 page = list_entry((void *)pos, struct page, mapping);
2619                 page = compound_head(page);
2620                 if (get_page_unless_zero(page)) {
2621                         list_move(page_deferred_list(page), &list);
2622                 } else {
2623                         /* We lost race with put_compound_page() */
2624                         list_del_init(page_deferred_list(page));
2625                         pgdata->split_queue_len--;
2626                 }
2627                 if (!--sc->nr_to_scan)
2628                         break;
2629         }
2630         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2631
2632         list_for_each_safe(pos, next, &list) {
2633                 page = list_entry((void *)pos, struct page, mapping);
2634                 lock_page(page);
2635                 /* split_huge_page() removes page from list on success */
2636                 if (!split_huge_page(page))
2637                         split++;
2638                 unlock_page(page);
2639                 put_page(page);
2640         }
2641
2642         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2643         list_splice_tail(&list, &pgdata->split_queue);
2644         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2645
2646         /*
2647          * Stop shrinker if we didn't split any page, but the queue is empty.
2648          * This can happen if pages were freed under us.
2649          */
2650         if (!split && list_empty(&pgdata->split_queue))
2651                 return SHRINK_STOP;
2652         return split;
2653 }
2654
2655 static struct shrinker deferred_split_shrinker = {
2656         .count_objects = deferred_split_count,
2657         .scan_objects = deferred_split_scan,
2658         .seeks = DEFAULT_SEEKS,
2659         .flags = SHRINKER_NUMA_AWARE,
2660 };
2661
2662 #ifdef CONFIG_DEBUG_FS
2663 static int split_huge_pages_set(void *data, u64 val)
2664 {
2665         struct zone *zone;
2666         struct page *page;
2667         unsigned long pfn, max_zone_pfn;
2668         unsigned long total = 0, split = 0;
2669
2670         if (val != 1)
2671                 return -EINVAL;
2672
2673         for_each_populated_zone(zone) {
2674                 max_zone_pfn = zone_end_pfn(zone);
2675                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2676                         if (!pfn_valid(pfn))
2677                                 continue;
2678
2679                         page = pfn_to_page(pfn);
2680                         if (!get_page_unless_zero(page))
2681                                 continue;
2682
2683                         if (zone != page_zone(page))
2684                                 goto next;
2685
2686                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2687                                 goto next;
2688
2689                         total++;
2690                         lock_page(page);
2691                         if (!split_huge_page(page))
2692                                 split++;
2693                         unlock_page(page);
2694 next:
2695                         put_page(page);
2696                 }
2697         }
2698
2699         pr_info("%lu of %lu THP split\n", split, total);
2700
2701         return 0;
2702 }
2703 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2704                 "%llu\n");
2705
2706 static int __init split_huge_pages_debugfs(void)
2707 {
2708         void *ret;
2709
2710         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2711                         &split_huge_pages_fops);
2712         if (!ret)
2713                 pr_warn("Failed to create split_huge_pages in debugfs");
2714         return 0;
2715 }
2716 late_initcall(split_huge_pages_debugfs);
2717 #endif