]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
net/mlx5_core: Create anchor of last flow table
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54
55 /*
56  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
57  * free_huge_pages, and surplus_huge_pages.
58  */
59 DEFINE_SPINLOCK(hugetlb_lock);
60
61 /*
62  * Serializes faults on the same logical page.  This is used to
63  * prevent spurious OOMs when the hugepage pool is fully utilized.
64  */
65 static int num_fault_mutexes;
66 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
67
68 /* Forward declaration */
69 static int hugetlb_acct_memory(struct hstate *h, long delta);
70
71 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
72 {
73         bool free = (spool->count == 0) && (spool->used_hpages == 0);
74
75         spin_unlock(&spool->lock);
76
77         /* If no pages are used, and no other handles to the subpool
78          * remain, give up any reservations mased on minimum size and
79          * free the subpool */
80         if (free) {
81                 if (spool->min_hpages != -1)
82                         hugetlb_acct_memory(spool->hstate,
83                                                 -spool->min_hpages);
84                 kfree(spool);
85         }
86 }
87
88 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
89                                                 long min_hpages)
90 {
91         struct hugepage_subpool *spool;
92
93         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
94         if (!spool)
95                 return NULL;
96
97         spin_lock_init(&spool->lock);
98         spool->count = 1;
99         spool->max_hpages = max_hpages;
100         spool->hstate = h;
101         spool->min_hpages = min_hpages;
102
103         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
104                 kfree(spool);
105                 return NULL;
106         }
107         spool->rsv_hpages = min_hpages;
108
109         return spool;
110 }
111
112 void hugepage_put_subpool(struct hugepage_subpool *spool)
113 {
114         spin_lock(&spool->lock);
115         BUG_ON(!spool->count);
116         spool->count--;
117         unlock_or_release_subpool(spool);
118 }
119
120 /*
121  * Subpool accounting for allocating and reserving pages.
122  * Return -ENOMEM if there are not enough resources to satisfy the
123  * the request.  Otherwise, return the number of pages by which the
124  * global pools must be adjusted (upward).  The returned value may
125  * only be different than the passed value (delta) in the case where
126  * a subpool minimum size must be manitained.
127  */
128 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
129                                       long delta)
130 {
131         long ret = delta;
132
133         if (!spool)
134                 return ret;
135
136         spin_lock(&spool->lock);
137
138         if (spool->max_hpages != -1) {          /* maximum size accounting */
139                 if ((spool->used_hpages + delta) <= spool->max_hpages)
140                         spool->used_hpages += delta;
141                 else {
142                         ret = -ENOMEM;
143                         goto unlock_ret;
144                 }
145         }
146
147         if (spool->min_hpages != -1) {          /* minimum size accounting */
148                 if (delta > spool->rsv_hpages) {
149                         /*
150                          * Asking for more reserves than those already taken on
151                          * behalf of subpool.  Return difference.
152                          */
153                         ret = delta - spool->rsv_hpages;
154                         spool->rsv_hpages = 0;
155                 } else {
156                         ret = 0;        /* reserves already accounted for */
157                         spool->rsv_hpages -= delta;
158                 }
159         }
160
161 unlock_ret:
162         spin_unlock(&spool->lock);
163         return ret;
164 }
165
166 /*
167  * Subpool accounting for freeing and unreserving pages.
168  * Return the number of global page reservations that must be dropped.
169  * The return value may only be different than the passed value (delta)
170  * in the case where a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
173                                        long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return delta;
179
180         spin_lock(&spool->lock);
181
182         if (spool->max_hpages != -1)            /* maximum size accounting */
183                 spool->used_hpages -= delta;
184
185         if (spool->min_hpages != -1) {          /* minimum size accounting */
186                 if (spool->rsv_hpages + delta <= spool->min_hpages)
187                         ret = 0;
188                 else
189                         ret = spool->rsv_hpages + delta - spool->min_hpages;
190
191                 spool->rsv_hpages += delta;
192                 if (spool->rsv_hpages > spool->min_hpages)
193                         spool->rsv_hpages = spool->min_hpages;
194         }
195
196         /*
197          * If hugetlbfs_put_super couldn't free spool due to an outstanding
198          * quota reference, free it now.
199          */
200         unlock_or_release_subpool(spool);
201
202         return ret;
203 }
204
205 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
206 {
207         return HUGETLBFS_SB(inode->i_sb)->spool;
208 }
209
210 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
211 {
212         return subpool_inode(file_inode(vma->vm_file));
213 }
214
215 /*
216  * Region tracking -- allows tracking of reservations and instantiated pages
217  *                    across the pages in a mapping.
218  *
219  * The region data structures are embedded into a resv_map and protected
220  * by a resv_map's lock.  The set of regions within the resv_map represent
221  * reservations for huge pages, or huge pages that have already been
222  * instantiated within the map.  The from and to elements are huge page
223  * indicies into the associated mapping.  from indicates the starting index
224  * of the region.  to represents the first index past the end of  the region.
225  *
226  * For example, a file region structure with from == 0 and to == 4 represents
227  * four huge pages in a mapping.  It is important to note that the to element
228  * represents the first element past the end of the region. This is used in
229  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
230  *
231  * Interval notation of the form [from, to) will be used to indicate that
232  * the endpoint from is inclusive and to is exclusive.
233  */
234 struct file_region {
235         struct list_head link;
236         long from;
237         long to;
238 };
239
240 /*
241  * Add the huge page range represented by [f, t) to the reserve
242  * map.  In the normal case, existing regions will be expanded
243  * to accommodate the specified range.  Sufficient regions should
244  * exist for expansion due to the previous call to region_chg
245  * with the same range.  However, it is possible that region_del
246  * could have been called after region_chg and modifed the map
247  * in such a way that no region exists to be expanded.  In this
248  * case, pull a region descriptor from the cache associated with
249  * the map and use that for the new range.
250  *
251  * Return the number of new huge pages added to the map.  This
252  * number is greater than or equal to zero.
253  */
254 static long region_add(struct resv_map *resv, long f, long t)
255 {
256         struct list_head *head = &resv->regions;
257         struct file_region *rg, *nrg, *trg;
258         long add = 0;
259
260         spin_lock(&resv->lock);
261         /* Locate the region we are either in or before. */
262         list_for_each_entry(rg, head, link)
263                 if (f <= rg->to)
264                         break;
265
266         /*
267          * If no region exists which can be expanded to include the
268          * specified range, the list must have been modified by an
269          * interleving call to region_del().  Pull a region descriptor
270          * from the cache and use it for this range.
271          */
272         if (&rg->link == head || t < rg->from) {
273                 VM_BUG_ON(resv->region_cache_count <= 0);
274
275                 resv->region_cache_count--;
276                 nrg = list_first_entry(&resv->region_cache, struct file_region,
277                                         link);
278                 list_del(&nrg->link);
279
280                 nrg->from = f;
281                 nrg->to = t;
282                 list_add(&nrg->link, rg->link.prev);
283
284                 add += t - f;
285                 goto out_locked;
286         }
287
288         /* Round our left edge to the current segment if it encloses us. */
289         if (f > rg->from)
290                 f = rg->from;
291
292         /* Check for and consume any regions we now overlap with. */
293         nrg = rg;
294         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
295                 if (&rg->link == head)
296                         break;
297                 if (rg->from > t)
298                         break;
299
300                 /* If this area reaches higher then extend our area to
301                  * include it completely.  If this is not the first area
302                  * which we intend to reuse, free it. */
303                 if (rg->to > t)
304                         t = rg->to;
305                 if (rg != nrg) {
306                         /* Decrement return value by the deleted range.
307                          * Another range will span this area so that by
308                          * end of routine add will be >= zero
309                          */
310                         add -= (rg->to - rg->from);
311                         list_del(&rg->link);
312                         kfree(rg);
313                 }
314         }
315
316         add += (nrg->from - f);         /* Added to beginning of region */
317         nrg->from = f;
318         add += t - nrg->to;             /* Added to end of region */
319         nrg->to = t;
320
321 out_locked:
322         resv->adds_in_progress--;
323         spin_unlock(&resv->lock);
324         VM_BUG_ON(add < 0);
325         return add;
326 }
327
328 /*
329  * Examine the existing reserve map and determine how many
330  * huge pages in the specified range [f, t) are NOT currently
331  * represented.  This routine is called before a subsequent
332  * call to region_add that will actually modify the reserve
333  * map to add the specified range [f, t).  region_chg does
334  * not change the number of huge pages represented by the
335  * map.  However, if the existing regions in the map can not
336  * be expanded to represent the new range, a new file_region
337  * structure is added to the map as a placeholder.  This is
338  * so that the subsequent region_add call will have all the
339  * regions it needs and will not fail.
340  *
341  * Upon entry, region_chg will also examine the cache of region descriptors
342  * associated with the map.  If there are not enough descriptors cached, one
343  * will be allocated for the in progress add operation.
344  *
345  * Returns the number of huge pages that need to be added to the existing
346  * reservation map for the range [f, t).  This number is greater or equal to
347  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
348  * is needed and can not be allocated.
349  */
350 static long region_chg(struct resv_map *resv, long f, long t)
351 {
352         struct list_head *head = &resv->regions;
353         struct file_region *rg, *nrg = NULL;
354         long chg = 0;
355
356 retry:
357         spin_lock(&resv->lock);
358 retry_locked:
359         resv->adds_in_progress++;
360
361         /*
362          * Check for sufficient descriptors in the cache to accommodate
363          * the number of in progress add operations.
364          */
365         if (resv->adds_in_progress > resv->region_cache_count) {
366                 struct file_region *trg;
367
368                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
369                 /* Must drop lock to allocate a new descriptor. */
370                 resv->adds_in_progress--;
371                 spin_unlock(&resv->lock);
372
373                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
374                 if (!trg) {
375                         kfree(nrg);
376                         return -ENOMEM;
377                 }
378
379                 spin_lock(&resv->lock);
380                 list_add(&trg->link, &resv->region_cache);
381                 resv->region_cache_count++;
382                 goto retry_locked;
383         }
384
385         /* Locate the region we are before or in. */
386         list_for_each_entry(rg, head, link)
387                 if (f <= rg->to)
388                         break;
389
390         /* If we are below the current region then a new region is required.
391          * Subtle, allocate a new region at the position but make it zero
392          * size such that we can guarantee to record the reservation. */
393         if (&rg->link == head || t < rg->from) {
394                 if (!nrg) {
395                         resv->adds_in_progress--;
396                         spin_unlock(&resv->lock);
397                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
398                         if (!nrg)
399                                 return -ENOMEM;
400
401                         nrg->from = f;
402                         nrg->to   = f;
403                         INIT_LIST_HEAD(&nrg->link);
404                         goto retry;
405                 }
406
407                 list_add(&nrg->link, rg->link.prev);
408                 chg = t - f;
409                 goto out_nrg;
410         }
411
412         /* Round our left edge to the current segment if it encloses us. */
413         if (f > rg->from)
414                 f = rg->from;
415         chg = t - f;
416
417         /* Check for and consume any regions we now overlap with. */
418         list_for_each_entry(rg, rg->link.prev, link) {
419                 if (&rg->link == head)
420                         break;
421                 if (rg->from > t)
422                         goto out;
423
424                 /* We overlap with this area, if it extends further than
425                  * us then we must extend ourselves.  Account for its
426                  * existing reservation. */
427                 if (rg->to > t) {
428                         chg += rg->to - t;
429                         t = rg->to;
430                 }
431                 chg -= rg->to - rg->from;
432         }
433
434 out:
435         spin_unlock(&resv->lock);
436         /*  We already know we raced and no longer need the new region */
437         kfree(nrg);
438         return chg;
439 out_nrg:
440         spin_unlock(&resv->lock);
441         return chg;
442 }
443
444 /*
445  * Abort the in progress add operation.  The adds_in_progress field
446  * of the resv_map keeps track of the operations in progress between
447  * calls to region_chg and region_add.  Operations are sometimes
448  * aborted after the call to region_chg.  In such cases, region_abort
449  * is called to decrement the adds_in_progress counter.
450  *
451  * NOTE: The range arguments [f, t) are not needed or used in this
452  * routine.  They are kept to make reading the calling code easier as
453  * arguments will match the associated region_chg call.
454  */
455 static void region_abort(struct resv_map *resv, long f, long t)
456 {
457         spin_lock(&resv->lock);
458         VM_BUG_ON(!resv->region_cache_count);
459         resv->adds_in_progress--;
460         spin_unlock(&resv->lock);
461 }
462
463 /*
464  * Delete the specified range [f, t) from the reserve map.  If the
465  * t parameter is LONG_MAX, this indicates that ALL regions after f
466  * should be deleted.  Locate the regions which intersect [f, t)
467  * and either trim, delete or split the existing regions.
468  *
469  * Returns the number of huge pages deleted from the reserve map.
470  * In the normal case, the return value is zero or more.  In the
471  * case where a region must be split, a new region descriptor must
472  * be allocated.  If the allocation fails, -ENOMEM will be returned.
473  * NOTE: If the parameter t == LONG_MAX, then we will never split
474  * a region and possibly return -ENOMEM.  Callers specifying
475  * t == LONG_MAX do not need to check for -ENOMEM error.
476  */
477 static long region_del(struct resv_map *resv, long f, long t)
478 {
479         struct list_head *head = &resv->regions;
480         struct file_region *rg, *trg;
481         struct file_region *nrg = NULL;
482         long del = 0;
483
484 retry:
485         spin_lock(&resv->lock);
486         list_for_each_entry_safe(rg, trg, head, link) {
487                 /*
488                  * Skip regions before the range to be deleted.  file_region
489                  * ranges are normally of the form [from, to).  However, there
490                  * may be a "placeholder" entry in the map which is of the form
491                  * (from, to) with from == to.  Check for placeholder entries
492                  * at the beginning of the range to be deleted.
493                  */
494                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
495                         continue;
496
497                 if (rg->from >= t)
498                         break;
499
500                 if (f > rg->from && t < rg->to) { /* Must split region */
501                         /*
502                          * Check for an entry in the cache before dropping
503                          * lock and attempting allocation.
504                          */
505                         if (!nrg &&
506                             resv->region_cache_count > resv->adds_in_progress) {
507                                 nrg = list_first_entry(&resv->region_cache,
508                                                         struct file_region,
509                                                         link);
510                                 list_del(&nrg->link);
511                                 resv->region_cache_count--;
512                         }
513
514                         if (!nrg) {
515                                 spin_unlock(&resv->lock);
516                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
517                                 if (!nrg)
518                                         return -ENOMEM;
519                                 goto retry;
520                         }
521
522                         del += t - f;
523
524                         /* New entry for end of split region */
525                         nrg->from = t;
526                         nrg->to = rg->to;
527                         INIT_LIST_HEAD(&nrg->link);
528
529                         /* Original entry is trimmed */
530                         rg->to = f;
531
532                         list_add(&nrg->link, &rg->link);
533                         nrg = NULL;
534                         break;
535                 }
536
537                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
538                         del += rg->to - rg->from;
539                         list_del(&rg->link);
540                         kfree(rg);
541                         continue;
542                 }
543
544                 if (f <= rg->from) {    /* Trim beginning of region */
545                         del += t - rg->from;
546                         rg->from = t;
547                 } else {                /* Trim end of region */
548                         del += rg->to - f;
549                         rg->to = f;
550                 }
551         }
552
553         spin_unlock(&resv->lock);
554         kfree(nrg);
555         return del;
556 }
557
558 /*
559  * A rare out of memory error was encountered which prevented removal of
560  * the reserve map region for a page.  The huge page itself was free'ed
561  * and removed from the page cache.  This routine will adjust the subpool
562  * usage count, and the global reserve count if needed.  By incrementing
563  * these counts, the reserve map entry which could not be deleted will
564  * appear as a "reserved" entry instead of simply dangling with incorrect
565  * counts.
566  */
567 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
568 {
569         struct hugepage_subpool *spool = subpool_inode(inode);
570         long rsv_adjust;
571
572         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
573         if (restore_reserve && rsv_adjust) {
574                 struct hstate *h = hstate_inode(inode);
575
576                 hugetlb_acct_memory(h, 1);
577         }
578 }
579
580 /*
581  * Count and return the number of huge pages in the reserve map
582  * that intersect with the range [f, t).
583  */
584 static long region_count(struct resv_map *resv, long f, long t)
585 {
586         struct list_head *head = &resv->regions;
587         struct file_region *rg;
588         long chg = 0;
589
590         spin_lock(&resv->lock);
591         /* Locate each segment we overlap with, and count that overlap. */
592         list_for_each_entry(rg, head, link) {
593                 long seg_from;
594                 long seg_to;
595
596                 if (rg->to <= f)
597                         continue;
598                 if (rg->from >= t)
599                         break;
600
601                 seg_from = max(rg->from, f);
602                 seg_to = min(rg->to, t);
603
604                 chg += seg_to - seg_from;
605         }
606         spin_unlock(&resv->lock);
607
608         return chg;
609 }
610
611 /*
612  * Convert the address within this vma to the page offset within
613  * the mapping, in pagecache page units; huge pages here.
614  */
615 static pgoff_t vma_hugecache_offset(struct hstate *h,
616                         struct vm_area_struct *vma, unsigned long address)
617 {
618         return ((address - vma->vm_start) >> huge_page_shift(h)) +
619                         (vma->vm_pgoff >> huge_page_order(h));
620 }
621
622 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
623                                      unsigned long address)
624 {
625         return vma_hugecache_offset(hstate_vma(vma), vma, address);
626 }
627
628 /*
629  * Return the size of the pages allocated when backing a VMA. In the majority
630  * cases this will be same size as used by the page table entries.
631  */
632 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
633 {
634         struct hstate *hstate;
635
636         if (!is_vm_hugetlb_page(vma))
637                 return PAGE_SIZE;
638
639         hstate = hstate_vma(vma);
640
641         return 1UL << huge_page_shift(hstate);
642 }
643 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
644
645 /*
646  * Return the page size being used by the MMU to back a VMA. In the majority
647  * of cases, the page size used by the kernel matches the MMU size. On
648  * architectures where it differs, an architecture-specific version of this
649  * function is required.
650  */
651 #ifndef vma_mmu_pagesize
652 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654         return vma_kernel_pagesize(vma);
655 }
656 #endif
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
832                 return true;
833
834         return false;
835 }
836
837 static void enqueue_huge_page(struct hstate *h, struct page *page)
838 {
839         int nid = page_to_nid(page);
840         list_move(&page->lru, &h->hugepage_freelists[nid]);
841         h->free_huge_pages++;
842         h->free_huge_pages_node[nid]++;
843 }
844
845 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
846 {
847         struct page *page;
848
849         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
850                 if (!is_migrate_isolate_page(page))
851                         break;
852         /*
853          * if 'non-isolated free hugepage' not found on the list,
854          * the allocation fails.
855          */
856         if (&h->hugepage_freelists[nid] == &page->lru)
857                 return NULL;
858         list_move(&page->lru, &h->hugepage_activelist);
859         set_page_refcounted(page);
860         h->free_huge_pages--;
861         h->free_huge_pages_node[nid]--;
862         return page;
863 }
864
865 /* Movability of hugepages depends on migration support. */
866 static inline gfp_t htlb_alloc_mask(struct hstate *h)
867 {
868         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
869                 return GFP_HIGHUSER_MOVABLE;
870         else
871                 return GFP_HIGHUSER;
872 }
873
874 static struct page *dequeue_huge_page_vma(struct hstate *h,
875                                 struct vm_area_struct *vma,
876                                 unsigned long address, int avoid_reserve,
877                                 long chg)
878 {
879         struct page *page = NULL;
880         struct mempolicy *mpol;
881         nodemask_t *nodemask;
882         struct zonelist *zonelist;
883         struct zone *zone;
884         struct zoneref *z;
885         unsigned int cpuset_mems_cookie;
886
887         /*
888          * A child process with MAP_PRIVATE mappings created by their parent
889          * have no page reserves. This check ensures that reservations are
890          * not "stolen". The child may still get SIGKILLed
891          */
892         if (!vma_has_reserves(vma, chg) &&
893                         h->free_huge_pages - h->resv_huge_pages == 0)
894                 goto err;
895
896         /* If reserves cannot be used, ensure enough pages are in the pool */
897         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
898                 goto err;
899
900 retry_cpuset:
901         cpuset_mems_cookie = read_mems_allowed_begin();
902         zonelist = huge_zonelist(vma, address,
903                                         htlb_alloc_mask(h), &mpol, &nodemask);
904
905         for_each_zone_zonelist_nodemask(zone, z, zonelist,
906                                                 MAX_NR_ZONES - 1, nodemask) {
907                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
908                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
909                         if (page) {
910                                 if (avoid_reserve)
911                                         break;
912                                 if (!vma_has_reserves(vma, chg))
913                                         break;
914
915                                 SetPagePrivate(page);
916                                 h->resv_huge_pages--;
917                                 break;
918                         }
919                 }
920         }
921
922         mpol_cond_put(mpol);
923         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
924                 goto retry_cpuset;
925         return page;
926
927 err:
928         return NULL;
929 }
930
931 /*
932  * common helper functions for hstate_next_node_to_{alloc|free}.
933  * We may have allocated or freed a huge page based on a different
934  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935  * be outside of *nodes_allowed.  Ensure that we use an allowed
936  * node for alloc or free.
937  */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940         nid = next_node(nid, *nodes_allowed);
941         if (nid == MAX_NUMNODES)
942                 nid = first_node(*nodes_allowed);
943         VM_BUG_ON(nid >= MAX_NUMNODES);
944
945         return nid;
946 }
947
948 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949 {
950         if (!node_isset(nid, *nodes_allowed))
951                 nid = next_node_allowed(nid, nodes_allowed);
952         return nid;
953 }
954
955 /*
956  * returns the previously saved node ["this node"] from which to
957  * allocate a persistent huge page for the pool and advance the
958  * next node from which to allocate, handling wrap at end of node
959  * mask.
960  */
961 static int hstate_next_node_to_alloc(struct hstate *h,
962                                         nodemask_t *nodes_allowed)
963 {
964         int nid;
965
966         VM_BUG_ON(!nodes_allowed);
967
968         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
969         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970
971         return nid;
972 }
973
974 /*
975  * helper for free_pool_huge_page() - return the previously saved
976  * node ["this node"] from which to free a huge page.  Advance the
977  * next node id whether or not we find a free huge page to free so
978  * that the next attempt to free addresses the next node.
979  */
980 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981 {
982         int nid;
983
984         VM_BUG_ON(!nodes_allowed);
985
986         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
987         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988
989         return nid;
990 }
991
992 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
993         for (nr_nodes = nodes_weight(*mask);                            \
994                 nr_nodes > 0 &&                                         \
995                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
996                 nr_nodes--)
997
998 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
999         for (nr_nodes = nodes_weight(*mask);                            \
1000                 nr_nodes > 0 &&                                         \
1001                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1002                 nr_nodes--)
1003
1004 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005 static void destroy_compound_gigantic_page(struct page *page,
1006                                         unsigned int order)
1007 {
1008         int i;
1009         int nr_pages = 1 << order;
1010         struct page *p = page + 1;
1011
1012         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013                 clear_compound_head(p);
1014                 set_page_refcounted(p);
1015         }
1016
1017         set_compound_order(page, 0);
1018         __ClearPageHead(page);
1019 }
1020
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1022 {
1023         free_contig_range(page_to_pfn(page), 1 << order);
1024 }
1025
1026 static int __alloc_gigantic_page(unsigned long start_pfn,
1027                                 unsigned long nr_pages)
1028 {
1029         unsigned long end_pfn = start_pfn + nr_pages;
1030         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031 }
1032
1033 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034                                 unsigned long nr_pages)
1035 {
1036         unsigned long i, end_pfn = start_pfn + nr_pages;
1037         struct page *page;
1038
1039         for (i = start_pfn; i < end_pfn; i++) {
1040                 if (!pfn_valid(i))
1041                         return false;
1042
1043                 page = pfn_to_page(i);
1044
1045                 if (PageReserved(page))
1046                         return false;
1047
1048                 if (page_count(page) > 0)
1049                         return false;
1050
1051                 if (PageHuge(page))
1052                         return false;
1053         }
1054
1055         return true;
1056 }
1057
1058 static bool zone_spans_last_pfn(const struct zone *zone,
1059                         unsigned long start_pfn, unsigned long nr_pages)
1060 {
1061         unsigned long last_pfn = start_pfn + nr_pages - 1;
1062         return zone_spans_pfn(zone, last_pfn);
1063 }
1064
1065 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066 {
1067         unsigned long nr_pages = 1 << order;
1068         unsigned long ret, pfn, flags;
1069         struct zone *z;
1070
1071         z = NODE_DATA(nid)->node_zones;
1072         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073                 spin_lock_irqsave(&z->lock, flags);
1074
1075                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078                                 /*
1079                                  * We release the zone lock here because
1080                                  * alloc_contig_range() will also lock the zone
1081                                  * at some point. If there's an allocation
1082                                  * spinning on this lock, it may win the race
1083                                  * and cause alloc_contig_range() to fail...
1084                                  */
1085                                 spin_unlock_irqrestore(&z->lock, flags);
1086                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1087                                 if (!ret)
1088                                         return pfn_to_page(pfn);
1089                                 spin_lock_irqsave(&z->lock, flags);
1090                         }
1091                         pfn += nr_pages;
1092                 }
1093
1094                 spin_unlock_irqrestore(&z->lock, flags);
1095         }
1096
1097         return NULL;
1098 }
1099
1100 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104 {
1105         struct page *page;
1106
1107         page = alloc_gigantic_page(nid, huge_page_order(h));
1108         if (page) {
1109                 prep_compound_gigantic_page(page, huge_page_order(h));
1110                 prep_new_huge_page(h, page, nid);
1111         }
1112
1113         return page;
1114 }
1115
1116 static int alloc_fresh_gigantic_page(struct hstate *h,
1117                                 nodemask_t *nodes_allowed)
1118 {
1119         struct page *page = NULL;
1120         int nr_nodes, node;
1121
1122         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123                 page = alloc_fresh_gigantic_page_node(h, node);
1124                 if (page)
1125                         return 1;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static inline bool gigantic_page_supported(void) { return true; }
1132 #else
1133 static inline bool gigantic_page_supported(void) { return false; }
1134 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135 static inline void destroy_compound_gigantic_page(struct page *page,
1136                                                 unsigned int order) { }
1137 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138                                         nodemask_t *nodes_allowed) { return 0; }
1139 #endif
1140
1141 static void update_and_free_page(struct hstate *h, struct page *page)
1142 {
1143         int i;
1144
1145         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146                 return;
1147
1148         h->nr_huge_pages--;
1149         h->nr_huge_pages_node[page_to_nid(page)]--;
1150         for (i = 0; i < pages_per_huge_page(h); i++) {
1151                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152                                 1 << PG_referenced | 1 << PG_dirty |
1153                                 1 << PG_active | 1 << PG_private |
1154                                 1 << PG_writeback);
1155         }
1156         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158         set_page_refcounted(page);
1159         if (hstate_is_gigantic(h)) {
1160                 destroy_compound_gigantic_page(page, huge_page_order(h));
1161                 free_gigantic_page(page, huge_page_order(h));
1162         } else {
1163                 __free_pages(page, huge_page_order(h));
1164         }
1165 }
1166
1167 struct hstate *size_to_hstate(unsigned long size)
1168 {
1169         struct hstate *h;
1170
1171         for_each_hstate(h) {
1172                 if (huge_page_size(h) == size)
1173                         return h;
1174         }
1175         return NULL;
1176 }
1177
1178 /*
1179  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180  * to hstate->hugepage_activelist.)
1181  *
1182  * This function can be called for tail pages, but never returns true for them.
1183  */
1184 bool page_huge_active(struct page *page)
1185 {
1186         VM_BUG_ON_PAGE(!PageHuge(page), page);
1187         return PageHead(page) && PagePrivate(&page[1]);
1188 }
1189
1190 /* never called for tail page */
1191 static void set_page_huge_active(struct page *page)
1192 {
1193         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194         SetPagePrivate(&page[1]);
1195 }
1196
1197 static void clear_page_huge_active(struct page *page)
1198 {
1199         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200         ClearPagePrivate(&page[1]);
1201 }
1202
1203 void free_huge_page(struct page *page)
1204 {
1205         /*
1206          * Can't pass hstate in here because it is called from the
1207          * compound page destructor.
1208          */
1209         struct hstate *h = page_hstate(page);
1210         int nid = page_to_nid(page);
1211         struct hugepage_subpool *spool =
1212                 (struct hugepage_subpool *)page_private(page);
1213         bool restore_reserve;
1214
1215         set_page_private(page, 0);
1216         page->mapping = NULL;
1217         VM_BUG_ON_PAGE(page_count(page), page);
1218         VM_BUG_ON_PAGE(page_mapcount(page), page);
1219         restore_reserve = PagePrivate(page);
1220         ClearPagePrivate(page);
1221
1222         /*
1223          * A return code of zero implies that the subpool will be under its
1224          * minimum size if the reservation is not restored after page is free.
1225          * Therefore, force restore_reserve operation.
1226          */
1227         if (hugepage_subpool_put_pages(spool, 1) == 0)
1228                 restore_reserve = true;
1229
1230         spin_lock(&hugetlb_lock);
1231         clear_page_huge_active(page);
1232         hugetlb_cgroup_uncharge_page(hstate_index(h),
1233                                      pages_per_huge_page(h), page);
1234         if (restore_reserve)
1235                 h->resv_huge_pages++;
1236
1237         if (h->surplus_huge_pages_node[nid]) {
1238                 /* remove the page from active list */
1239                 list_del(&page->lru);
1240                 update_and_free_page(h, page);
1241                 h->surplus_huge_pages--;
1242                 h->surplus_huge_pages_node[nid]--;
1243         } else {
1244                 arch_clear_hugepage_flags(page);
1245                 enqueue_huge_page(h, page);
1246         }
1247         spin_unlock(&hugetlb_lock);
1248 }
1249
1250 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251 {
1252         INIT_LIST_HEAD(&page->lru);
1253         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254         spin_lock(&hugetlb_lock);
1255         set_hugetlb_cgroup(page, NULL);
1256         h->nr_huge_pages++;
1257         h->nr_huge_pages_node[nid]++;
1258         spin_unlock(&hugetlb_lock);
1259         put_page(page); /* free it into the hugepage allocator */
1260 }
1261
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263 {
1264         int i;
1265         int nr_pages = 1 << order;
1266         struct page *p = page + 1;
1267
1268         /* we rely on prep_new_huge_page to set the destructor */
1269         set_compound_order(page, order);
1270         __ClearPageReserved(page);
1271         __SetPageHead(page);
1272         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273                 /*
1274                  * For gigantic hugepages allocated through bootmem at
1275                  * boot, it's safer to be consistent with the not-gigantic
1276                  * hugepages and clear the PG_reserved bit from all tail pages
1277                  * too.  Otherwse drivers using get_user_pages() to access tail
1278                  * pages may get the reference counting wrong if they see
1279                  * PG_reserved set on a tail page (despite the head page not
1280                  * having PG_reserved set).  Enforcing this consistency between
1281                  * head and tail pages allows drivers to optimize away a check
1282                  * on the head page when they need know if put_page() is needed
1283                  * after get_user_pages().
1284                  */
1285                 __ClearPageReserved(p);
1286                 set_page_count(p, 0);
1287                 set_compound_head(p, page);
1288         }
1289         atomic_set(compound_mapcount_ptr(page), -1);
1290 }
1291
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299         if (!PageCompound(page))
1300                 return 0;
1301
1302         page = compound_head(page);
1303         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313         if (!PageHead(page_head))
1314                 return 0;
1315
1316         return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321         struct page *page_head = compound_head(page);
1322         pgoff_t index = page_index(page_head);
1323         unsigned long compound_idx;
1324
1325         if (!PageHuge(page_head))
1326                 return page_index(page);
1327
1328         if (compound_order(page_head) >= MAX_ORDER)
1329                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330         else
1331                 compound_idx = page - page_head;
1332
1333         return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338         struct page *page;
1339
1340         page = __alloc_pages_node(nid,
1341                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                 __GFP_REPEAT|__GFP_NOWARN,
1343                 huge_page_order(h));
1344         if (page) {
1345                 prep_new_huge_page(h, page, nid);
1346         }
1347
1348         return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353         struct page *page;
1354         int nr_nodes, node;
1355         int ret = 0;
1356
1357         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                 page = alloc_fresh_huge_page_node(h, node);
1359                 if (page) {
1360                         ret = 1;
1361                         break;
1362                 }
1363         }
1364
1365         if (ret)
1366                 count_vm_event(HTLB_BUDDY_PGALLOC);
1367         else
1368                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                          bool acct_surplus)
1381 {
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                 /*
1387                  * If we're returning unused surplus pages, only examine
1388                  * nodes with surplus pages.
1389                  */
1390                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                     !list_empty(&h->hugepage_freelists[node])) {
1392                         struct page *page =
1393                                 list_entry(h->hugepage_freelists[node].next,
1394                                           struct page, lru);
1395                         list_del(&page->lru);
1396                         h->free_huge_pages--;
1397                         h->free_huge_pages_node[node]--;
1398                         if (acct_surplus) {
1399                                 h->surplus_huge_pages--;
1400                                 h->surplus_huge_pages_node[node]--;
1401                         }
1402                         update_and_free_page(h, page);
1403                         ret = 1;
1404                         break;
1405                 }
1406         }
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417         spin_lock(&hugetlb_lock);
1418         if (PageHuge(page) && !page_count(page)) {
1419                 struct hstate *h = page_hstate(page);
1420                 int nid = page_to_nid(page);
1421                 list_del(&page->lru);
1422                 h->free_huge_pages--;
1423                 h->free_huge_pages_node[nid]--;
1424                 update_and_free_page(h, page);
1425         }
1426         spin_unlock(&hugetlb_lock);
1427 }
1428
1429 /*
1430  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431  * make specified memory blocks removable from the system.
1432  * Note that start_pfn should aligned with (minimum) hugepage size.
1433  */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436         unsigned long pfn;
1437
1438         if (!hugepages_supported())
1439                 return;
1440
1441         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443                 dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445
1446 /*
1447  * There are 3 ways this can get called:
1448  * 1. With vma+addr: we use the VMA's memory policy
1449  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450  *    page from any node, and let the buddy allocator itself figure
1451  *    it out.
1452  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453  *    strictly from 'nid'
1454  */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456                 struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458         int order = huge_page_order(h);
1459         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460         unsigned int cpuset_mems_cookie;
1461
1462         /*
1463          * We need a VMA to get a memory policy.  If we do not
1464          * have one, we use the 'nid' argument.
1465          *
1466          * The mempolicy stuff below has some non-inlined bits
1467          * and calls ->vm_ops.  That makes it hard to optimize at
1468          * compile-time, even when NUMA is off and it does
1469          * nothing.  This helps the compiler optimize it out.
1470          */
1471         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472                 /*
1473                  * If a specific node is requested, make sure to
1474                  * get memory from there, but only when a node
1475                  * is explicitly specified.
1476                  */
1477                 if (nid != NUMA_NO_NODE)
1478                         gfp |= __GFP_THISNODE;
1479                 /*
1480                  * Make sure to call something that can handle
1481                  * nid=NUMA_NO_NODE
1482                  */
1483                 return alloc_pages_node(nid, gfp, order);
1484         }
1485
1486         /*
1487          * OK, so we have a VMA.  Fetch the mempolicy and try to
1488          * allocate a huge page with it.  We will only reach this
1489          * when CONFIG_NUMA=y.
1490          */
1491         do {
1492                 struct page *page;
1493                 struct mempolicy *mpol;
1494                 struct zonelist *zl;
1495                 nodemask_t *nodemask;
1496
1497                 cpuset_mems_cookie = read_mems_allowed_begin();
1498                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499                 mpol_cond_put(mpol);
1500                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501                 if (page)
1502                         return page;
1503         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505         return NULL;
1506 }
1507
1508 /*
1509  * There are two ways to allocate a huge page:
1510  * 1. When you have a VMA and an address (like a fault)
1511  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512  *
1513  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514  * this case which signifies that the allocation should be done with
1515  * respect for the VMA's memory policy.
1516  *
1517  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518  * implies that memory policies will not be taken in to account.
1519  */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521                 struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523         struct page *page;
1524         unsigned int r_nid;
1525
1526         if (hstate_is_gigantic(h))
1527                 return NULL;
1528
1529         /*
1530          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531          * This makes sure the caller is picking _one_ of the modes with which
1532          * we can call this function, not both.
1533          */
1534         if (vma || (addr != -1)) {
1535                 VM_WARN_ON_ONCE(addr == -1);
1536                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537         }
1538         /*
1539          * Assume we will successfully allocate the surplus page to
1540          * prevent racing processes from causing the surplus to exceed
1541          * overcommit
1542          *
1543          * This however introduces a different race, where a process B
1544          * tries to grow the static hugepage pool while alloc_pages() is
1545          * called by process A. B will only examine the per-node
1546          * counters in determining if surplus huge pages can be
1547          * converted to normal huge pages in adjust_pool_surplus(). A
1548          * won't be able to increment the per-node counter, until the
1549          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550          * no more huge pages can be converted from surplus to normal
1551          * state (and doesn't try to convert again). Thus, we have a
1552          * case where a surplus huge page exists, the pool is grown, and
1553          * the surplus huge page still exists after, even though it
1554          * should just have been converted to a normal huge page. This
1555          * does not leak memory, though, as the hugepage will be freed
1556          * once it is out of use. It also does not allow the counters to
1557          * go out of whack in adjust_pool_surplus() as we don't modify
1558          * the node values until we've gotten the hugepage and only the
1559          * per-node value is checked there.
1560          */
1561         spin_lock(&hugetlb_lock);
1562         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563                 spin_unlock(&hugetlb_lock);
1564                 return NULL;
1565         } else {
1566                 h->nr_huge_pages++;
1567                 h->surplus_huge_pages++;
1568         }
1569         spin_unlock(&hugetlb_lock);
1570
1571         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573         spin_lock(&hugetlb_lock);
1574         if (page) {
1575                 INIT_LIST_HEAD(&page->lru);
1576                 r_nid = page_to_nid(page);
1577                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578                 set_hugetlb_cgroup(page, NULL);
1579                 /*
1580                  * We incremented the global counters already
1581                  */
1582                 h->nr_huge_pages_node[r_nid]++;
1583                 h->surplus_huge_pages_node[r_nid]++;
1584                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1585         } else {
1586                 h->nr_huge_pages--;
1587                 h->surplus_huge_pages--;
1588                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589         }
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 /*
1596  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597  * NUMA_NO_NODE, which means that it may be allocated
1598  * anywhere.
1599  */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603         unsigned long addr = -1;
1604
1605         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607
1608 /*
1609  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610  */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613                 struct vm_area_struct *vma, unsigned long addr)
1614 {
1615         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617
1618 /*
1619  * This allocation function is useful in the context where vma is irrelevant.
1620  * E.g. soft-offlining uses this function because it only cares physical
1621  * address of error page.
1622  */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625         struct page *page = NULL;
1626
1627         spin_lock(&hugetlb_lock);
1628         if (h->free_huge_pages - h->resv_huge_pages > 0)
1629                 page = dequeue_huge_page_node(h, nid);
1630         spin_unlock(&hugetlb_lock);
1631
1632         if (!page)
1633                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635         return page;
1636 }
1637
1638 /*
1639  * Increase the hugetlb pool such that it can accommodate a reservation
1640  * of size 'delta'.
1641  */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644         struct list_head surplus_list;
1645         struct page *page, *tmp;
1646         int ret, i;
1647         int needed, allocated;
1648         bool alloc_ok = true;
1649
1650         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651         if (needed <= 0) {
1652                 h->resv_huge_pages += delta;
1653                 return 0;
1654         }
1655
1656         allocated = 0;
1657         INIT_LIST_HEAD(&surplus_list);
1658
1659         ret = -ENOMEM;
1660 retry:
1661         spin_unlock(&hugetlb_lock);
1662         for (i = 0; i < needed; i++) {
1663                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664                 if (!page) {
1665                         alloc_ok = false;
1666                         break;
1667                 }
1668                 list_add(&page->lru, &surplus_list);
1669         }
1670         allocated += i;
1671
1672         /*
1673          * After retaking hugetlb_lock, we need to recalculate 'needed'
1674          * because either resv_huge_pages or free_huge_pages may have changed.
1675          */
1676         spin_lock(&hugetlb_lock);
1677         needed = (h->resv_huge_pages + delta) -
1678                         (h->free_huge_pages + allocated);
1679         if (needed > 0) {
1680                 if (alloc_ok)
1681                         goto retry;
1682                 /*
1683                  * We were not able to allocate enough pages to
1684                  * satisfy the entire reservation so we free what
1685                  * we've allocated so far.
1686                  */
1687                 goto free;
1688         }
1689         /*
1690          * The surplus_list now contains _at_least_ the number of extra pages
1691          * needed to accommodate the reservation.  Add the appropriate number
1692          * of pages to the hugetlb pool and free the extras back to the buddy
1693          * allocator.  Commit the entire reservation here to prevent another
1694          * process from stealing the pages as they are added to the pool but
1695          * before they are reserved.
1696          */
1697         needed += allocated;
1698         h->resv_huge_pages += delta;
1699         ret = 0;
1700
1701         /* Free the needed pages to the hugetlb pool */
1702         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703                 if ((--needed) < 0)
1704                         break;
1705                 /*
1706                  * This page is now managed by the hugetlb allocator and has
1707                  * no users -- drop the buddy allocator's reference.
1708                  */
1709                 put_page_testzero(page);
1710                 VM_BUG_ON_PAGE(page_count(page), page);
1711                 enqueue_huge_page(h, page);
1712         }
1713 free:
1714         spin_unlock(&hugetlb_lock);
1715
1716         /* Free unnecessary surplus pages to the buddy allocator */
1717         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718                 put_page(page);
1719         spin_lock(&hugetlb_lock);
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * When releasing a hugetlb pool reservation, any surplus pages that were
1726  * allocated to satisfy the reservation must be explicitly freed if they were
1727  * never used.
1728  * Called with hugetlb_lock held.
1729  */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731                                         unsigned long unused_resv_pages)
1732 {
1733         unsigned long nr_pages;
1734
1735         /* Uncommit the reservation */
1736         h->resv_huge_pages -= unused_resv_pages;
1737
1738         /* Cannot return gigantic pages currently */
1739         if (hstate_is_gigantic(h))
1740                 return;
1741
1742         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744         /*
1745          * We want to release as many surplus pages as possible, spread
1746          * evenly across all nodes with memory. Iterate across these nodes
1747          * until we can no longer free unreserved surplus pages. This occurs
1748          * when the nodes with surplus pages have no free pages.
1749          * free_pool_huge_page() will balance the the freed pages across the
1750          * on-line nodes with memory and will handle the hstate accounting.
1751          */
1752         while (nr_pages--) {
1753                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754                         break;
1755                 cond_resched_lock(&hugetlb_lock);
1756         }
1757 }
1758
1759
1760 /*
1761  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762  * are used by the huge page allocation routines to manage reservations.
1763  *
1764  * vma_needs_reservation is called to determine if the huge page at addr
1765  * within the vma has an associated reservation.  If a reservation is
1766  * needed, the value 1 is returned.  The caller is then responsible for
1767  * managing the global reservation and subpool usage counts.  After
1768  * the huge page has been allocated, vma_commit_reservation is called
1769  * to add the page to the reservation map.  If the page allocation fails,
1770  * the reservation must be ended instead of committed.  vma_end_reservation
1771  * is called in such cases.
1772  *
1773  * In the normal case, vma_commit_reservation returns the same value
1774  * as the preceding vma_needs_reservation call.  The only time this
1775  * is not the case is if a reserve map was changed between calls.  It
1776  * is the responsibility of the caller to notice the difference and
1777  * take appropriate action.
1778  */
1779 enum vma_resv_mode {
1780         VMA_NEEDS_RESV,
1781         VMA_COMMIT_RESV,
1782         VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785                                 struct vm_area_struct *vma, unsigned long addr,
1786                                 enum vma_resv_mode mode)
1787 {
1788         struct resv_map *resv;
1789         pgoff_t idx;
1790         long ret;
1791
1792         resv = vma_resv_map(vma);
1793         if (!resv)
1794                 return 1;
1795
1796         idx = vma_hugecache_offset(h, vma, addr);
1797         switch (mode) {
1798         case VMA_NEEDS_RESV:
1799                 ret = region_chg(resv, idx, idx + 1);
1800                 break;
1801         case VMA_COMMIT_RESV:
1802                 ret = region_add(resv, idx, idx + 1);
1803                 break;
1804         case VMA_END_RESV:
1805                 region_abort(resv, idx, idx + 1);
1806                 ret = 0;
1807                 break;
1808         default:
1809                 BUG();
1810         }
1811
1812         if (vma->vm_flags & VM_MAYSHARE)
1813                 return ret;
1814         else
1815                 return ret < 0 ? ret : 0;
1816 }
1817
1818 static long vma_needs_reservation(struct hstate *h,
1819                         struct vm_area_struct *vma, unsigned long addr)
1820 {
1821         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823
1824 static long vma_commit_reservation(struct hstate *h,
1825                         struct vm_area_struct *vma, unsigned long addr)
1826 {
1827         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829
1830 static void vma_end_reservation(struct hstate *h,
1831                         struct vm_area_struct *vma, unsigned long addr)
1832 {
1833         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837                                     unsigned long addr, int avoid_reserve)
1838 {
1839         struct hugepage_subpool *spool = subpool_vma(vma);
1840         struct hstate *h = hstate_vma(vma);
1841         struct page *page;
1842         long map_chg, map_commit;
1843         long gbl_chg;
1844         int ret, idx;
1845         struct hugetlb_cgroup *h_cg;
1846
1847         idx = hstate_index(h);
1848         /*
1849          * Examine the region/reserve map to determine if the process
1850          * has a reservation for the page to be allocated.  A return
1851          * code of zero indicates a reservation exists (no change).
1852          */
1853         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854         if (map_chg < 0)
1855                 return ERR_PTR(-ENOMEM);
1856
1857         /*
1858          * Processes that did not create the mapping will have no
1859          * reserves as indicated by the region/reserve map. Check
1860          * that the allocation will not exceed the subpool limit.
1861          * Allocations for MAP_NORESERVE mappings also need to be
1862          * checked against any subpool limit.
1863          */
1864         if (map_chg || avoid_reserve) {
1865                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866                 if (gbl_chg < 0) {
1867                         vma_end_reservation(h, vma, addr);
1868                         return ERR_PTR(-ENOSPC);
1869                 }
1870
1871                 /*
1872                  * Even though there was no reservation in the region/reserve
1873                  * map, there could be reservations associated with the
1874                  * subpool that can be used.  This would be indicated if the
1875                  * return value of hugepage_subpool_get_pages() is zero.
1876                  * However, if avoid_reserve is specified we still avoid even
1877                  * the subpool reservations.
1878                  */
1879                 if (avoid_reserve)
1880                         gbl_chg = 1;
1881         }
1882
1883         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884         if (ret)
1885                 goto out_subpool_put;
1886
1887         spin_lock(&hugetlb_lock);
1888         /*
1889          * glb_chg is passed to indicate whether or not a page must be taken
1890          * from the global free pool (global change).  gbl_chg == 0 indicates
1891          * a reservation exists for the allocation.
1892          */
1893         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894         if (!page) {
1895                 spin_unlock(&hugetlb_lock);
1896                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897                 if (!page)
1898                         goto out_uncharge_cgroup;
1899                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900                         SetPagePrivate(page);
1901                         h->resv_huge_pages--;
1902                 }
1903                 spin_lock(&hugetlb_lock);
1904                 list_move(&page->lru, &h->hugepage_activelist);
1905                 /* Fall through */
1906         }
1907         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908         spin_unlock(&hugetlb_lock);
1909
1910         set_page_private(page, (unsigned long)spool);
1911
1912         map_commit = vma_commit_reservation(h, vma, addr);
1913         if (unlikely(map_chg > map_commit)) {
1914                 /*
1915                  * The page was added to the reservation map between
1916                  * vma_needs_reservation and vma_commit_reservation.
1917                  * This indicates a race with hugetlb_reserve_pages.
1918                  * Adjust for the subpool count incremented above AND
1919                  * in hugetlb_reserve_pages for the same page.  Also,
1920                  * the reservation count added in hugetlb_reserve_pages
1921                  * no longer applies.
1922                  */
1923                 long rsv_adjust;
1924
1925                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926                 hugetlb_acct_memory(h, -rsv_adjust);
1927         }
1928         return page;
1929
1930 out_uncharge_cgroup:
1931         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933         if (map_chg || avoid_reserve)
1934                 hugepage_subpool_put_pages(spool, 1);
1935         vma_end_reservation(h, vma, addr);
1936         return ERR_PTR(-ENOSPC);
1937 }
1938
1939 /*
1940  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942  * where no ERR_VALUE is expected to be returned.
1943  */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945                                 unsigned long addr, int avoid_reserve)
1946 {
1947         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948         if (IS_ERR(page))
1949                 page = NULL;
1950         return page;
1951 }
1952
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955         struct huge_bootmem_page *m;
1956         int nr_nodes, node;
1957
1958         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959                 void *addr;
1960
1961                 addr = memblock_virt_alloc_try_nid_nopanic(
1962                                 huge_page_size(h), huge_page_size(h),
1963                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964                 if (addr) {
1965                         /*
1966                          * Use the beginning of the huge page to store the
1967                          * huge_bootmem_page struct (until gather_bootmem
1968                          * puts them into the mem_map).
1969                          */
1970                         m = addr;
1971                         goto found;
1972                 }
1973         }
1974         return 0;
1975
1976 found:
1977         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978         /* Put them into a private list first because mem_map is not up yet */
1979         list_add(&m->list, &huge_boot_pages);
1980         m->hstate = h;
1981         return 1;
1982 }
1983
1984 static void __init prep_compound_huge_page(struct page *page,
1985                 unsigned int order)
1986 {
1987         if (unlikely(order > (MAX_ORDER - 1)))
1988                 prep_compound_gigantic_page(page, order);
1989         else
1990                 prep_compound_page(page, order);
1991 }
1992
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996         struct huge_bootmem_page *m;
1997
1998         list_for_each_entry(m, &huge_boot_pages, list) {
1999                 struct hstate *h = m->hstate;
2000                 struct page *page;
2001
2002 #ifdef CONFIG_HIGHMEM
2003                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004                 memblock_free_late(__pa(m),
2005                                    sizeof(struct huge_bootmem_page));
2006 #else
2007                 page = virt_to_page(m);
2008 #endif
2009                 WARN_ON(page_count(page) != 1);
2010                 prep_compound_huge_page(page, h->order);
2011                 WARN_ON(PageReserved(page));
2012                 prep_new_huge_page(h, page, page_to_nid(page));
2013                 /*
2014                  * If we had gigantic hugepages allocated at boot time, we need
2015                  * to restore the 'stolen' pages to totalram_pages in order to
2016                  * fix confusing memory reports from free(1) and another
2017                  * side-effects, like CommitLimit going negative.
2018                  */
2019                 if (hstate_is_gigantic(h))
2020                         adjust_managed_page_count(page, 1 << h->order);
2021         }
2022 }
2023
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026         unsigned long i;
2027
2028         for (i = 0; i < h->max_huge_pages; ++i) {
2029                 if (hstate_is_gigantic(h)) {
2030                         if (!alloc_bootmem_huge_page(h))
2031                                 break;
2032                 } else if (!alloc_fresh_huge_page(h,
2033                                          &node_states[N_MEMORY]))
2034                         break;
2035         }
2036         h->max_huge_pages = i;
2037 }
2038
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041         struct hstate *h;
2042
2043         for_each_hstate(h) {
2044                 if (minimum_order > huge_page_order(h))
2045                         minimum_order = huge_page_order(h);
2046
2047                 /* oversize hugepages were init'ed in early boot */
2048                 if (!hstate_is_gigantic(h))
2049                         hugetlb_hstate_alloc_pages(h);
2050         }
2051         VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056         if (n >= (1UL << 30))
2057                 sprintf(buf, "%lu GB", n >> 30);
2058         else if (n >= (1UL << 20))
2059                 sprintf(buf, "%lu MB", n >> 20);
2060         else
2061                 sprintf(buf, "%lu KB", n >> 10);
2062         return buf;
2063 }
2064
2065 static void __init report_hugepages(void)
2066 {
2067         struct hstate *h;
2068
2069         for_each_hstate(h) {
2070                 char buf[32];
2071                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072                         memfmt(buf, huge_page_size(h)),
2073                         h->free_huge_pages);
2074         }
2075 }
2076
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079                                                 nodemask_t *nodes_allowed)
2080 {
2081         int i;
2082
2083         if (hstate_is_gigantic(h))
2084                 return;
2085
2086         for_each_node_mask(i, *nodes_allowed) {
2087                 struct page *page, *next;
2088                 struct list_head *freel = &h->hugepage_freelists[i];
2089                 list_for_each_entry_safe(page, next, freel, lru) {
2090                         if (count >= h->nr_huge_pages)
2091                                 return;
2092                         if (PageHighMem(page))
2093                                 continue;
2094                         list_del(&page->lru);
2095                         update_and_free_page(h, page);
2096                         h->free_huge_pages--;
2097                         h->free_huge_pages_node[page_to_nid(page)]--;
2098                 }
2099         }
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103                                                 nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107
2108 /*
2109  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110  * balanced by operating on them in a round-robin fashion.
2111  * Returns 1 if an adjustment was made.
2112  */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114                                 int delta)
2115 {
2116         int nr_nodes, node;
2117
2118         VM_BUG_ON(delta != -1 && delta != 1);
2119
2120         if (delta < 0) {
2121                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122                         if (h->surplus_huge_pages_node[node])
2123                                 goto found;
2124                 }
2125         } else {
2126                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127                         if (h->surplus_huge_pages_node[node] <
2128                                         h->nr_huge_pages_node[node])
2129                                 goto found;
2130                 }
2131         }
2132         return 0;
2133
2134 found:
2135         h->surplus_huge_pages += delta;
2136         h->surplus_huge_pages_node[node] += delta;
2137         return 1;
2138 }
2139
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142                                                 nodemask_t *nodes_allowed)
2143 {
2144         unsigned long min_count, ret;
2145
2146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147                 return h->max_huge_pages;
2148
2149         /*
2150          * Increase the pool size
2151          * First take pages out of surplus state.  Then make up the
2152          * remaining difference by allocating fresh huge pages.
2153          *
2154          * We might race with __alloc_buddy_huge_page() here and be unable
2155          * to convert a surplus huge page to a normal huge page. That is
2156          * not critical, though, it just means the overall size of the
2157          * pool might be one hugepage larger than it needs to be, but
2158          * within all the constraints specified by the sysctls.
2159          */
2160         spin_lock(&hugetlb_lock);
2161         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163                         break;
2164         }
2165
2166         while (count > persistent_huge_pages(h)) {
2167                 /*
2168                  * If this allocation races such that we no longer need the
2169                  * page, free_huge_page will handle it by freeing the page
2170                  * and reducing the surplus.
2171                  */
2172                 spin_unlock(&hugetlb_lock);
2173                 if (hstate_is_gigantic(h))
2174                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175                 else
2176                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2177                 spin_lock(&hugetlb_lock);
2178                 if (!ret)
2179                         goto out;
2180
2181                 /* Bail for signals. Probably ctrl-c from user */
2182                 if (signal_pending(current))
2183                         goto out;
2184         }
2185
2186         /*
2187          * Decrease the pool size
2188          * First return free pages to the buddy allocator (being careful
2189          * to keep enough around to satisfy reservations).  Then place
2190          * pages into surplus state as needed so the pool will shrink
2191          * to the desired size as pages become free.
2192          *
2193          * By placing pages into the surplus state independent of the
2194          * overcommit value, we are allowing the surplus pool size to
2195          * exceed overcommit. There are few sane options here. Since
2196          * __alloc_buddy_huge_page() is checking the global counter,
2197          * though, we'll note that we're not allowed to exceed surplus
2198          * and won't grow the pool anywhere else. Not until one of the
2199          * sysctls are changed, or the surplus pages go out of use.
2200          */
2201         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202         min_count = max(count, min_count);
2203         try_to_free_low(h, min_count, nodes_allowed);
2204         while (min_count < persistent_huge_pages(h)) {
2205                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2206                         break;
2207                 cond_resched_lock(&hugetlb_lock);
2208         }
2209         while (count < persistent_huge_pages(h)) {
2210                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211                         break;
2212         }
2213 out:
2214         ret = persistent_huge_pages(h);
2215         spin_unlock(&hugetlb_lock);
2216         return ret;
2217 }
2218
2219 #define HSTATE_ATTR_RO(_name) \
2220         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222 #define HSTATE_ATTR(_name) \
2223         static struct kobj_attribute _name##_attr = \
2224                 __ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226 static struct kobject *hugepages_kobj;
2227 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232 {
2233         int i;
2234
2235         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236                 if (hstate_kobjs[i] == kobj) {
2237                         if (nidp)
2238                                 *nidp = NUMA_NO_NODE;
2239                         return &hstates[i];
2240                 }
2241
2242         return kobj_to_node_hstate(kobj, nidp);
2243 }
2244
2245 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246                                         struct kobj_attribute *attr, char *buf)
2247 {
2248         struct hstate *h;
2249         unsigned long nr_huge_pages;
2250         int nid;
2251
2252         h = kobj_to_hstate(kobj, &nid);
2253         if (nid == NUMA_NO_NODE)
2254                 nr_huge_pages = h->nr_huge_pages;
2255         else
2256                 nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258         return sprintf(buf, "%lu\n", nr_huge_pages);
2259 }
2260
2261 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262                                            struct hstate *h, int nid,
2263                                            unsigned long count, size_t len)
2264 {
2265         int err;
2266         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269                 err = -EINVAL;
2270                 goto out;
2271         }
2272
2273         if (nid == NUMA_NO_NODE) {
2274                 /*
2275                  * global hstate attribute
2276                  */
2277                 if (!(obey_mempolicy &&
2278                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2279                         NODEMASK_FREE(nodes_allowed);
2280                         nodes_allowed = &node_states[N_MEMORY];
2281                 }
2282         } else if (nodes_allowed) {
2283                 /*
2284                  * per node hstate attribute: adjust count to global,
2285                  * but restrict alloc/free to the specified node.
2286                  */
2287                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288                 init_nodemask_of_node(nodes_allowed, nid);
2289         } else
2290                 nodes_allowed = &node_states[N_MEMORY];
2291
2292         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294         if (nodes_allowed != &node_states[N_MEMORY])
2295                 NODEMASK_FREE(nodes_allowed);
2296
2297         return len;
2298 out:
2299         NODEMASK_FREE(nodes_allowed);
2300         return err;
2301 }
2302
2303 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304                                          struct kobject *kobj, const char *buf,
2305                                          size_t len)
2306 {
2307         struct hstate *h;
2308         unsigned long count;
2309         int nid;
2310         int err;
2311
2312         err = kstrtoul(buf, 10, &count);
2313         if (err)
2314                 return err;
2315
2316         h = kobj_to_hstate(kobj, &nid);
2317         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318 }
2319
2320 static ssize_t nr_hugepages_show(struct kobject *kobj,
2321                                        struct kobj_attribute *attr, char *buf)
2322 {
2323         return nr_hugepages_show_common(kobj, attr, buf);
2324 }
2325
2326 static ssize_t nr_hugepages_store(struct kobject *kobj,
2327                struct kobj_attribute *attr, const char *buf, size_t len)
2328 {
2329         return nr_hugepages_store_common(false, kobj, buf, len);
2330 }
2331 HSTATE_ATTR(nr_hugepages);
2332
2333 #ifdef CONFIG_NUMA
2334
2335 /*
2336  * hstate attribute for optionally mempolicy-based constraint on persistent
2337  * huge page alloc/free.
2338  */
2339 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340                                        struct kobj_attribute *attr, char *buf)
2341 {
2342         return nr_hugepages_show_common(kobj, attr, buf);
2343 }
2344
2345 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346                struct kobj_attribute *attr, const char *buf, size_t len)
2347 {
2348         return nr_hugepages_store_common(true, kobj, buf, len);
2349 }
2350 HSTATE_ATTR(nr_hugepages_mempolicy);
2351 #endif
2352
2353
2354 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355                                         struct kobj_attribute *attr, char *buf)
2356 {
2357         struct hstate *h = kobj_to_hstate(kobj, NULL);
2358         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359 }
2360
2361 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362                 struct kobj_attribute *attr, const char *buf, size_t count)
2363 {
2364         int err;
2365         unsigned long input;
2366         struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368         if (hstate_is_gigantic(h))
2369                 return -EINVAL;
2370
2371         err = kstrtoul(buf, 10, &input);
2372         if (err)
2373                 return err;
2374
2375         spin_lock(&hugetlb_lock);
2376         h->nr_overcommit_huge_pages = input;
2377         spin_unlock(&hugetlb_lock);
2378
2379         return count;
2380 }
2381 HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383 static ssize_t free_hugepages_show(struct kobject *kobj,
2384                                         struct kobj_attribute *attr, char *buf)
2385 {
2386         struct hstate *h;
2387         unsigned long free_huge_pages;
2388         int nid;
2389
2390         h = kobj_to_hstate(kobj, &nid);
2391         if (nid == NUMA_NO_NODE)
2392                 free_huge_pages = h->free_huge_pages;
2393         else
2394                 free_huge_pages = h->free_huge_pages_node[nid];
2395
2396         return sprintf(buf, "%lu\n", free_huge_pages);
2397 }
2398 HSTATE_ATTR_RO(free_hugepages);
2399
2400 static ssize_t resv_hugepages_show(struct kobject *kobj,
2401                                         struct kobj_attribute *attr, char *buf)
2402 {
2403         struct hstate *h = kobj_to_hstate(kobj, NULL);
2404         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405 }
2406 HSTATE_ATTR_RO(resv_hugepages);
2407
2408 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409                                         struct kobj_attribute *attr, char *buf)
2410 {
2411         struct hstate *h;
2412         unsigned long surplus_huge_pages;
2413         int nid;
2414
2415         h = kobj_to_hstate(kobj, &nid);
2416         if (nid == NUMA_NO_NODE)
2417                 surplus_huge_pages = h->surplus_huge_pages;
2418         else
2419                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421         return sprintf(buf, "%lu\n", surplus_huge_pages);
2422 }
2423 HSTATE_ATTR_RO(surplus_hugepages);
2424
2425 static struct attribute *hstate_attrs[] = {
2426         &nr_hugepages_attr.attr,
2427         &nr_overcommit_hugepages_attr.attr,
2428         &free_hugepages_attr.attr,
2429         &resv_hugepages_attr.attr,
2430         &surplus_hugepages_attr.attr,
2431 #ifdef CONFIG_NUMA
2432         &nr_hugepages_mempolicy_attr.attr,
2433 #endif
2434         NULL,
2435 };
2436
2437 static struct attribute_group hstate_attr_group = {
2438         .attrs = hstate_attrs,
2439 };
2440
2441 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442                                     struct kobject **hstate_kobjs,
2443                                     struct attribute_group *hstate_attr_group)
2444 {
2445         int retval;
2446         int hi = hstate_index(h);
2447
2448         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449         if (!hstate_kobjs[hi])
2450                 return -ENOMEM;
2451
2452         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453         if (retval)
2454                 kobject_put(hstate_kobjs[hi]);
2455
2456         return retval;
2457 }
2458
2459 static void __init hugetlb_sysfs_init(void)
2460 {
2461         struct hstate *h;
2462         int err;
2463
2464         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465         if (!hugepages_kobj)
2466                 return;
2467
2468         for_each_hstate(h) {
2469                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470                                          hstate_kobjs, &hstate_attr_group);
2471                 if (err)
2472                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473         }
2474 }
2475
2476 #ifdef CONFIG_NUMA
2477
2478 /*
2479  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480  * with node devices in node_devices[] using a parallel array.  The array
2481  * index of a node device or _hstate == node id.
2482  * This is here to avoid any static dependency of the node device driver, in
2483  * the base kernel, on the hugetlb module.
2484  */
2485 struct node_hstate {
2486         struct kobject          *hugepages_kobj;
2487         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2488 };
2489 static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491 /*
2492  * A subset of global hstate attributes for node devices
2493  */
2494 static struct attribute *per_node_hstate_attrs[] = {
2495         &nr_hugepages_attr.attr,
2496         &free_hugepages_attr.attr,
2497         &surplus_hugepages_attr.attr,
2498         NULL,
2499 };
2500
2501 static struct attribute_group per_node_hstate_attr_group = {
2502         .attrs = per_node_hstate_attrs,
2503 };
2504
2505 /*
2506  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507  * Returns node id via non-NULL nidp.
2508  */
2509 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510 {
2511         int nid;
2512
2513         for (nid = 0; nid < nr_node_ids; nid++) {
2514                 struct node_hstate *nhs = &node_hstates[nid];
2515                 int i;
2516                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517                         if (nhs->hstate_kobjs[i] == kobj) {
2518                                 if (nidp)
2519                                         *nidp = nid;
2520                                 return &hstates[i];
2521                         }
2522         }
2523
2524         BUG();
2525         return NULL;
2526 }
2527
2528 /*
2529  * Unregister hstate attributes from a single node device.
2530  * No-op if no hstate attributes attached.
2531  */
2532 static void hugetlb_unregister_node(struct node *node)
2533 {
2534         struct hstate *h;
2535         struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537         if (!nhs->hugepages_kobj)
2538                 return;         /* no hstate attributes */
2539
2540         for_each_hstate(h) {
2541                 int idx = hstate_index(h);
2542                 if (nhs->hstate_kobjs[idx]) {
2543                         kobject_put(nhs->hstate_kobjs[idx]);
2544                         nhs->hstate_kobjs[idx] = NULL;
2545                 }
2546         }
2547
2548         kobject_put(nhs->hugepages_kobj);
2549         nhs->hugepages_kobj = NULL;
2550 }
2551
2552
2553 /*
2554  * Register hstate attributes for a single node device.
2555  * No-op if attributes already registered.
2556  */
2557 static void hugetlb_register_node(struct node *node)
2558 {
2559         struct hstate *h;
2560         struct node_hstate *nhs = &node_hstates[node->dev.id];
2561         int err;
2562
2563         if (nhs->hugepages_kobj)
2564                 return;         /* already allocated */
2565
2566         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567                                                         &node->dev.kobj);
2568         if (!nhs->hugepages_kobj)
2569                 return;
2570
2571         for_each_hstate(h) {
2572                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573                                                 nhs->hstate_kobjs,
2574                                                 &per_node_hstate_attr_group);
2575                 if (err) {
2576                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577                                 h->name, node->dev.id);
2578                         hugetlb_unregister_node(node);
2579                         break;
2580                 }
2581         }
2582 }
2583
2584 /*
2585  * hugetlb init time:  register hstate attributes for all registered node
2586  * devices of nodes that have memory.  All on-line nodes should have
2587  * registered their associated device by this time.
2588  */
2589 static void __init hugetlb_register_all_nodes(void)
2590 {
2591         int nid;
2592
2593         for_each_node_state(nid, N_MEMORY) {
2594                 struct node *node = node_devices[nid];
2595                 if (node->dev.id == nid)
2596                         hugetlb_register_node(node);
2597         }
2598
2599         /*
2600          * Let the node device driver know we're here so it can
2601          * [un]register hstate attributes on node hotplug.
2602          */
2603         register_hugetlbfs_with_node(hugetlb_register_node,
2604                                      hugetlb_unregister_node);
2605 }
2606 #else   /* !CONFIG_NUMA */
2607
2608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609 {
2610         BUG();
2611         if (nidp)
2612                 *nidp = -1;
2613         return NULL;
2614 }
2615
2616 static void hugetlb_register_all_nodes(void) { }
2617
2618 #endif
2619
2620 static int __init hugetlb_init(void)
2621 {
2622         int i;
2623
2624         if (!hugepages_supported())
2625                 return 0;
2626
2627         if (!size_to_hstate(default_hstate_size)) {
2628                 default_hstate_size = HPAGE_SIZE;
2629                 if (!size_to_hstate(default_hstate_size))
2630                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631         }
2632         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633         if (default_hstate_max_huge_pages) {
2634                 if (!default_hstate.max_huge_pages)
2635                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636         }
2637
2638         hugetlb_init_hstates();
2639         gather_bootmem_prealloc();
2640         report_hugepages();
2641
2642         hugetlb_sysfs_init();
2643         hugetlb_register_all_nodes();
2644         hugetlb_cgroup_file_init();
2645
2646 #ifdef CONFIG_SMP
2647         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648 #else
2649         num_fault_mutexes = 1;
2650 #endif
2651         hugetlb_fault_mutex_table =
2652                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653         BUG_ON(!hugetlb_fault_mutex_table);
2654
2655         for (i = 0; i < num_fault_mutexes; i++)
2656                 mutex_init(&hugetlb_fault_mutex_table[i]);
2657         return 0;
2658 }
2659 subsys_initcall(hugetlb_init);
2660
2661 /* Should be called on processing a hugepagesz=... option */
2662 void __init hugetlb_add_hstate(unsigned int order)
2663 {
2664         struct hstate *h;
2665         unsigned long i;
2666
2667         if (size_to_hstate(PAGE_SIZE << order)) {
2668                 pr_warning("hugepagesz= specified twice, ignoring\n");
2669                 return;
2670         }
2671         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672         BUG_ON(order == 0);
2673         h = &hstates[hugetlb_max_hstate++];
2674         h->order = order;
2675         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676         h->nr_huge_pages = 0;
2677         h->free_huge_pages = 0;
2678         for (i = 0; i < MAX_NUMNODES; ++i)
2679                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680         INIT_LIST_HEAD(&h->hugepage_activelist);
2681         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684                                         huge_page_size(h)/1024);
2685
2686         parsed_hstate = h;
2687 }
2688
2689 static int __init hugetlb_nrpages_setup(char *s)
2690 {
2691         unsigned long *mhp;
2692         static unsigned long *last_mhp;
2693
2694         /*
2695          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696          * so this hugepages= parameter goes to the "default hstate".
2697          */
2698         if (!hugetlb_max_hstate)
2699                 mhp = &default_hstate_max_huge_pages;
2700         else
2701                 mhp = &parsed_hstate->max_huge_pages;
2702
2703         if (mhp == last_mhp) {
2704                 pr_warning("hugepages= specified twice without "
2705                            "interleaving hugepagesz=, ignoring\n");
2706                 return 1;
2707         }
2708
2709         if (sscanf(s, "%lu", mhp) <= 0)
2710                 *mhp = 0;
2711
2712         /*
2713          * Global state is always initialized later in hugetlb_init.
2714          * But we need to allocate >= MAX_ORDER hstates here early to still
2715          * use the bootmem allocator.
2716          */
2717         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2718                 hugetlb_hstate_alloc_pages(parsed_hstate);
2719
2720         last_mhp = mhp;
2721
2722         return 1;
2723 }
2724 __setup("hugepages=", hugetlb_nrpages_setup);
2725
2726 static int __init hugetlb_default_setup(char *s)
2727 {
2728         default_hstate_size = memparse(s, &s);
2729         return 1;
2730 }
2731 __setup("default_hugepagesz=", hugetlb_default_setup);
2732
2733 static unsigned int cpuset_mems_nr(unsigned int *array)
2734 {
2735         int node;
2736         unsigned int nr = 0;
2737
2738         for_each_node_mask(node, cpuset_current_mems_allowed)
2739                 nr += array[node];
2740
2741         return nr;
2742 }
2743
2744 #ifdef CONFIG_SYSCTL
2745 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2746                          struct ctl_table *table, int write,
2747                          void __user *buffer, size_t *length, loff_t *ppos)
2748 {
2749         struct hstate *h = &default_hstate;
2750         unsigned long tmp = h->max_huge_pages;
2751         int ret;
2752
2753         if (!hugepages_supported())
2754                 return -ENOTSUPP;
2755
2756         table->data = &tmp;
2757         table->maxlen = sizeof(unsigned long);
2758         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2759         if (ret)
2760                 goto out;
2761
2762         if (write)
2763                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2764                                                   NUMA_NO_NODE, tmp, *length);
2765 out:
2766         return ret;
2767 }
2768
2769 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2770                           void __user *buffer, size_t *length, loff_t *ppos)
2771 {
2772
2773         return hugetlb_sysctl_handler_common(false, table, write,
2774                                                         buffer, length, ppos);
2775 }
2776
2777 #ifdef CONFIG_NUMA
2778 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2779                           void __user *buffer, size_t *length, loff_t *ppos)
2780 {
2781         return hugetlb_sysctl_handler_common(true, table, write,
2782                                                         buffer, length, ppos);
2783 }
2784 #endif /* CONFIG_NUMA */
2785
2786 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2787                         void __user *buffer,
2788                         size_t *length, loff_t *ppos)
2789 {
2790         struct hstate *h = &default_hstate;
2791         unsigned long tmp;
2792         int ret;
2793
2794         if (!hugepages_supported())
2795                 return -ENOTSUPP;
2796
2797         tmp = h->nr_overcommit_huge_pages;
2798
2799         if (write && hstate_is_gigantic(h))
2800                 return -EINVAL;
2801
2802         table->data = &tmp;
2803         table->maxlen = sizeof(unsigned long);
2804         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2805         if (ret)
2806                 goto out;
2807
2808         if (write) {
2809                 spin_lock(&hugetlb_lock);
2810                 h->nr_overcommit_huge_pages = tmp;
2811                 spin_unlock(&hugetlb_lock);
2812         }
2813 out:
2814         return ret;
2815 }
2816
2817 #endif /* CONFIG_SYSCTL */
2818
2819 void hugetlb_report_meminfo(struct seq_file *m)
2820 {
2821         struct hstate *h = &default_hstate;
2822         if (!hugepages_supported())
2823                 return;
2824         seq_printf(m,
2825                         "HugePages_Total:   %5lu\n"
2826                         "HugePages_Free:    %5lu\n"
2827                         "HugePages_Rsvd:    %5lu\n"
2828                         "HugePages_Surp:    %5lu\n"
2829                         "Hugepagesize:   %8lu kB\n",
2830                         h->nr_huge_pages,
2831                         h->free_huge_pages,
2832                         h->resv_huge_pages,
2833                         h->surplus_huge_pages,
2834                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2835 }
2836
2837 int hugetlb_report_node_meminfo(int nid, char *buf)
2838 {
2839         struct hstate *h = &default_hstate;
2840         if (!hugepages_supported())
2841                 return 0;
2842         return sprintf(buf,
2843                 "Node %d HugePages_Total: %5u\n"
2844                 "Node %d HugePages_Free:  %5u\n"
2845                 "Node %d HugePages_Surp:  %5u\n",
2846                 nid, h->nr_huge_pages_node[nid],
2847                 nid, h->free_huge_pages_node[nid],
2848                 nid, h->surplus_huge_pages_node[nid]);
2849 }
2850
2851 void hugetlb_show_meminfo(void)
2852 {
2853         struct hstate *h;
2854         int nid;
2855
2856         if (!hugepages_supported())
2857                 return;
2858
2859         for_each_node_state(nid, N_MEMORY)
2860                 for_each_hstate(h)
2861                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2862                                 nid,
2863                                 h->nr_huge_pages_node[nid],
2864                                 h->free_huge_pages_node[nid],
2865                                 h->surplus_huge_pages_node[nid],
2866                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2867 }
2868
2869 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2870 {
2871         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2872                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2873 }
2874
2875 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2876 unsigned long hugetlb_total_pages(void)
2877 {
2878         struct hstate *h;
2879         unsigned long nr_total_pages = 0;
2880
2881         for_each_hstate(h)
2882                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2883         return nr_total_pages;
2884 }
2885
2886 static int hugetlb_acct_memory(struct hstate *h, long delta)
2887 {
2888         int ret = -ENOMEM;
2889
2890         spin_lock(&hugetlb_lock);
2891         /*
2892          * When cpuset is configured, it breaks the strict hugetlb page
2893          * reservation as the accounting is done on a global variable. Such
2894          * reservation is completely rubbish in the presence of cpuset because
2895          * the reservation is not checked against page availability for the
2896          * current cpuset. Application can still potentially OOM'ed by kernel
2897          * with lack of free htlb page in cpuset that the task is in.
2898          * Attempt to enforce strict accounting with cpuset is almost
2899          * impossible (or too ugly) because cpuset is too fluid that
2900          * task or memory node can be dynamically moved between cpusets.
2901          *
2902          * The change of semantics for shared hugetlb mapping with cpuset is
2903          * undesirable. However, in order to preserve some of the semantics,
2904          * we fall back to check against current free page availability as
2905          * a best attempt and hopefully to minimize the impact of changing
2906          * semantics that cpuset has.
2907          */
2908         if (delta > 0) {
2909                 if (gather_surplus_pages(h, delta) < 0)
2910                         goto out;
2911
2912                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2913                         return_unused_surplus_pages(h, delta);
2914                         goto out;
2915                 }
2916         }
2917
2918         ret = 0;
2919         if (delta < 0)
2920                 return_unused_surplus_pages(h, (unsigned long) -delta);
2921
2922 out:
2923         spin_unlock(&hugetlb_lock);
2924         return ret;
2925 }
2926
2927 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2928 {
2929         struct resv_map *resv = vma_resv_map(vma);
2930
2931         /*
2932          * This new VMA should share its siblings reservation map if present.
2933          * The VMA will only ever have a valid reservation map pointer where
2934          * it is being copied for another still existing VMA.  As that VMA
2935          * has a reference to the reservation map it cannot disappear until
2936          * after this open call completes.  It is therefore safe to take a
2937          * new reference here without additional locking.
2938          */
2939         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2940                 kref_get(&resv->refs);
2941 }
2942
2943 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2944 {
2945         struct hstate *h = hstate_vma(vma);
2946         struct resv_map *resv = vma_resv_map(vma);
2947         struct hugepage_subpool *spool = subpool_vma(vma);
2948         unsigned long reserve, start, end;
2949         long gbl_reserve;
2950
2951         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2952                 return;
2953
2954         start = vma_hugecache_offset(h, vma, vma->vm_start);
2955         end = vma_hugecache_offset(h, vma, vma->vm_end);
2956
2957         reserve = (end - start) - region_count(resv, start, end);
2958
2959         kref_put(&resv->refs, resv_map_release);
2960
2961         if (reserve) {
2962                 /*
2963                  * Decrement reserve counts.  The global reserve count may be
2964                  * adjusted if the subpool has a minimum size.
2965                  */
2966                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2967                 hugetlb_acct_memory(h, -gbl_reserve);
2968         }
2969 }
2970
2971 /*
2972  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2973  * handle_mm_fault() to try to instantiate regular-sized pages in the
2974  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2975  * this far.
2976  */
2977 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2978 {
2979         BUG();
2980         return 0;
2981 }
2982
2983 const struct vm_operations_struct hugetlb_vm_ops = {
2984         .fault = hugetlb_vm_op_fault,
2985         .open = hugetlb_vm_op_open,
2986         .close = hugetlb_vm_op_close,
2987 };
2988
2989 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2990                                 int writable)
2991 {
2992         pte_t entry;
2993
2994         if (writable) {
2995                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2996                                          vma->vm_page_prot)));
2997         } else {
2998                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2999                                            vma->vm_page_prot));
3000         }
3001         entry = pte_mkyoung(entry);
3002         entry = pte_mkhuge(entry);
3003         entry = arch_make_huge_pte(entry, vma, page, writable);
3004
3005         return entry;
3006 }
3007
3008 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3009                                    unsigned long address, pte_t *ptep)
3010 {
3011         pte_t entry;
3012
3013         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3014         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3015                 update_mmu_cache(vma, address, ptep);
3016 }
3017
3018 static int is_hugetlb_entry_migration(pte_t pte)
3019 {
3020         swp_entry_t swp;
3021
3022         if (huge_pte_none(pte) || pte_present(pte))
3023                 return 0;
3024         swp = pte_to_swp_entry(pte);
3025         if (non_swap_entry(swp) && is_migration_entry(swp))
3026                 return 1;
3027         else
3028                 return 0;
3029 }
3030
3031 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3032 {
3033         swp_entry_t swp;
3034
3035         if (huge_pte_none(pte) || pte_present(pte))
3036                 return 0;
3037         swp = pte_to_swp_entry(pte);
3038         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3039                 return 1;
3040         else
3041                 return 0;
3042 }
3043
3044 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3045                             struct vm_area_struct *vma)
3046 {
3047         pte_t *src_pte, *dst_pte, entry;
3048         struct page *ptepage;
3049         unsigned long addr;
3050         int cow;
3051         struct hstate *h = hstate_vma(vma);
3052         unsigned long sz = huge_page_size(h);
3053         unsigned long mmun_start;       /* For mmu_notifiers */
3054         unsigned long mmun_end;         /* For mmu_notifiers */
3055         int ret = 0;
3056
3057         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3058
3059         mmun_start = vma->vm_start;
3060         mmun_end = vma->vm_end;
3061         if (cow)
3062                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3063
3064         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3065                 spinlock_t *src_ptl, *dst_ptl;
3066                 src_pte = huge_pte_offset(src, addr);
3067                 if (!src_pte)
3068                         continue;
3069                 dst_pte = huge_pte_alloc(dst, addr, sz);
3070                 if (!dst_pte) {
3071                         ret = -ENOMEM;
3072                         break;
3073                 }
3074
3075                 /* If the pagetables are shared don't copy or take references */
3076                 if (dst_pte == src_pte)
3077                         continue;
3078
3079                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3080                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3081                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3082                 entry = huge_ptep_get(src_pte);
3083                 if (huge_pte_none(entry)) { /* skip none entry */
3084                         ;
3085                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3086                                     is_hugetlb_entry_hwpoisoned(entry))) {
3087                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3088
3089                         if (is_write_migration_entry(swp_entry) && cow) {
3090                                 /*
3091                                  * COW mappings require pages in both
3092                                  * parent and child to be set to read.
3093                                  */
3094                                 make_migration_entry_read(&swp_entry);
3095                                 entry = swp_entry_to_pte(swp_entry);
3096                                 set_huge_pte_at(src, addr, src_pte, entry);
3097                         }
3098                         set_huge_pte_at(dst, addr, dst_pte, entry);
3099                 } else {
3100                         if (cow) {
3101                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3102                                 mmu_notifier_invalidate_range(src, mmun_start,
3103                                                                    mmun_end);
3104                         }
3105                         entry = huge_ptep_get(src_pte);
3106                         ptepage = pte_page(entry);
3107                         get_page(ptepage);
3108                         page_dup_rmap(ptepage, true);
3109                         set_huge_pte_at(dst, addr, dst_pte, entry);
3110                         hugetlb_count_add(pages_per_huge_page(h), dst);
3111                 }
3112                 spin_unlock(src_ptl);
3113                 spin_unlock(dst_ptl);
3114         }
3115
3116         if (cow)
3117                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3118
3119         return ret;
3120 }
3121
3122 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3123                             unsigned long start, unsigned long end,
3124                             struct page *ref_page)
3125 {
3126         int force_flush = 0;
3127         struct mm_struct *mm = vma->vm_mm;
3128         unsigned long address;
3129         pte_t *ptep;
3130         pte_t pte;
3131         spinlock_t *ptl;
3132         struct page *page;
3133         struct hstate *h = hstate_vma(vma);
3134         unsigned long sz = huge_page_size(h);
3135         const unsigned long mmun_start = start; /* For mmu_notifiers */
3136         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3137
3138         WARN_ON(!is_vm_hugetlb_page(vma));
3139         BUG_ON(start & ~huge_page_mask(h));
3140         BUG_ON(end & ~huge_page_mask(h));
3141
3142         tlb_start_vma(tlb, vma);
3143         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3144         address = start;
3145 again:
3146         for (; address < end; address += sz) {
3147                 ptep = huge_pte_offset(mm, address);
3148                 if (!ptep)
3149                         continue;
3150
3151                 ptl = huge_pte_lock(h, mm, ptep);
3152                 if (huge_pmd_unshare(mm, &address, ptep))
3153                         goto unlock;
3154
3155                 pte = huge_ptep_get(ptep);
3156                 if (huge_pte_none(pte))
3157                         goto unlock;
3158
3159                 /*
3160                  * Migrating hugepage or HWPoisoned hugepage is already
3161                  * unmapped and its refcount is dropped, so just clear pte here.
3162                  */
3163                 if (unlikely(!pte_present(pte))) {
3164                         huge_pte_clear(mm, address, ptep);
3165                         goto unlock;
3166                 }
3167
3168                 page = pte_page(pte);
3169                 /*
3170                  * If a reference page is supplied, it is because a specific
3171                  * page is being unmapped, not a range. Ensure the page we
3172                  * are about to unmap is the actual page of interest.
3173                  */
3174                 if (ref_page) {
3175                         if (page != ref_page)
3176                                 goto unlock;
3177
3178                         /*
3179                          * Mark the VMA as having unmapped its page so that
3180                          * future faults in this VMA will fail rather than
3181                          * looking like data was lost
3182                          */
3183                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3184                 }
3185
3186                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3187                 tlb_remove_tlb_entry(tlb, ptep, address);
3188                 if (huge_pte_dirty(pte))
3189                         set_page_dirty(page);
3190
3191                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3192                 page_remove_rmap(page, true);
3193                 force_flush = !__tlb_remove_page(tlb, page);
3194                 if (force_flush) {
3195                         address += sz;
3196                         spin_unlock(ptl);
3197                         break;
3198                 }
3199                 /* Bail out after unmapping reference page if supplied */
3200                 if (ref_page) {
3201                         spin_unlock(ptl);
3202                         break;
3203                 }
3204 unlock:
3205                 spin_unlock(ptl);
3206         }
3207         /*
3208          * mmu_gather ran out of room to batch pages, we break out of
3209          * the PTE lock to avoid doing the potential expensive TLB invalidate
3210          * and page-free while holding it.
3211          */
3212         if (force_flush) {
3213                 force_flush = 0;
3214                 tlb_flush_mmu(tlb);
3215                 if (address < end && !ref_page)
3216                         goto again;
3217         }
3218         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3219         tlb_end_vma(tlb, vma);
3220 }
3221
3222 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3223                           struct vm_area_struct *vma, unsigned long start,
3224                           unsigned long end, struct page *ref_page)
3225 {
3226         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3227
3228         /*
3229          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3230          * test will fail on a vma being torn down, and not grab a page table
3231          * on its way out.  We're lucky that the flag has such an appropriate
3232          * name, and can in fact be safely cleared here. We could clear it
3233          * before the __unmap_hugepage_range above, but all that's necessary
3234          * is to clear it before releasing the i_mmap_rwsem. This works
3235          * because in the context this is called, the VMA is about to be
3236          * destroyed and the i_mmap_rwsem is held.
3237          */
3238         vma->vm_flags &= ~VM_MAYSHARE;
3239 }
3240
3241 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3242                           unsigned long end, struct page *ref_page)
3243 {
3244         struct mm_struct *mm;
3245         struct mmu_gather tlb;
3246
3247         mm = vma->vm_mm;
3248
3249         tlb_gather_mmu(&tlb, mm, start, end);
3250         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3251         tlb_finish_mmu(&tlb, start, end);
3252 }
3253
3254 /*
3255  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3256  * mappping it owns the reserve page for. The intention is to unmap the page
3257  * from other VMAs and let the children be SIGKILLed if they are faulting the
3258  * same region.
3259  */
3260 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3261                               struct page *page, unsigned long address)
3262 {
3263         struct hstate *h = hstate_vma(vma);
3264         struct vm_area_struct *iter_vma;
3265         struct address_space *mapping;
3266         pgoff_t pgoff;
3267
3268         /*
3269          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3270          * from page cache lookup which is in HPAGE_SIZE units.
3271          */
3272         address = address & huge_page_mask(h);
3273         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3274                         vma->vm_pgoff;
3275         mapping = file_inode(vma->vm_file)->i_mapping;
3276
3277         /*
3278          * Take the mapping lock for the duration of the table walk. As
3279          * this mapping should be shared between all the VMAs,
3280          * __unmap_hugepage_range() is called as the lock is already held
3281          */
3282         i_mmap_lock_write(mapping);
3283         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3284                 /* Do not unmap the current VMA */
3285                 if (iter_vma == vma)
3286                         continue;
3287
3288                 /*
3289                  * Shared VMAs have their own reserves and do not affect
3290                  * MAP_PRIVATE accounting but it is possible that a shared
3291                  * VMA is using the same page so check and skip such VMAs.
3292                  */
3293                 if (iter_vma->vm_flags & VM_MAYSHARE)
3294                         continue;
3295
3296                 /*
3297                  * Unmap the page from other VMAs without their own reserves.
3298                  * They get marked to be SIGKILLed if they fault in these
3299                  * areas. This is because a future no-page fault on this VMA
3300                  * could insert a zeroed page instead of the data existing
3301                  * from the time of fork. This would look like data corruption
3302                  */
3303                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3304                         unmap_hugepage_range(iter_vma, address,
3305                                              address + huge_page_size(h), page);
3306         }
3307         i_mmap_unlock_write(mapping);
3308 }
3309
3310 /*
3311  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3312  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3313  * cannot race with other handlers or page migration.
3314  * Keep the pte_same checks anyway to make transition from the mutex easier.
3315  */
3316 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3317                         unsigned long address, pte_t *ptep, pte_t pte,
3318                         struct page *pagecache_page, spinlock_t *ptl)
3319 {
3320         struct hstate *h = hstate_vma(vma);
3321         struct page *old_page, *new_page;
3322         int ret = 0, outside_reserve = 0;
3323         unsigned long mmun_start;       /* For mmu_notifiers */
3324         unsigned long mmun_end;         /* For mmu_notifiers */
3325
3326         old_page = pte_page(pte);
3327
3328 retry_avoidcopy:
3329         /* If no-one else is actually using this page, avoid the copy
3330          * and just make the page writable */
3331         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3332                 page_move_anon_rmap(old_page, vma, address);
3333                 set_huge_ptep_writable(vma, address, ptep);
3334                 return 0;
3335         }
3336
3337         /*
3338          * If the process that created a MAP_PRIVATE mapping is about to
3339          * perform a COW due to a shared page count, attempt to satisfy
3340          * the allocation without using the existing reserves. The pagecache
3341          * page is used to determine if the reserve at this address was
3342          * consumed or not. If reserves were used, a partial faulted mapping
3343          * at the time of fork() could consume its reserves on COW instead
3344          * of the full address range.
3345          */
3346         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3347                         old_page != pagecache_page)
3348                 outside_reserve = 1;
3349
3350         page_cache_get(old_page);
3351
3352         /*
3353          * Drop page table lock as buddy allocator may be called. It will
3354          * be acquired again before returning to the caller, as expected.
3355          */
3356         spin_unlock(ptl);
3357         new_page = alloc_huge_page(vma, address, outside_reserve);
3358
3359         if (IS_ERR(new_page)) {
3360                 /*
3361                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3362                  * it is due to references held by a child and an insufficient
3363                  * huge page pool. To guarantee the original mappers
3364                  * reliability, unmap the page from child processes. The child
3365                  * may get SIGKILLed if it later faults.
3366                  */
3367                 if (outside_reserve) {
3368                         page_cache_release(old_page);
3369                         BUG_ON(huge_pte_none(pte));
3370                         unmap_ref_private(mm, vma, old_page, address);
3371                         BUG_ON(huge_pte_none(pte));
3372                         spin_lock(ptl);
3373                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3374                         if (likely(ptep &&
3375                                    pte_same(huge_ptep_get(ptep), pte)))
3376                                 goto retry_avoidcopy;
3377                         /*
3378                          * race occurs while re-acquiring page table
3379                          * lock, and our job is done.
3380                          */
3381                         return 0;
3382                 }
3383
3384                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3385                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3386                 goto out_release_old;
3387         }
3388
3389         /*
3390          * When the original hugepage is shared one, it does not have
3391          * anon_vma prepared.
3392          */
3393         if (unlikely(anon_vma_prepare(vma))) {
3394                 ret = VM_FAULT_OOM;
3395                 goto out_release_all;
3396         }
3397
3398         copy_user_huge_page(new_page, old_page, address, vma,
3399                             pages_per_huge_page(h));
3400         __SetPageUptodate(new_page);
3401         set_page_huge_active(new_page);
3402
3403         mmun_start = address & huge_page_mask(h);
3404         mmun_end = mmun_start + huge_page_size(h);
3405         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3406
3407         /*
3408          * Retake the page table lock to check for racing updates
3409          * before the page tables are altered
3410          */
3411         spin_lock(ptl);
3412         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3413         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3414                 ClearPagePrivate(new_page);
3415
3416                 /* Break COW */
3417                 huge_ptep_clear_flush(vma, address, ptep);
3418                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3419                 set_huge_pte_at(mm, address, ptep,
3420                                 make_huge_pte(vma, new_page, 1));
3421                 page_remove_rmap(old_page, true);
3422                 hugepage_add_new_anon_rmap(new_page, vma, address);
3423                 /* Make the old page be freed below */
3424                 new_page = old_page;
3425         }
3426         spin_unlock(ptl);
3427         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3428 out_release_all:
3429         page_cache_release(new_page);
3430 out_release_old:
3431         page_cache_release(old_page);
3432
3433         spin_lock(ptl); /* Caller expects lock to be held */
3434         return ret;
3435 }
3436
3437 /* Return the pagecache page at a given address within a VMA */
3438 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3439                         struct vm_area_struct *vma, unsigned long address)
3440 {
3441         struct address_space *mapping;
3442         pgoff_t idx;
3443
3444         mapping = vma->vm_file->f_mapping;
3445         idx = vma_hugecache_offset(h, vma, address);
3446
3447         return find_lock_page(mapping, idx);
3448 }
3449
3450 /*
3451  * Return whether there is a pagecache page to back given address within VMA.
3452  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3453  */
3454 static bool hugetlbfs_pagecache_present(struct hstate *h,
3455                         struct vm_area_struct *vma, unsigned long address)
3456 {
3457         struct address_space *mapping;
3458         pgoff_t idx;
3459         struct page *page;
3460
3461         mapping = vma->vm_file->f_mapping;
3462         idx = vma_hugecache_offset(h, vma, address);
3463
3464         page = find_get_page(mapping, idx);
3465         if (page)
3466                 put_page(page);
3467         return page != NULL;
3468 }
3469
3470 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3471                            pgoff_t idx)
3472 {
3473         struct inode *inode = mapping->host;
3474         struct hstate *h = hstate_inode(inode);
3475         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3476
3477         if (err)
3478                 return err;
3479         ClearPagePrivate(page);
3480
3481         spin_lock(&inode->i_lock);
3482         inode->i_blocks += blocks_per_huge_page(h);
3483         spin_unlock(&inode->i_lock);
3484         return 0;
3485 }
3486
3487 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3488                            struct address_space *mapping, pgoff_t idx,
3489                            unsigned long address, pte_t *ptep, unsigned int flags)
3490 {
3491         struct hstate *h = hstate_vma(vma);
3492         int ret = VM_FAULT_SIGBUS;
3493         int anon_rmap = 0;
3494         unsigned long size;
3495         struct page *page;
3496         pte_t new_pte;
3497         spinlock_t *ptl;
3498
3499         /*
3500          * Currently, we are forced to kill the process in the event the
3501          * original mapper has unmapped pages from the child due to a failed
3502          * COW. Warn that such a situation has occurred as it may not be obvious
3503          */
3504         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3505                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3506                            current->pid);
3507                 return ret;
3508         }
3509
3510         /*
3511          * Use page lock to guard against racing truncation
3512          * before we get page_table_lock.
3513          */
3514 retry:
3515         page = find_lock_page(mapping, idx);
3516         if (!page) {
3517                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3518                 if (idx >= size)
3519                         goto out;
3520                 page = alloc_huge_page(vma, address, 0);
3521                 if (IS_ERR(page)) {
3522                         ret = PTR_ERR(page);
3523                         if (ret == -ENOMEM)
3524                                 ret = VM_FAULT_OOM;
3525                         else
3526                                 ret = VM_FAULT_SIGBUS;
3527                         goto out;
3528                 }
3529                 clear_huge_page(page, address, pages_per_huge_page(h));
3530                 __SetPageUptodate(page);
3531                 set_page_huge_active(page);
3532
3533                 if (vma->vm_flags & VM_MAYSHARE) {
3534                         int err = huge_add_to_page_cache(page, mapping, idx);
3535                         if (err) {
3536                                 put_page(page);
3537                                 if (err == -EEXIST)
3538                                         goto retry;
3539                                 goto out;
3540                         }
3541                 } else {
3542                         lock_page(page);
3543                         if (unlikely(anon_vma_prepare(vma))) {
3544                                 ret = VM_FAULT_OOM;
3545                                 goto backout_unlocked;
3546                         }
3547                         anon_rmap = 1;
3548                 }
3549         } else {
3550                 /*
3551                  * If memory error occurs between mmap() and fault, some process
3552                  * don't have hwpoisoned swap entry for errored virtual address.
3553                  * So we need to block hugepage fault by PG_hwpoison bit check.
3554                  */
3555                 if (unlikely(PageHWPoison(page))) {
3556                         ret = VM_FAULT_HWPOISON |
3557                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3558                         goto backout_unlocked;
3559                 }
3560         }
3561
3562         /*
3563          * If we are going to COW a private mapping later, we examine the
3564          * pending reservations for this page now. This will ensure that
3565          * any allocations necessary to record that reservation occur outside
3566          * the spinlock.
3567          */
3568         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3569                 if (vma_needs_reservation(h, vma, address) < 0) {
3570                         ret = VM_FAULT_OOM;
3571                         goto backout_unlocked;
3572                 }
3573                 /* Just decrements count, does not deallocate */
3574                 vma_end_reservation(h, vma, address);
3575         }
3576
3577         ptl = huge_pte_lockptr(h, mm, ptep);
3578         spin_lock(ptl);
3579         size = i_size_read(mapping->host) >> huge_page_shift(h);
3580         if (idx >= size)
3581                 goto backout;
3582
3583         ret = 0;
3584         if (!huge_pte_none(huge_ptep_get(ptep)))
3585                 goto backout;
3586
3587         if (anon_rmap) {
3588                 ClearPagePrivate(page);
3589                 hugepage_add_new_anon_rmap(page, vma, address);
3590         } else
3591                 page_dup_rmap(page, true);
3592         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3593                                 && (vma->vm_flags & VM_SHARED)));
3594         set_huge_pte_at(mm, address, ptep, new_pte);
3595
3596         hugetlb_count_add(pages_per_huge_page(h), mm);
3597         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3598                 /* Optimization, do the COW without a second fault */
3599                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3600         }
3601
3602         spin_unlock(ptl);
3603         unlock_page(page);
3604 out:
3605         return ret;
3606
3607 backout:
3608         spin_unlock(ptl);
3609 backout_unlocked:
3610         unlock_page(page);
3611         put_page(page);
3612         goto out;
3613 }
3614
3615 #ifdef CONFIG_SMP
3616 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3617                             struct vm_area_struct *vma,
3618                             struct address_space *mapping,
3619                             pgoff_t idx, unsigned long address)
3620 {
3621         unsigned long key[2];
3622         u32 hash;
3623
3624         if (vma->vm_flags & VM_SHARED) {
3625                 key[0] = (unsigned long) mapping;
3626                 key[1] = idx;
3627         } else {
3628                 key[0] = (unsigned long) mm;
3629                 key[1] = address >> huge_page_shift(h);
3630         }
3631
3632         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3633
3634         return hash & (num_fault_mutexes - 1);
3635 }
3636 #else
3637 /*
3638  * For uniprocesor systems we always use a single mutex, so just
3639  * return 0 and avoid the hashing overhead.
3640  */
3641 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3642                             struct vm_area_struct *vma,
3643                             struct address_space *mapping,
3644                             pgoff_t idx, unsigned long address)
3645 {
3646         return 0;
3647 }
3648 #endif
3649
3650 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3651                         unsigned long address, unsigned int flags)
3652 {
3653         pte_t *ptep, entry;
3654         spinlock_t *ptl;
3655         int ret;
3656         u32 hash;
3657         pgoff_t idx;
3658         struct page *page = NULL;
3659         struct page *pagecache_page = NULL;
3660         struct hstate *h = hstate_vma(vma);
3661         struct address_space *mapping;
3662         int need_wait_lock = 0;
3663
3664         address &= huge_page_mask(h);
3665
3666         ptep = huge_pte_offset(mm, address);
3667         if (ptep) {
3668                 entry = huge_ptep_get(ptep);
3669                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3670                         migration_entry_wait_huge(vma, mm, ptep);
3671                         return 0;
3672                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3673                         return VM_FAULT_HWPOISON_LARGE |
3674                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3675         } else {
3676                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3677                 if (!ptep)
3678                         return VM_FAULT_OOM;
3679         }
3680
3681         mapping = vma->vm_file->f_mapping;
3682         idx = vma_hugecache_offset(h, vma, address);
3683
3684         /*
3685          * Serialize hugepage allocation and instantiation, so that we don't
3686          * get spurious allocation failures if two CPUs race to instantiate
3687          * the same page in the page cache.
3688          */
3689         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3690         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3691
3692         entry = huge_ptep_get(ptep);
3693         if (huge_pte_none(entry)) {
3694                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3695                 goto out_mutex;
3696         }
3697
3698         ret = 0;
3699
3700         /*
3701          * entry could be a migration/hwpoison entry at this point, so this
3702          * check prevents the kernel from going below assuming that we have
3703          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3704          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3705          * handle it.
3706          */
3707         if (!pte_present(entry))
3708                 goto out_mutex;
3709
3710         /*
3711          * If we are going to COW the mapping later, we examine the pending
3712          * reservations for this page now. This will ensure that any
3713          * allocations necessary to record that reservation occur outside the
3714          * spinlock. For private mappings, we also lookup the pagecache
3715          * page now as it is used to determine if a reservation has been
3716          * consumed.
3717          */
3718         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3719                 if (vma_needs_reservation(h, vma, address) < 0) {
3720                         ret = VM_FAULT_OOM;
3721                         goto out_mutex;
3722                 }
3723                 /* Just decrements count, does not deallocate */
3724                 vma_end_reservation(h, vma, address);
3725
3726                 if (!(vma->vm_flags & VM_MAYSHARE))
3727                         pagecache_page = hugetlbfs_pagecache_page(h,
3728                                                                 vma, address);
3729         }
3730
3731         ptl = huge_pte_lock(h, mm, ptep);
3732
3733         /* Check for a racing update before calling hugetlb_cow */
3734         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3735                 goto out_ptl;
3736
3737         /*
3738          * hugetlb_cow() requires page locks of pte_page(entry) and
3739          * pagecache_page, so here we need take the former one
3740          * when page != pagecache_page or !pagecache_page.
3741          */
3742         page = pte_page(entry);
3743         if (page != pagecache_page)
3744                 if (!trylock_page(page)) {
3745                         need_wait_lock = 1;
3746                         goto out_ptl;
3747                 }
3748
3749         get_page(page);
3750
3751         if (flags & FAULT_FLAG_WRITE) {
3752                 if (!huge_pte_write(entry)) {
3753                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3754                                         pagecache_page, ptl);
3755                         goto out_put_page;
3756                 }
3757                 entry = huge_pte_mkdirty(entry);
3758         }
3759         entry = pte_mkyoung(entry);
3760         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3761                                                 flags & FAULT_FLAG_WRITE))
3762                 update_mmu_cache(vma, address, ptep);
3763 out_put_page:
3764         if (page != pagecache_page)
3765                 unlock_page(page);
3766         put_page(page);
3767 out_ptl:
3768         spin_unlock(ptl);
3769
3770         if (pagecache_page) {
3771                 unlock_page(pagecache_page);
3772                 put_page(pagecache_page);
3773         }
3774 out_mutex:
3775         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3776         /*
3777          * Generally it's safe to hold refcount during waiting page lock. But
3778          * here we just wait to defer the next page fault to avoid busy loop and
3779          * the page is not used after unlocked before returning from the current
3780          * page fault. So we are safe from accessing freed page, even if we wait
3781          * here without taking refcount.
3782          */
3783         if (need_wait_lock)
3784                 wait_on_page_locked(page);
3785         return ret;
3786 }
3787
3788 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3789                          struct page **pages, struct vm_area_struct **vmas,
3790                          unsigned long *position, unsigned long *nr_pages,
3791                          long i, unsigned int flags)
3792 {
3793         unsigned long pfn_offset;
3794         unsigned long vaddr = *position;
3795         unsigned long remainder = *nr_pages;
3796         struct hstate *h = hstate_vma(vma);
3797
3798         while (vaddr < vma->vm_end && remainder) {
3799                 pte_t *pte;
3800                 spinlock_t *ptl = NULL;
3801                 int absent;
3802                 struct page *page;
3803
3804                 /*
3805                  * If we have a pending SIGKILL, don't keep faulting pages and
3806                  * potentially allocating memory.
3807                  */
3808                 if (unlikely(fatal_signal_pending(current))) {
3809                         remainder = 0;
3810                         break;
3811                 }
3812
3813                 /*
3814                  * Some archs (sparc64, sh*) have multiple pte_ts to
3815                  * each hugepage.  We have to make sure we get the
3816                  * first, for the page indexing below to work.
3817                  *
3818                  * Note that page table lock is not held when pte is null.
3819                  */
3820                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3821                 if (pte)
3822                         ptl = huge_pte_lock(h, mm, pte);
3823                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3824
3825                 /*
3826                  * When coredumping, it suits get_dump_page if we just return
3827                  * an error where there's an empty slot with no huge pagecache
3828                  * to back it.  This way, we avoid allocating a hugepage, and
3829                  * the sparse dumpfile avoids allocating disk blocks, but its
3830                  * huge holes still show up with zeroes where they need to be.
3831                  */
3832                 if (absent && (flags & FOLL_DUMP) &&
3833                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3834                         if (pte)
3835                                 spin_unlock(ptl);
3836                         remainder = 0;
3837                         break;
3838                 }
3839
3840                 /*
3841                  * We need call hugetlb_fault for both hugepages under migration
3842                  * (in which case hugetlb_fault waits for the migration,) and
3843                  * hwpoisoned hugepages (in which case we need to prevent the
3844                  * caller from accessing to them.) In order to do this, we use
3845                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3846                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3847                  * both cases, and because we can't follow correct pages
3848                  * directly from any kind of swap entries.
3849                  */
3850                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3851                     ((flags & FOLL_WRITE) &&
3852                       !huge_pte_write(huge_ptep_get(pte)))) {
3853                         int ret;
3854
3855                         if (pte)
3856                                 spin_unlock(ptl);
3857                         ret = hugetlb_fault(mm, vma, vaddr,
3858                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3859                         if (!(ret & VM_FAULT_ERROR))
3860                                 continue;
3861
3862                         remainder = 0;
3863                         break;
3864                 }
3865
3866                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3867                 page = pte_page(huge_ptep_get(pte));
3868 same_page:
3869                 if (pages) {
3870                         pages[i] = mem_map_offset(page, pfn_offset);
3871                         get_page(pages[i]);
3872                 }
3873
3874                 if (vmas)
3875                         vmas[i] = vma;
3876
3877                 vaddr += PAGE_SIZE;
3878                 ++pfn_offset;
3879                 --remainder;
3880                 ++i;
3881                 if (vaddr < vma->vm_end && remainder &&
3882                                 pfn_offset < pages_per_huge_page(h)) {
3883                         /*
3884                          * We use pfn_offset to avoid touching the pageframes
3885                          * of this compound page.
3886                          */
3887                         goto same_page;
3888                 }
3889                 spin_unlock(ptl);
3890         }
3891         *nr_pages = remainder;
3892         *position = vaddr;
3893
3894         return i ? i : -EFAULT;
3895 }
3896
3897 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3898                 unsigned long address, unsigned long end, pgprot_t newprot)
3899 {
3900         struct mm_struct *mm = vma->vm_mm;
3901         unsigned long start = address;
3902         pte_t *ptep;
3903         pte_t pte;
3904         struct hstate *h = hstate_vma(vma);
3905         unsigned long pages = 0;
3906
3907         BUG_ON(address >= end);
3908         flush_cache_range(vma, address, end);
3909
3910         mmu_notifier_invalidate_range_start(mm, start, end);
3911         i_mmap_lock_write(vma->vm_file->f_mapping);
3912         for (; address < end; address += huge_page_size(h)) {
3913                 spinlock_t *ptl;
3914                 ptep = huge_pte_offset(mm, address);
3915                 if (!ptep)
3916                         continue;
3917                 ptl = huge_pte_lock(h, mm, ptep);
3918                 if (huge_pmd_unshare(mm, &address, ptep)) {
3919                         pages++;
3920                         spin_unlock(ptl);
3921                         continue;
3922                 }
3923                 pte = huge_ptep_get(ptep);
3924                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3925                         spin_unlock(ptl);
3926                         continue;
3927                 }
3928                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3929                         swp_entry_t entry = pte_to_swp_entry(pte);
3930
3931                         if (is_write_migration_entry(entry)) {
3932                                 pte_t newpte;
3933
3934                                 make_migration_entry_read(&entry);
3935                                 newpte = swp_entry_to_pte(entry);
3936                                 set_huge_pte_at(mm, address, ptep, newpte);
3937                                 pages++;
3938                         }
3939                         spin_unlock(ptl);
3940                         continue;
3941                 }
3942                 if (!huge_pte_none(pte)) {
3943                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3944                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3945                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3946                         set_huge_pte_at(mm, address, ptep, pte);
3947                         pages++;
3948                 }
3949                 spin_unlock(ptl);
3950         }
3951         /*
3952          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3953          * may have cleared our pud entry and done put_page on the page table:
3954          * once we release i_mmap_rwsem, another task can do the final put_page
3955          * and that page table be reused and filled with junk.
3956          */
3957         flush_tlb_range(vma, start, end);
3958         mmu_notifier_invalidate_range(mm, start, end);
3959         i_mmap_unlock_write(vma->vm_file->f_mapping);
3960         mmu_notifier_invalidate_range_end(mm, start, end);
3961
3962         return pages << h->order;
3963 }
3964
3965 int hugetlb_reserve_pages(struct inode *inode,
3966                                         long from, long to,
3967                                         struct vm_area_struct *vma,
3968                                         vm_flags_t vm_flags)
3969 {
3970         long ret, chg;
3971         struct hstate *h = hstate_inode(inode);
3972         struct hugepage_subpool *spool = subpool_inode(inode);
3973         struct resv_map *resv_map;
3974         long gbl_reserve;
3975
3976         /*
3977          * Only apply hugepage reservation if asked. At fault time, an
3978          * attempt will be made for VM_NORESERVE to allocate a page
3979          * without using reserves
3980          */
3981         if (vm_flags & VM_NORESERVE)
3982                 return 0;
3983
3984         /*
3985          * Shared mappings base their reservation on the number of pages that
3986          * are already allocated on behalf of the file. Private mappings need
3987          * to reserve the full area even if read-only as mprotect() may be
3988          * called to make the mapping read-write. Assume !vma is a shm mapping
3989          */
3990         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3991                 resv_map = inode_resv_map(inode);
3992
3993                 chg = region_chg(resv_map, from, to);
3994
3995         } else {
3996                 resv_map = resv_map_alloc();
3997                 if (!resv_map)
3998                         return -ENOMEM;
3999
4000                 chg = to - from;
4001
4002                 set_vma_resv_map(vma, resv_map);
4003                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4004         }
4005
4006         if (chg < 0) {
4007                 ret = chg;
4008                 goto out_err;
4009         }
4010
4011         /*
4012          * There must be enough pages in the subpool for the mapping. If
4013          * the subpool has a minimum size, there may be some global
4014          * reservations already in place (gbl_reserve).
4015          */
4016         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4017         if (gbl_reserve < 0) {
4018                 ret = -ENOSPC;
4019                 goto out_err;
4020         }
4021
4022         /*
4023          * Check enough hugepages are available for the reservation.
4024          * Hand the pages back to the subpool if there are not
4025          */
4026         ret = hugetlb_acct_memory(h, gbl_reserve);
4027         if (ret < 0) {
4028                 /* put back original number of pages, chg */
4029                 (void)hugepage_subpool_put_pages(spool, chg);
4030                 goto out_err;
4031         }
4032
4033         /*
4034          * Account for the reservations made. Shared mappings record regions
4035          * that have reservations as they are shared by multiple VMAs.
4036          * When the last VMA disappears, the region map says how much
4037          * the reservation was and the page cache tells how much of
4038          * the reservation was consumed. Private mappings are per-VMA and
4039          * only the consumed reservations are tracked. When the VMA
4040          * disappears, the original reservation is the VMA size and the
4041          * consumed reservations are stored in the map. Hence, nothing
4042          * else has to be done for private mappings here
4043          */
4044         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4045                 long add = region_add(resv_map, from, to);
4046
4047                 if (unlikely(chg > add)) {
4048                         /*
4049                          * pages in this range were added to the reserve
4050                          * map between region_chg and region_add.  This
4051                          * indicates a race with alloc_huge_page.  Adjust
4052                          * the subpool and reserve counts modified above
4053                          * based on the difference.
4054                          */
4055                         long rsv_adjust;
4056
4057                         rsv_adjust = hugepage_subpool_put_pages(spool,
4058                                                                 chg - add);
4059                         hugetlb_acct_memory(h, -rsv_adjust);
4060                 }
4061         }
4062         return 0;
4063 out_err:
4064         if (!vma || vma->vm_flags & VM_MAYSHARE)
4065                 region_abort(resv_map, from, to);
4066         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4067                 kref_put(&resv_map->refs, resv_map_release);
4068         return ret;
4069 }
4070
4071 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4072                                                                 long freed)
4073 {
4074         struct hstate *h = hstate_inode(inode);
4075         struct resv_map *resv_map = inode_resv_map(inode);
4076         long chg = 0;
4077         struct hugepage_subpool *spool = subpool_inode(inode);
4078         long gbl_reserve;
4079
4080         if (resv_map) {
4081                 chg = region_del(resv_map, start, end);
4082                 /*
4083                  * region_del() can fail in the rare case where a region
4084                  * must be split and another region descriptor can not be
4085                  * allocated.  If end == LONG_MAX, it will not fail.
4086                  */
4087                 if (chg < 0)
4088                         return chg;
4089         }
4090
4091         spin_lock(&inode->i_lock);
4092         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4093         spin_unlock(&inode->i_lock);
4094
4095         /*
4096          * If the subpool has a minimum size, the number of global
4097          * reservations to be released may be adjusted.
4098          */
4099         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4100         hugetlb_acct_memory(h, -gbl_reserve);
4101
4102         return 0;
4103 }
4104
4105 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4106 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4107                                 struct vm_area_struct *vma,
4108                                 unsigned long addr, pgoff_t idx)
4109 {
4110         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4111                                 svma->vm_start;
4112         unsigned long sbase = saddr & PUD_MASK;
4113         unsigned long s_end = sbase + PUD_SIZE;
4114
4115         /* Allow segments to share if only one is marked locked */
4116         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4118
4119         /*
4120          * match the virtual addresses, permission and the alignment of the
4121          * page table page.
4122          */
4123         if (pmd_index(addr) != pmd_index(saddr) ||
4124             vm_flags != svm_flags ||
4125             sbase < svma->vm_start || svma->vm_end < s_end)
4126                 return 0;
4127
4128         return saddr;
4129 }
4130
4131 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4132 {
4133         unsigned long base = addr & PUD_MASK;
4134         unsigned long end = base + PUD_SIZE;
4135
4136         /*
4137          * check on proper vm_flags and page table alignment
4138          */
4139         if (vma->vm_flags & VM_MAYSHARE &&
4140             vma->vm_start <= base && end <= vma->vm_end)
4141                 return true;
4142         return false;
4143 }
4144
4145 /*
4146  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4147  * and returns the corresponding pte. While this is not necessary for the
4148  * !shared pmd case because we can allocate the pmd later as well, it makes the
4149  * code much cleaner. pmd allocation is essential for the shared case because
4150  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4151  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4152  * bad pmd for sharing.
4153  */
4154 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4155 {
4156         struct vm_area_struct *vma = find_vma(mm, addr);
4157         struct address_space *mapping = vma->vm_file->f_mapping;
4158         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4159                         vma->vm_pgoff;
4160         struct vm_area_struct *svma;
4161         unsigned long saddr;
4162         pte_t *spte = NULL;
4163         pte_t *pte;
4164         spinlock_t *ptl;
4165
4166         if (!vma_shareable(vma, addr))
4167                 return (pte_t *)pmd_alloc(mm, pud, addr);
4168
4169         i_mmap_lock_write(mapping);
4170         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4171                 if (svma == vma)
4172                         continue;
4173
4174                 saddr = page_table_shareable(svma, vma, addr, idx);
4175                 if (saddr) {
4176                         spte = huge_pte_offset(svma->vm_mm, saddr);
4177                         if (spte) {
4178                                 mm_inc_nr_pmds(mm);
4179                                 get_page(virt_to_page(spte));
4180                                 break;
4181                         }
4182                 }
4183         }
4184
4185         if (!spte)
4186                 goto out;
4187
4188         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4189         spin_lock(ptl);
4190         if (pud_none(*pud)) {
4191                 pud_populate(mm, pud,
4192                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4193         } else {
4194                 put_page(virt_to_page(spte));
4195                 mm_inc_nr_pmds(mm);
4196         }
4197         spin_unlock(ptl);
4198 out:
4199         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4200         i_mmap_unlock_write(mapping);
4201         return pte;
4202 }
4203
4204 /*
4205  * unmap huge page backed by shared pte.
4206  *
4207  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4208  * indicated by page_count > 1, unmap is achieved by clearing pud and
4209  * decrementing the ref count. If count == 1, the pte page is not shared.
4210  *
4211  * called with page table lock held.
4212  *
4213  * returns: 1 successfully unmapped a shared pte page
4214  *          0 the underlying pte page is not shared, or it is the last user
4215  */
4216 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4217 {
4218         pgd_t *pgd = pgd_offset(mm, *addr);
4219         pud_t *pud = pud_offset(pgd, *addr);
4220
4221         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4222         if (page_count(virt_to_page(ptep)) == 1)
4223                 return 0;
4224
4225         pud_clear(pud);
4226         put_page(virt_to_page(ptep));
4227         mm_dec_nr_pmds(mm);
4228         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4229         return 1;
4230 }
4231 #define want_pmd_share()        (1)
4232 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4233 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4234 {
4235         return NULL;
4236 }
4237
4238 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4239 {
4240         return 0;
4241 }
4242 #define want_pmd_share()        (0)
4243 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4244
4245 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4246 pte_t *huge_pte_alloc(struct mm_struct *mm,
4247                         unsigned long addr, unsigned long sz)
4248 {
4249         pgd_t *pgd;
4250         pud_t *pud;
4251         pte_t *pte = NULL;
4252
4253         pgd = pgd_offset(mm, addr);
4254         pud = pud_alloc(mm, pgd, addr);
4255         if (pud) {
4256                 if (sz == PUD_SIZE) {
4257                         pte = (pte_t *)pud;
4258                 } else {
4259                         BUG_ON(sz != PMD_SIZE);
4260                         if (want_pmd_share() && pud_none(*pud))
4261                                 pte = huge_pmd_share(mm, addr, pud);
4262                         else
4263                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4264                 }
4265         }
4266         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4267
4268         return pte;
4269 }
4270
4271 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4272 {
4273         pgd_t *pgd;
4274         pud_t *pud;
4275         pmd_t *pmd = NULL;
4276
4277         pgd = pgd_offset(mm, addr);
4278         if (pgd_present(*pgd)) {
4279                 pud = pud_offset(pgd, addr);
4280                 if (pud_present(*pud)) {
4281                         if (pud_huge(*pud))
4282                                 return (pte_t *)pud;
4283                         pmd = pmd_offset(pud, addr);
4284                 }
4285         }
4286         return (pte_t *) pmd;
4287 }
4288
4289 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4290
4291 /*
4292  * These functions are overwritable if your architecture needs its own
4293  * behavior.
4294  */
4295 struct page * __weak
4296 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4297                               int write)
4298 {
4299         return ERR_PTR(-EINVAL);
4300 }
4301
4302 struct page * __weak
4303 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4304                 pmd_t *pmd, int flags)
4305 {
4306         struct page *page = NULL;
4307         spinlock_t *ptl;
4308 retry:
4309         ptl = pmd_lockptr(mm, pmd);
4310         spin_lock(ptl);
4311         /*
4312          * make sure that the address range covered by this pmd is not
4313          * unmapped from other threads.
4314          */
4315         if (!pmd_huge(*pmd))
4316                 goto out;
4317         if (pmd_present(*pmd)) {
4318                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4319                 if (flags & FOLL_GET)
4320                         get_page(page);
4321         } else {
4322                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4323                         spin_unlock(ptl);
4324                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4325                         goto retry;
4326                 }
4327                 /*
4328                  * hwpoisoned entry is treated as no_page_table in
4329                  * follow_page_mask().
4330                  */
4331         }
4332 out:
4333         spin_unlock(ptl);
4334         return page;
4335 }
4336
4337 struct page * __weak
4338 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4339                 pud_t *pud, int flags)
4340 {
4341         if (flags & FOLL_GET)
4342                 return NULL;
4343
4344         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4345 }
4346
4347 #ifdef CONFIG_MEMORY_FAILURE
4348
4349 /*
4350  * This function is called from memory failure code.
4351  * Assume the caller holds page lock of the head page.
4352  */
4353 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4354 {
4355         struct hstate *h = page_hstate(hpage);
4356         int nid = page_to_nid(hpage);
4357         int ret = -EBUSY;
4358
4359         spin_lock(&hugetlb_lock);
4360         /*
4361          * Just checking !page_huge_active is not enough, because that could be
4362          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4363          */
4364         if (!page_huge_active(hpage) && !page_count(hpage)) {
4365                 /*
4366                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4367                  * but dangling hpage->lru can trigger list-debug warnings
4368                  * (this happens when we call unpoison_memory() on it),
4369                  * so let it point to itself with list_del_init().
4370                  */
4371                 list_del_init(&hpage->lru);
4372                 set_page_refcounted(hpage);
4373                 h->free_huge_pages--;
4374                 h->free_huge_pages_node[nid]--;
4375                 ret = 0;
4376         }
4377         spin_unlock(&hugetlb_lock);
4378         return ret;
4379 }
4380 #endif
4381
4382 bool isolate_huge_page(struct page *page, struct list_head *list)
4383 {
4384         bool ret = true;
4385
4386         VM_BUG_ON_PAGE(!PageHead(page), page);
4387         spin_lock(&hugetlb_lock);
4388         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4389                 ret = false;
4390                 goto unlock;
4391         }
4392         clear_page_huge_active(page);
4393         list_move_tail(&page->lru, list);
4394 unlock:
4395         spin_unlock(&hugetlb_lock);
4396         return ret;
4397 }
4398
4399 void putback_active_hugepage(struct page *page)
4400 {
4401         VM_BUG_ON_PAGE(!PageHead(page), page);
4402         spin_lock(&hugetlb_lock);
4403         set_page_huge_active(page);
4404         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4405         spin_unlock(&hugetlb_lock);
4406         put_page(page);
4407 }