]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
fs/ncpfs/dir.c: remove unnecessary new_valid_dev() check
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned int order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 clear_compound_head(p);
1005                 set_page_refcounted(p);
1006         }
1007
1008         set_compound_order(page, 0);
1009         __ClearPageHead(page);
1010 }
1011
1012 static void free_gigantic_page(struct page *page, unsigned int order)
1013 {
1014         free_contig_range(page_to_pfn(page), 1 << order);
1015 }
1016
1017 static int __alloc_gigantic_page(unsigned long start_pfn,
1018                                 unsigned long nr_pages)
1019 {
1020         unsigned long end_pfn = start_pfn + nr_pages;
1021         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1022 }
1023
1024 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1025                                 unsigned long nr_pages)
1026 {
1027         unsigned long i, end_pfn = start_pfn + nr_pages;
1028         struct page *page;
1029
1030         for (i = start_pfn; i < end_pfn; i++) {
1031                 if (!pfn_valid(i))
1032                         return false;
1033
1034                 page = pfn_to_page(i);
1035
1036                 if (PageReserved(page))
1037                         return false;
1038
1039                 if (page_count(page) > 0)
1040                         return false;
1041
1042                 if (PageHuge(page))
1043                         return false;
1044         }
1045
1046         return true;
1047 }
1048
1049 static bool zone_spans_last_pfn(const struct zone *zone,
1050                         unsigned long start_pfn, unsigned long nr_pages)
1051 {
1052         unsigned long last_pfn = start_pfn + nr_pages - 1;
1053         return zone_spans_pfn(zone, last_pfn);
1054 }
1055
1056 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1057 {
1058         unsigned long nr_pages = 1 << order;
1059         unsigned long ret, pfn, flags;
1060         struct zone *z;
1061
1062         z = NODE_DATA(nid)->node_zones;
1063         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1064                 spin_lock_irqsave(&z->lock, flags);
1065
1066                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1067                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1068                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1069                                 /*
1070                                  * We release the zone lock here because
1071                                  * alloc_contig_range() will also lock the zone
1072                                  * at some point. If there's an allocation
1073                                  * spinning on this lock, it may win the race
1074                                  * and cause alloc_contig_range() to fail...
1075                                  */
1076                                 spin_unlock_irqrestore(&z->lock, flags);
1077                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1078                                 if (!ret)
1079                                         return pfn_to_page(pfn);
1080                                 spin_lock_irqsave(&z->lock, flags);
1081                         }
1082                         pfn += nr_pages;
1083                 }
1084
1085                 spin_unlock_irqrestore(&z->lock, flags);
1086         }
1087
1088         return NULL;
1089 }
1090
1091 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1092 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1093
1094 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1095 {
1096         struct page *page;
1097
1098         page = alloc_gigantic_page(nid, huge_page_order(h));
1099         if (page) {
1100                 prep_compound_gigantic_page(page, huge_page_order(h));
1101                 prep_new_huge_page(h, page, nid);
1102         }
1103
1104         return page;
1105 }
1106
1107 static int alloc_fresh_gigantic_page(struct hstate *h,
1108                                 nodemask_t *nodes_allowed)
1109 {
1110         struct page *page = NULL;
1111         int nr_nodes, node;
1112
1113         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1114                 page = alloc_fresh_gigantic_page_node(h, node);
1115                 if (page)
1116                         return 1;
1117         }
1118
1119         return 0;
1120 }
1121
1122 static inline bool gigantic_page_supported(void) { return true; }
1123 #else
1124 static inline bool gigantic_page_supported(void) { return false; }
1125 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1126 static inline void destroy_compound_gigantic_page(struct page *page,
1127                                                 unsigned int order) { }
1128 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1129                                         nodemask_t *nodes_allowed) { return 0; }
1130 #endif
1131
1132 static void update_and_free_page(struct hstate *h, struct page *page)
1133 {
1134         int i;
1135
1136         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1137                 return;
1138
1139         h->nr_huge_pages--;
1140         h->nr_huge_pages_node[page_to_nid(page)]--;
1141         for (i = 0; i < pages_per_huge_page(h); i++) {
1142                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1143                                 1 << PG_referenced | 1 << PG_dirty |
1144                                 1 << PG_active | 1 << PG_private |
1145                                 1 << PG_writeback);
1146         }
1147         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1148         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1149         set_page_refcounted(page);
1150         if (hstate_is_gigantic(h)) {
1151                 destroy_compound_gigantic_page(page, huge_page_order(h));
1152                 free_gigantic_page(page, huge_page_order(h));
1153         } else {
1154                 __free_pages(page, huge_page_order(h));
1155         }
1156 }
1157
1158 struct hstate *size_to_hstate(unsigned long size)
1159 {
1160         struct hstate *h;
1161
1162         for_each_hstate(h) {
1163                 if (huge_page_size(h) == size)
1164                         return h;
1165         }
1166         return NULL;
1167 }
1168
1169 /*
1170  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1171  * to hstate->hugepage_activelist.)
1172  *
1173  * This function can be called for tail pages, but never returns true for them.
1174  */
1175 bool page_huge_active(struct page *page)
1176 {
1177         VM_BUG_ON_PAGE(!PageHuge(page), page);
1178         return PageHead(page) && PagePrivate(&page[1]);
1179 }
1180
1181 /* never called for tail page */
1182 static void set_page_huge_active(struct page *page)
1183 {
1184         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1185         SetPagePrivate(&page[1]);
1186 }
1187
1188 static void clear_page_huge_active(struct page *page)
1189 {
1190         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1191         ClearPagePrivate(&page[1]);
1192 }
1193
1194 void free_huge_page(struct page *page)
1195 {
1196         /*
1197          * Can't pass hstate in here because it is called from the
1198          * compound page destructor.
1199          */
1200         struct hstate *h = page_hstate(page);
1201         int nid = page_to_nid(page);
1202         struct hugepage_subpool *spool =
1203                 (struct hugepage_subpool *)page_private(page);
1204         bool restore_reserve;
1205
1206         set_page_private(page, 0);
1207         page->mapping = NULL;
1208         BUG_ON(page_count(page));
1209         BUG_ON(page_mapcount(page));
1210         restore_reserve = PagePrivate(page);
1211         ClearPagePrivate(page);
1212
1213         /*
1214          * A return code of zero implies that the subpool will be under its
1215          * minimum size if the reservation is not restored after page is free.
1216          * Therefore, force restore_reserve operation.
1217          */
1218         if (hugepage_subpool_put_pages(spool, 1) == 0)
1219                 restore_reserve = true;
1220
1221         spin_lock(&hugetlb_lock);
1222         clear_page_huge_active(page);
1223         hugetlb_cgroup_uncharge_page(hstate_index(h),
1224                                      pages_per_huge_page(h), page);
1225         if (restore_reserve)
1226                 h->resv_huge_pages++;
1227
1228         if (h->surplus_huge_pages_node[nid]) {
1229                 /* remove the page from active list */
1230                 list_del(&page->lru);
1231                 update_and_free_page(h, page);
1232                 h->surplus_huge_pages--;
1233                 h->surplus_huge_pages_node[nid]--;
1234         } else {
1235                 arch_clear_hugepage_flags(page);
1236                 enqueue_huge_page(h, page);
1237         }
1238         spin_unlock(&hugetlb_lock);
1239 }
1240
1241 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1242 {
1243         INIT_LIST_HEAD(&page->lru);
1244         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1245         spin_lock(&hugetlb_lock);
1246         set_hugetlb_cgroup(page, NULL);
1247         h->nr_huge_pages++;
1248         h->nr_huge_pages_node[nid]++;
1249         spin_unlock(&hugetlb_lock);
1250         put_page(page); /* free it into the hugepage allocator */
1251 }
1252
1253 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         /* we rely on prep_new_huge_page to set the destructor */
1260         set_compound_order(page, order);
1261         __ClearPageReserved(page);
1262         __SetPageHead(page);
1263         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1264                 /*
1265                  * For gigantic hugepages allocated through bootmem at
1266                  * boot, it's safer to be consistent with the not-gigantic
1267                  * hugepages and clear the PG_reserved bit from all tail pages
1268                  * too.  Otherwse drivers using get_user_pages() to access tail
1269                  * pages may get the reference counting wrong if they see
1270                  * PG_reserved set on a tail page (despite the head page not
1271                  * having PG_reserved set).  Enforcing this consistency between
1272                  * head and tail pages allows drivers to optimize away a check
1273                  * on the head page when they need know if put_page() is needed
1274                  * after get_user_pages().
1275                  */
1276                 __ClearPageReserved(p);
1277                 set_page_count(p, 0);
1278                 set_compound_head(p, page);
1279         }
1280 }
1281
1282 /*
1283  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1284  * transparent huge pages.  See the PageTransHuge() documentation for more
1285  * details.
1286  */
1287 int PageHuge(struct page *page)
1288 {
1289         if (!PageCompound(page))
1290                 return 0;
1291
1292         page = compound_head(page);
1293         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1294 }
1295 EXPORT_SYMBOL_GPL(PageHuge);
1296
1297 /*
1298  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1299  * normal or transparent huge pages.
1300  */
1301 int PageHeadHuge(struct page *page_head)
1302 {
1303         if (!PageHead(page_head))
1304                 return 0;
1305
1306         return get_compound_page_dtor(page_head) == free_huge_page;
1307 }
1308
1309 pgoff_t __basepage_index(struct page *page)
1310 {
1311         struct page *page_head = compound_head(page);
1312         pgoff_t index = page_index(page_head);
1313         unsigned long compound_idx;
1314
1315         if (!PageHuge(page_head))
1316                 return page_index(page);
1317
1318         if (compound_order(page_head) >= MAX_ORDER)
1319                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1320         else
1321                 compound_idx = page - page_head;
1322
1323         return (index << compound_order(page_head)) + compound_idx;
1324 }
1325
1326 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1327 {
1328         struct page *page;
1329
1330         page = __alloc_pages_node(nid,
1331                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1332                                                 __GFP_REPEAT|__GFP_NOWARN,
1333                 huge_page_order(h));
1334         if (page) {
1335                 prep_new_huge_page(h, page, nid);
1336         }
1337
1338         return page;
1339 }
1340
1341 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1342 {
1343         struct page *page;
1344         int nr_nodes, node;
1345         int ret = 0;
1346
1347         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348                 page = alloc_fresh_huge_page_node(h, node);
1349                 if (page) {
1350                         ret = 1;
1351                         break;
1352                 }
1353         }
1354
1355         if (ret)
1356                 count_vm_event(HTLB_BUDDY_PGALLOC);
1357         else
1358                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1359
1360         return ret;
1361 }
1362
1363 /*
1364  * Free huge page from pool from next node to free.
1365  * Attempt to keep persistent huge pages more or less
1366  * balanced over allowed nodes.
1367  * Called with hugetlb_lock locked.
1368  */
1369 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1370                                                          bool acct_surplus)
1371 {
1372         int nr_nodes, node;
1373         int ret = 0;
1374
1375         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1376                 /*
1377                  * If we're returning unused surplus pages, only examine
1378                  * nodes with surplus pages.
1379                  */
1380                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1381                     !list_empty(&h->hugepage_freelists[node])) {
1382                         struct page *page =
1383                                 list_entry(h->hugepage_freelists[node].next,
1384                                           struct page, lru);
1385                         list_del(&page->lru);
1386                         h->free_huge_pages--;
1387                         h->free_huge_pages_node[node]--;
1388                         if (acct_surplus) {
1389                                 h->surplus_huge_pages--;
1390                                 h->surplus_huge_pages_node[node]--;
1391                         }
1392                         update_and_free_page(h, page);
1393                         ret = 1;
1394                         break;
1395                 }
1396         }
1397
1398         return ret;
1399 }
1400
1401 /*
1402  * Dissolve a given free hugepage into free buddy pages. This function does
1403  * nothing for in-use (including surplus) hugepages.
1404  */
1405 static void dissolve_free_huge_page(struct page *page)
1406 {
1407         spin_lock(&hugetlb_lock);
1408         if (PageHuge(page) && !page_count(page)) {
1409                 struct hstate *h = page_hstate(page);
1410                 int nid = page_to_nid(page);
1411                 list_del(&page->lru);
1412                 h->free_huge_pages--;
1413                 h->free_huge_pages_node[nid]--;
1414                 update_and_free_page(h, page);
1415         }
1416         spin_unlock(&hugetlb_lock);
1417 }
1418
1419 /*
1420  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1421  * make specified memory blocks removable from the system.
1422  * Note that start_pfn should aligned with (minimum) hugepage size.
1423  */
1424 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1425 {
1426         unsigned long pfn;
1427
1428         if (!hugepages_supported())
1429                 return;
1430
1431         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1432         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1433                 dissolve_free_huge_page(pfn_to_page(pfn));
1434 }
1435
1436 /*
1437  * There are 3 ways this can get called:
1438  * 1. With vma+addr: we use the VMA's memory policy
1439  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1440  *    page from any node, and let the buddy allocator itself figure
1441  *    it out.
1442  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1443  *    strictly from 'nid'
1444  */
1445 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1446                 struct vm_area_struct *vma, unsigned long addr, int nid)
1447 {
1448         int order = huge_page_order(h);
1449         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1450         unsigned int cpuset_mems_cookie;
1451
1452         /*
1453          * We need a VMA to get a memory policy.  If we do not
1454          * have one, we use the 'nid' argument.
1455          *
1456          * The mempolicy stuff below has some non-inlined bits
1457          * and calls ->vm_ops.  That makes it hard to optimize at
1458          * compile-time, even when NUMA is off and it does
1459          * nothing.  This helps the compiler optimize it out.
1460          */
1461         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1462                 /*
1463                  * If a specific node is requested, make sure to
1464                  * get memory from there, but only when a node
1465                  * is explicitly specified.
1466                  */
1467                 if (nid != NUMA_NO_NODE)
1468                         gfp |= __GFP_THISNODE;
1469                 /*
1470                  * Make sure to call something that can handle
1471                  * nid=NUMA_NO_NODE
1472                  */
1473                 return alloc_pages_node(nid, gfp, order);
1474         }
1475
1476         /*
1477          * OK, so we have a VMA.  Fetch the mempolicy and try to
1478          * allocate a huge page with it.  We will only reach this
1479          * when CONFIG_NUMA=y.
1480          */
1481         do {
1482                 struct page *page;
1483                 struct mempolicy *mpol;
1484                 struct zonelist *zl;
1485                 nodemask_t *nodemask;
1486
1487                 cpuset_mems_cookie = read_mems_allowed_begin();
1488                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1489                 mpol_cond_put(mpol);
1490                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1491                 if (page)
1492                         return page;
1493         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1494
1495         return NULL;
1496 }
1497
1498 /*
1499  * There are two ways to allocate a huge page:
1500  * 1. When you have a VMA and an address (like a fault)
1501  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1502  *
1503  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1504  * this case which signifies that the allocation should be done with
1505  * respect for the VMA's memory policy.
1506  *
1507  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1508  * implies that memory policies will not be taken in to account.
1509  */
1510 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1511                 struct vm_area_struct *vma, unsigned long addr, int nid)
1512 {
1513         struct page *page;
1514         unsigned int r_nid;
1515
1516         if (hstate_is_gigantic(h))
1517                 return NULL;
1518
1519         if (vma || addr) {
1520                 VM_WARN_ON_ONCE(!addr || addr == -1);
1521                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1522         }
1523         /*
1524          * Assume we will successfully allocate the surplus page to
1525          * prevent racing processes from causing the surplus to exceed
1526          * overcommit
1527          *
1528          * This however introduces a different race, where a process B
1529          * tries to grow the static hugepage pool while alloc_pages() is
1530          * called by process A. B will only examine the per-node
1531          * counters in determining if surplus huge pages can be
1532          * converted to normal huge pages in adjust_pool_surplus(). A
1533          * won't be able to increment the per-node counter, until the
1534          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1535          * no more huge pages can be converted from surplus to normal
1536          * state (and doesn't try to convert again). Thus, we have a
1537          * case where a surplus huge page exists, the pool is grown, and
1538          * the surplus huge page still exists after, even though it
1539          * should just have been converted to a normal huge page. This
1540          * does not leak memory, though, as the hugepage will be freed
1541          * once it is out of use. It also does not allow the counters to
1542          * go out of whack in adjust_pool_surplus() as we don't modify
1543          * the node values until we've gotten the hugepage and only the
1544          * per-node value is checked there.
1545          */
1546         spin_lock(&hugetlb_lock);
1547         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1548                 spin_unlock(&hugetlb_lock);
1549                 return NULL;
1550         } else {
1551                 h->nr_huge_pages++;
1552                 h->surplus_huge_pages++;
1553         }
1554         spin_unlock(&hugetlb_lock);
1555
1556         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1557
1558         spin_lock(&hugetlb_lock);
1559         if (page) {
1560                 INIT_LIST_HEAD(&page->lru);
1561                 r_nid = page_to_nid(page);
1562                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1563                 set_hugetlb_cgroup(page, NULL);
1564                 /*
1565                  * We incremented the global counters already
1566                  */
1567                 h->nr_huge_pages_node[r_nid]++;
1568                 h->surplus_huge_pages_node[r_nid]++;
1569                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1570         } else {
1571                 h->nr_huge_pages--;
1572                 h->surplus_huge_pages--;
1573                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1574         }
1575         spin_unlock(&hugetlb_lock);
1576
1577         return page;
1578 }
1579
1580 /*
1581  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1582  * NUMA_NO_NODE, which means that it may be allocated
1583  * anywhere.
1584  */
1585 static
1586 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1587 {
1588         unsigned long addr = -1;
1589
1590         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1591 }
1592
1593 /*
1594  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1595  */
1596 static
1597 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1598                 struct vm_area_struct *vma, unsigned long addr)
1599 {
1600         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1601 }
1602
1603 /*
1604  * This allocation function is useful in the context where vma is irrelevant.
1605  * E.g. soft-offlining uses this function because it only cares physical
1606  * address of error page.
1607  */
1608 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1609 {
1610         struct page *page = NULL;
1611
1612         spin_lock(&hugetlb_lock);
1613         if (h->free_huge_pages - h->resv_huge_pages > 0)
1614                 page = dequeue_huge_page_node(h, nid);
1615         spin_unlock(&hugetlb_lock);
1616
1617         if (!page)
1618                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1619
1620         return page;
1621 }
1622
1623 /*
1624  * Increase the hugetlb pool such that it can accommodate a reservation
1625  * of size 'delta'.
1626  */
1627 static int gather_surplus_pages(struct hstate *h, int delta)
1628 {
1629         struct list_head surplus_list;
1630         struct page *page, *tmp;
1631         int ret, i;
1632         int needed, allocated;
1633         bool alloc_ok = true;
1634
1635         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1636         if (needed <= 0) {
1637                 h->resv_huge_pages += delta;
1638                 return 0;
1639         }
1640
1641         allocated = 0;
1642         INIT_LIST_HEAD(&surplus_list);
1643
1644         ret = -ENOMEM;
1645 retry:
1646         spin_unlock(&hugetlb_lock);
1647         for (i = 0; i < needed; i++) {
1648                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1649                 if (!page) {
1650                         alloc_ok = false;
1651                         break;
1652                 }
1653                 list_add(&page->lru, &surplus_list);
1654         }
1655         allocated += i;
1656
1657         /*
1658          * After retaking hugetlb_lock, we need to recalculate 'needed'
1659          * because either resv_huge_pages or free_huge_pages may have changed.
1660          */
1661         spin_lock(&hugetlb_lock);
1662         needed = (h->resv_huge_pages + delta) -
1663                         (h->free_huge_pages + allocated);
1664         if (needed > 0) {
1665                 if (alloc_ok)
1666                         goto retry;
1667                 /*
1668                  * We were not able to allocate enough pages to
1669                  * satisfy the entire reservation so we free what
1670                  * we've allocated so far.
1671                  */
1672                 goto free;
1673         }
1674         /*
1675          * The surplus_list now contains _at_least_ the number of extra pages
1676          * needed to accommodate the reservation.  Add the appropriate number
1677          * of pages to the hugetlb pool and free the extras back to the buddy
1678          * allocator.  Commit the entire reservation here to prevent another
1679          * process from stealing the pages as they are added to the pool but
1680          * before they are reserved.
1681          */
1682         needed += allocated;
1683         h->resv_huge_pages += delta;
1684         ret = 0;
1685
1686         /* Free the needed pages to the hugetlb pool */
1687         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1688                 if ((--needed) < 0)
1689                         break;
1690                 /*
1691                  * This page is now managed by the hugetlb allocator and has
1692                  * no users -- drop the buddy allocator's reference.
1693                  */
1694                 put_page_testzero(page);
1695                 VM_BUG_ON_PAGE(page_count(page), page);
1696                 enqueue_huge_page(h, page);
1697         }
1698 free:
1699         spin_unlock(&hugetlb_lock);
1700
1701         /* Free unnecessary surplus pages to the buddy allocator */
1702         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1703                 put_page(page);
1704         spin_lock(&hugetlb_lock);
1705
1706         return ret;
1707 }
1708
1709 /*
1710  * When releasing a hugetlb pool reservation, any surplus pages that were
1711  * allocated to satisfy the reservation must be explicitly freed if they were
1712  * never used.
1713  * Called with hugetlb_lock held.
1714  */
1715 static void return_unused_surplus_pages(struct hstate *h,
1716                                         unsigned long unused_resv_pages)
1717 {
1718         unsigned long nr_pages;
1719
1720         /* Uncommit the reservation */
1721         h->resv_huge_pages -= unused_resv_pages;
1722
1723         /* Cannot return gigantic pages currently */
1724         if (hstate_is_gigantic(h))
1725                 return;
1726
1727         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1728
1729         /*
1730          * We want to release as many surplus pages as possible, spread
1731          * evenly across all nodes with memory. Iterate across these nodes
1732          * until we can no longer free unreserved surplus pages. This occurs
1733          * when the nodes with surplus pages have no free pages.
1734          * free_pool_huge_page() will balance the the freed pages across the
1735          * on-line nodes with memory and will handle the hstate accounting.
1736          */
1737         while (nr_pages--) {
1738                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1739                         break;
1740                 cond_resched_lock(&hugetlb_lock);
1741         }
1742 }
1743
1744
1745 /*
1746  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1747  * are used by the huge page allocation routines to manage reservations.
1748  *
1749  * vma_needs_reservation is called to determine if the huge page at addr
1750  * within the vma has an associated reservation.  If a reservation is
1751  * needed, the value 1 is returned.  The caller is then responsible for
1752  * managing the global reservation and subpool usage counts.  After
1753  * the huge page has been allocated, vma_commit_reservation is called
1754  * to add the page to the reservation map.  If the page allocation fails,
1755  * the reservation must be ended instead of committed.  vma_end_reservation
1756  * is called in such cases.
1757  *
1758  * In the normal case, vma_commit_reservation returns the same value
1759  * as the preceding vma_needs_reservation call.  The only time this
1760  * is not the case is if a reserve map was changed between calls.  It
1761  * is the responsibility of the caller to notice the difference and
1762  * take appropriate action.
1763  */
1764 enum vma_resv_mode {
1765         VMA_NEEDS_RESV,
1766         VMA_COMMIT_RESV,
1767         VMA_END_RESV,
1768 };
1769 static long __vma_reservation_common(struct hstate *h,
1770                                 struct vm_area_struct *vma, unsigned long addr,
1771                                 enum vma_resv_mode mode)
1772 {
1773         struct resv_map *resv;
1774         pgoff_t idx;
1775         long ret;
1776
1777         resv = vma_resv_map(vma);
1778         if (!resv)
1779                 return 1;
1780
1781         idx = vma_hugecache_offset(h, vma, addr);
1782         switch (mode) {
1783         case VMA_NEEDS_RESV:
1784                 ret = region_chg(resv, idx, idx + 1);
1785                 break;
1786         case VMA_COMMIT_RESV:
1787                 ret = region_add(resv, idx, idx + 1);
1788                 break;
1789         case VMA_END_RESV:
1790                 region_abort(resv, idx, idx + 1);
1791                 ret = 0;
1792                 break;
1793         default:
1794                 BUG();
1795         }
1796
1797         if (vma->vm_flags & VM_MAYSHARE)
1798                 return ret;
1799         else
1800                 return ret < 0 ? ret : 0;
1801 }
1802
1803 static long vma_needs_reservation(struct hstate *h,
1804                         struct vm_area_struct *vma, unsigned long addr)
1805 {
1806         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1807 }
1808
1809 static long vma_commit_reservation(struct hstate *h,
1810                         struct vm_area_struct *vma, unsigned long addr)
1811 {
1812         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1813 }
1814
1815 static void vma_end_reservation(struct hstate *h,
1816                         struct vm_area_struct *vma, unsigned long addr)
1817 {
1818         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1819 }
1820
1821 struct page *alloc_huge_page(struct vm_area_struct *vma,
1822                                     unsigned long addr, int avoid_reserve)
1823 {
1824         struct hugepage_subpool *spool = subpool_vma(vma);
1825         struct hstate *h = hstate_vma(vma);
1826         struct page *page;
1827         long map_chg, map_commit;
1828         long gbl_chg;
1829         int ret, idx;
1830         struct hugetlb_cgroup *h_cg;
1831
1832         idx = hstate_index(h);
1833         /*
1834          * Examine the region/reserve map to determine if the process
1835          * has a reservation for the page to be allocated.  A return
1836          * code of zero indicates a reservation exists (no change).
1837          */
1838         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1839         if (map_chg < 0)
1840                 return ERR_PTR(-ENOMEM);
1841
1842         /*
1843          * Processes that did not create the mapping will have no
1844          * reserves as indicated by the region/reserve map. Check
1845          * that the allocation will not exceed the subpool limit.
1846          * Allocations for MAP_NORESERVE mappings also need to be
1847          * checked against any subpool limit.
1848          */
1849         if (map_chg || avoid_reserve) {
1850                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1851                 if (gbl_chg < 0) {
1852                         vma_end_reservation(h, vma, addr);
1853                         return ERR_PTR(-ENOSPC);
1854                 }
1855
1856                 /*
1857                  * Even though there was no reservation in the region/reserve
1858                  * map, there could be reservations associated with the
1859                  * subpool that can be used.  This would be indicated if the
1860                  * return value of hugepage_subpool_get_pages() is zero.
1861                  * However, if avoid_reserve is specified we still avoid even
1862                  * the subpool reservations.
1863                  */
1864                 if (avoid_reserve)
1865                         gbl_chg = 1;
1866         }
1867
1868         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1869         if (ret)
1870                 goto out_subpool_put;
1871
1872         spin_lock(&hugetlb_lock);
1873         /*
1874          * glb_chg is passed to indicate whether or not a page must be taken
1875          * from the global free pool (global change).  gbl_chg == 0 indicates
1876          * a reservation exists for the allocation.
1877          */
1878         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1879         if (!page) {
1880                 spin_unlock(&hugetlb_lock);
1881                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1882                 if (!page)
1883                         goto out_uncharge_cgroup;
1884
1885                 spin_lock(&hugetlb_lock);
1886                 list_move(&page->lru, &h->hugepage_activelist);
1887                 /* Fall through */
1888         }
1889         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1890         spin_unlock(&hugetlb_lock);
1891
1892         set_page_private(page, (unsigned long)spool);
1893
1894         map_commit = vma_commit_reservation(h, vma, addr);
1895         if (unlikely(map_chg > map_commit)) {
1896                 /*
1897                  * The page was added to the reservation map between
1898                  * vma_needs_reservation and vma_commit_reservation.
1899                  * This indicates a race with hugetlb_reserve_pages.
1900                  * Adjust for the subpool count incremented above AND
1901                  * in hugetlb_reserve_pages for the same page.  Also,
1902                  * the reservation count added in hugetlb_reserve_pages
1903                  * no longer applies.
1904                  */
1905                 long rsv_adjust;
1906
1907                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1908                 hugetlb_acct_memory(h, -rsv_adjust);
1909         }
1910         return page;
1911
1912 out_uncharge_cgroup:
1913         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1914 out_subpool_put:
1915         if (map_chg || avoid_reserve)
1916                 hugepage_subpool_put_pages(spool, 1);
1917         vma_end_reservation(h, vma, addr);
1918         return ERR_PTR(-ENOSPC);
1919 }
1920
1921 /*
1922  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1923  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1924  * where no ERR_VALUE is expected to be returned.
1925  */
1926 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1927                                 unsigned long addr, int avoid_reserve)
1928 {
1929         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1930         if (IS_ERR(page))
1931                 page = NULL;
1932         return page;
1933 }
1934
1935 int __weak alloc_bootmem_huge_page(struct hstate *h)
1936 {
1937         struct huge_bootmem_page *m;
1938         int nr_nodes, node;
1939
1940         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1941                 void *addr;
1942
1943                 addr = memblock_virt_alloc_try_nid_nopanic(
1944                                 huge_page_size(h), huge_page_size(h),
1945                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1946                 if (addr) {
1947                         /*
1948                          * Use the beginning of the huge page to store the
1949                          * huge_bootmem_page struct (until gather_bootmem
1950                          * puts them into the mem_map).
1951                          */
1952                         m = addr;
1953                         goto found;
1954                 }
1955         }
1956         return 0;
1957
1958 found:
1959         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1960         /* Put them into a private list first because mem_map is not up yet */
1961         list_add(&m->list, &huge_boot_pages);
1962         m->hstate = h;
1963         return 1;
1964 }
1965
1966 static void __init prep_compound_huge_page(struct page *page,
1967                 unsigned int order)
1968 {
1969         if (unlikely(order > (MAX_ORDER - 1)))
1970                 prep_compound_gigantic_page(page, order);
1971         else
1972                 prep_compound_page(page, order);
1973 }
1974
1975 /* Put bootmem huge pages into the standard lists after mem_map is up */
1976 static void __init gather_bootmem_prealloc(void)
1977 {
1978         struct huge_bootmem_page *m;
1979
1980         list_for_each_entry(m, &huge_boot_pages, list) {
1981                 struct hstate *h = m->hstate;
1982                 struct page *page;
1983
1984 #ifdef CONFIG_HIGHMEM
1985                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1986                 memblock_free_late(__pa(m),
1987                                    sizeof(struct huge_bootmem_page));
1988 #else
1989                 page = virt_to_page(m);
1990 #endif
1991                 WARN_ON(page_count(page) != 1);
1992                 prep_compound_huge_page(page, h->order);
1993                 WARN_ON(PageReserved(page));
1994                 prep_new_huge_page(h, page, page_to_nid(page));
1995                 /*
1996                  * If we had gigantic hugepages allocated at boot time, we need
1997                  * to restore the 'stolen' pages to totalram_pages in order to
1998                  * fix confusing memory reports from free(1) and another
1999                  * side-effects, like CommitLimit going negative.
2000                  */
2001                 if (hstate_is_gigantic(h))
2002                         adjust_managed_page_count(page, 1 << h->order);
2003         }
2004 }
2005
2006 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2007 {
2008         unsigned long i;
2009
2010         for (i = 0; i < h->max_huge_pages; ++i) {
2011                 if (hstate_is_gigantic(h)) {
2012                         if (!alloc_bootmem_huge_page(h))
2013                                 break;
2014                 } else if (!alloc_fresh_huge_page(h,
2015                                          &node_states[N_MEMORY]))
2016                         break;
2017         }
2018         h->max_huge_pages = i;
2019 }
2020
2021 static void __init hugetlb_init_hstates(void)
2022 {
2023         struct hstate *h;
2024
2025         for_each_hstate(h) {
2026                 if (minimum_order > huge_page_order(h))
2027                         minimum_order = huge_page_order(h);
2028
2029                 /* oversize hugepages were init'ed in early boot */
2030                 if (!hstate_is_gigantic(h))
2031                         hugetlb_hstate_alloc_pages(h);
2032         }
2033         VM_BUG_ON(minimum_order == UINT_MAX);
2034 }
2035
2036 static char * __init memfmt(char *buf, unsigned long n)
2037 {
2038         if (n >= (1UL << 30))
2039                 sprintf(buf, "%lu GB", n >> 30);
2040         else if (n >= (1UL << 20))
2041                 sprintf(buf, "%lu MB", n >> 20);
2042         else
2043                 sprintf(buf, "%lu KB", n >> 10);
2044         return buf;
2045 }
2046
2047 static void __init report_hugepages(void)
2048 {
2049         struct hstate *h;
2050
2051         for_each_hstate(h) {
2052                 char buf[32];
2053                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2054                         memfmt(buf, huge_page_size(h)),
2055                         h->free_huge_pages);
2056         }
2057 }
2058
2059 #ifdef CONFIG_HIGHMEM
2060 static void try_to_free_low(struct hstate *h, unsigned long count,
2061                                                 nodemask_t *nodes_allowed)
2062 {
2063         int i;
2064
2065         if (hstate_is_gigantic(h))
2066                 return;
2067
2068         for_each_node_mask(i, *nodes_allowed) {
2069                 struct page *page, *next;
2070                 struct list_head *freel = &h->hugepage_freelists[i];
2071                 list_for_each_entry_safe(page, next, freel, lru) {
2072                         if (count >= h->nr_huge_pages)
2073                                 return;
2074                         if (PageHighMem(page))
2075                                 continue;
2076                         list_del(&page->lru);
2077                         update_and_free_page(h, page);
2078                         h->free_huge_pages--;
2079                         h->free_huge_pages_node[page_to_nid(page)]--;
2080                 }
2081         }
2082 }
2083 #else
2084 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2085                                                 nodemask_t *nodes_allowed)
2086 {
2087 }
2088 #endif
2089
2090 /*
2091  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2092  * balanced by operating on them in a round-robin fashion.
2093  * Returns 1 if an adjustment was made.
2094  */
2095 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2096                                 int delta)
2097 {
2098         int nr_nodes, node;
2099
2100         VM_BUG_ON(delta != -1 && delta != 1);
2101
2102         if (delta < 0) {
2103                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2104                         if (h->surplus_huge_pages_node[node])
2105                                 goto found;
2106                 }
2107         } else {
2108                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2109                         if (h->surplus_huge_pages_node[node] <
2110                                         h->nr_huge_pages_node[node])
2111                                 goto found;
2112                 }
2113         }
2114         return 0;
2115
2116 found:
2117         h->surplus_huge_pages += delta;
2118         h->surplus_huge_pages_node[node] += delta;
2119         return 1;
2120 }
2121
2122 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2123 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2124                                                 nodemask_t *nodes_allowed)
2125 {
2126         unsigned long min_count, ret;
2127
2128         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2129                 return h->max_huge_pages;
2130
2131         /*
2132          * Increase the pool size
2133          * First take pages out of surplus state.  Then make up the
2134          * remaining difference by allocating fresh huge pages.
2135          *
2136          * We might race with alloc_buddy_huge_page() here and be unable
2137          * to convert a surplus huge page to a normal huge page. That is
2138          * not critical, though, it just means the overall size of the
2139          * pool might be one hugepage larger than it needs to be, but
2140          * within all the constraints specified by the sysctls.
2141          */
2142         spin_lock(&hugetlb_lock);
2143         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2144                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2145                         break;
2146         }
2147
2148         while (count > persistent_huge_pages(h)) {
2149                 /*
2150                  * If this allocation races such that we no longer need the
2151                  * page, free_huge_page will handle it by freeing the page
2152                  * and reducing the surplus.
2153                  */
2154                 spin_unlock(&hugetlb_lock);
2155                 if (hstate_is_gigantic(h))
2156                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2157                 else
2158                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2159                 spin_lock(&hugetlb_lock);
2160                 if (!ret)
2161                         goto out;
2162
2163                 /* Bail for signals. Probably ctrl-c from user */
2164                 if (signal_pending(current))
2165                         goto out;
2166         }
2167
2168         /*
2169          * Decrease the pool size
2170          * First return free pages to the buddy allocator (being careful
2171          * to keep enough around to satisfy reservations).  Then place
2172          * pages into surplus state as needed so the pool will shrink
2173          * to the desired size as pages become free.
2174          *
2175          * By placing pages into the surplus state independent of the
2176          * overcommit value, we are allowing the surplus pool size to
2177          * exceed overcommit. There are few sane options here. Since
2178          * alloc_buddy_huge_page() is checking the global counter,
2179          * though, we'll note that we're not allowed to exceed surplus
2180          * and won't grow the pool anywhere else. Not until one of the
2181          * sysctls are changed, or the surplus pages go out of use.
2182          */
2183         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2184         min_count = max(count, min_count);
2185         try_to_free_low(h, min_count, nodes_allowed);
2186         while (min_count < persistent_huge_pages(h)) {
2187                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2188                         break;
2189                 cond_resched_lock(&hugetlb_lock);
2190         }
2191         while (count < persistent_huge_pages(h)) {
2192                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2193                         break;
2194         }
2195 out:
2196         ret = persistent_huge_pages(h);
2197         spin_unlock(&hugetlb_lock);
2198         return ret;
2199 }
2200
2201 #define HSTATE_ATTR_RO(_name) \
2202         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2203
2204 #define HSTATE_ATTR(_name) \
2205         static struct kobj_attribute _name##_attr = \
2206                 __ATTR(_name, 0644, _name##_show, _name##_store)
2207
2208 static struct kobject *hugepages_kobj;
2209 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2210
2211 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2212
2213 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2214 {
2215         int i;
2216
2217         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2218                 if (hstate_kobjs[i] == kobj) {
2219                         if (nidp)
2220                                 *nidp = NUMA_NO_NODE;
2221                         return &hstates[i];
2222                 }
2223
2224         return kobj_to_node_hstate(kobj, nidp);
2225 }
2226
2227 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2228                                         struct kobj_attribute *attr, char *buf)
2229 {
2230         struct hstate *h;
2231         unsigned long nr_huge_pages;
2232         int nid;
2233
2234         h = kobj_to_hstate(kobj, &nid);
2235         if (nid == NUMA_NO_NODE)
2236                 nr_huge_pages = h->nr_huge_pages;
2237         else
2238                 nr_huge_pages = h->nr_huge_pages_node[nid];
2239
2240         return sprintf(buf, "%lu\n", nr_huge_pages);
2241 }
2242
2243 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2244                                            struct hstate *h, int nid,
2245                                            unsigned long count, size_t len)
2246 {
2247         int err;
2248         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2249
2250         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2251                 err = -EINVAL;
2252                 goto out;
2253         }
2254
2255         if (nid == NUMA_NO_NODE) {
2256                 /*
2257                  * global hstate attribute
2258                  */
2259                 if (!(obey_mempolicy &&
2260                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2261                         NODEMASK_FREE(nodes_allowed);
2262                         nodes_allowed = &node_states[N_MEMORY];
2263                 }
2264         } else if (nodes_allowed) {
2265                 /*
2266                  * per node hstate attribute: adjust count to global,
2267                  * but restrict alloc/free to the specified node.
2268                  */
2269                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2270                 init_nodemask_of_node(nodes_allowed, nid);
2271         } else
2272                 nodes_allowed = &node_states[N_MEMORY];
2273
2274         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2275
2276         if (nodes_allowed != &node_states[N_MEMORY])
2277                 NODEMASK_FREE(nodes_allowed);
2278
2279         return len;
2280 out:
2281         NODEMASK_FREE(nodes_allowed);
2282         return err;
2283 }
2284
2285 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2286                                          struct kobject *kobj, const char *buf,
2287                                          size_t len)
2288 {
2289         struct hstate *h;
2290         unsigned long count;
2291         int nid;
2292         int err;
2293
2294         err = kstrtoul(buf, 10, &count);
2295         if (err)
2296                 return err;
2297
2298         h = kobj_to_hstate(kobj, &nid);
2299         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2300 }
2301
2302 static ssize_t nr_hugepages_show(struct kobject *kobj,
2303                                        struct kobj_attribute *attr, char *buf)
2304 {
2305         return nr_hugepages_show_common(kobj, attr, buf);
2306 }
2307
2308 static ssize_t nr_hugepages_store(struct kobject *kobj,
2309                struct kobj_attribute *attr, const char *buf, size_t len)
2310 {
2311         return nr_hugepages_store_common(false, kobj, buf, len);
2312 }
2313 HSTATE_ATTR(nr_hugepages);
2314
2315 #ifdef CONFIG_NUMA
2316
2317 /*
2318  * hstate attribute for optionally mempolicy-based constraint on persistent
2319  * huge page alloc/free.
2320  */
2321 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2322                                        struct kobj_attribute *attr, char *buf)
2323 {
2324         return nr_hugepages_show_common(kobj, attr, buf);
2325 }
2326
2327 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2328                struct kobj_attribute *attr, const char *buf, size_t len)
2329 {
2330         return nr_hugepages_store_common(true, kobj, buf, len);
2331 }
2332 HSTATE_ATTR(nr_hugepages_mempolicy);
2333 #endif
2334
2335
2336 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2337                                         struct kobj_attribute *attr, char *buf)
2338 {
2339         struct hstate *h = kobj_to_hstate(kobj, NULL);
2340         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2341 }
2342
2343 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2344                 struct kobj_attribute *attr, const char *buf, size_t count)
2345 {
2346         int err;
2347         unsigned long input;
2348         struct hstate *h = kobj_to_hstate(kobj, NULL);
2349
2350         if (hstate_is_gigantic(h))
2351                 return -EINVAL;
2352
2353         err = kstrtoul(buf, 10, &input);
2354         if (err)
2355                 return err;
2356
2357         spin_lock(&hugetlb_lock);
2358         h->nr_overcommit_huge_pages = input;
2359         spin_unlock(&hugetlb_lock);
2360
2361         return count;
2362 }
2363 HSTATE_ATTR(nr_overcommit_hugepages);
2364
2365 static ssize_t free_hugepages_show(struct kobject *kobj,
2366                                         struct kobj_attribute *attr, char *buf)
2367 {
2368         struct hstate *h;
2369         unsigned long free_huge_pages;
2370         int nid;
2371
2372         h = kobj_to_hstate(kobj, &nid);
2373         if (nid == NUMA_NO_NODE)
2374                 free_huge_pages = h->free_huge_pages;
2375         else
2376                 free_huge_pages = h->free_huge_pages_node[nid];
2377
2378         return sprintf(buf, "%lu\n", free_huge_pages);
2379 }
2380 HSTATE_ATTR_RO(free_hugepages);
2381
2382 static ssize_t resv_hugepages_show(struct kobject *kobj,
2383                                         struct kobj_attribute *attr, char *buf)
2384 {
2385         struct hstate *h = kobj_to_hstate(kobj, NULL);
2386         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2387 }
2388 HSTATE_ATTR_RO(resv_hugepages);
2389
2390 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2391                                         struct kobj_attribute *attr, char *buf)
2392 {
2393         struct hstate *h;
2394         unsigned long surplus_huge_pages;
2395         int nid;
2396
2397         h = kobj_to_hstate(kobj, &nid);
2398         if (nid == NUMA_NO_NODE)
2399                 surplus_huge_pages = h->surplus_huge_pages;
2400         else
2401                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2402
2403         return sprintf(buf, "%lu\n", surplus_huge_pages);
2404 }
2405 HSTATE_ATTR_RO(surplus_hugepages);
2406
2407 static struct attribute *hstate_attrs[] = {
2408         &nr_hugepages_attr.attr,
2409         &nr_overcommit_hugepages_attr.attr,
2410         &free_hugepages_attr.attr,
2411         &resv_hugepages_attr.attr,
2412         &surplus_hugepages_attr.attr,
2413 #ifdef CONFIG_NUMA
2414         &nr_hugepages_mempolicy_attr.attr,
2415 #endif
2416         NULL,
2417 };
2418
2419 static struct attribute_group hstate_attr_group = {
2420         .attrs = hstate_attrs,
2421 };
2422
2423 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2424                                     struct kobject **hstate_kobjs,
2425                                     struct attribute_group *hstate_attr_group)
2426 {
2427         int retval;
2428         int hi = hstate_index(h);
2429
2430         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2431         if (!hstate_kobjs[hi])
2432                 return -ENOMEM;
2433
2434         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2435         if (retval)
2436                 kobject_put(hstate_kobjs[hi]);
2437
2438         return retval;
2439 }
2440
2441 static void __init hugetlb_sysfs_init(void)
2442 {
2443         struct hstate *h;
2444         int err;
2445
2446         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2447         if (!hugepages_kobj)
2448                 return;
2449
2450         for_each_hstate(h) {
2451                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2452                                          hstate_kobjs, &hstate_attr_group);
2453                 if (err)
2454                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2455         }
2456 }
2457
2458 #ifdef CONFIG_NUMA
2459
2460 /*
2461  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2462  * with node devices in node_devices[] using a parallel array.  The array
2463  * index of a node device or _hstate == node id.
2464  * This is here to avoid any static dependency of the node device driver, in
2465  * the base kernel, on the hugetlb module.
2466  */
2467 struct node_hstate {
2468         struct kobject          *hugepages_kobj;
2469         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2470 };
2471 static struct node_hstate node_hstates[MAX_NUMNODES];
2472
2473 /*
2474  * A subset of global hstate attributes for node devices
2475  */
2476 static struct attribute *per_node_hstate_attrs[] = {
2477         &nr_hugepages_attr.attr,
2478         &free_hugepages_attr.attr,
2479         &surplus_hugepages_attr.attr,
2480         NULL,
2481 };
2482
2483 static struct attribute_group per_node_hstate_attr_group = {
2484         .attrs = per_node_hstate_attrs,
2485 };
2486
2487 /*
2488  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2489  * Returns node id via non-NULL nidp.
2490  */
2491 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2492 {
2493         int nid;
2494
2495         for (nid = 0; nid < nr_node_ids; nid++) {
2496                 struct node_hstate *nhs = &node_hstates[nid];
2497                 int i;
2498                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2499                         if (nhs->hstate_kobjs[i] == kobj) {
2500                                 if (nidp)
2501                                         *nidp = nid;
2502                                 return &hstates[i];
2503                         }
2504         }
2505
2506         BUG();
2507         return NULL;
2508 }
2509
2510 /*
2511  * Unregister hstate attributes from a single node device.
2512  * No-op if no hstate attributes attached.
2513  */
2514 static void hugetlb_unregister_node(struct node *node)
2515 {
2516         struct hstate *h;
2517         struct node_hstate *nhs = &node_hstates[node->dev.id];
2518
2519         if (!nhs->hugepages_kobj)
2520                 return;         /* no hstate attributes */
2521
2522         for_each_hstate(h) {
2523                 int idx = hstate_index(h);
2524                 if (nhs->hstate_kobjs[idx]) {
2525                         kobject_put(nhs->hstate_kobjs[idx]);
2526                         nhs->hstate_kobjs[idx] = NULL;
2527                 }
2528         }
2529
2530         kobject_put(nhs->hugepages_kobj);
2531         nhs->hugepages_kobj = NULL;
2532 }
2533
2534 /*
2535  * hugetlb module exit:  unregister hstate attributes from node devices
2536  * that have them.
2537  */
2538 static void hugetlb_unregister_all_nodes(void)
2539 {
2540         int nid;
2541
2542         /*
2543          * disable node device registrations.
2544          */
2545         register_hugetlbfs_with_node(NULL, NULL);
2546
2547         /*
2548          * remove hstate attributes from any nodes that have them.
2549          */
2550         for (nid = 0; nid < nr_node_ids; nid++)
2551                 hugetlb_unregister_node(node_devices[nid]);
2552 }
2553
2554 /*
2555  * Register hstate attributes for a single node device.
2556  * No-op if attributes already registered.
2557  */
2558 static void hugetlb_register_node(struct node *node)
2559 {
2560         struct hstate *h;
2561         struct node_hstate *nhs = &node_hstates[node->dev.id];
2562         int err;
2563
2564         if (nhs->hugepages_kobj)
2565                 return;         /* already allocated */
2566
2567         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2568                                                         &node->dev.kobj);
2569         if (!nhs->hugepages_kobj)
2570                 return;
2571
2572         for_each_hstate(h) {
2573                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2574                                                 nhs->hstate_kobjs,
2575                                                 &per_node_hstate_attr_group);
2576                 if (err) {
2577                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2578                                 h->name, node->dev.id);
2579                         hugetlb_unregister_node(node);
2580                         break;
2581                 }
2582         }
2583 }
2584
2585 /*
2586  * hugetlb init time:  register hstate attributes for all registered node
2587  * devices of nodes that have memory.  All on-line nodes should have
2588  * registered their associated device by this time.
2589  */
2590 static void __init hugetlb_register_all_nodes(void)
2591 {
2592         int nid;
2593
2594         for_each_node_state(nid, N_MEMORY) {
2595                 struct node *node = node_devices[nid];
2596                 if (node->dev.id == nid)
2597                         hugetlb_register_node(node);
2598         }
2599
2600         /*
2601          * Let the node device driver know we're here so it can
2602          * [un]register hstate attributes on node hotplug.
2603          */
2604         register_hugetlbfs_with_node(hugetlb_register_node,
2605                                      hugetlb_unregister_node);
2606 }
2607 #else   /* !CONFIG_NUMA */
2608
2609 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2610 {
2611         BUG();
2612         if (nidp)
2613                 *nidp = -1;
2614         return NULL;
2615 }
2616
2617 static void hugetlb_unregister_all_nodes(void) { }
2618
2619 static void hugetlb_register_all_nodes(void) { }
2620
2621 #endif
2622
2623 static void __exit hugetlb_exit(void)
2624 {
2625         struct hstate *h;
2626
2627         hugetlb_unregister_all_nodes();
2628
2629         for_each_hstate(h) {
2630                 kobject_put(hstate_kobjs[hstate_index(h)]);
2631         }
2632
2633         kobject_put(hugepages_kobj);
2634         kfree(hugetlb_fault_mutex_table);
2635 }
2636 module_exit(hugetlb_exit);
2637
2638 static int __init hugetlb_init(void)
2639 {
2640         int i;
2641
2642         if (!hugepages_supported())
2643                 return 0;
2644
2645         if (!size_to_hstate(default_hstate_size)) {
2646                 default_hstate_size = HPAGE_SIZE;
2647                 if (!size_to_hstate(default_hstate_size))
2648                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2649         }
2650         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2651         if (default_hstate_max_huge_pages)
2652                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2653
2654         hugetlb_init_hstates();
2655         gather_bootmem_prealloc();
2656         report_hugepages();
2657
2658         hugetlb_sysfs_init();
2659         hugetlb_register_all_nodes();
2660         hugetlb_cgroup_file_init();
2661
2662 #ifdef CONFIG_SMP
2663         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2664 #else
2665         num_fault_mutexes = 1;
2666 #endif
2667         hugetlb_fault_mutex_table =
2668                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2669         BUG_ON(!hugetlb_fault_mutex_table);
2670
2671         for (i = 0; i < num_fault_mutexes; i++)
2672                 mutex_init(&hugetlb_fault_mutex_table[i]);
2673         return 0;
2674 }
2675 module_init(hugetlb_init);
2676
2677 /* Should be called on processing a hugepagesz=... option */
2678 void __init hugetlb_add_hstate(unsigned int order)
2679 {
2680         struct hstate *h;
2681         unsigned long i;
2682
2683         if (size_to_hstate(PAGE_SIZE << order)) {
2684                 pr_warning("hugepagesz= specified twice, ignoring\n");
2685                 return;
2686         }
2687         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2688         BUG_ON(order == 0);
2689         h = &hstates[hugetlb_max_hstate++];
2690         h->order = order;
2691         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2692         h->nr_huge_pages = 0;
2693         h->free_huge_pages = 0;
2694         for (i = 0; i < MAX_NUMNODES; ++i)
2695                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2696         INIT_LIST_HEAD(&h->hugepage_activelist);
2697         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2698         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2699         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2700                                         huge_page_size(h)/1024);
2701
2702         parsed_hstate = h;
2703 }
2704
2705 static int __init hugetlb_nrpages_setup(char *s)
2706 {
2707         unsigned long *mhp;
2708         static unsigned long *last_mhp;
2709
2710         /*
2711          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712          * so this hugepages= parameter goes to the "default hstate".
2713          */
2714         if (!hugetlb_max_hstate)
2715                 mhp = &default_hstate_max_huge_pages;
2716         else
2717                 mhp = &parsed_hstate->max_huge_pages;
2718
2719         if (mhp == last_mhp) {
2720                 pr_warning("hugepages= specified twice without "
2721                            "interleaving hugepagesz=, ignoring\n");
2722                 return 1;
2723         }
2724
2725         if (sscanf(s, "%lu", mhp) <= 0)
2726                 *mhp = 0;
2727
2728         /*
2729          * Global state is always initialized later in hugetlb_init.
2730          * But we need to allocate >= MAX_ORDER hstates here early to still
2731          * use the bootmem allocator.
2732          */
2733         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2734                 hugetlb_hstate_alloc_pages(parsed_hstate);
2735
2736         last_mhp = mhp;
2737
2738         return 1;
2739 }
2740 __setup("hugepages=", hugetlb_nrpages_setup);
2741
2742 static int __init hugetlb_default_setup(char *s)
2743 {
2744         default_hstate_size = memparse(s, &s);
2745         return 1;
2746 }
2747 __setup("default_hugepagesz=", hugetlb_default_setup);
2748
2749 static unsigned int cpuset_mems_nr(unsigned int *array)
2750 {
2751         int node;
2752         unsigned int nr = 0;
2753
2754         for_each_node_mask(node, cpuset_current_mems_allowed)
2755                 nr += array[node];
2756
2757         return nr;
2758 }
2759
2760 #ifdef CONFIG_SYSCTL
2761 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2762                          struct ctl_table *table, int write,
2763                          void __user *buffer, size_t *length, loff_t *ppos)
2764 {
2765         struct hstate *h = &default_hstate;
2766         unsigned long tmp = h->max_huge_pages;
2767         int ret;
2768
2769         if (!hugepages_supported())
2770                 return -ENOTSUPP;
2771
2772         table->data = &tmp;
2773         table->maxlen = sizeof(unsigned long);
2774         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2775         if (ret)
2776                 goto out;
2777
2778         if (write)
2779                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2780                                                   NUMA_NO_NODE, tmp, *length);
2781 out:
2782         return ret;
2783 }
2784
2785 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2786                           void __user *buffer, size_t *length, loff_t *ppos)
2787 {
2788
2789         return hugetlb_sysctl_handler_common(false, table, write,
2790                                                         buffer, length, ppos);
2791 }
2792
2793 #ifdef CONFIG_NUMA
2794 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2795                           void __user *buffer, size_t *length, loff_t *ppos)
2796 {
2797         return hugetlb_sysctl_handler_common(true, table, write,
2798                                                         buffer, length, ppos);
2799 }
2800 #endif /* CONFIG_NUMA */
2801
2802 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2803                         void __user *buffer,
2804                         size_t *length, loff_t *ppos)
2805 {
2806         struct hstate *h = &default_hstate;
2807         unsigned long tmp;
2808         int ret;
2809
2810         if (!hugepages_supported())
2811                 return -ENOTSUPP;
2812
2813         tmp = h->nr_overcommit_huge_pages;
2814
2815         if (write && hstate_is_gigantic(h))
2816                 return -EINVAL;
2817
2818         table->data = &tmp;
2819         table->maxlen = sizeof(unsigned long);
2820         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2821         if (ret)
2822                 goto out;
2823
2824         if (write) {
2825                 spin_lock(&hugetlb_lock);
2826                 h->nr_overcommit_huge_pages = tmp;
2827                 spin_unlock(&hugetlb_lock);
2828         }
2829 out:
2830         return ret;
2831 }
2832
2833 #endif /* CONFIG_SYSCTL */
2834
2835 void hugetlb_report_meminfo(struct seq_file *m)
2836 {
2837         struct hstate *h = &default_hstate;
2838         if (!hugepages_supported())
2839                 return;
2840         seq_printf(m,
2841                         "HugePages_Total:   %5lu\n"
2842                         "HugePages_Free:    %5lu\n"
2843                         "HugePages_Rsvd:    %5lu\n"
2844                         "HugePages_Surp:    %5lu\n"
2845                         "Hugepagesize:   %8lu kB\n",
2846                         h->nr_huge_pages,
2847                         h->free_huge_pages,
2848                         h->resv_huge_pages,
2849                         h->surplus_huge_pages,
2850                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2851 }
2852
2853 int hugetlb_report_node_meminfo(int nid, char *buf)
2854 {
2855         struct hstate *h = &default_hstate;
2856         if (!hugepages_supported())
2857                 return 0;
2858         return sprintf(buf,
2859                 "Node %d HugePages_Total: %5u\n"
2860                 "Node %d HugePages_Free:  %5u\n"
2861                 "Node %d HugePages_Surp:  %5u\n",
2862                 nid, h->nr_huge_pages_node[nid],
2863                 nid, h->free_huge_pages_node[nid],
2864                 nid, h->surplus_huge_pages_node[nid]);
2865 }
2866
2867 void hugetlb_show_meminfo(void)
2868 {
2869         struct hstate *h;
2870         int nid;
2871
2872         if (!hugepages_supported())
2873                 return;
2874
2875         for_each_node_state(nid, N_MEMORY)
2876                 for_each_hstate(h)
2877                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2878                                 nid,
2879                                 h->nr_huge_pages_node[nid],
2880                                 h->free_huge_pages_node[nid],
2881                                 h->surplus_huge_pages_node[nid],
2882                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2883 }
2884
2885 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2886 {
2887         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2888                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2889 }
2890
2891 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2892 unsigned long hugetlb_total_pages(void)
2893 {
2894         struct hstate *h;
2895         unsigned long nr_total_pages = 0;
2896
2897         for_each_hstate(h)
2898                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2899         return nr_total_pages;
2900 }
2901
2902 static int hugetlb_acct_memory(struct hstate *h, long delta)
2903 {
2904         int ret = -ENOMEM;
2905
2906         spin_lock(&hugetlb_lock);
2907         /*
2908          * When cpuset is configured, it breaks the strict hugetlb page
2909          * reservation as the accounting is done on a global variable. Such
2910          * reservation is completely rubbish in the presence of cpuset because
2911          * the reservation is not checked against page availability for the
2912          * current cpuset. Application can still potentially OOM'ed by kernel
2913          * with lack of free htlb page in cpuset that the task is in.
2914          * Attempt to enforce strict accounting with cpuset is almost
2915          * impossible (or too ugly) because cpuset is too fluid that
2916          * task or memory node can be dynamically moved between cpusets.
2917          *
2918          * The change of semantics for shared hugetlb mapping with cpuset is
2919          * undesirable. However, in order to preserve some of the semantics,
2920          * we fall back to check against current free page availability as
2921          * a best attempt and hopefully to minimize the impact of changing
2922          * semantics that cpuset has.
2923          */
2924         if (delta > 0) {
2925                 if (gather_surplus_pages(h, delta) < 0)
2926                         goto out;
2927
2928                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2929                         return_unused_surplus_pages(h, delta);
2930                         goto out;
2931                 }
2932         }
2933
2934         ret = 0;
2935         if (delta < 0)
2936                 return_unused_surplus_pages(h, (unsigned long) -delta);
2937
2938 out:
2939         spin_unlock(&hugetlb_lock);
2940         return ret;
2941 }
2942
2943 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2944 {
2945         struct resv_map *resv = vma_resv_map(vma);
2946
2947         /*
2948          * This new VMA should share its siblings reservation map if present.
2949          * The VMA will only ever have a valid reservation map pointer where
2950          * it is being copied for another still existing VMA.  As that VMA
2951          * has a reference to the reservation map it cannot disappear until
2952          * after this open call completes.  It is therefore safe to take a
2953          * new reference here without additional locking.
2954          */
2955         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2956                 kref_get(&resv->refs);
2957 }
2958
2959 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2960 {
2961         struct hstate *h = hstate_vma(vma);
2962         struct resv_map *resv = vma_resv_map(vma);
2963         struct hugepage_subpool *spool = subpool_vma(vma);
2964         unsigned long reserve, start, end;
2965         long gbl_reserve;
2966
2967         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2968                 return;
2969
2970         start = vma_hugecache_offset(h, vma, vma->vm_start);
2971         end = vma_hugecache_offset(h, vma, vma->vm_end);
2972
2973         reserve = (end - start) - region_count(resv, start, end);
2974
2975         kref_put(&resv->refs, resv_map_release);
2976
2977         if (reserve) {
2978                 /*
2979                  * Decrement reserve counts.  The global reserve count may be
2980                  * adjusted if the subpool has a minimum size.
2981                  */
2982                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2983                 hugetlb_acct_memory(h, -gbl_reserve);
2984         }
2985 }
2986
2987 /*
2988  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2989  * handle_mm_fault() to try to instantiate regular-sized pages in the
2990  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2991  * this far.
2992  */
2993 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2994 {
2995         BUG();
2996         return 0;
2997 }
2998
2999 const struct vm_operations_struct hugetlb_vm_ops = {
3000         .fault = hugetlb_vm_op_fault,
3001         .open = hugetlb_vm_op_open,
3002         .close = hugetlb_vm_op_close,
3003 };
3004
3005 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3006                                 int writable)
3007 {
3008         pte_t entry;
3009
3010         if (writable) {
3011                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3012                                          vma->vm_page_prot)));
3013         } else {
3014                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3015                                            vma->vm_page_prot));
3016         }
3017         entry = pte_mkyoung(entry);
3018         entry = pte_mkhuge(entry);
3019         entry = arch_make_huge_pte(entry, vma, page, writable);
3020
3021         return entry;
3022 }
3023
3024 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3025                                    unsigned long address, pte_t *ptep)
3026 {
3027         pte_t entry;
3028
3029         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3030         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3031                 update_mmu_cache(vma, address, ptep);
3032 }
3033
3034 static int is_hugetlb_entry_migration(pte_t pte)
3035 {
3036         swp_entry_t swp;
3037
3038         if (huge_pte_none(pte) || pte_present(pte))
3039                 return 0;
3040         swp = pte_to_swp_entry(pte);
3041         if (non_swap_entry(swp) && is_migration_entry(swp))
3042                 return 1;
3043         else
3044                 return 0;
3045 }
3046
3047 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3048 {
3049         swp_entry_t swp;
3050
3051         if (huge_pte_none(pte) || pte_present(pte))
3052                 return 0;
3053         swp = pte_to_swp_entry(pte);
3054         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3055                 return 1;
3056         else
3057                 return 0;
3058 }
3059
3060 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3061                             struct vm_area_struct *vma)
3062 {
3063         pte_t *src_pte, *dst_pte, entry;
3064         struct page *ptepage;
3065         unsigned long addr;
3066         int cow;
3067         struct hstate *h = hstate_vma(vma);
3068         unsigned long sz = huge_page_size(h);
3069         unsigned long mmun_start;       /* For mmu_notifiers */
3070         unsigned long mmun_end;         /* For mmu_notifiers */
3071         int ret = 0;
3072
3073         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3074
3075         mmun_start = vma->vm_start;
3076         mmun_end = vma->vm_end;
3077         if (cow)
3078                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3079
3080         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3081                 spinlock_t *src_ptl, *dst_ptl;
3082                 src_pte = huge_pte_offset(src, addr);
3083                 if (!src_pte)
3084                         continue;
3085                 dst_pte = huge_pte_alloc(dst, addr, sz);
3086                 if (!dst_pte) {
3087                         ret = -ENOMEM;
3088                         break;
3089                 }
3090
3091                 /* If the pagetables are shared don't copy or take references */
3092                 if (dst_pte == src_pte)
3093                         continue;
3094
3095                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3096                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3097                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3098                 entry = huge_ptep_get(src_pte);
3099                 if (huge_pte_none(entry)) { /* skip none entry */
3100                         ;
3101                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3102                                     is_hugetlb_entry_hwpoisoned(entry))) {
3103                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3104
3105                         if (is_write_migration_entry(swp_entry) && cow) {
3106                                 /*
3107                                  * COW mappings require pages in both
3108                                  * parent and child to be set to read.
3109                                  */
3110                                 make_migration_entry_read(&swp_entry);
3111                                 entry = swp_entry_to_pte(swp_entry);
3112                                 set_huge_pte_at(src, addr, src_pte, entry);
3113                         }
3114                         set_huge_pte_at(dst, addr, dst_pte, entry);
3115                 } else {
3116                         if (cow) {
3117                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3118                                 mmu_notifier_invalidate_range(src, mmun_start,
3119                                                                    mmun_end);
3120                         }
3121                         entry = huge_ptep_get(src_pte);
3122                         ptepage = pte_page(entry);
3123                         get_page(ptepage);
3124                         page_dup_rmap(ptepage, true);
3125                         set_huge_pte_at(dst, addr, dst_pte, entry);
3126                         hugetlb_count_add(pages_per_huge_page(h), dst);
3127                 }
3128                 spin_unlock(src_ptl);
3129                 spin_unlock(dst_ptl);
3130         }
3131
3132         if (cow)
3133                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3134
3135         return ret;
3136 }
3137
3138 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3139                             unsigned long start, unsigned long end,
3140                             struct page *ref_page)
3141 {
3142         int force_flush = 0;
3143         struct mm_struct *mm = vma->vm_mm;
3144         unsigned long address;
3145         pte_t *ptep;
3146         pte_t pte;
3147         spinlock_t *ptl;
3148         struct page *page;
3149         struct hstate *h = hstate_vma(vma);
3150         unsigned long sz = huge_page_size(h);
3151         const unsigned long mmun_start = start; /* For mmu_notifiers */
3152         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3153
3154         WARN_ON(!is_vm_hugetlb_page(vma));
3155         BUG_ON(start & ~huge_page_mask(h));
3156         BUG_ON(end & ~huge_page_mask(h));
3157
3158         tlb_start_vma(tlb, vma);
3159         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3160         address = start;
3161 again:
3162         for (; address < end; address += sz) {
3163                 ptep = huge_pte_offset(mm, address);
3164                 if (!ptep)
3165                         continue;
3166
3167                 ptl = huge_pte_lock(h, mm, ptep);
3168                 if (huge_pmd_unshare(mm, &address, ptep))
3169                         goto unlock;
3170
3171                 pte = huge_ptep_get(ptep);
3172                 if (huge_pte_none(pte))
3173                         goto unlock;
3174
3175                 /*
3176                  * Migrating hugepage or HWPoisoned hugepage is already
3177                  * unmapped and its refcount is dropped, so just clear pte here.
3178                  */
3179                 if (unlikely(!pte_present(pte))) {
3180                         huge_pte_clear(mm, address, ptep);
3181                         goto unlock;
3182                 }
3183
3184                 page = pte_page(pte);
3185                 /*
3186                  * If a reference page is supplied, it is because a specific
3187                  * page is being unmapped, not a range. Ensure the page we
3188                  * are about to unmap is the actual page of interest.
3189                  */
3190                 if (ref_page) {
3191                         if (page != ref_page)
3192                                 goto unlock;
3193
3194                         /*
3195                          * Mark the VMA as having unmapped its page so that
3196                          * future faults in this VMA will fail rather than
3197                          * looking like data was lost
3198                          */
3199                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3200                 }
3201
3202                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3203                 tlb_remove_tlb_entry(tlb, ptep, address);
3204                 if (huge_pte_dirty(pte))
3205                         set_page_dirty(page);
3206
3207                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3208                 page_remove_rmap(page, true);
3209                 force_flush = !__tlb_remove_page(tlb, page);
3210                 if (force_flush) {
3211                         address += sz;
3212                         spin_unlock(ptl);
3213                         break;
3214                 }
3215                 /* Bail out after unmapping reference page if supplied */
3216                 if (ref_page) {
3217                         spin_unlock(ptl);
3218                         break;
3219                 }
3220 unlock:
3221                 spin_unlock(ptl);
3222         }
3223         /*
3224          * mmu_gather ran out of room to batch pages, we break out of
3225          * the PTE lock to avoid doing the potential expensive TLB invalidate
3226          * and page-free while holding it.
3227          */
3228         if (force_flush) {
3229                 force_flush = 0;
3230                 tlb_flush_mmu(tlb);
3231                 if (address < end && !ref_page)
3232                         goto again;
3233         }
3234         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3235         tlb_end_vma(tlb, vma);
3236 }
3237
3238 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3239                           struct vm_area_struct *vma, unsigned long start,
3240                           unsigned long end, struct page *ref_page)
3241 {
3242         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3243
3244         /*
3245          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3246          * test will fail on a vma being torn down, and not grab a page table
3247          * on its way out.  We're lucky that the flag has such an appropriate
3248          * name, and can in fact be safely cleared here. We could clear it
3249          * before the __unmap_hugepage_range above, but all that's necessary
3250          * is to clear it before releasing the i_mmap_rwsem. This works
3251          * because in the context this is called, the VMA is about to be
3252          * destroyed and the i_mmap_rwsem is held.
3253          */
3254         vma->vm_flags &= ~VM_MAYSHARE;
3255 }
3256
3257 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3258                           unsigned long end, struct page *ref_page)
3259 {
3260         struct mm_struct *mm;
3261         struct mmu_gather tlb;
3262
3263         mm = vma->vm_mm;
3264
3265         tlb_gather_mmu(&tlb, mm, start, end);
3266         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3267         tlb_finish_mmu(&tlb, start, end);
3268 }
3269
3270 /*
3271  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3272  * mappping it owns the reserve page for. The intention is to unmap the page
3273  * from other VMAs and let the children be SIGKILLed if they are faulting the
3274  * same region.
3275  */
3276 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3277                               struct page *page, unsigned long address)
3278 {
3279         struct hstate *h = hstate_vma(vma);
3280         struct vm_area_struct *iter_vma;
3281         struct address_space *mapping;
3282         pgoff_t pgoff;
3283
3284         /*
3285          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3286          * from page cache lookup which is in HPAGE_SIZE units.
3287          */
3288         address = address & huge_page_mask(h);
3289         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3290                         vma->vm_pgoff;
3291         mapping = file_inode(vma->vm_file)->i_mapping;
3292
3293         /*
3294          * Take the mapping lock for the duration of the table walk. As
3295          * this mapping should be shared between all the VMAs,
3296          * __unmap_hugepage_range() is called as the lock is already held
3297          */
3298         i_mmap_lock_write(mapping);
3299         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3300                 /* Do not unmap the current VMA */
3301                 if (iter_vma == vma)
3302                         continue;
3303
3304                 /*
3305                  * Shared VMAs have their own reserves and do not affect
3306                  * MAP_PRIVATE accounting but it is possible that a shared
3307                  * VMA is using the same page so check and skip such VMAs.
3308                  */
3309                 if (iter_vma->vm_flags & VM_MAYSHARE)
3310                         continue;
3311
3312                 /*
3313                  * Unmap the page from other VMAs without their own reserves.
3314                  * They get marked to be SIGKILLed if they fault in these
3315                  * areas. This is because a future no-page fault on this VMA
3316                  * could insert a zeroed page instead of the data existing
3317                  * from the time of fork. This would look like data corruption
3318                  */
3319                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3320                         unmap_hugepage_range(iter_vma, address,
3321                                              address + huge_page_size(h), page);
3322         }
3323         i_mmap_unlock_write(mapping);
3324 }
3325
3326 /*
3327  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3328  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3329  * cannot race with other handlers or page migration.
3330  * Keep the pte_same checks anyway to make transition from the mutex easier.
3331  */
3332 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3333                         unsigned long address, pte_t *ptep, pte_t pte,
3334                         struct page *pagecache_page, spinlock_t *ptl)
3335 {
3336         struct hstate *h = hstate_vma(vma);
3337         struct page *old_page, *new_page;
3338         int ret = 0, outside_reserve = 0;
3339         unsigned long mmun_start;       /* For mmu_notifiers */
3340         unsigned long mmun_end;         /* For mmu_notifiers */
3341
3342         old_page = pte_page(pte);
3343
3344 retry_avoidcopy:
3345         /* If no-one else is actually using this page, avoid the copy
3346          * and just make the page writable */
3347         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3348                 page_move_anon_rmap(old_page, vma, address);
3349                 set_huge_ptep_writable(vma, address, ptep);
3350                 return 0;
3351         }
3352
3353         /*
3354          * If the process that created a MAP_PRIVATE mapping is about to
3355          * perform a COW due to a shared page count, attempt to satisfy
3356          * the allocation without using the existing reserves. The pagecache
3357          * page is used to determine if the reserve at this address was
3358          * consumed or not. If reserves were used, a partial faulted mapping
3359          * at the time of fork() could consume its reserves on COW instead
3360          * of the full address range.
3361          */
3362         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3363                         old_page != pagecache_page)
3364                 outside_reserve = 1;
3365
3366         page_cache_get(old_page);
3367
3368         /*
3369          * Drop page table lock as buddy allocator may be called. It will
3370          * be acquired again before returning to the caller, as expected.
3371          */
3372         spin_unlock(ptl);
3373         new_page = alloc_huge_page(vma, address, outside_reserve);
3374
3375         if (IS_ERR(new_page)) {
3376                 /*
3377                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3378                  * it is due to references held by a child and an insufficient
3379                  * huge page pool. To guarantee the original mappers
3380                  * reliability, unmap the page from child processes. The child
3381                  * may get SIGKILLed if it later faults.
3382                  */
3383                 if (outside_reserve) {
3384                         page_cache_release(old_page);
3385                         BUG_ON(huge_pte_none(pte));
3386                         unmap_ref_private(mm, vma, old_page, address);
3387                         BUG_ON(huge_pte_none(pte));
3388                         spin_lock(ptl);
3389                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3390                         if (likely(ptep &&
3391                                    pte_same(huge_ptep_get(ptep), pte)))
3392                                 goto retry_avoidcopy;
3393                         /*
3394                          * race occurs while re-acquiring page table
3395                          * lock, and our job is done.
3396                          */
3397                         return 0;
3398                 }
3399
3400                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3401                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3402                 goto out_release_old;
3403         }
3404
3405         /*
3406          * When the original hugepage is shared one, it does not have
3407          * anon_vma prepared.
3408          */
3409         if (unlikely(anon_vma_prepare(vma))) {
3410                 ret = VM_FAULT_OOM;
3411                 goto out_release_all;
3412         }
3413
3414         copy_user_huge_page(new_page, old_page, address, vma,
3415                             pages_per_huge_page(h));
3416         __SetPageUptodate(new_page);
3417         set_page_huge_active(new_page);
3418
3419         mmun_start = address & huge_page_mask(h);
3420         mmun_end = mmun_start + huge_page_size(h);
3421         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3422
3423         /*
3424          * Retake the page table lock to check for racing updates
3425          * before the page tables are altered
3426          */
3427         spin_lock(ptl);
3428         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3429         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3430                 ClearPagePrivate(new_page);
3431
3432                 /* Break COW */
3433                 huge_ptep_clear_flush(vma, address, ptep);
3434                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3435                 set_huge_pte_at(mm, address, ptep,
3436                                 make_huge_pte(vma, new_page, 1));
3437                 page_remove_rmap(old_page, true);
3438                 hugepage_add_new_anon_rmap(new_page, vma, address);
3439                 /* Make the old page be freed below */
3440                 new_page = old_page;
3441         }
3442         spin_unlock(ptl);
3443         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3444 out_release_all:
3445         page_cache_release(new_page);
3446 out_release_old:
3447         page_cache_release(old_page);
3448
3449         spin_lock(ptl); /* Caller expects lock to be held */
3450         return ret;
3451 }
3452
3453 /* Return the pagecache page at a given address within a VMA */
3454 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3455                         struct vm_area_struct *vma, unsigned long address)
3456 {
3457         struct address_space *mapping;
3458         pgoff_t idx;
3459
3460         mapping = vma->vm_file->f_mapping;
3461         idx = vma_hugecache_offset(h, vma, address);
3462
3463         return find_lock_page(mapping, idx);
3464 }
3465
3466 /*
3467  * Return whether there is a pagecache page to back given address within VMA.
3468  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3469  */
3470 static bool hugetlbfs_pagecache_present(struct hstate *h,
3471                         struct vm_area_struct *vma, unsigned long address)
3472 {
3473         struct address_space *mapping;
3474         pgoff_t idx;
3475         struct page *page;
3476
3477         mapping = vma->vm_file->f_mapping;
3478         idx = vma_hugecache_offset(h, vma, address);
3479
3480         page = find_get_page(mapping, idx);
3481         if (page)
3482                 put_page(page);
3483         return page != NULL;
3484 }
3485
3486 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3487                            pgoff_t idx)
3488 {
3489         struct inode *inode = mapping->host;
3490         struct hstate *h = hstate_inode(inode);
3491         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3492
3493         if (err)
3494                 return err;
3495         ClearPagePrivate(page);
3496
3497         spin_lock(&inode->i_lock);
3498         inode->i_blocks += blocks_per_huge_page(h);
3499         spin_unlock(&inode->i_lock);
3500         return 0;
3501 }
3502
3503 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3504                            struct address_space *mapping, pgoff_t idx,
3505                            unsigned long address, pte_t *ptep, unsigned int flags)
3506 {
3507         struct hstate *h = hstate_vma(vma);
3508         int ret = VM_FAULT_SIGBUS;
3509         int anon_rmap = 0;
3510         unsigned long size;
3511         struct page *page;
3512         pte_t new_pte;
3513         spinlock_t *ptl;
3514
3515         /*
3516          * Currently, we are forced to kill the process in the event the
3517          * original mapper has unmapped pages from the child due to a failed
3518          * COW. Warn that such a situation has occurred as it may not be obvious
3519          */
3520         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3521                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3522                            current->pid);
3523                 return ret;
3524         }
3525
3526         /*
3527          * Use page lock to guard against racing truncation
3528          * before we get page_table_lock.
3529          */
3530 retry:
3531         page = find_lock_page(mapping, idx);
3532         if (!page) {
3533                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3534                 if (idx >= size)
3535                         goto out;
3536                 page = alloc_huge_page(vma, address, 0);
3537                 if (IS_ERR(page)) {
3538                         ret = PTR_ERR(page);
3539                         if (ret == -ENOMEM)
3540                                 ret = VM_FAULT_OOM;
3541                         else
3542                                 ret = VM_FAULT_SIGBUS;
3543                         goto out;
3544                 }
3545                 clear_huge_page(page, address, pages_per_huge_page(h));
3546                 __SetPageUptodate(page);
3547                 set_page_huge_active(page);
3548
3549                 if (vma->vm_flags & VM_MAYSHARE) {
3550                         int err = huge_add_to_page_cache(page, mapping, idx);
3551                         if (err) {
3552                                 put_page(page);
3553                                 if (err == -EEXIST)
3554                                         goto retry;
3555                                 goto out;
3556                         }
3557                 } else {
3558                         lock_page(page);
3559                         if (unlikely(anon_vma_prepare(vma))) {
3560                                 ret = VM_FAULT_OOM;
3561                                 goto backout_unlocked;
3562                         }
3563                         anon_rmap = 1;
3564                 }
3565         } else {
3566                 /*
3567                  * If memory error occurs between mmap() and fault, some process
3568                  * don't have hwpoisoned swap entry for errored virtual address.
3569                  * So we need to block hugepage fault by PG_hwpoison bit check.
3570                  */
3571                 if (unlikely(PageHWPoison(page))) {
3572                         ret = VM_FAULT_HWPOISON |
3573                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3574                         goto backout_unlocked;
3575                 }
3576         }
3577
3578         /*
3579          * If we are going to COW a private mapping later, we examine the
3580          * pending reservations for this page now. This will ensure that
3581          * any allocations necessary to record that reservation occur outside
3582          * the spinlock.
3583          */
3584         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3585                 if (vma_needs_reservation(h, vma, address) < 0) {
3586                         ret = VM_FAULT_OOM;
3587                         goto backout_unlocked;
3588                 }
3589                 /* Just decrements count, does not deallocate */
3590                 vma_end_reservation(h, vma, address);
3591         }
3592
3593         ptl = huge_pte_lockptr(h, mm, ptep);
3594         spin_lock(ptl);
3595         size = i_size_read(mapping->host) >> huge_page_shift(h);
3596         if (idx >= size)
3597                 goto backout;
3598
3599         ret = 0;
3600         if (!huge_pte_none(huge_ptep_get(ptep)))
3601                 goto backout;
3602
3603         if (anon_rmap) {
3604                 ClearPagePrivate(page);
3605                 hugepage_add_new_anon_rmap(page, vma, address);
3606         } else
3607                 page_dup_rmap(page, true);
3608         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3609                                 && (vma->vm_flags & VM_SHARED)));
3610         set_huge_pte_at(mm, address, ptep, new_pte);
3611
3612         hugetlb_count_add(pages_per_huge_page(h), mm);
3613         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3614                 /* Optimization, do the COW without a second fault */
3615                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3616         }
3617
3618         spin_unlock(ptl);
3619         unlock_page(page);
3620 out:
3621         return ret;
3622
3623 backout:
3624         spin_unlock(ptl);
3625 backout_unlocked:
3626         unlock_page(page);
3627         put_page(page);
3628         goto out;
3629 }
3630
3631 #ifdef CONFIG_SMP
3632 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3633                             struct vm_area_struct *vma,
3634                             struct address_space *mapping,
3635                             pgoff_t idx, unsigned long address)
3636 {
3637         unsigned long key[2];
3638         u32 hash;
3639
3640         if (vma->vm_flags & VM_SHARED) {
3641                 key[0] = (unsigned long) mapping;
3642                 key[1] = idx;
3643         } else {
3644                 key[0] = (unsigned long) mm;
3645                 key[1] = address >> huge_page_shift(h);
3646         }
3647
3648         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3649
3650         return hash & (num_fault_mutexes - 1);
3651 }
3652 #else
3653 /*
3654  * For uniprocesor systems we always use a single mutex, so just
3655  * return 0 and avoid the hashing overhead.
3656  */
3657 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3658                             struct vm_area_struct *vma,
3659                             struct address_space *mapping,
3660                             pgoff_t idx, unsigned long address)
3661 {
3662         return 0;
3663 }
3664 #endif
3665
3666 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3667                         unsigned long address, unsigned int flags)
3668 {
3669         pte_t *ptep, entry;
3670         spinlock_t *ptl;
3671         int ret;
3672         u32 hash;
3673         pgoff_t idx;
3674         struct page *page = NULL;
3675         struct page *pagecache_page = NULL;
3676         struct hstate *h = hstate_vma(vma);
3677         struct address_space *mapping;
3678         struct inode *inode = file_inode(vma->vm_file);
3679         int need_wait_lock = 0;
3680
3681         address &= huge_page_mask(h);
3682
3683         ptep = huge_pte_offset(mm, address);
3684         if (ptep) {
3685                 entry = huge_ptep_get(ptep);
3686                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3687                         migration_entry_wait_huge(vma, mm, ptep);
3688                         return 0;
3689                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3690                         return VM_FAULT_HWPOISON_LARGE |
3691                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3692         }
3693
3694         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3695         if (!ptep)
3696                 return VM_FAULT_OOM;
3697
3698         mapping = vma->vm_file->f_mapping;
3699         idx = vma_hugecache_offset(h, vma, address);
3700
3701         /*
3702          * page faults could race with fallocate hole punch.  If a page
3703          * is faulted between unmap and deallocation, it will still remain
3704          * in the punched hole.  During hole punch operations, a hugetlb_falloc
3705          * structure will be pointed to by i_private.  If this fault is for
3706          * a page in a hole being punched, wait for the operation to finish
3707          * before proceeding.
3708          *
3709          * Even with this strategy, it is still possible for a page fault to
3710          * race with hole punch.  In this case, remove_inode_hugepages() will
3711          * unmap the page and then remove.  Checking i_private as below should
3712          * catch most of these races as we want to minimize unmapping a page
3713          * multiple times.
3714          */
3715         if (unlikely(inode->i_private)) {
3716                 struct hugetlb_falloc *hugetlb_falloc;
3717
3718                 spin_lock(&inode->i_lock);
3719                 hugetlb_falloc = inode->i_private;
3720                 if (hugetlb_falloc && hugetlb_falloc->waitq &&
3721                     idx >= hugetlb_falloc->start &&
3722                     idx <= hugetlb_falloc->end) {
3723                         wait_queue_head_t *hugetlb_falloc_waitq;
3724                         DEFINE_WAIT(hugetlb_fault_wait);
3725
3726                         hugetlb_falloc_waitq = hugetlb_falloc->waitq;
3727                         prepare_to_wait(hugetlb_falloc_waitq,
3728                                         &hugetlb_fault_wait,
3729                                         TASK_UNINTERRUPTIBLE);
3730                         spin_unlock(&inode->i_lock);
3731                         schedule();
3732
3733                         spin_lock(&inode->i_lock);
3734                         finish_wait(hugetlb_falloc_waitq, &hugetlb_fault_wait);
3735                 }
3736                 spin_unlock(&inode->i_lock);
3737         }
3738
3739         /*
3740          * Serialize hugepage allocation and instantiation, so that we don't
3741          * get spurious allocation failures if two CPUs race to instantiate
3742          * the same page in the page cache.
3743          */
3744         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3745         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3746
3747         entry = huge_ptep_get(ptep);
3748         if (huge_pte_none(entry)) {
3749                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3750                 goto out_mutex;
3751         }
3752
3753         ret = 0;
3754
3755         /*
3756          * entry could be a migration/hwpoison entry at this point, so this
3757          * check prevents the kernel from going below assuming that we have
3758          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3759          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3760          * handle it.
3761          */
3762         if (!pte_present(entry))
3763                 goto out_mutex;
3764
3765         /*
3766          * If we are going to COW the mapping later, we examine the pending
3767          * reservations for this page now. This will ensure that any
3768          * allocations necessary to record that reservation occur outside the
3769          * spinlock. For private mappings, we also lookup the pagecache
3770          * page now as it is used to determine if a reservation has been
3771          * consumed.
3772          */
3773         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3774                 if (vma_needs_reservation(h, vma, address) < 0) {
3775                         ret = VM_FAULT_OOM;
3776                         goto out_mutex;
3777                 }
3778                 /* Just decrements count, does not deallocate */
3779                 vma_end_reservation(h, vma, address);
3780
3781                 if (!(vma->vm_flags & VM_MAYSHARE))
3782                         pagecache_page = hugetlbfs_pagecache_page(h,
3783                                                                 vma, address);
3784         }
3785
3786         ptl = huge_pte_lock(h, mm, ptep);
3787
3788         /* Check for a racing update before calling hugetlb_cow */
3789         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3790                 goto out_ptl;
3791
3792         /*
3793          * hugetlb_cow() requires page locks of pte_page(entry) and
3794          * pagecache_page, so here we need take the former one
3795          * when page != pagecache_page or !pagecache_page.
3796          */
3797         page = pte_page(entry);
3798         if (page != pagecache_page)
3799                 if (!trylock_page(page)) {
3800                         need_wait_lock = 1;
3801                         goto out_ptl;
3802                 }
3803
3804         get_page(page);
3805
3806         if (flags & FAULT_FLAG_WRITE) {
3807                 if (!huge_pte_write(entry)) {
3808                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3809                                         pagecache_page, ptl);
3810                         goto out_put_page;
3811                 }
3812                 entry = huge_pte_mkdirty(entry);
3813         }
3814         entry = pte_mkyoung(entry);
3815         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3816                                                 flags & FAULT_FLAG_WRITE))
3817                 update_mmu_cache(vma, address, ptep);
3818 out_put_page:
3819         if (page != pagecache_page)
3820                 unlock_page(page);
3821         put_page(page);
3822 out_ptl:
3823         spin_unlock(ptl);
3824
3825         if (pagecache_page) {
3826                 unlock_page(pagecache_page);
3827                 put_page(pagecache_page);
3828         }
3829 out_mutex:
3830         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3831         /*
3832          * Generally it's safe to hold refcount during waiting page lock. But
3833          * here we just wait to defer the next page fault to avoid busy loop and
3834          * the page is not used after unlocked before returning from the current
3835          * page fault. So we are safe from accessing freed page, even if we wait
3836          * here without taking refcount.
3837          */
3838         if (need_wait_lock)
3839                 wait_on_page_locked(page);
3840         return ret;
3841 }
3842
3843 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3844                          struct page **pages, struct vm_area_struct **vmas,
3845                          unsigned long *position, unsigned long *nr_pages,
3846                          long i, unsigned int flags)
3847 {
3848         unsigned long pfn_offset;
3849         unsigned long vaddr = *position;
3850         unsigned long remainder = *nr_pages;
3851         struct hstate *h = hstate_vma(vma);
3852
3853         while (vaddr < vma->vm_end && remainder) {
3854                 pte_t *pte;
3855                 spinlock_t *ptl = NULL;
3856                 int absent;
3857                 struct page *page;
3858
3859                 /*
3860                  * If we have a pending SIGKILL, don't keep faulting pages and
3861                  * potentially allocating memory.
3862                  */
3863                 if (unlikely(fatal_signal_pending(current))) {
3864                         remainder = 0;
3865                         break;
3866                 }
3867
3868                 /*
3869                  * Some archs (sparc64, sh*) have multiple pte_ts to
3870                  * each hugepage.  We have to make sure we get the
3871                  * first, for the page indexing below to work.
3872                  *
3873                  * Note that page table lock is not held when pte is null.
3874                  */
3875                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3876                 if (pte)
3877                         ptl = huge_pte_lock(h, mm, pte);
3878                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3879
3880                 /*
3881                  * When coredumping, it suits get_dump_page if we just return
3882                  * an error where there's an empty slot with no huge pagecache
3883                  * to back it.  This way, we avoid allocating a hugepage, and
3884                  * the sparse dumpfile avoids allocating disk blocks, but its
3885                  * huge holes still show up with zeroes where they need to be.
3886                  */
3887                 if (absent && (flags & FOLL_DUMP) &&
3888                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3889                         if (pte)
3890                                 spin_unlock(ptl);
3891                         remainder = 0;
3892                         break;
3893                 }
3894
3895                 /*
3896                  * We need call hugetlb_fault for both hugepages under migration
3897                  * (in which case hugetlb_fault waits for the migration,) and
3898                  * hwpoisoned hugepages (in which case we need to prevent the
3899                  * caller from accessing to them.) In order to do this, we use
3900                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3901                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3902                  * both cases, and because we can't follow correct pages
3903                  * directly from any kind of swap entries.
3904                  */
3905                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3906                     ((flags & FOLL_WRITE) &&
3907                       !huge_pte_write(huge_ptep_get(pte)))) {
3908                         int ret;
3909
3910                         if (pte)
3911                                 spin_unlock(ptl);
3912                         ret = hugetlb_fault(mm, vma, vaddr,
3913                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3914                         if (!(ret & VM_FAULT_ERROR))
3915                                 continue;
3916
3917                         remainder = 0;
3918                         break;
3919                 }
3920
3921                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3922                 page = pte_page(huge_ptep_get(pte));
3923 same_page:
3924                 if (pages) {
3925                         pages[i] = mem_map_offset(page, pfn_offset);
3926                         get_page(pages[i]);
3927                 }
3928
3929                 if (vmas)
3930                         vmas[i] = vma;
3931
3932                 vaddr += PAGE_SIZE;
3933                 ++pfn_offset;
3934                 --remainder;
3935                 ++i;
3936                 if (vaddr < vma->vm_end && remainder &&
3937                                 pfn_offset < pages_per_huge_page(h)) {
3938                         /*
3939                          * We use pfn_offset to avoid touching the pageframes
3940                          * of this compound page.
3941                          */
3942                         goto same_page;
3943                 }
3944                 spin_unlock(ptl);
3945         }
3946         *nr_pages = remainder;
3947         *position = vaddr;
3948
3949         return i ? i : -EFAULT;
3950 }
3951
3952 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3953                 unsigned long address, unsigned long end, pgprot_t newprot)
3954 {
3955         struct mm_struct *mm = vma->vm_mm;
3956         unsigned long start = address;
3957         pte_t *ptep;
3958         pte_t pte;
3959         struct hstate *h = hstate_vma(vma);
3960         unsigned long pages = 0;
3961
3962         BUG_ON(address >= end);
3963         flush_cache_range(vma, address, end);
3964
3965         mmu_notifier_invalidate_range_start(mm, start, end);
3966         i_mmap_lock_write(vma->vm_file->f_mapping);
3967         for (; address < end; address += huge_page_size(h)) {
3968                 spinlock_t *ptl;
3969                 ptep = huge_pte_offset(mm, address);
3970                 if (!ptep)
3971                         continue;
3972                 ptl = huge_pte_lock(h, mm, ptep);
3973                 if (huge_pmd_unshare(mm, &address, ptep)) {
3974                         pages++;
3975                         spin_unlock(ptl);
3976                         continue;
3977                 }
3978                 pte = huge_ptep_get(ptep);
3979                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3980                         spin_unlock(ptl);
3981                         continue;
3982                 }
3983                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3984                         swp_entry_t entry = pte_to_swp_entry(pte);
3985
3986                         if (is_write_migration_entry(entry)) {
3987                                 pte_t newpte;
3988
3989                                 make_migration_entry_read(&entry);
3990                                 newpte = swp_entry_to_pte(entry);
3991                                 set_huge_pte_at(mm, address, ptep, newpte);
3992                                 pages++;
3993                         }
3994                         spin_unlock(ptl);
3995                         continue;
3996                 }
3997                 if (!huge_pte_none(pte)) {
3998                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3999                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4000                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4001                         set_huge_pte_at(mm, address, ptep, pte);
4002                         pages++;
4003                 }
4004                 spin_unlock(ptl);
4005         }
4006         /*
4007          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4008          * may have cleared our pud entry and done put_page on the page table:
4009          * once we release i_mmap_rwsem, another task can do the final put_page
4010          * and that page table be reused and filled with junk.
4011          */
4012         flush_tlb_range(vma, start, end);
4013         mmu_notifier_invalidate_range(mm, start, end);
4014         i_mmap_unlock_write(vma->vm_file->f_mapping);
4015         mmu_notifier_invalidate_range_end(mm, start, end);
4016
4017         return pages << h->order;
4018 }
4019
4020 int hugetlb_reserve_pages(struct inode *inode,
4021                                         long from, long to,
4022                                         struct vm_area_struct *vma,
4023                                         vm_flags_t vm_flags)
4024 {
4025         long ret, chg;
4026         struct hstate *h = hstate_inode(inode);
4027         struct hugepage_subpool *spool = subpool_inode(inode);
4028         struct resv_map *resv_map;
4029         long gbl_reserve;
4030
4031         /*
4032          * Only apply hugepage reservation if asked. At fault time, an
4033          * attempt will be made for VM_NORESERVE to allocate a page
4034          * without using reserves
4035          */
4036         if (vm_flags & VM_NORESERVE)
4037                 return 0;
4038
4039         /*
4040          * Shared mappings base their reservation on the number of pages that
4041          * are already allocated on behalf of the file. Private mappings need
4042          * to reserve the full area even if read-only as mprotect() may be
4043          * called to make the mapping read-write. Assume !vma is a shm mapping
4044          */
4045         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4046                 resv_map = inode_resv_map(inode);
4047
4048                 chg = region_chg(resv_map, from, to);
4049
4050         } else {
4051                 resv_map = resv_map_alloc();
4052                 if (!resv_map)
4053                         return -ENOMEM;
4054
4055                 chg = to - from;
4056
4057                 set_vma_resv_map(vma, resv_map);
4058                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4059         }
4060
4061         if (chg < 0) {
4062                 ret = chg;
4063                 goto out_err;
4064         }
4065
4066         /*
4067          * There must be enough pages in the subpool for the mapping. If
4068          * the subpool has a minimum size, there may be some global
4069          * reservations already in place (gbl_reserve).
4070          */
4071         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4072         if (gbl_reserve < 0) {
4073                 ret = -ENOSPC;
4074                 goto out_err;
4075         }
4076
4077         /*
4078          * Check enough hugepages are available for the reservation.
4079          * Hand the pages back to the subpool if there are not
4080          */
4081         ret = hugetlb_acct_memory(h, gbl_reserve);
4082         if (ret < 0) {
4083                 /* put back original number of pages, chg */
4084                 (void)hugepage_subpool_put_pages(spool, chg);
4085                 goto out_err;
4086         }
4087
4088         /*
4089          * Account for the reservations made. Shared mappings record regions
4090          * that have reservations as they are shared by multiple VMAs.
4091          * When the last VMA disappears, the region map says how much
4092          * the reservation was and the page cache tells how much of
4093          * the reservation was consumed. Private mappings are per-VMA and
4094          * only the consumed reservations are tracked. When the VMA
4095          * disappears, the original reservation is the VMA size and the
4096          * consumed reservations are stored in the map. Hence, nothing
4097          * else has to be done for private mappings here
4098          */
4099         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4100                 long add = region_add(resv_map, from, to);
4101
4102                 if (unlikely(chg > add)) {
4103                         /*
4104                          * pages in this range were added to the reserve
4105                          * map between region_chg and region_add.  This
4106                          * indicates a race with alloc_huge_page.  Adjust
4107                          * the subpool and reserve counts modified above
4108                          * based on the difference.
4109                          */
4110                         long rsv_adjust;
4111
4112                         rsv_adjust = hugepage_subpool_put_pages(spool,
4113                                                                 chg - add);
4114                         hugetlb_acct_memory(h, -rsv_adjust);
4115                 }
4116         }
4117         return 0;
4118 out_err:
4119         if (!vma || vma->vm_flags & VM_MAYSHARE)
4120                 region_abort(resv_map, from, to);
4121         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4122                 kref_put(&resv_map->refs, resv_map_release);
4123         return ret;
4124 }
4125
4126 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4127                                                                 long freed)
4128 {
4129         struct hstate *h = hstate_inode(inode);
4130         struct resv_map *resv_map = inode_resv_map(inode);
4131         long chg = 0;
4132         struct hugepage_subpool *spool = subpool_inode(inode);
4133         long gbl_reserve;
4134
4135         if (resv_map) {
4136                 chg = region_del(resv_map, start, end);
4137                 /*
4138                  * region_del() can fail in the rare case where a region
4139                  * must be split and another region descriptor can not be
4140                  * allocated.  If end == LONG_MAX, it will not fail.
4141                  */
4142                 if (chg < 0)
4143                         return chg;
4144         }
4145
4146         spin_lock(&inode->i_lock);
4147         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4148         spin_unlock(&inode->i_lock);
4149
4150         /*
4151          * If the subpool has a minimum size, the number of global
4152          * reservations to be released may be adjusted.
4153          */
4154         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4155         hugetlb_acct_memory(h, -gbl_reserve);
4156
4157         return 0;
4158 }
4159
4160 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4161 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4162                                 struct vm_area_struct *vma,
4163                                 unsigned long addr, pgoff_t idx)
4164 {
4165         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4166                                 svma->vm_start;
4167         unsigned long sbase = saddr & PUD_MASK;
4168         unsigned long s_end = sbase + PUD_SIZE;
4169
4170         /* Allow segments to share if only one is marked locked */
4171         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4172         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4173
4174         /*
4175          * match the virtual addresses, permission and the alignment of the
4176          * page table page.
4177          */
4178         if (pmd_index(addr) != pmd_index(saddr) ||
4179             vm_flags != svm_flags ||
4180             sbase < svma->vm_start || svma->vm_end < s_end)
4181                 return 0;
4182
4183         return saddr;
4184 }
4185
4186 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4187 {
4188         unsigned long base = addr & PUD_MASK;
4189         unsigned long end = base + PUD_SIZE;
4190
4191         /*
4192          * check on proper vm_flags and page table alignment
4193          */
4194         if (vma->vm_flags & VM_MAYSHARE &&
4195             vma->vm_start <= base && end <= vma->vm_end)
4196                 return true;
4197         return false;
4198 }
4199
4200 /*
4201  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4202  * and returns the corresponding pte. While this is not necessary for the
4203  * !shared pmd case because we can allocate the pmd later as well, it makes the
4204  * code much cleaner. pmd allocation is essential for the shared case because
4205  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4206  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4207  * bad pmd for sharing.
4208  */
4209 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4210 {
4211         struct vm_area_struct *vma = find_vma(mm, addr);
4212         struct address_space *mapping = vma->vm_file->f_mapping;
4213         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4214                         vma->vm_pgoff;
4215         struct vm_area_struct *svma;
4216         unsigned long saddr;
4217         pte_t *spte = NULL;
4218         pte_t *pte;
4219         spinlock_t *ptl;
4220
4221         if (!vma_shareable(vma, addr))
4222                 return (pte_t *)pmd_alloc(mm, pud, addr);
4223
4224         i_mmap_lock_write(mapping);
4225         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4226                 if (svma == vma)
4227                         continue;
4228
4229                 saddr = page_table_shareable(svma, vma, addr, idx);
4230                 if (saddr) {
4231                         spte = huge_pte_offset(svma->vm_mm, saddr);
4232                         if (spte) {
4233                                 mm_inc_nr_pmds(mm);
4234                                 get_page(virt_to_page(spte));
4235                                 break;
4236                         }
4237                 }
4238         }
4239
4240         if (!spte)
4241                 goto out;
4242
4243         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4244         spin_lock(ptl);
4245         if (pud_none(*pud)) {
4246                 pud_populate(mm, pud,
4247                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4248         } else {
4249                 put_page(virt_to_page(spte));
4250                 mm_inc_nr_pmds(mm);
4251         }
4252         spin_unlock(ptl);
4253 out:
4254         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4255         i_mmap_unlock_write(mapping);
4256         return pte;
4257 }
4258
4259 /*
4260  * unmap huge page backed by shared pte.
4261  *
4262  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4263  * indicated by page_count > 1, unmap is achieved by clearing pud and
4264  * decrementing the ref count. If count == 1, the pte page is not shared.
4265  *
4266  * called with page table lock held.
4267  *
4268  * returns: 1 successfully unmapped a shared pte page
4269  *          0 the underlying pte page is not shared, or it is the last user
4270  */
4271 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4272 {
4273         pgd_t *pgd = pgd_offset(mm, *addr);
4274         pud_t *pud = pud_offset(pgd, *addr);
4275
4276         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4277         if (page_count(virt_to_page(ptep)) == 1)
4278                 return 0;
4279
4280         pud_clear(pud);
4281         put_page(virt_to_page(ptep));
4282         mm_dec_nr_pmds(mm);
4283         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4284         return 1;
4285 }
4286 #define want_pmd_share()        (1)
4287 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4288 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4289 {
4290         return NULL;
4291 }
4292
4293 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4294 {
4295         return 0;
4296 }
4297 #define want_pmd_share()        (0)
4298 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4299
4300 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4301 pte_t *huge_pte_alloc(struct mm_struct *mm,
4302                         unsigned long addr, unsigned long sz)
4303 {
4304         pgd_t *pgd;
4305         pud_t *pud;
4306         pte_t *pte = NULL;
4307
4308         pgd = pgd_offset(mm, addr);
4309         pud = pud_alloc(mm, pgd, addr);
4310         if (pud) {
4311                 if (sz == PUD_SIZE) {
4312                         pte = (pte_t *)pud;
4313                 } else {
4314                         BUG_ON(sz != PMD_SIZE);
4315                         if (want_pmd_share() && pud_none(*pud))
4316                                 pte = huge_pmd_share(mm, addr, pud);
4317                         else
4318                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4319                 }
4320         }
4321         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4322
4323         return pte;
4324 }
4325
4326 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4327 {
4328         pgd_t *pgd;
4329         pud_t *pud;
4330         pmd_t *pmd = NULL;
4331
4332         pgd = pgd_offset(mm, addr);
4333         if (pgd_present(*pgd)) {
4334                 pud = pud_offset(pgd, addr);
4335                 if (pud_present(*pud)) {
4336                         if (pud_huge(*pud))
4337                                 return (pte_t *)pud;
4338                         pmd = pmd_offset(pud, addr);
4339                 }
4340         }
4341         return (pte_t *) pmd;
4342 }
4343
4344 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345
4346 /*
4347  * These functions are overwritable if your architecture needs its own
4348  * behavior.
4349  */
4350 struct page * __weak
4351 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4352                               int write)
4353 {
4354         return ERR_PTR(-EINVAL);
4355 }
4356
4357 struct page * __weak
4358 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4359                 pmd_t *pmd, int flags)
4360 {
4361         struct page *page = NULL;
4362         spinlock_t *ptl;
4363 retry:
4364         ptl = pmd_lockptr(mm, pmd);
4365         spin_lock(ptl);
4366         /*
4367          * make sure that the address range covered by this pmd is not
4368          * unmapped from other threads.
4369          */
4370         if (!pmd_huge(*pmd))
4371                 goto out;
4372         if (pmd_present(*pmd)) {
4373                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4374                 if (flags & FOLL_GET)
4375                         get_page(page);
4376         } else {
4377                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4378                         spin_unlock(ptl);
4379                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4380                         goto retry;
4381                 }
4382                 /*
4383                  * hwpoisoned entry is treated as no_page_table in
4384                  * follow_page_mask().
4385                  */
4386         }
4387 out:
4388         spin_unlock(ptl);
4389         return page;
4390 }
4391
4392 struct page * __weak
4393 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4394                 pud_t *pud, int flags)
4395 {
4396         if (flags & FOLL_GET)
4397                 return NULL;
4398
4399         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4400 }
4401
4402 #ifdef CONFIG_MEMORY_FAILURE
4403
4404 /*
4405  * This function is called from memory failure code.
4406  * Assume the caller holds page lock of the head page.
4407  */
4408 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4409 {
4410         struct hstate *h = page_hstate(hpage);
4411         int nid = page_to_nid(hpage);
4412         int ret = -EBUSY;
4413
4414         spin_lock(&hugetlb_lock);
4415         /*
4416          * Just checking !page_huge_active is not enough, because that could be
4417          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4418          */
4419         if (!page_huge_active(hpage) && !page_count(hpage)) {
4420                 /*
4421                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4422                  * but dangling hpage->lru can trigger list-debug warnings
4423                  * (this happens when we call unpoison_memory() on it),
4424                  * so let it point to itself with list_del_init().
4425                  */
4426                 list_del_init(&hpage->lru);
4427                 set_page_refcounted(hpage);
4428                 h->free_huge_pages--;
4429                 h->free_huge_pages_node[nid]--;
4430                 ret = 0;
4431         }
4432         spin_unlock(&hugetlb_lock);
4433         return ret;
4434 }
4435 #endif
4436
4437 bool isolate_huge_page(struct page *page, struct list_head *list)
4438 {
4439         bool ret = true;
4440
4441         VM_BUG_ON_PAGE(!PageHead(page), page);
4442         spin_lock(&hugetlb_lock);
4443         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4444                 ret = false;
4445                 goto unlock;
4446         }
4447         clear_page_huge_active(page);
4448         list_move_tail(&page->lru, list);
4449 unlock:
4450         spin_unlock(&hugetlb_lock);
4451         return ret;
4452 }
4453
4454 void putback_active_hugepage(struct page *page)
4455 {
4456         VM_BUG_ON_PAGE(!PageHead(page), page);
4457         spin_lock(&hugetlb_lock);
4458         set_page_huge_active(page);
4459         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4460         spin_unlock(&hugetlb_lock);
4461         put_page(page);
4462 }