]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
userfaultfd: hugetlbfs: gup: support VM_FAULT_RETRY
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!is_migrate_isolate_page(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 /* Movability of hugepages depends on migration support. */
890 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 {
892         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893                 return GFP_HIGHUSER_MOVABLE;
894         else
895                 return GFP_HIGHUSER;
896 }
897
898 static struct page *dequeue_huge_page_vma(struct hstate *h,
899                                 struct vm_area_struct *vma,
900                                 unsigned long address, int avoid_reserve,
901                                 long chg)
902 {
903         struct page *page = NULL;
904         struct mempolicy *mpol;
905         nodemask_t *nodemask;
906         struct zonelist *zonelist;
907         struct zone *zone;
908         struct zoneref *z;
909         unsigned int cpuset_mems_cookie;
910
911         /*
912          * A child process with MAP_PRIVATE mappings created by their parent
913          * have no page reserves. This check ensures that reservations are
914          * not "stolen". The child may still get SIGKILLed
915          */
916         if (!vma_has_reserves(vma, chg) &&
917                         h->free_huge_pages - h->resv_huge_pages == 0)
918                 goto err;
919
920         /* If reserves cannot be used, ensure enough pages are in the pool */
921         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
922                 goto err;
923
924 retry_cpuset:
925         cpuset_mems_cookie = read_mems_allowed_begin();
926         zonelist = huge_zonelist(vma, address,
927                                         htlb_alloc_mask(h), &mpol, &nodemask);
928
929         for_each_zone_zonelist_nodemask(zone, z, zonelist,
930                                                 MAX_NR_ZONES - 1, nodemask) {
931                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
933                         if (page) {
934                                 if (avoid_reserve)
935                                         break;
936                                 if (!vma_has_reserves(vma, chg))
937                                         break;
938
939                                 SetPagePrivate(page);
940                                 h->resv_huge_pages--;
941                                 break;
942                         }
943                 }
944         }
945
946         mpol_cond_put(mpol);
947         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
948                 goto retry_cpuset;
949         return page;
950
951 err:
952         return NULL;
953 }
954
955 /*
956  * common helper functions for hstate_next_node_to_{alloc|free}.
957  * We may have allocated or freed a huge page based on a different
958  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959  * be outside of *nodes_allowed.  Ensure that we use an allowed
960  * node for alloc or free.
961  */
962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 {
964         nid = next_node_in(nid, *nodes_allowed);
965         VM_BUG_ON(nid >= MAX_NUMNODES);
966
967         return nid;
968 }
969
970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 {
972         if (!node_isset(nid, *nodes_allowed))
973                 nid = next_node_allowed(nid, nodes_allowed);
974         return nid;
975 }
976
977 /*
978  * returns the previously saved node ["this node"] from which to
979  * allocate a persistent huge page for the pool and advance the
980  * next node from which to allocate, handling wrap at end of node
981  * mask.
982  */
983 static int hstate_next_node_to_alloc(struct hstate *h,
984                                         nodemask_t *nodes_allowed)
985 {
986         int nid;
987
988         VM_BUG_ON(!nodes_allowed);
989
990         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992
993         return nid;
994 }
995
996 /*
997  * helper for free_pool_huge_page() - return the previously saved
998  * node ["this node"] from which to free a huge page.  Advance the
999  * next node id whether or not we find a free huge page to free so
1000  * that the next attempt to free addresses the next node.
1001  */
1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004         int nid;
1005
1006         VM_BUG_ON(!nodes_allowed);
1007
1008         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010
1011         return nid;
1012 }
1013
1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1015         for (nr_nodes = nodes_weight(*mask);                            \
1016                 nr_nodes > 0 &&                                         \
1017                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1018                 nr_nodes--)
1019
1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1021         for (nr_nodes = nodes_weight(*mask);                            \
1022                 nr_nodes > 0 &&                                         \
1023                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1024                 nr_nodes--)
1025
1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027         ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028         defined(CONFIG_CMA))
1029 static void destroy_compound_gigantic_page(struct page *page,
1030                                         unsigned int order)
1031 {
1032         int i;
1033         int nr_pages = 1 << order;
1034         struct page *p = page + 1;
1035
1036         atomic_set(compound_mapcount_ptr(page), 0);
1037         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038                 clear_compound_head(p);
1039                 set_page_refcounted(p);
1040         }
1041
1042         set_compound_order(page, 0);
1043         __ClearPageHead(page);
1044 }
1045
1046 static void free_gigantic_page(struct page *page, unsigned int order)
1047 {
1048         free_contig_range(page_to_pfn(page), 1 << order);
1049 }
1050
1051 static int __alloc_gigantic_page(unsigned long start_pfn,
1052                                 unsigned long nr_pages)
1053 {
1054         unsigned long end_pfn = start_pfn + nr_pages;
1055         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1056 }
1057
1058 static bool pfn_range_valid_gigantic(struct zone *z,
1059                         unsigned long start_pfn, unsigned long nr_pages)
1060 {
1061         unsigned long i, end_pfn = start_pfn + nr_pages;
1062         struct page *page;
1063
1064         for (i = start_pfn; i < end_pfn; i++) {
1065                 if (!pfn_valid(i))
1066                         return false;
1067
1068                 page = pfn_to_page(i);
1069
1070                 if (page_zone(page) != z)
1071                         return false;
1072
1073                 if (PageReserved(page))
1074                         return false;
1075
1076                 if (page_count(page) > 0)
1077                         return false;
1078
1079                 if (PageHuge(page))
1080                         return false;
1081         }
1082
1083         return true;
1084 }
1085
1086 static bool zone_spans_last_pfn(const struct zone *zone,
1087                         unsigned long start_pfn, unsigned long nr_pages)
1088 {
1089         unsigned long last_pfn = start_pfn + nr_pages - 1;
1090         return zone_spans_pfn(zone, last_pfn);
1091 }
1092
1093 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1094 {
1095         unsigned long nr_pages = 1 << order;
1096         unsigned long ret, pfn, flags;
1097         struct zone *z;
1098
1099         z = NODE_DATA(nid)->node_zones;
1100         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1101                 spin_lock_irqsave(&z->lock, flags);
1102
1103                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1104                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1105                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1106                                 /*
1107                                  * We release the zone lock here because
1108                                  * alloc_contig_range() will also lock the zone
1109                                  * at some point. If there's an allocation
1110                                  * spinning on this lock, it may win the race
1111                                  * and cause alloc_contig_range() to fail...
1112                                  */
1113                                 spin_unlock_irqrestore(&z->lock, flags);
1114                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1115                                 if (!ret)
1116                                         return pfn_to_page(pfn);
1117                                 spin_lock_irqsave(&z->lock, flags);
1118                         }
1119                         pfn += nr_pages;
1120                 }
1121
1122                 spin_unlock_irqrestore(&z->lock, flags);
1123         }
1124
1125         return NULL;
1126 }
1127
1128 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1129 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1130
1131 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1132 {
1133         struct page *page;
1134
1135         page = alloc_gigantic_page(nid, huge_page_order(h));
1136         if (page) {
1137                 prep_compound_gigantic_page(page, huge_page_order(h));
1138                 prep_new_huge_page(h, page, nid);
1139         }
1140
1141         return page;
1142 }
1143
1144 static int alloc_fresh_gigantic_page(struct hstate *h,
1145                                 nodemask_t *nodes_allowed)
1146 {
1147         struct page *page = NULL;
1148         int nr_nodes, node;
1149
1150         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1151                 page = alloc_fresh_gigantic_page_node(h, node);
1152                 if (page)
1153                         return 1;
1154         }
1155
1156         return 0;
1157 }
1158
1159 static inline bool gigantic_page_supported(void) { return true; }
1160 #else
1161 static inline bool gigantic_page_supported(void) { return false; }
1162 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1163 static inline void destroy_compound_gigantic_page(struct page *page,
1164                                                 unsigned int order) { }
1165 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1166                                         nodemask_t *nodes_allowed) { return 0; }
1167 #endif
1168
1169 static void update_and_free_page(struct hstate *h, struct page *page)
1170 {
1171         int i;
1172
1173         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1174                 return;
1175
1176         h->nr_huge_pages--;
1177         h->nr_huge_pages_node[page_to_nid(page)]--;
1178         for (i = 0; i < pages_per_huge_page(h); i++) {
1179                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1180                                 1 << PG_referenced | 1 << PG_dirty |
1181                                 1 << PG_active | 1 << PG_private |
1182                                 1 << PG_writeback);
1183         }
1184         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1185         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1186         set_page_refcounted(page);
1187         if (hstate_is_gigantic(h)) {
1188                 destroy_compound_gigantic_page(page, huge_page_order(h));
1189                 free_gigantic_page(page, huge_page_order(h));
1190         } else {
1191                 __free_pages(page, huge_page_order(h));
1192         }
1193 }
1194
1195 struct hstate *size_to_hstate(unsigned long size)
1196 {
1197         struct hstate *h;
1198
1199         for_each_hstate(h) {
1200                 if (huge_page_size(h) == size)
1201                         return h;
1202         }
1203         return NULL;
1204 }
1205
1206 /*
1207  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1208  * to hstate->hugepage_activelist.)
1209  *
1210  * This function can be called for tail pages, but never returns true for them.
1211  */
1212 bool page_huge_active(struct page *page)
1213 {
1214         VM_BUG_ON_PAGE(!PageHuge(page), page);
1215         return PageHead(page) && PagePrivate(&page[1]);
1216 }
1217
1218 /* never called for tail page */
1219 static void set_page_huge_active(struct page *page)
1220 {
1221         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1222         SetPagePrivate(&page[1]);
1223 }
1224
1225 static void clear_page_huge_active(struct page *page)
1226 {
1227         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228         ClearPagePrivate(&page[1]);
1229 }
1230
1231 void free_huge_page(struct page *page)
1232 {
1233         /*
1234          * Can't pass hstate in here because it is called from the
1235          * compound page destructor.
1236          */
1237         struct hstate *h = page_hstate(page);
1238         int nid = page_to_nid(page);
1239         struct hugepage_subpool *spool =
1240                 (struct hugepage_subpool *)page_private(page);
1241         bool restore_reserve;
1242
1243         set_page_private(page, 0);
1244         page->mapping = NULL;
1245         VM_BUG_ON_PAGE(page_count(page), page);
1246         VM_BUG_ON_PAGE(page_mapcount(page), page);
1247         restore_reserve = PagePrivate(page);
1248         ClearPagePrivate(page);
1249
1250         /*
1251          * A return code of zero implies that the subpool will be under its
1252          * minimum size if the reservation is not restored after page is free.
1253          * Therefore, force restore_reserve operation.
1254          */
1255         if (hugepage_subpool_put_pages(spool, 1) == 0)
1256                 restore_reserve = true;
1257
1258         spin_lock(&hugetlb_lock);
1259         clear_page_huge_active(page);
1260         hugetlb_cgroup_uncharge_page(hstate_index(h),
1261                                      pages_per_huge_page(h), page);
1262         if (restore_reserve)
1263                 h->resv_huge_pages++;
1264
1265         if (h->surplus_huge_pages_node[nid]) {
1266                 /* remove the page from active list */
1267                 list_del(&page->lru);
1268                 update_and_free_page(h, page);
1269                 h->surplus_huge_pages--;
1270                 h->surplus_huge_pages_node[nid]--;
1271         } else {
1272                 arch_clear_hugepage_flags(page);
1273                 enqueue_huge_page(h, page);
1274         }
1275         spin_unlock(&hugetlb_lock);
1276 }
1277
1278 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1279 {
1280         INIT_LIST_HEAD(&page->lru);
1281         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1282         spin_lock(&hugetlb_lock);
1283         set_hugetlb_cgroup(page, NULL);
1284         h->nr_huge_pages++;
1285         h->nr_huge_pages_node[nid]++;
1286         spin_unlock(&hugetlb_lock);
1287         put_page(page); /* free it into the hugepage allocator */
1288 }
1289
1290 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1291 {
1292         int i;
1293         int nr_pages = 1 << order;
1294         struct page *p = page + 1;
1295
1296         /* we rely on prep_new_huge_page to set the destructor */
1297         set_compound_order(page, order);
1298         __ClearPageReserved(page);
1299         __SetPageHead(page);
1300         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1301                 /*
1302                  * For gigantic hugepages allocated through bootmem at
1303                  * boot, it's safer to be consistent with the not-gigantic
1304                  * hugepages and clear the PG_reserved bit from all tail pages
1305                  * too.  Otherwse drivers using get_user_pages() to access tail
1306                  * pages may get the reference counting wrong if they see
1307                  * PG_reserved set on a tail page (despite the head page not
1308                  * having PG_reserved set).  Enforcing this consistency between
1309                  * head and tail pages allows drivers to optimize away a check
1310                  * on the head page when they need know if put_page() is needed
1311                  * after get_user_pages().
1312                  */
1313                 __ClearPageReserved(p);
1314                 set_page_count(p, 0);
1315                 set_compound_head(p, page);
1316         }
1317         atomic_set(compound_mapcount_ptr(page), -1);
1318 }
1319
1320 /*
1321  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1322  * transparent huge pages.  See the PageTransHuge() documentation for more
1323  * details.
1324  */
1325 int PageHuge(struct page *page)
1326 {
1327         if (!PageCompound(page))
1328                 return 0;
1329
1330         page = compound_head(page);
1331         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1332 }
1333 EXPORT_SYMBOL_GPL(PageHuge);
1334
1335 /*
1336  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1337  * normal or transparent huge pages.
1338  */
1339 int PageHeadHuge(struct page *page_head)
1340 {
1341         if (!PageHead(page_head))
1342                 return 0;
1343
1344         return get_compound_page_dtor(page_head) == free_huge_page;
1345 }
1346
1347 pgoff_t __basepage_index(struct page *page)
1348 {
1349         struct page *page_head = compound_head(page);
1350         pgoff_t index = page_index(page_head);
1351         unsigned long compound_idx;
1352
1353         if (!PageHuge(page_head))
1354                 return page_index(page);
1355
1356         if (compound_order(page_head) >= MAX_ORDER)
1357                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1358         else
1359                 compound_idx = page - page_head;
1360
1361         return (index << compound_order(page_head)) + compound_idx;
1362 }
1363
1364 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1365 {
1366         struct page *page;
1367
1368         page = __alloc_pages_node(nid,
1369                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1370                                                 __GFP_REPEAT|__GFP_NOWARN,
1371                 huge_page_order(h));
1372         if (page) {
1373                 prep_new_huge_page(h, page, nid);
1374         }
1375
1376         return page;
1377 }
1378
1379 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1380 {
1381         struct page *page;
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1386                 page = alloc_fresh_huge_page_node(h, node);
1387                 if (page) {
1388                         ret = 1;
1389                         break;
1390                 }
1391         }
1392
1393         if (ret)
1394                 count_vm_event(HTLB_BUDDY_PGALLOC);
1395         else
1396                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1397
1398         return ret;
1399 }
1400
1401 /*
1402  * Free huge page from pool from next node to free.
1403  * Attempt to keep persistent huge pages more or less
1404  * balanced over allowed nodes.
1405  * Called with hugetlb_lock locked.
1406  */
1407 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1408                                                          bool acct_surplus)
1409 {
1410         int nr_nodes, node;
1411         int ret = 0;
1412
1413         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1414                 /*
1415                  * If we're returning unused surplus pages, only examine
1416                  * nodes with surplus pages.
1417                  */
1418                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1419                     !list_empty(&h->hugepage_freelists[node])) {
1420                         struct page *page =
1421                                 list_entry(h->hugepage_freelists[node].next,
1422                                           struct page, lru);
1423                         list_del(&page->lru);
1424                         h->free_huge_pages--;
1425                         h->free_huge_pages_node[node]--;
1426                         if (acct_surplus) {
1427                                 h->surplus_huge_pages--;
1428                                 h->surplus_huge_pages_node[node]--;
1429                         }
1430                         update_and_free_page(h, page);
1431                         ret = 1;
1432                         break;
1433                 }
1434         }
1435
1436         return ret;
1437 }
1438
1439 /*
1440  * Dissolve a given free hugepage into free buddy pages. This function does
1441  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1442  * number of free hugepages would be reduced below the number of reserved
1443  * hugepages.
1444  */
1445 static int dissolve_free_huge_page(struct page *page)
1446 {
1447         int rc = 0;
1448
1449         spin_lock(&hugetlb_lock);
1450         if (PageHuge(page) && !page_count(page)) {
1451                 struct page *head = compound_head(page);
1452                 struct hstate *h = page_hstate(head);
1453                 int nid = page_to_nid(head);
1454                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1455                         rc = -EBUSY;
1456                         goto out;
1457                 }
1458                 list_del(&head->lru);
1459                 h->free_huge_pages--;
1460                 h->free_huge_pages_node[nid]--;
1461                 h->max_huge_pages--;
1462                 update_and_free_page(h, head);
1463         }
1464 out:
1465         spin_unlock(&hugetlb_lock);
1466         return rc;
1467 }
1468
1469 /*
1470  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1471  * make specified memory blocks removable from the system.
1472  * Note that this will dissolve a free gigantic hugepage completely, if any
1473  * part of it lies within the given range.
1474  * Also note that if dissolve_free_huge_page() returns with an error, all
1475  * free hugepages that were dissolved before that error are lost.
1476  */
1477 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1478 {
1479         unsigned long pfn;
1480         struct page *page;
1481         int rc = 0;
1482
1483         if (!hugepages_supported())
1484                 return rc;
1485
1486         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1487                 page = pfn_to_page(pfn);
1488                 if (PageHuge(page) && !page_count(page)) {
1489                         rc = dissolve_free_huge_page(page);
1490                         if (rc)
1491                                 break;
1492                 }
1493         }
1494
1495         return rc;
1496 }
1497
1498 /*
1499  * There are 3 ways this can get called:
1500  * 1. With vma+addr: we use the VMA's memory policy
1501  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1502  *    page from any node, and let the buddy allocator itself figure
1503  *    it out.
1504  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1505  *    strictly from 'nid'
1506  */
1507 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1508                 struct vm_area_struct *vma, unsigned long addr, int nid)
1509 {
1510         int order = huge_page_order(h);
1511         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1512         unsigned int cpuset_mems_cookie;
1513
1514         /*
1515          * We need a VMA to get a memory policy.  If we do not
1516          * have one, we use the 'nid' argument.
1517          *
1518          * The mempolicy stuff below has some non-inlined bits
1519          * and calls ->vm_ops.  That makes it hard to optimize at
1520          * compile-time, even when NUMA is off and it does
1521          * nothing.  This helps the compiler optimize it out.
1522          */
1523         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524                 /*
1525                  * If a specific node is requested, make sure to
1526                  * get memory from there, but only when a node
1527                  * is explicitly specified.
1528                  */
1529                 if (nid != NUMA_NO_NODE)
1530                         gfp |= __GFP_THISNODE;
1531                 /*
1532                  * Make sure to call something that can handle
1533                  * nid=NUMA_NO_NODE
1534                  */
1535                 return alloc_pages_node(nid, gfp, order);
1536         }
1537
1538         /*
1539          * OK, so we have a VMA.  Fetch the mempolicy and try to
1540          * allocate a huge page with it.  We will only reach this
1541          * when CONFIG_NUMA=y.
1542          */
1543         do {
1544                 struct page *page;
1545                 struct mempolicy *mpol;
1546                 struct zonelist *zl;
1547                 nodemask_t *nodemask;
1548
1549                 cpuset_mems_cookie = read_mems_allowed_begin();
1550                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1551                 mpol_cond_put(mpol);
1552                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1553                 if (page)
1554                         return page;
1555         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1556
1557         return NULL;
1558 }
1559
1560 /*
1561  * There are two ways to allocate a huge page:
1562  * 1. When you have a VMA and an address (like a fault)
1563  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564  *
1565  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1566  * this case which signifies that the allocation should be done with
1567  * respect for the VMA's memory policy.
1568  *
1569  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1570  * implies that memory policies will not be taken in to account.
1571  */
1572 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1573                 struct vm_area_struct *vma, unsigned long addr, int nid)
1574 {
1575         struct page *page;
1576         unsigned int r_nid;
1577
1578         if (hstate_is_gigantic(h))
1579                 return NULL;
1580
1581         /*
1582          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1583          * This makes sure the caller is picking _one_ of the modes with which
1584          * we can call this function, not both.
1585          */
1586         if (vma || (addr != -1)) {
1587                 VM_WARN_ON_ONCE(addr == -1);
1588                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1589         }
1590         /*
1591          * Assume we will successfully allocate the surplus page to
1592          * prevent racing processes from causing the surplus to exceed
1593          * overcommit
1594          *
1595          * This however introduces a different race, where a process B
1596          * tries to grow the static hugepage pool while alloc_pages() is
1597          * called by process A. B will only examine the per-node
1598          * counters in determining if surplus huge pages can be
1599          * converted to normal huge pages in adjust_pool_surplus(). A
1600          * won't be able to increment the per-node counter, until the
1601          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1602          * no more huge pages can be converted from surplus to normal
1603          * state (and doesn't try to convert again). Thus, we have a
1604          * case where a surplus huge page exists, the pool is grown, and
1605          * the surplus huge page still exists after, even though it
1606          * should just have been converted to a normal huge page. This
1607          * does not leak memory, though, as the hugepage will be freed
1608          * once it is out of use. It also does not allow the counters to
1609          * go out of whack in adjust_pool_surplus() as we don't modify
1610          * the node values until we've gotten the hugepage and only the
1611          * per-node value is checked there.
1612          */
1613         spin_lock(&hugetlb_lock);
1614         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1615                 spin_unlock(&hugetlb_lock);
1616                 return NULL;
1617         } else {
1618                 h->nr_huge_pages++;
1619                 h->surplus_huge_pages++;
1620         }
1621         spin_unlock(&hugetlb_lock);
1622
1623         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624
1625         spin_lock(&hugetlb_lock);
1626         if (page) {
1627                 INIT_LIST_HEAD(&page->lru);
1628                 r_nid = page_to_nid(page);
1629                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1630                 set_hugetlb_cgroup(page, NULL);
1631                 /*
1632                  * We incremented the global counters already
1633                  */
1634                 h->nr_huge_pages_node[r_nid]++;
1635                 h->surplus_huge_pages_node[r_nid]++;
1636                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1637         } else {
1638                 h->nr_huge_pages--;
1639                 h->surplus_huge_pages--;
1640                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641         }
1642         spin_unlock(&hugetlb_lock);
1643
1644         return page;
1645 }
1646
1647 /*
1648  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1649  * NUMA_NO_NODE, which means that it may be allocated
1650  * anywhere.
1651  */
1652 static
1653 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654 {
1655         unsigned long addr = -1;
1656
1657         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1658 }
1659
1660 /*
1661  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1662  */
1663 static
1664 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665                 struct vm_area_struct *vma, unsigned long addr)
1666 {
1667         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1668 }
1669
1670 /*
1671  * This allocation function is useful in the context where vma is irrelevant.
1672  * E.g. soft-offlining uses this function because it only cares physical
1673  * address of error page.
1674  */
1675 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676 {
1677         struct page *page = NULL;
1678
1679         spin_lock(&hugetlb_lock);
1680         if (h->free_huge_pages - h->resv_huge_pages > 0)
1681                 page = dequeue_huge_page_node(h, nid);
1682         spin_unlock(&hugetlb_lock);
1683
1684         if (!page)
1685                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1686
1687         return page;
1688 }
1689
1690 /*
1691  * Increase the hugetlb pool such that it can accommodate a reservation
1692  * of size 'delta'.
1693  */
1694 static int gather_surplus_pages(struct hstate *h, int delta)
1695 {
1696         struct list_head surplus_list;
1697         struct page *page, *tmp;
1698         int ret, i;
1699         int needed, allocated;
1700         bool alloc_ok = true;
1701
1702         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703         if (needed <= 0) {
1704                 h->resv_huge_pages += delta;
1705                 return 0;
1706         }
1707
1708         allocated = 0;
1709         INIT_LIST_HEAD(&surplus_list);
1710
1711         ret = -ENOMEM;
1712 retry:
1713         spin_unlock(&hugetlb_lock);
1714         for (i = 0; i < needed; i++) {
1715                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1716                 if (!page) {
1717                         alloc_ok = false;
1718                         break;
1719                 }
1720                 list_add(&page->lru, &surplus_list);
1721         }
1722         allocated += i;
1723
1724         /*
1725          * After retaking hugetlb_lock, we need to recalculate 'needed'
1726          * because either resv_huge_pages or free_huge_pages may have changed.
1727          */
1728         spin_lock(&hugetlb_lock);
1729         needed = (h->resv_huge_pages + delta) -
1730                         (h->free_huge_pages + allocated);
1731         if (needed > 0) {
1732                 if (alloc_ok)
1733                         goto retry;
1734                 /*
1735                  * We were not able to allocate enough pages to
1736                  * satisfy the entire reservation so we free what
1737                  * we've allocated so far.
1738                  */
1739                 goto free;
1740         }
1741         /*
1742          * The surplus_list now contains _at_least_ the number of extra pages
1743          * needed to accommodate the reservation.  Add the appropriate number
1744          * of pages to the hugetlb pool and free the extras back to the buddy
1745          * allocator.  Commit the entire reservation here to prevent another
1746          * process from stealing the pages as they are added to the pool but
1747          * before they are reserved.
1748          */
1749         needed += allocated;
1750         h->resv_huge_pages += delta;
1751         ret = 0;
1752
1753         /* Free the needed pages to the hugetlb pool */
1754         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755                 if ((--needed) < 0)
1756                         break;
1757                 /*
1758                  * This page is now managed by the hugetlb allocator and has
1759                  * no users -- drop the buddy allocator's reference.
1760                  */
1761                 put_page_testzero(page);
1762                 VM_BUG_ON_PAGE(page_count(page), page);
1763                 enqueue_huge_page(h, page);
1764         }
1765 free:
1766         spin_unlock(&hugetlb_lock);
1767
1768         /* Free unnecessary surplus pages to the buddy allocator */
1769         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770                 put_page(page);
1771         spin_lock(&hugetlb_lock);
1772
1773         return ret;
1774 }
1775
1776 /*
1777  * This routine has two main purposes:
1778  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1780  *    to the associated reservation map.
1781  * 2) Free any unused surplus pages that may have been allocated to satisfy
1782  *    the reservation.  As many as unused_resv_pages may be freed.
1783  *
1784  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1785  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1786  * we must make sure nobody else can claim pages we are in the process of
1787  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1788  * number of huge pages we plan to free when dropping the lock.
1789  */
1790 static void return_unused_surplus_pages(struct hstate *h,
1791                                         unsigned long unused_resv_pages)
1792 {
1793         unsigned long nr_pages;
1794
1795         /* Cannot return gigantic pages currently */
1796         if (hstate_is_gigantic(h))
1797                 goto out;
1798
1799         /*
1800          * Part (or even all) of the reservation could have been backed
1801          * by pre-allocated pages. Only free surplus pages.
1802          */
1803         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804
1805         /*
1806          * We want to release as many surplus pages as possible, spread
1807          * evenly across all nodes with memory. Iterate across these nodes
1808          * until we can no longer free unreserved surplus pages. This occurs
1809          * when the nodes with surplus pages have no free pages.
1810          * free_pool_huge_page() will balance the the freed pages across the
1811          * on-line nodes with memory and will handle the hstate accounting.
1812          *
1813          * Note that we decrement resv_huge_pages as we free the pages.  If
1814          * we drop the lock, resv_huge_pages will still be sufficiently large
1815          * to cover subsequent pages we may free.
1816          */
1817         while (nr_pages--) {
1818                 h->resv_huge_pages--;
1819                 unused_resv_pages--;
1820                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821                         goto out;
1822                 cond_resched_lock(&hugetlb_lock);
1823         }
1824
1825 out:
1826         /* Fully uncommit the reservation */
1827         h->resv_huge_pages -= unused_resv_pages;
1828 }
1829
1830
1831 /*
1832  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833  * are used by the huge page allocation routines to manage reservations.
1834  *
1835  * vma_needs_reservation is called to determine if the huge page at addr
1836  * within the vma has an associated reservation.  If a reservation is
1837  * needed, the value 1 is returned.  The caller is then responsible for
1838  * managing the global reservation and subpool usage counts.  After
1839  * the huge page has been allocated, vma_commit_reservation is called
1840  * to add the page to the reservation map.  If the page allocation fails,
1841  * the reservation must be ended instead of committed.  vma_end_reservation
1842  * is called in such cases.
1843  *
1844  * In the normal case, vma_commit_reservation returns the same value
1845  * as the preceding vma_needs_reservation call.  The only time this
1846  * is not the case is if a reserve map was changed between calls.  It
1847  * is the responsibility of the caller to notice the difference and
1848  * take appropriate action.
1849  *
1850  * vma_add_reservation is used in error paths where a reservation must
1851  * be restored when a newly allocated huge page must be freed.  It is
1852  * to be called after calling vma_needs_reservation to determine if a
1853  * reservation exists.
1854  */
1855 enum vma_resv_mode {
1856         VMA_NEEDS_RESV,
1857         VMA_COMMIT_RESV,
1858         VMA_END_RESV,
1859         VMA_ADD_RESV,
1860 };
1861 static long __vma_reservation_common(struct hstate *h,
1862                                 struct vm_area_struct *vma, unsigned long addr,
1863                                 enum vma_resv_mode mode)
1864 {
1865         struct resv_map *resv;
1866         pgoff_t idx;
1867         long ret;
1868
1869         resv = vma_resv_map(vma);
1870         if (!resv)
1871                 return 1;
1872
1873         idx = vma_hugecache_offset(h, vma, addr);
1874         switch (mode) {
1875         case VMA_NEEDS_RESV:
1876                 ret = region_chg(resv, idx, idx + 1);
1877                 break;
1878         case VMA_COMMIT_RESV:
1879                 ret = region_add(resv, idx, idx + 1);
1880                 break;
1881         case VMA_END_RESV:
1882                 region_abort(resv, idx, idx + 1);
1883                 ret = 0;
1884                 break;
1885         case VMA_ADD_RESV:
1886                 if (vma->vm_flags & VM_MAYSHARE)
1887                         ret = region_add(resv, idx, idx + 1);
1888                 else {
1889                         region_abort(resv, idx, idx + 1);
1890                         ret = region_del(resv, idx, idx + 1);
1891                 }
1892                 break;
1893         default:
1894                 BUG();
1895         }
1896
1897         if (vma->vm_flags & VM_MAYSHARE)
1898                 return ret;
1899         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1900                 /*
1901                  * In most cases, reserves always exist for private mappings.
1902                  * However, a file associated with mapping could have been
1903                  * hole punched or truncated after reserves were consumed.
1904                  * As subsequent fault on such a range will not use reserves.
1905                  * Subtle - The reserve map for private mappings has the
1906                  * opposite meaning than that of shared mappings.  If NO
1907                  * entry is in the reserve map, it means a reservation exists.
1908                  * If an entry exists in the reserve map, it means the
1909                  * reservation has already been consumed.  As a result, the
1910                  * return value of this routine is the opposite of the
1911                  * value returned from reserve map manipulation routines above.
1912                  */
1913                 if (ret)
1914                         return 0;
1915                 else
1916                         return 1;
1917         }
1918         else
1919                 return ret < 0 ? ret : 0;
1920 }
1921
1922 static long vma_needs_reservation(struct hstate *h,
1923                         struct vm_area_struct *vma, unsigned long addr)
1924 {
1925         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1926 }
1927
1928 static long vma_commit_reservation(struct hstate *h,
1929                         struct vm_area_struct *vma, unsigned long addr)
1930 {
1931         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1932 }
1933
1934 static void vma_end_reservation(struct hstate *h,
1935                         struct vm_area_struct *vma, unsigned long addr)
1936 {
1937         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1938 }
1939
1940 static long vma_add_reservation(struct hstate *h,
1941                         struct vm_area_struct *vma, unsigned long addr)
1942 {
1943         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1944 }
1945
1946 /*
1947  * This routine is called to restore a reservation on error paths.  In the
1948  * specific error paths, a huge page was allocated (via alloc_huge_page)
1949  * and is about to be freed.  If a reservation for the page existed,
1950  * alloc_huge_page would have consumed the reservation and set PagePrivate
1951  * in the newly allocated page.  When the page is freed via free_huge_page,
1952  * the global reservation count will be incremented if PagePrivate is set.
1953  * However, free_huge_page can not adjust the reserve map.  Adjust the
1954  * reserve map here to be consistent with global reserve count adjustments
1955  * to be made by free_huge_page.
1956  */
1957 static void restore_reserve_on_error(struct hstate *h,
1958                         struct vm_area_struct *vma, unsigned long address,
1959                         struct page *page)
1960 {
1961         if (unlikely(PagePrivate(page))) {
1962                 long rc = vma_needs_reservation(h, vma, address);
1963
1964                 if (unlikely(rc < 0)) {
1965                         /*
1966                          * Rare out of memory condition in reserve map
1967                          * manipulation.  Clear PagePrivate so that
1968                          * global reserve count will not be incremented
1969                          * by free_huge_page.  This will make it appear
1970                          * as though the reservation for this page was
1971                          * consumed.  This may prevent the task from
1972                          * faulting in the page at a later time.  This
1973                          * is better than inconsistent global huge page
1974                          * accounting of reserve counts.
1975                          */
1976                         ClearPagePrivate(page);
1977                 } else if (rc) {
1978                         rc = vma_add_reservation(h, vma, address);
1979                         if (unlikely(rc < 0))
1980                                 /*
1981                                  * See above comment about rare out of
1982                                  * memory condition.
1983                                  */
1984                                 ClearPagePrivate(page);
1985                 } else
1986                         vma_end_reservation(h, vma, address);
1987         }
1988 }
1989
1990 struct page *alloc_huge_page(struct vm_area_struct *vma,
1991                                     unsigned long addr, int avoid_reserve)
1992 {
1993         struct hugepage_subpool *spool = subpool_vma(vma);
1994         struct hstate *h = hstate_vma(vma);
1995         struct page *page;
1996         long map_chg, map_commit;
1997         long gbl_chg;
1998         int ret, idx;
1999         struct hugetlb_cgroup *h_cg;
2000
2001         idx = hstate_index(h);
2002         /*
2003          * Examine the region/reserve map to determine if the process
2004          * has a reservation for the page to be allocated.  A return
2005          * code of zero indicates a reservation exists (no change).
2006          */
2007         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2008         if (map_chg < 0)
2009                 return ERR_PTR(-ENOMEM);
2010
2011         /*
2012          * Processes that did not create the mapping will have no
2013          * reserves as indicated by the region/reserve map. Check
2014          * that the allocation will not exceed the subpool limit.
2015          * Allocations for MAP_NORESERVE mappings also need to be
2016          * checked against any subpool limit.
2017          */
2018         if (map_chg || avoid_reserve) {
2019                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2020                 if (gbl_chg < 0) {
2021                         vma_end_reservation(h, vma, addr);
2022                         return ERR_PTR(-ENOSPC);
2023                 }
2024
2025                 /*
2026                  * Even though there was no reservation in the region/reserve
2027                  * map, there could be reservations associated with the
2028                  * subpool that can be used.  This would be indicated if the
2029                  * return value of hugepage_subpool_get_pages() is zero.
2030                  * However, if avoid_reserve is specified we still avoid even
2031                  * the subpool reservations.
2032                  */
2033                 if (avoid_reserve)
2034                         gbl_chg = 1;
2035         }
2036
2037         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2038         if (ret)
2039                 goto out_subpool_put;
2040
2041         spin_lock(&hugetlb_lock);
2042         /*
2043          * glb_chg is passed to indicate whether or not a page must be taken
2044          * from the global free pool (global change).  gbl_chg == 0 indicates
2045          * a reservation exists for the allocation.
2046          */
2047         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2048         if (!page) {
2049                 spin_unlock(&hugetlb_lock);
2050                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2051                 if (!page)
2052                         goto out_uncharge_cgroup;
2053                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054                         SetPagePrivate(page);
2055                         h->resv_huge_pages--;
2056                 }
2057                 spin_lock(&hugetlb_lock);
2058                 list_move(&page->lru, &h->hugepage_activelist);
2059                 /* Fall through */
2060         }
2061         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062         spin_unlock(&hugetlb_lock);
2063
2064         set_page_private(page, (unsigned long)spool);
2065
2066         map_commit = vma_commit_reservation(h, vma, addr);
2067         if (unlikely(map_chg > map_commit)) {
2068                 /*
2069                  * The page was added to the reservation map between
2070                  * vma_needs_reservation and vma_commit_reservation.
2071                  * This indicates a race with hugetlb_reserve_pages.
2072                  * Adjust for the subpool count incremented above AND
2073                  * in hugetlb_reserve_pages for the same page.  Also,
2074                  * the reservation count added in hugetlb_reserve_pages
2075                  * no longer applies.
2076                  */
2077                 long rsv_adjust;
2078
2079                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080                 hugetlb_acct_memory(h, -rsv_adjust);
2081         }
2082         return page;
2083
2084 out_uncharge_cgroup:
2085         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2086 out_subpool_put:
2087         if (map_chg || avoid_reserve)
2088                 hugepage_subpool_put_pages(spool, 1);
2089         vma_end_reservation(h, vma, addr);
2090         return ERR_PTR(-ENOSPC);
2091 }
2092
2093 /*
2094  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2095  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2096  * where no ERR_VALUE is expected to be returned.
2097  */
2098 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2099                                 unsigned long addr, int avoid_reserve)
2100 {
2101         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2102         if (IS_ERR(page))
2103                 page = NULL;
2104         return page;
2105 }
2106
2107 int __weak alloc_bootmem_huge_page(struct hstate *h)
2108 {
2109         struct huge_bootmem_page *m;
2110         int nr_nodes, node;
2111
2112         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2113                 void *addr;
2114
2115                 addr = memblock_virt_alloc_try_nid_nopanic(
2116                                 huge_page_size(h), huge_page_size(h),
2117                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2118                 if (addr) {
2119                         /*
2120                          * Use the beginning of the huge page to store the
2121                          * huge_bootmem_page struct (until gather_bootmem
2122                          * puts them into the mem_map).
2123                          */
2124                         m = addr;
2125                         goto found;
2126                 }
2127         }
2128         return 0;
2129
2130 found:
2131         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2132         /* Put them into a private list first because mem_map is not up yet */
2133         list_add(&m->list, &huge_boot_pages);
2134         m->hstate = h;
2135         return 1;
2136 }
2137
2138 static void __init prep_compound_huge_page(struct page *page,
2139                 unsigned int order)
2140 {
2141         if (unlikely(order > (MAX_ORDER - 1)))
2142                 prep_compound_gigantic_page(page, order);
2143         else
2144                 prep_compound_page(page, order);
2145 }
2146
2147 /* Put bootmem huge pages into the standard lists after mem_map is up */
2148 static void __init gather_bootmem_prealloc(void)
2149 {
2150         struct huge_bootmem_page *m;
2151
2152         list_for_each_entry(m, &huge_boot_pages, list) {
2153                 struct hstate *h = m->hstate;
2154                 struct page *page;
2155
2156 #ifdef CONFIG_HIGHMEM
2157                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2158                 memblock_free_late(__pa(m),
2159                                    sizeof(struct huge_bootmem_page));
2160 #else
2161                 page = virt_to_page(m);
2162 #endif
2163                 WARN_ON(page_count(page) != 1);
2164                 prep_compound_huge_page(page, h->order);
2165                 WARN_ON(PageReserved(page));
2166                 prep_new_huge_page(h, page, page_to_nid(page));
2167                 /*
2168                  * If we had gigantic hugepages allocated at boot time, we need
2169                  * to restore the 'stolen' pages to totalram_pages in order to
2170                  * fix confusing memory reports from free(1) and another
2171                  * side-effects, like CommitLimit going negative.
2172                  */
2173                 if (hstate_is_gigantic(h))
2174                         adjust_managed_page_count(page, 1 << h->order);
2175         }
2176 }
2177
2178 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2179 {
2180         unsigned long i;
2181
2182         for (i = 0; i < h->max_huge_pages; ++i) {
2183                 if (hstate_is_gigantic(h)) {
2184                         if (!alloc_bootmem_huge_page(h))
2185                                 break;
2186                 } else if (!alloc_fresh_huge_page(h,
2187                                          &node_states[N_MEMORY]))
2188                         break;
2189         }
2190         h->max_huge_pages = i;
2191 }
2192
2193 static void __init hugetlb_init_hstates(void)
2194 {
2195         struct hstate *h;
2196
2197         for_each_hstate(h) {
2198                 if (minimum_order > huge_page_order(h))
2199                         minimum_order = huge_page_order(h);
2200
2201                 /* oversize hugepages were init'ed in early boot */
2202                 if (!hstate_is_gigantic(h))
2203                         hugetlb_hstate_alloc_pages(h);
2204         }
2205         VM_BUG_ON(minimum_order == UINT_MAX);
2206 }
2207
2208 static char * __init memfmt(char *buf, unsigned long n)
2209 {
2210         if (n >= (1UL << 30))
2211                 sprintf(buf, "%lu GB", n >> 30);
2212         else if (n >= (1UL << 20))
2213                 sprintf(buf, "%lu MB", n >> 20);
2214         else
2215                 sprintf(buf, "%lu KB", n >> 10);
2216         return buf;
2217 }
2218
2219 static void __init report_hugepages(void)
2220 {
2221         struct hstate *h;
2222
2223         for_each_hstate(h) {
2224                 char buf[32];
2225                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2226                         memfmt(buf, huge_page_size(h)),
2227                         h->free_huge_pages);
2228         }
2229 }
2230
2231 #ifdef CONFIG_HIGHMEM
2232 static void try_to_free_low(struct hstate *h, unsigned long count,
2233                                                 nodemask_t *nodes_allowed)
2234 {
2235         int i;
2236
2237         if (hstate_is_gigantic(h))
2238                 return;
2239
2240         for_each_node_mask(i, *nodes_allowed) {
2241                 struct page *page, *next;
2242                 struct list_head *freel = &h->hugepage_freelists[i];
2243                 list_for_each_entry_safe(page, next, freel, lru) {
2244                         if (count >= h->nr_huge_pages)
2245                                 return;
2246                         if (PageHighMem(page))
2247                                 continue;
2248                         list_del(&page->lru);
2249                         update_and_free_page(h, page);
2250                         h->free_huge_pages--;
2251                         h->free_huge_pages_node[page_to_nid(page)]--;
2252                 }
2253         }
2254 }
2255 #else
2256 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2257                                                 nodemask_t *nodes_allowed)
2258 {
2259 }
2260 #endif
2261
2262 /*
2263  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2264  * balanced by operating on them in a round-robin fashion.
2265  * Returns 1 if an adjustment was made.
2266  */
2267 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2268                                 int delta)
2269 {
2270         int nr_nodes, node;
2271
2272         VM_BUG_ON(delta != -1 && delta != 1);
2273
2274         if (delta < 0) {
2275                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2276                         if (h->surplus_huge_pages_node[node])
2277                                 goto found;
2278                 }
2279         } else {
2280                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2281                         if (h->surplus_huge_pages_node[node] <
2282                                         h->nr_huge_pages_node[node])
2283                                 goto found;
2284                 }
2285         }
2286         return 0;
2287
2288 found:
2289         h->surplus_huge_pages += delta;
2290         h->surplus_huge_pages_node[node] += delta;
2291         return 1;
2292 }
2293
2294 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2295 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2296                                                 nodemask_t *nodes_allowed)
2297 {
2298         unsigned long min_count, ret;
2299
2300         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2301                 return h->max_huge_pages;
2302
2303         /*
2304          * Increase the pool size
2305          * First take pages out of surplus state.  Then make up the
2306          * remaining difference by allocating fresh huge pages.
2307          *
2308          * We might race with __alloc_buddy_huge_page() here and be unable
2309          * to convert a surplus huge page to a normal huge page. That is
2310          * not critical, though, it just means the overall size of the
2311          * pool might be one hugepage larger than it needs to be, but
2312          * within all the constraints specified by the sysctls.
2313          */
2314         spin_lock(&hugetlb_lock);
2315         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2316                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2317                         break;
2318         }
2319
2320         while (count > persistent_huge_pages(h)) {
2321                 /*
2322                  * If this allocation races such that we no longer need the
2323                  * page, free_huge_page will handle it by freeing the page
2324                  * and reducing the surplus.
2325                  */
2326                 spin_unlock(&hugetlb_lock);
2327
2328                 /* yield cpu to avoid soft lockup */
2329                 cond_resched();
2330
2331                 if (hstate_is_gigantic(h))
2332                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2333                 else
2334                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2335                 spin_lock(&hugetlb_lock);
2336                 if (!ret)
2337                         goto out;
2338
2339                 /* Bail for signals. Probably ctrl-c from user */
2340                 if (signal_pending(current))
2341                         goto out;
2342         }
2343
2344         /*
2345          * Decrease the pool size
2346          * First return free pages to the buddy allocator (being careful
2347          * to keep enough around to satisfy reservations).  Then place
2348          * pages into surplus state as needed so the pool will shrink
2349          * to the desired size as pages become free.
2350          *
2351          * By placing pages into the surplus state independent of the
2352          * overcommit value, we are allowing the surplus pool size to
2353          * exceed overcommit. There are few sane options here. Since
2354          * __alloc_buddy_huge_page() is checking the global counter,
2355          * though, we'll note that we're not allowed to exceed surplus
2356          * and won't grow the pool anywhere else. Not until one of the
2357          * sysctls are changed, or the surplus pages go out of use.
2358          */
2359         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2360         min_count = max(count, min_count);
2361         try_to_free_low(h, min_count, nodes_allowed);
2362         while (min_count < persistent_huge_pages(h)) {
2363                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2364                         break;
2365                 cond_resched_lock(&hugetlb_lock);
2366         }
2367         while (count < persistent_huge_pages(h)) {
2368                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2369                         break;
2370         }
2371 out:
2372         ret = persistent_huge_pages(h);
2373         spin_unlock(&hugetlb_lock);
2374         return ret;
2375 }
2376
2377 #define HSTATE_ATTR_RO(_name) \
2378         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2379
2380 #define HSTATE_ATTR(_name) \
2381         static struct kobj_attribute _name##_attr = \
2382                 __ATTR(_name, 0644, _name##_show, _name##_store)
2383
2384 static struct kobject *hugepages_kobj;
2385 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2386
2387 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2388
2389 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2390 {
2391         int i;
2392
2393         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2394                 if (hstate_kobjs[i] == kobj) {
2395                         if (nidp)
2396                                 *nidp = NUMA_NO_NODE;
2397                         return &hstates[i];
2398                 }
2399
2400         return kobj_to_node_hstate(kobj, nidp);
2401 }
2402
2403 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2404                                         struct kobj_attribute *attr, char *buf)
2405 {
2406         struct hstate *h;
2407         unsigned long nr_huge_pages;
2408         int nid;
2409
2410         h = kobj_to_hstate(kobj, &nid);
2411         if (nid == NUMA_NO_NODE)
2412                 nr_huge_pages = h->nr_huge_pages;
2413         else
2414                 nr_huge_pages = h->nr_huge_pages_node[nid];
2415
2416         return sprintf(buf, "%lu\n", nr_huge_pages);
2417 }
2418
2419 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2420                                            struct hstate *h, int nid,
2421                                            unsigned long count, size_t len)
2422 {
2423         int err;
2424         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2425
2426         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2427                 err = -EINVAL;
2428                 goto out;
2429         }
2430
2431         if (nid == NUMA_NO_NODE) {
2432                 /*
2433                  * global hstate attribute
2434                  */
2435                 if (!(obey_mempolicy &&
2436                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2437                         NODEMASK_FREE(nodes_allowed);
2438                         nodes_allowed = &node_states[N_MEMORY];
2439                 }
2440         } else if (nodes_allowed) {
2441                 /*
2442                  * per node hstate attribute: adjust count to global,
2443                  * but restrict alloc/free to the specified node.
2444                  */
2445                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2446                 init_nodemask_of_node(nodes_allowed, nid);
2447         } else
2448                 nodes_allowed = &node_states[N_MEMORY];
2449
2450         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2451
2452         if (nodes_allowed != &node_states[N_MEMORY])
2453                 NODEMASK_FREE(nodes_allowed);
2454
2455         return len;
2456 out:
2457         NODEMASK_FREE(nodes_allowed);
2458         return err;
2459 }
2460
2461 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2462                                          struct kobject *kobj, const char *buf,
2463                                          size_t len)
2464 {
2465         struct hstate *h;
2466         unsigned long count;
2467         int nid;
2468         int err;
2469
2470         err = kstrtoul(buf, 10, &count);
2471         if (err)
2472                 return err;
2473
2474         h = kobj_to_hstate(kobj, &nid);
2475         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2476 }
2477
2478 static ssize_t nr_hugepages_show(struct kobject *kobj,
2479                                        struct kobj_attribute *attr, char *buf)
2480 {
2481         return nr_hugepages_show_common(kobj, attr, buf);
2482 }
2483
2484 static ssize_t nr_hugepages_store(struct kobject *kobj,
2485                struct kobj_attribute *attr, const char *buf, size_t len)
2486 {
2487         return nr_hugepages_store_common(false, kobj, buf, len);
2488 }
2489 HSTATE_ATTR(nr_hugepages);
2490
2491 #ifdef CONFIG_NUMA
2492
2493 /*
2494  * hstate attribute for optionally mempolicy-based constraint on persistent
2495  * huge page alloc/free.
2496  */
2497 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2498                                        struct kobj_attribute *attr, char *buf)
2499 {
2500         return nr_hugepages_show_common(kobj, attr, buf);
2501 }
2502
2503 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2504                struct kobj_attribute *attr, const char *buf, size_t len)
2505 {
2506         return nr_hugepages_store_common(true, kobj, buf, len);
2507 }
2508 HSTATE_ATTR(nr_hugepages_mempolicy);
2509 #endif
2510
2511
2512 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2513                                         struct kobj_attribute *attr, char *buf)
2514 {
2515         struct hstate *h = kobj_to_hstate(kobj, NULL);
2516         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2517 }
2518
2519 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2520                 struct kobj_attribute *attr, const char *buf, size_t count)
2521 {
2522         int err;
2523         unsigned long input;
2524         struct hstate *h = kobj_to_hstate(kobj, NULL);
2525
2526         if (hstate_is_gigantic(h))
2527                 return -EINVAL;
2528
2529         err = kstrtoul(buf, 10, &input);
2530         if (err)
2531                 return err;
2532
2533         spin_lock(&hugetlb_lock);
2534         h->nr_overcommit_huge_pages = input;
2535         spin_unlock(&hugetlb_lock);
2536
2537         return count;
2538 }
2539 HSTATE_ATTR(nr_overcommit_hugepages);
2540
2541 static ssize_t free_hugepages_show(struct kobject *kobj,
2542                                         struct kobj_attribute *attr, char *buf)
2543 {
2544         struct hstate *h;
2545         unsigned long free_huge_pages;
2546         int nid;
2547
2548         h = kobj_to_hstate(kobj, &nid);
2549         if (nid == NUMA_NO_NODE)
2550                 free_huge_pages = h->free_huge_pages;
2551         else
2552                 free_huge_pages = h->free_huge_pages_node[nid];
2553
2554         return sprintf(buf, "%lu\n", free_huge_pages);
2555 }
2556 HSTATE_ATTR_RO(free_hugepages);
2557
2558 static ssize_t resv_hugepages_show(struct kobject *kobj,
2559                                         struct kobj_attribute *attr, char *buf)
2560 {
2561         struct hstate *h = kobj_to_hstate(kobj, NULL);
2562         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2563 }
2564 HSTATE_ATTR_RO(resv_hugepages);
2565
2566 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2567                                         struct kobj_attribute *attr, char *buf)
2568 {
2569         struct hstate *h;
2570         unsigned long surplus_huge_pages;
2571         int nid;
2572
2573         h = kobj_to_hstate(kobj, &nid);
2574         if (nid == NUMA_NO_NODE)
2575                 surplus_huge_pages = h->surplus_huge_pages;
2576         else
2577                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2578
2579         return sprintf(buf, "%lu\n", surplus_huge_pages);
2580 }
2581 HSTATE_ATTR_RO(surplus_hugepages);
2582
2583 static struct attribute *hstate_attrs[] = {
2584         &nr_hugepages_attr.attr,
2585         &nr_overcommit_hugepages_attr.attr,
2586         &free_hugepages_attr.attr,
2587         &resv_hugepages_attr.attr,
2588         &surplus_hugepages_attr.attr,
2589 #ifdef CONFIG_NUMA
2590         &nr_hugepages_mempolicy_attr.attr,
2591 #endif
2592         NULL,
2593 };
2594
2595 static struct attribute_group hstate_attr_group = {
2596         .attrs = hstate_attrs,
2597 };
2598
2599 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2600                                     struct kobject **hstate_kobjs,
2601                                     struct attribute_group *hstate_attr_group)
2602 {
2603         int retval;
2604         int hi = hstate_index(h);
2605
2606         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2607         if (!hstate_kobjs[hi])
2608                 return -ENOMEM;
2609
2610         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2611         if (retval)
2612                 kobject_put(hstate_kobjs[hi]);
2613
2614         return retval;
2615 }
2616
2617 static void __init hugetlb_sysfs_init(void)
2618 {
2619         struct hstate *h;
2620         int err;
2621
2622         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2623         if (!hugepages_kobj)
2624                 return;
2625
2626         for_each_hstate(h) {
2627                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2628                                          hstate_kobjs, &hstate_attr_group);
2629                 if (err)
2630                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2631         }
2632 }
2633
2634 #ifdef CONFIG_NUMA
2635
2636 /*
2637  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2638  * with node devices in node_devices[] using a parallel array.  The array
2639  * index of a node device or _hstate == node id.
2640  * This is here to avoid any static dependency of the node device driver, in
2641  * the base kernel, on the hugetlb module.
2642  */
2643 struct node_hstate {
2644         struct kobject          *hugepages_kobj;
2645         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2646 };
2647 static struct node_hstate node_hstates[MAX_NUMNODES];
2648
2649 /*
2650  * A subset of global hstate attributes for node devices
2651  */
2652 static struct attribute *per_node_hstate_attrs[] = {
2653         &nr_hugepages_attr.attr,
2654         &free_hugepages_attr.attr,
2655         &surplus_hugepages_attr.attr,
2656         NULL,
2657 };
2658
2659 static struct attribute_group per_node_hstate_attr_group = {
2660         .attrs = per_node_hstate_attrs,
2661 };
2662
2663 /*
2664  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2665  * Returns node id via non-NULL nidp.
2666  */
2667 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2668 {
2669         int nid;
2670
2671         for (nid = 0; nid < nr_node_ids; nid++) {
2672                 struct node_hstate *nhs = &node_hstates[nid];
2673                 int i;
2674                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2675                         if (nhs->hstate_kobjs[i] == kobj) {
2676                                 if (nidp)
2677                                         *nidp = nid;
2678                                 return &hstates[i];
2679                         }
2680         }
2681
2682         BUG();
2683         return NULL;
2684 }
2685
2686 /*
2687  * Unregister hstate attributes from a single node device.
2688  * No-op if no hstate attributes attached.
2689  */
2690 static void hugetlb_unregister_node(struct node *node)
2691 {
2692         struct hstate *h;
2693         struct node_hstate *nhs = &node_hstates[node->dev.id];
2694
2695         if (!nhs->hugepages_kobj)
2696                 return;         /* no hstate attributes */
2697
2698         for_each_hstate(h) {
2699                 int idx = hstate_index(h);
2700                 if (nhs->hstate_kobjs[idx]) {
2701                         kobject_put(nhs->hstate_kobjs[idx]);
2702                         nhs->hstate_kobjs[idx] = NULL;
2703                 }
2704         }
2705
2706         kobject_put(nhs->hugepages_kobj);
2707         nhs->hugepages_kobj = NULL;
2708 }
2709
2710
2711 /*
2712  * Register hstate attributes for a single node device.
2713  * No-op if attributes already registered.
2714  */
2715 static void hugetlb_register_node(struct node *node)
2716 {
2717         struct hstate *h;
2718         struct node_hstate *nhs = &node_hstates[node->dev.id];
2719         int err;
2720
2721         if (nhs->hugepages_kobj)
2722                 return;         /* already allocated */
2723
2724         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2725                                                         &node->dev.kobj);
2726         if (!nhs->hugepages_kobj)
2727                 return;
2728
2729         for_each_hstate(h) {
2730                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2731                                                 nhs->hstate_kobjs,
2732                                                 &per_node_hstate_attr_group);
2733                 if (err) {
2734                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2735                                 h->name, node->dev.id);
2736                         hugetlb_unregister_node(node);
2737                         break;
2738                 }
2739         }
2740 }
2741
2742 /*
2743  * hugetlb init time:  register hstate attributes for all registered node
2744  * devices of nodes that have memory.  All on-line nodes should have
2745  * registered their associated device by this time.
2746  */
2747 static void __init hugetlb_register_all_nodes(void)
2748 {
2749         int nid;
2750
2751         for_each_node_state(nid, N_MEMORY) {
2752                 struct node *node = node_devices[nid];
2753                 if (node->dev.id == nid)
2754                         hugetlb_register_node(node);
2755         }
2756
2757         /*
2758          * Let the node device driver know we're here so it can
2759          * [un]register hstate attributes on node hotplug.
2760          */
2761         register_hugetlbfs_with_node(hugetlb_register_node,
2762                                      hugetlb_unregister_node);
2763 }
2764 #else   /* !CONFIG_NUMA */
2765
2766 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2767 {
2768         BUG();
2769         if (nidp)
2770                 *nidp = -1;
2771         return NULL;
2772 }
2773
2774 static void hugetlb_register_all_nodes(void) { }
2775
2776 #endif
2777
2778 static int __init hugetlb_init(void)
2779 {
2780         int i;
2781
2782         if (!hugepages_supported())
2783                 return 0;
2784
2785         if (!size_to_hstate(default_hstate_size)) {
2786                 default_hstate_size = HPAGE_SIZE;
2787                 if (!size_to_hstate(default_hstate_size))
2788                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2789         }
2790         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2791         if (default_hstate_max_huge_pages) {
2792                 if (!default_hstate.max_huge_pages)
2793                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2794         }
2795
2796         hugetlb_init_hstates();
2797         gather_bootmem_prealloc();
2798         report_hugepages();
2799
2800         hugetlb_sysfs_init();
2801         hugetlb_register_all_nodes();
2802         hugetlb_cgroup_file_init();
2803
2804 #ifdef CONFIG_SMP
2805         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2806 #else
2807         num_fault_mutexes = 1;
2808 #endif
2809         hugetlb_fault_mutex_table =
2810                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2811         BUG_ON(!hugetlb_fault_mutex_table);
2812
2813         for (i = 0; i < num_fault_mutexes; i++)
2814                 mutex_init(&hugetlb_fault_mutex_table[i]);
2815         return 0;
2816 }
2817 subsys_initcall(hugetlb_init);
2818
2819 /* Should be called on processing a hugepagesz=... option */
2820 void __init hugetlb_bad_size(void)
2821 {
2822         parsed_valid_hugepagesz = false;
2823 }
2824
2825 void __init hugetlb_add_hstate(unsigned int order)
2826 {
2827         struct hstate *h;
2828         unsigned long i;
2829
2830         if (size_to_hstate(PAGE_SIZE << order)) {
2831                 pr_warn("hugepagesz= specified twice, ignoring\n");
2832                 return;
2833         }
2834         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2835         BUG_ON(order == 0);
2836         h = &hstates[hugetlb_max_hstate++];
2837         h->order = order;
2838         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2839         h->nr_huge_pages = 0;
2840         h->free_huge_pages = 0;
2841         for (i = 0; i < MAX_NUMNODES; ++i)
2842                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2843         INIT_LIST_HEAD(&h->hugepage_activelist);
2844         h->next_nid_to_alloc = first_memory_node;
2845         h->next_nid_to_free = first_memory_node;
2846         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2847                                         huge_page_size(h)/1024);
2848
2849         parsed_hstate = h;
2850 }
2851
2852 static int __init hugetlb_nrpages_setup(char *s)
2853 {
2854         unsigned long *mhp;
2855         static unsigned long *last_mhp;
2856
2857         if (!parsed_valid_hugepagesz) {
2858                 pr_warn("hugepages = %s preceded by "
2859                         "an unsupported hugepagesz, ignoring\n", s);
2860                 parsed_valid_hugepagesz = true;
2861                 return 1;
2862         }
2863         /*
2864          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2865          * so this hugepages= parameter goes to the "default hstate".
2866          */
2867         else if (!hugetlb_max_hstate)
2868                 mhp = &default_hstate_max_huge_pages;
2869         else
2870                 mhp = &parsed_hstate->max_huge_pages;
2871
2872         if (mhp == last_mhp) {
2873                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2874                 return 1;
2875         }
2876
2877         if (sscanf(s, "%lu", mhp) <= 0)
2878                 *mhp = 0;
2879
2880         /*
2881          * Global state is always initialized later in hugetlb_init.
2882          * But we need to allocate >= MAX_ORDER hstates here early to still
2883          * use the bootmem allocator.
2884          */
2885         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2886                 hugetlb_hstate_alloc_pages(parsed_hstate);
2887
2888         last_mhp = mhp;
2889
2890         return 1;
2891 }
2892 __setup("hugepages=", hugetlb_nrpages_setup);
2893
2894 static int __init hugetlb_default_setup(char *s)
2895 {
2896         default_hstate_size = memparse(s, &s);
2897         return 1;
2898 }
2899 __setup("default_hugepagesz=", hugetlb_default_setup);
2900
2901 static unsigned int cpuset_mems_nr(unsigned int *array)
2902 {
2903         int node;
2904         unsigned int nr = 0;
2905
2906         for_each_node_mask(node, cpuset_current_mems_allowed)
2907                 nr += array[node];
2908
2909         return nr;
2910 }
2911
2912 #ifdef CONFIG_SYSCTL
2913 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2914                          struct ctl_table *table, int write,
2915                          void __user *buffer, size_t *length, loff_t *ppos)
2916 {
2917         struct hstate *h = &default_hstate;
2918         unsigned long tmp = h->max_huge_pages;
2919         int ret;
2920
2921         if (!hugepages_supported())
2922                 return -EOPNOTSUPP;
2923
2924         table->data = &tmp;
2925         table->maxlen = sizeof(unsigned long);
2926         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2927         if (ret)
2928                 goto out;
2929
2930         if (write)
2931                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2932                                                   NUMA_NO_NODE, tmp, *length);
2933 out:
2934         return ret;
2935 }
2936
2937 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2938                           void __user *buffer, size_t *length, loff_t *ppos)
2939 {
2940
2941         return hugetlb_sysctl_handler_common(false, table, write,
2942                                                         buffer, length, ppos);
2943 }
2944
2945 #ifdef CONFIG_NUMA
2946 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2947                           void __user *buffer, size_t *length, loff_t *ppos)
2948 {
2949         return hugetlb_sysctl_handler_common(true, table, write,
2950                                                         buffer, length, ppos);
2951 }
2952 #endif /* CONFIG_NUMA */
2953
2954 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2955                         void __user *buffer,
2956                         size_t *length, loff_t *ppos)
2957 {
2958         struct hstate *h = &default_hstate;
2959         unsigned long tmp;
2960         int ret;
2961
2962         if (!hugepages_supported())
2963                 return -EOPNOTSUPP;
2964
2965         tmp = h->nr_overcommit_huge_pages;
2966
2967         if (write && hstate_is_gigantic(h))
2968                 return -EINVAL;
2969
2970         table->data = &tmp;
2971         table->maxlen = sizeof(unsigned long);
2972         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2973         if (ret)
2974                 goto out;
2975
2976         if (write) {
2977                 spin_lock(&hugetlb_lock);
2978                 h->nr_overcommit_huge_pages = tmp;
2979                 spin_unlock(&hugetlb_lock);
2980         }
2981 out:
2982         return ret;
2983 }
2984
2985 #endif /* CONFIG_SYSCTL */
2986
2987 void hugetlb_report_meminfo(struct seq_file *m)
2988 {
2989         struct hstate *h = &default_hstate;
2990         if (!hugepages_supported())
2991                 return;
2992         seq_printf(m,
2993                         "HugePages_Total:   %5lu\n"
2994                         "HugePages_Free:    %5lu\n"
2995                         "HugePages_Rsvd:    %5lu\n"
2996                         "HugePages_Surp:    %5lu\n"
2997                         "Hugepagesize:   %8lu kB\n",
2998                         h->nr_huge_pages,
2999                         h->free_huge_pages,
3000                         h->resv_huge_pages,
3001                         h->surplus_huge_pages,
3002                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3003 }
3004
3005 int hugetlb_report_node_meminfo(int nid, char *buf)
3006 {
3007         struct hstate *h = &default_hstate;
3008         if (!hugepages_supported())
3009                 return 0;
3010         return sprintf(buf,
3011                 "Node %d HugePages_Total: %5u\n"
3012                 "Node %d HugePages_Free:  %5u\n"
3013                 "Node %d HugePages_Surp:  %5u\n",
3014                 nid, h->nr_huge_pages_node[nid],
3015                 nid, h->free_huge_pages_node[nid],
3016                 nid, h->surplus_huge_pages_node[nid]);
3017 }
3018
3019 void hugetlb_show_meminfo(void)
3020 {
3021         struct hstate *h;
3022         int nid;
3023
3024         if (!hugepages_supported())
3025                 return;
3026
3027         for_each_node_state(nid, N_MEMORY)
3028                 for_each_hstate(h)
3029                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030                                 nid,
3031                                 h->nr_huge_pages_node[nid],
3032                                 h->free_huge_pages_node[nid],
3033                                 h->surplus_huge_pages_node[nid],
3034                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035 }
3036
3037 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038 {
3039         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041 }
3042
3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044 unsigned long hugetlb_total_pages(void)
3045 {
3046         struct hstate *h;
3047         unsigned long nr_total_pages = 0;
3048
3049         for_each_hstate(h)
3050                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051         return nr_total_pages;
3052 }
3053
3054 static int hugetlb_acct_memory(struct hstate *h, long delta)
3055 {
3056         int ret = -ENOMEM;
3057
3058         spin_lock(&hugetlb_lock);
3059         /*
3060          * When cpuset is configured, it breaks the strict hugetlb page
3061          * reservation as the accounting is done on a global variable. Such
3062          * reservation is completely rubbish in the presence of cpuset because
3063          * the reservation is not checked against page availability for the
3064          * current cpuset. Application can still potentially OOM'ed by kernel
3065          * with lack of free htlb page in cpuset that the task is in.
3066          * Attempt to enforce strict accounting with cpuset is almost
3067          * impossible (or too ugly) because cpuset is too fluid that
3068          * task or memory node can be dynamically moved between cpusets.
3069          *
3070          * The change of semantics for shared hugetlb mapping with cpuset is
3071          * undesirable. However, in order to preserve some of the semantics,
3072          * we fall back to check against current free page availability as
3073          * a best attempt and hopefully to minimize the impact of changing
3074          * semantics that cpuset has.
3075          */
3076         if (delta > 0) {
3077                 if (gather_surplus_pages(h, delta) < 0)
3078                         goto out;
3079
3080                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081                         return_unused_surplus_pages(h, delta);
3082                         goto out;
3083                 }
3084         }
3085
3086         ret = 0;
3087         if (delta < 0)
3088                 return_unused_surplus_pages(h, (unsigned long) -delta);
3089
3090 out:
3091         spin_unlock(&hugetlb_lock);
3092         return ret;
3093 }
3094
3095 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096 {
3097         struct resv_map *resv = vma_resv_map(vma);
3098
3099         /*
3100          * This new VMA should share its siblings reservation map if present.
3101          * The VMA will only ever have a valid reservation map pointer where
3102          * it is being copied for another still existing VMA.  As that VMA
3103          * has a reference to the reservation map it cannot disappear until
3104          * after this open call completes.  It is therefore safe to take a
3105          * new reference here without additional locking.
3106          */
3107         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108                 kref_get(&resv->refs);
3109 }
3110
3111 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112 {
3113         struct hstate *h = hstate_vma(vma);
3114         struct resv_map *resv = vma_resv_map(vma);
3115         struct hugepage_subpool *spool = subpool_vma(vma);
3116         unsigned long reserve, start, end;
3117         long gbl_reserve;
3118
3119         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120                 return;
3121
3122         start = vma_hugecache_offset(h, vma, vma->vm_start);
3123         end = vma_hugecache_offset(h, vma, vma->vm_end);
3124
3125         reserve = (end - start) - region_count(resv, start, end);
3126
3127         kref_put(&resv->refs, resv_map_release);
3128
3129         if (reserve) {
3130                 /*
3131                  * Decrement reserve counts.  The global reserve count may be
3132                  * adjusted if the subpool has a minimum size.
3133                  */
3134                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135                 hugetlb_acct_memory(h, -gbl_reserve);
3136         }
3137 }
3138
3139 /*
3140  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3141  * handle_mm_fault() to try to instantiate regular-sized pages in the
3142  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3143  * this far.
3144  */
3145 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3146 {
3147         BUG();
3148         return 0;
3149 }
3150
3151 const struct vm_operations_struct hugetlb_vm_ops = {
3152         .fault = hugetlb_vm_op_fault,
3153         .open = hugetlb_vm_op_open,
3154         .close = hugetlb_vm_op_close,
3155 };
3156
3157 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3158                                 int writable)
3159 {
3160         pte_t entry;
3161
3162         if (writable) {
3163                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3164                                          vma->vm_page_prot)));
3165         } else {
3166                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3167                                            vma->vm_page_prot));
3168         }
3169         entry = pte_mkyoung(entry);
3170         entry = pte_mkhuge(entry);
3171         entry = arch_make_huge_pte(entry, vma, page, writable);
3172
3173         return entry;
3174 }
3175
3176 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3177                                    unsigned long address, pte_t *ptep)
3178 {
3179         pte_t entry;
3180
3181         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3182         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3183                 update_mmu_cache(vma, address, ptep);
3184 }
3185
3186 static int is_hugetlb_entry_migration(pte_t pte)
3187 {
3188         swp_entry_t swp;
3189
3190         if (huge_pte_none(pte) || pte_present(pte))
3191                 return 0;
3192         swp = pte_to_swp_entry(pte);
3193         if (non_swap_entry(swp) && is_migration_entry(swp))
3194                 return 1;
3195         else
3196                 return 0;
3197 }
3198
3199 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3200 {
3201         swp_entry_t swp;
3202
3203         if (huge_pte_none(pte) || pte_present(pte))
3204                 return 0;
3205         swp = pte_to_swp_entry(pte);
3206         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3207                 return 1;
3208         else
3209                 return 0;
3210 }
3211
3212 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3213                             struct vm_area_struct *vma)
3214 {
3215         pte_t *src_pte, *dst_pte, entry;
3216         struct page *ptepage;
3217         unsigned long addr;
3218         int cow;
3219         struct hstate *h = hstate_vma(vma);
3220         unsigned long sz = huge_page_size(h);
3221         unsigned long mmun_start;       /* For mmu_notifiers */
3222         unsigned long mmun_end;         /* For mmu_notifiers */
3223         int ret = 0;
3224
3225         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3226
3227         mmun_start = vma->vm_start;
3228         mmun_end = vma->vm_end;
3229         if (cow)
3230                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3231
3232         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3233                 spinlock_t *src_ptl, *dst_ptl;
3234                 src_pte = huge_pte_offset(src, addr);
3235                 if (!src_pte)
3236                         continue;
3237                 dst_pte = huge_pte_alloc(dst, addr, sz);
3238                 if (!dst_pte) {
3239                         ret = -ENOMEM;
3240                         break;
3241                 }
3242
3243                 /* If the pagetables are shared don't copy or take references */
3244                 if (dst_pte == src_pte)
3245                         continue;
3246
3247                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3248                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3249                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3250                 entry = huge_ptep_get(src_pte);
3251                 if (huge_pte_none(entry)) { /* skip none entry */
3252                         ;
3253                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3254                                     is_hugetlb_entry_hwpoisoned(entry))) {
3255                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3256
3257                         if (is_write_migration_entry(swp_entry) && cow) {
3258                                 /*
3259                                  * COW mappings require pages in both
3260                                  * parent and child to be set to read.
3261                                  */
3262                                 make_migration_entry_read(&swp_entry);
3263                                 entry = swp_entry_to_pte(swp_entry);
3264                                 set_huge_pte_at(src, addr, src_pte, entry);
3265                         }
3266                         set_huge_pte_at(dst, addr, dst_pte, entry);
3267                 } else {
3268                         if (cow) {
3269                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3270                                 mmu_notifier_invalidate_range(src, mmun_start,
3271                                                                    mmun_end);
3272                         }
3273                         entry = huge_ptep_get(src_pte);
3274                         ptepage = pte_page(entry);
3275                         get_page(ptepage);
3276                         page_dup_rmap(ptepage, true);
3277                         set_huge_pte_at(dst, addr, dst_pte, entry);
3278                         hugetlb_count_add(pages_per_huge_page(h), dst);
3279                 }
3280                 spin_unlock(src_ptl);
3281                 spin_unlock(dst_ptl);
3282         }
3283
3284         if (cow)
3285                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3286
3287         return ret;
3288 }
3289
3290 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3291                             unsigned long start, unsigned long end,
3292                             struct page *ref_page)
3293 {
3294         struct mm_struct *mm = vma->vm_mm;
3295         unsigned long address;
3296         pte_t *ptep;
3297         pte_t pte;
3298         spinlock_t *ptl;
3299         struct page *page;
3300         struct hstate *h = hstate_vma(vma);
3301         unsigned long sz = huge_page_size(h);
3302         const unsigned long mmun_start = start; /* For mmu_notifiers */
3303         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3304
3305         WARN_ON(!is_vm_hugetlb_page(vma));
3306         BUG_ON(start & ~huge_page_mask(h));
3307         BUG_ON(end & ~huge_page_mask(h));
3308
3309         /*
3310          * This is a hugetlb vma, all the pte entries should point
3311          * to huge page.
3312          */
3313         tlb_remove_check_page_size_change(tlb, sz);
3314         tlb_start_vma(tlb, vma);
3315         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3316         address = start;
3317         for (; address < end; address += sz) {
3318                 ptep = huge_pte_offset(mm, address);
3319                 if (!ptep)
3320                         continue;
3321
3322                 ptl = huge_pte_lock(h, mm, ptep);
3323                 if (huge_pmd_unshare(mm, &address, ptep)) {
3324                         spin_unlock(ptl);
3325                         continue;
3326                 }
3327
3328                 pte = huge_ptep_get(ptep);
3329                 if (huge_pte_none(pte)) {
3330                         spin_unlock(ptl);
3331                         continue;
3332                 }
3333
3334                 /*
3335                  * Migrating hugepage or HWPoisoned hugepage is already
3336                  * unmapped and its refcount is dropped, so just clear pte here.
3337                  */
3338                 if (unlikely(!pte_present(pte))) {
3339                         huge_pte_clear(mm, address, ptep);
3340                         spin_unlock(ptl);
3341                         continue;
3342                 }
3343
3344                 page = pte_page(pte);
3345                 /*
3346                  * If a reference page is supplied, it is because a specific
3347                  * page is being unmapped, not a range. Ensure the page we
3348                  * are about to unmap is the actual page of interest.
3349                  */
3350                 if (ref_page) {
3351                         if (page != ref_page) {
3352                                 spin_unlock(ptl);
3353                                 continue;
3354                         }
3355                         /*
3356                          * Mark the VMA as having unmapped its page so that
3357                          * future faults in this VMA will fail rather than
3358                          * looking like data was lost
3359                          */
3360                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3361                 }
3362
3363                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3364                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3365                 if (huge_pte_dirty(pte))
3366                         set_page_dirty(page);
3367
3368                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3369                 page_remove_rmap(page, true);
3370
3371                 spin_unlock(ptl);
3372                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3373                 /*
3374                  * Bail out after unmapping reference page if supplied
3375                  */
3376                 if (ref_page)
3377                         break;
3378         }
3379         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3380         tlb_end_vma(tlb, vma);
3381 }
3382
3383 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3384                           struct vm_area_struct *vma, unsigned long start,
3385                           unsigned long end, struct page *ref_page)
3386 {
3387         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3388
3389         /*
3390          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3391          * test will fail on a vma being torn down, and not grab a page table
3392          * on its way out.  We're lucky that the flag has such an appropriate
3393          * name, and can in fact be safely cleared here. We could clear it
3394          * before the __unmap_hugepage_range above, but all that's necessary
3395          * is to clear it before releasing the i_mmap_rwsem. This works
3396          * because in the context this is called, the VMA is about to be
3397          * destroyed and the i_mmap_rwsem is held.
3398          */
3399         vma->vm_flags &= ~VM_MAYSHARE;
3400 }
3401
3402 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3403                           unsigned long end, struct page *ref_page)
3404 {
3405         struct mm_struct *mm;
3406         struct mmu_gather tlb;
3407
3408         mm = vma->vm_mm;
3409
3410         tlb_gather_mmu(&tlb, mm, start, end);
3411         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3412         tlb_finish_mmu(&tlb, start, end);
3413 }
3414
3415 /*
3416  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3417  * mappping it owns the reserve page for. The intention is to unmap the page
3418  * from other VMAs and let the children be SIGKILLed if they are faulting the
3419  * same region.
3420  */
3421 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3422                               struct page *page, unsigned long address)
3423 {
3424         struct hstate *h = hstate_vma(vma);
3425         struct vm_area_struct *iter_vma;
3426         struct address_space *mapping;
3427         pgoff_t pgoff;
3428
3429         /*
3430          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3431          * from page cache lookup which is in HPAGE_SIZE units.
3432          */
3433         address = address & huge_page_mask(h);
3434         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3435                         vma->vm_pgoff;
3436         mapping = vma->vm_file->f_mapping;
3437
3438         /*
3439          * Take the mapping lock for the duration of the table walk. As
3440          * this mapping should be shared between all the VMAs,
3441          * __unmap_hugepage_range() is called as the lock is already held
3442          */
3443         i_mmap_lock_write(mapping);
3444         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3445                 /* Do not unmap the current VMA */
3446                 if (iter_vma == vma)
3447                         continue;
3448
3449                 /*
3450                  * Shared VMAs have their own reserves and do not affect
3451                  * MAP_PRIVATE accounting but it is possible that a shared
3452                  * VMA is using the same page so check and skip such VMAs.
3453                  */
3454                 if (iter_vma->vm_flags & VM_MAYSHARE)
3455                         continue;
3456
3457                 /*
3458                  * Unmap the page from other VMAs without their own reserves.
3459                  * They get marked to be SIGKILLed if they fault in these
3460                  * areas. This is because a future no-page fault on this VMA
3461                  * could insert a zeroed page instead of the data existing
3462                  * from the time of fork. This would look like data corruption
3463                  */
3464                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3465                         unmap_hugepage_range(iter_vma, address,
3466                                              address + huge_page_size(h), page);
3467         }
3468         i_mmap_unlock_write(mapping);
3469 }
3470
3471 /*
3472  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3473  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3474  * cannot race with other handlers or page migration.
3475  * Keep the pte_same checks anyway to make transition from the mutex easier.
3476  */
3477 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3478                        unsigned long address, pte_t *ptep,
3479                        struct page *pagecache_page, spinlock_t *ptl)
3480 {
3481         pte_t pte;
3482         struct hstate *h = hstate_vma(vma);
3483         struct page *old_page, *new_page;
3484         int ret = 0, outside_reserve = 0;
3485         unsigned long mmun_start;       /* For mmu_notifiers */
3486         unsigned long mmun_end;         /* For mmu_notifiers */
3487
3488         pte = huge_ptep_get(ptep);
3489         old_page = pte_page(pte);
3490
3491 retry_avoidcopy:
3492         /* If no-one else is actually using this page, avoid the copy
3493          * and just make the page writable */
3494         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3495                 page_move_anon_rmap(old_page, vma);
3496                 set_huge_ptep_writable(vma, address, ptep);
3497                 return 0;
3498         }
3499
3500         /*
3501          * If the process that created a MAP_PRIVATE mapping is about to
3502          * perform a COW due to a shared page count, attempt to satisfy
3503          * the allocation without using the existing reserves. The pagecache
3504          * page is used to determine if the reserve at this address was
3505          * consumed or not. If reserves were used, a partial faulted mapping
3506          * at the time of fork() could consume its reserves on COW instead
3507          * of the full address range.
3508          */
3509         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3510                         old_page != pagecache_page)
3511                 outside_reserve = 1;
3512
3513         get_page(old_page);
3514
3515         /*
3516          * Drop page table lock as buddy allocator may be called. It will
3517          * be acquired again before returning to the caller, as expected.
3518          */
3519         spin_unlock(ptl);
3520         new_page = alloc_huge_page(vma, address, outside_reserve);
3521
3522         if (IS_ERR(new_page)) {
3523                 /*
3524                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3525                  * it is due to references held by a child and an insufficient
3526                  * huge page pool. To guarantee the original mappers
3527                  * reliability, unmap the page from child processes. The child
3528                  * may get SIGKILLed if it later faults.
3529                  */
3530                 if (outside_reserve) {
3531                         put_page(old_page);
3532                         BUG_ON(huge_pte_none(pte));
3533                         unmap_ref_private(mm, vma, old_page, address);
3534                         BUG_ON(huge_pte_none(pte));
3535                         spin_lock(ptl);
3536                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3537                         if (likely(ptep &&
3538                                    pte_same(huge_ptep_get(ptep), pte)))
3539                                 goto retry_avoidcopy;
3540                         /*
3541                          * race occurs while re-acquiring page table
3542                          * lock, and our job is done.
3543                          */
3544                         return 0;
3545                 }
3546
3547                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3548                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3549                 goto out_release_old;
3550         }
3551
3552         /*
3553          * When the original hugepage is shared one, it does not have
3554          * anon_vma prepared.
3555          */
3556         if (unlikely(anon_vma_prepare(vma))) {
3557                 ret = VM_FAULT_OOM;
3558                 goto out_release_all;
3559         }
3560
3561         copy_user_huge_page(new_page, old_page, address, vma,
3562                             pages_per_huge_page(h));
3563         __SetPageUptodate(new_page);
3564         set_page_huge_active(new_page);
3565
3566         mmun_start = address & huge_page_mask(h);
3567         mmun_end = mmun_start + huge_page_size(h);
3568         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3569
3570         /*
3571          * Retake the page table lock to check for racing updates
3572          * before the page tables are altered
3573          */
3574         spin_lock(ptl);
3575         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3576         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3577                 ClearPagePrivate(new_page);
3578
3579                 /* Break COW */
3580                 huge_ptep_clear_flush(vma, address, ptep);
3581                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3582                 set_huge_pte_at(mm, address, ptep,
3583                                 make_huge_pte(vma, new_page, 1));
3584                 page_remove_rmap(old_page, true);
3585                 hugepage_add_new_anon_rmap(new_page, vma, address);
3586                 /* Make the old page be freed below */
3587                 new_page = old_page;
3588         }
3589         spin_unlock(ptl);
3590         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3591 out_release_all:
3592         restore_reserve_on_error(h, vma, address, new_page);
3593         put_page(new_page);
3594 out_release_old:
3595         put_page(old_page);
3596
3597         spin_lock(ptl); /* Caller expects lock to be held */
3598         return ret;
3599 }
3600
3601 /* Return the pagecache page at a given address within a VMA */
3602 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3603                         struct vm_area_struct *vma, unsigned long address)
3604 {
3605         struct address_space *mapping;
3606         pgoff_t idx;
3607
3608         mapping = vma->vm_file->f_mapping;
3609         idx = vma_hugecache_offset(h, vma, address);
3610
3611         return find_lock_page(mapping, idx);
3612 }
3613
3614 /*
3615  * Return whether there is a pagecache page to back given address within VMA.
3616  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3617  */
3618 static bool hugetlbfs_pagecache_present(struct hstate *h,
3619                         struct vm_area_struct *vma, unsigned long address)
3620 {
3621         struct address_space *mapping;
3622         pgoff_t idx;
3623         struct page *page;
3624
3625         mapping = vma->vm_file->f_mapping;
3626         idx = vma_hugecache_offset(h, vma, address);
3627
3628         page = find_get_page(mapping, idx);
3629         if (page)
3630                 put_page(page);
3631         return page != NULL;
3632 }
3633
3634 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3635                            pgoff_t idx)
3636 {
3637         struct inode *inode = mapping->host;
3638         struct hstate *h = hstate_inode(inode);
3639         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3640
3641         if (err)
3642                 return err;
3643         ClearPagePrivate(page);
3644
3645         spin_lock(&inode->i_lock);
3646         inode->i_blocks += blocks_per_huge_page(h);
3647         spin_unlock(&inode->i_lock);
3648         return 0;
3649 }
3650
3651 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3652                            struct address_space *mapping, pgoff_t idx,
3653                            unsigned long address, pte_t *ptep, unsigned int flags)
3654 {
3655         struct hstate *h = hstate_vma(vma);
3656         int ret = VM_FAULT_SIGBUS;
3657         int anon_rmap = 0;
3658         unsigned long size;
3659         struct page *page;
3660         pte_t new_pte;
3661         spinlock_t *ptl;
3662
3663         /*
3664          * Currently, we are forced to kill the process in the event the
3665          * original mapper has unmapped pages from the child due to a failed
3666          * COW. Warn that such a situation has occurred as it may not be obvious
3667          */
3668         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3669                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3670                            current->pid);
3671                 return ret;
3672         }
3673
3674         /*
3675          * Use page lock to guard against racing truncation
3676          * before we get page_table_lock.
3677          */
3678 retry:
3679         page = find_lock_page(mapping, idx);
3680         if (!page) {
3681                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3682                 if (idx >= size)
3683                         goto out;
3684
3685                 /*
3686                  * Check for page in userfault range
3687                  */
3688                 if (userfaultfd_missing(vma)) {
3689                         u32 hash;
3690                         struct vm_fault vmf = {
3691                                 .vma = vma,
3692                                 .address = address,
3693                                 .flags = flags,
3694                                 /*
3695                                  * Hard to debug if it ends up being
3696                                  * used by a callee that assumes
3697                                  * something about the other
3698                                  * uninitialized fields... same as in
3699                                  * memory.c
3700                                  */
3701                         };
3702
3703                         /*
3704                          * hugetlb_fault_mutex must be dropped before
3705                          * handling userfault.  Reacquire after handling
3706                          * fault to make calling code simpler.
3707                          */
3708                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3709                                                         idx, address);
3710                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3711                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3712                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3713                         goto out;
3714                 }
3715
3716                 page = alloc_huge_page(vma, address, 0);
3717                 if (IS_ERR(page)) {
3718                         ret = PTR_ERR(page);
3719                         if (ret == -ENOMEM)
3720                                 ret = VM_FAULT_OOM;
3721                         else
3722                                 ret = VM_FAULT_SIGBUS;
3723                         goto out;
3724                 }
3725                 clear_huge_page(page, address, pages_per_huge_page(h));
3726                 __SetPageUptodate(page);
3727                 set_page_huge_active(page);
3728
3729                 if (vma->vm_flags & VM_MAYSHARE) {
3730                         int err = huge_add_to_page_cache(page, mapping, idx);
3731                         if (err) {
3732                                 put_page(page);
3733                                 if (err == -EEXIST)
3734                                         goto retry;
3735                                 goto out;
3736                         }
3737                 } else {
3738                         lock_page(page);
3739                         if (unlikely(anon_vma_prepare(vma))) {
3740                                 ret = VM_FAULT_OOM;
3741                                 goto backout_unlocked;
3742                         }
3743                         anon_rmap = 1;
3744                 }
3745         } else {
3746                 /*
3747                  * If memory error occurs between mmap() and fault, some process
3748                  * don't have hwpoisoned swap entry for errored virtual address.
3749                  * So we need to block hugepage fault by PG_hwpoison bit check.
3750                  */
3751                 if (unlikely(PageHWPoison(page))) {
3752                         ret = VM_FAULT_HWPOISON |
3753                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3754                         goto backout_unlocked;
3755                 }
3756         }
3757
3758         /*
3759          * If we are going to COW a private mapping later, we examine the
3760          * pending reservations for this page now. This will ensure that
3761          * any allocations necessary to record that reservation occur outside
3762          * the spinlock.
3763          */
3764         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3765                 if (vma_needs_reservation(h, vma, address) < 0) {
3766                         ret = VM_FAULT_OOM;
3767                         goto backout_unlocked;
3768                 }
3769                 /* Just decrements count, does not deallocate */
3770                 vma_end_reservation(h, vma, address);
3771         }
3772
3773         ptl = huge_pte_lock(h, mm, ptep);
3774         size = i_size_read(mapping->host) >> huge_page_shift(h);
3775         if (idx >= size)
3776                 goto backout;
3777
3778         ret = 0;
3779         if (!huge_pte_none(huge_ptep_get(ptep)))
3780                 goto backout;
3781
3782         if (anon_rmap) {
3783                 ClearPagePrivate(page);
3784                 hugepage_add_new_anon_rmap(page, vma, address);
3785         } else
3786                 page_dup_rmap(page, true);
3787         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3788                                 && (vma->vm_flags & VM_SHARED)));
3789         set_huge_pte_at(mm, address, ptep, new_pte);
3790
3791         hugetlb_count_add(pages_per_huge_page(h), mm);
3792         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3793                 /* Optimization, do the COW without a second fault */
3794                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3795         }
3796
3797         spin_unlock(ptl);
3798         unlock_page(page);
3799 out:
3800         return ret;
3801
3802 backout:
3803         spin_unlock(ptl);
3804 backout_unlocked:
3805         unlock_page(page);
3806         restore_reserve_on_error(h, vma, address, page);
3807         put_page(page);
3808         goto out;
3809 }
3810
3811 #ifdef CONFIG_SMP
3812 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3813                             struct vm_area_struct *vma,
3814                             struct address_space *mapping,
3815                             pgoff_t idx, unsigned long address)
3816 {
3817         unsigned long key[2];
3818         u32 hash;
3819
3820         if (vma->vm_flags & VM_SHARED) {
3821                 key[0] = (unsigned long) mapping;
3822                 key[1] = idx;
3823         } else {
3824                 key[0] = (unsigned long) mm;
3825                 key[1] = address >> huge_page_shift(h);
3826         }
3827
3828         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3829
3830         return hash & (num_fault_mutexes - 1);
3831 }
3832 #else
3833 /*
3834  * For uniprocesor systems we always use a single mutex, so just
3835  * return 0 and avoid the hashing overhead.
3836  */
3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838                             struct vm_area_struct *vma,
3839                             struct address_space *mapping,
3840                             pgoff_t idx, unsigned long address)
3841 {
3842         return 0;
3843 }
3844 #endif
3845
3846 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3847                         unsigned long address, unsigned int flags)
3848 {
3849         pte_t *ptep, entry;
3850         spinlock_t *ptl;
3851         int ret;
3852         u32 hash;
3853         pgoff_t idx;
3854         struct page *page = NULL;
3855         struct page *pagecache_page = NULL;
3856         struct hstate *h = hstate_vma(vma);
3857         struct address_space *mapping;
3858         int need_wait_lock = 0;
3859
3860         address &= huge_page_mask(h);
3861
3862         ptep = huge_pte_offset(mm, address);
3863         if (ptep) {
3864                 entry = huge_ptep_get(ptep);
3865                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3866                         migration_entry_wait_huge(vma, mm, ptep);
3867                         return 0;
3868                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3869                         return VM_FAULT_HWPOISON_LARGE |
3870                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3871         } else {
3872                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3873                 if (!ptep)
3874                         return VM_FAULT_OOM;
3875         }
3876
3877         mapping = vma->vm_file->f_mapping;
3878         idx = vma_hugecache_offset(h, vma, address);
3879
3880         /*
3881          * Serialize hugepage allocation and instantiation, so that we don't
3882          * get spurious allocation failures if two CPUs race to instantiate
3883          * the same page in the page cache.
3884          */
3885         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3886         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3887
3888         entry = huge_ptep_get(ptep);
3889         if (huge_pte_none(entry)) {
3890                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3891                 goto out_mutex;
3892         }
3893
3894         ret = 0;
3895
3896         /*
3897          * entry could be a migration/hwpoison entry at this point, so this
3898          * check prevents the kernel from going below assuming that we have
3899          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3900          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3901          * handle it.
3902          */
3903         if (!pte_present(entry))
3904                 goto out_mutex;
3905
3906         /*
3907          * If we are going to COW the mapping later, we examine the pending
3908          * reservations for this page now. This will ensure that any
3909          * allocations necessary to record that reservation occur outside the
3910          * spinlock. For private mappings, we also lookup the pagecache
3911          * page now as it is used to determine if a reservation has been
3912          * consumed.
3913          */
3914         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3915                 if (vma_needs_reservation(h, vma, address) < 0) {
3916                         ret = VM_FAULT_OOM;
3917                         goto out_mutex;
3918                 }
3919                 /* Just decrements count, does not deallocate */
3920                 vma_end_reservation(h, vma, address);
3921
3922                 if (!(vma->vm_flags & VM_MAYSHARE))
3923                         pagecache_page = hugetlbfs_pagecache_page(h,
3924                                                                 vma, address);
3925         }
3926
3927         ptl = huge_pte_lock(h, mm, ptep);
3928
3929         /* Check for a racing update before calling hugetlb_cow */
3930         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3931                 goto out_ptl;
3932
3933         /*
3934          * hugetlb_cow() requires page locks of pte_page(entry) and
3935          * pagecache_page, so here we need take the former one
3936          * when page != pagecache_page or !pagecache_page.
3937          */
3938         page = pte_page(entry);
3939         if (page != pagecache_page)
3940                 if (!trylock_page(page)) {
3941                         need_wait_lock = 1;
3942                         goto out_ptl;
3943                 }
3944
3945         get_page(page);
3946
3947         if (flags & FAULT_FLAG_WRITE) {
3948                 if (!huge_pte_write(entry)) {
3949                         ret = hugetlb_cow(mm, vma, address, ptep,
3950                                           pagecache_page, ptl);
3951                         goto out_put_page;
3952                 }
3953                 entry = huge_pte_mkdirty(entry);
3954         }
3955         entry = pte_mkyoung(entry);
3956         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3957                                                 flags & FAULT_FLAG_WRITE))
3958                 update_mmu_cache(vma, address, ptep);
3959 out_put_page:
3960         if (page != pagecache_page)
3961                 unlock_page(page);
3962         put_page(page);
3963 out_ptl:
3964         spin_unlock(ptl);
3965
3966         if (pagecache_page) {
3967                 unlock_page(pagecache_page);
3968                 put_page(pagecache_page);
3969         }
3970 out_mutex:
3971         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3972         /*
3973          * Generally it's safe to hold refcount during waiting page lock. But
3974          * here we just wait to defer the next page fault to avoid busy loop and
3975          * the page is not used after unlocked before returning from the current
3976          * page fault. So we are safe from accessing freed page, even if we wait
3977          * here without taking refcount.
3978          */
3979         if (need_wait_lock)
3980                 wait_on_page_locked(page);
3981         return ret;
3982 }
3983
3984 /*
3985  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3986  * modifications for huge pages.
3987  */
3988 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3989                             pte_t *dst_pte,
3990                             struct vm_area_struct *dst_vma,
3991                             unsigned long dst_addr,
3992                             unsigned long src_addr,
3993                             struct page **pagep)
3994 {
3995         struct hstate *h = hstate_vma(dst_vma);
3996         pte_t _dst_pte;
3997         spinlock_t *ptl;
3998         int ret;
3999         struct page *page;
4000
4001         if (!*pagep) {
4002                 ret = -ENOMEM;
4003                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4004                 if (IS_ERR(page))
4005                         goto out;
4006
4007                 ret = copy_huge_page_from_user(page,
4008                                                 (const void __user *) src_addr,
4009                                                 pages_per_huge_page(h), false);
4010
4011                 /* fallback to copy_from_user outside mmap_sem */
4012                 if (unlikely(ret)) {
4013                         ret = -EFAULT;
4014                         *pagep = page;
4015                         /* don't free the page */
4016                         goto out;
4017                 }
4018         } else {
4019                 page = *pagep;
4020                 *pagep = NULL;
4021         }
4022
4023         /*
4024          * The memory barrier inside __SetPageUptodate makes sure that
4025          * preceding stores to the page contents become visible before
4026          * the set_pte_at() write.
4027          */
4028         __SetPageUptodate(page);
4029         set_page_huge_active(page);
4030
4031         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4032         spin_lock(ptl);
4033
4034         ret = -EEXIST;
4035         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4036                 goto out_release_unlock;
4037
4038         ClearPagePrivate(page);
4039         hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4040
4041         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4042         if (dst_vma->vm_flags & VM_WRITE)
4043                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4044         _dst_pte = pte_mkyoung(_dst_pte);
4045
4046         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4047
4048         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4049                                         dst_vma->vm_flags & VM_WRITE);
4050         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4051
4052         /* No need to invalidate - it was non-present before */
4053         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4054
4055         spin_unlock(ptl);
4056         ret = 0;
4057 out:
4058         return ret;
4059 out_release_unlock:
4060         spin_unlock(ptl);
4061         put_page(page);
4062         goto out;
4063 }
4064
4065 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4066                          struct page **pages, struct vm_area_struct **vmas,
4067                          unsigned long *position, unsigned long *nr_pages,
4068                          long i, unsigned int flags, int *nonblocking)
4069 {
4070         unsigned long pfn_offset;
4071         unsigned long vaddr = *position;
4072         unsigned long remainder = *nr_pages;
4073         struct hstate *h = hstate_vma(vma);
4074
4075         while (vaddr < vma->vm_end && remainder) {
4076                 pte_t *pte;
4077                 spinlock_t *ptl = NULL;
4078                 int absent;
4079                 struct page *page;
4080
4081                 /*
4082                  * If we have a pending SIGKILL, don't keep faulting pages and
4083                  * potentially allocating memory.
4084                  */
4085                 if (unlikely(fatal_signal_pending(current))) {
4086                         remainder = 0;
4087                         break;
4088                 }
4089
4090                 /*
4091                  * Some archs (sparc64, sh*) have multiple pte_ts to
4092                  * each hugepage.  We have to make sure we get the
4093                  * first, for the page indexing below to work.
4094                  *
4095                  * Note that page table lock is not held when pte is null.
4096                  */
4097                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4098                 if (pte)
4099                         ptl = huge_pte_lock(h, mm, pte);
4100                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4101
4102                 /*
4103                  * When coredumping, it suits get_dump_page if we just return
4104                  * an error where there's an empty slot with no huge pagecache
4105                  * to back it.  This way, we avoid allocating a hugepage, and
4106                  * the sparse dumpfile avoids allocating disk blocks, but its
4107                  * huge holes still show up with zeroes where they need to be.
4108                  */
4109                 if (absent && (flags & FOLL_DUMP) &&
4110                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4111                         if (pte)
4112                                 spin_unlock(ptl);
4113                         remainder = 0;
4114                         break;
4115                 }
4116
4117                 /*
4118                  * We need call hugetlb_fault for both hugepages under migration
4119                  * (in which case hugetlb_fault waits for the migration,) and
4120                  * hwpoisoned hugepages (in which case we need to prevent the
4121                  * caller from accessing to them.) In order to do this, we use
4122                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4123                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4124                  * both cases, and because we can't follow correct pages
4125                  * directly from any kind of swap entries.
4126                  */
4127                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4128                     ((flags & FOLL_WRITE) &&
4129                       !huge_pte_write(huge_ptep_get(pte)))) {
4130                         int ret;
4131                         unsigned int fault_flags = 0;
4132
4133                         if (pte)
4134                                 spin_unlock(ptl);
4135                         if (flags & FOLL_WRITE)
4136                                 fault_flags |= FAULT_FLAG_WRITE;
4137                         if (nonblocking)
4138                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4139                         if (flags & FOLL_NOWAIT)
4140                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4141                                         FAULT_FLAG_RETRY_NOWAIT;
4142                         if (flags & FOLL_TRIED) {
4143                                 VM_WARN_ON_ONCE(fault_flags &
4144                                                 FAULT_FLAG_ALLOW_RETRY);
4145                                 fault_flags |= FAULT_FLAG_TRIED;
4146                         }
4147                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4148                         if (ret & VM_FAULT_ERROR) {
4149                                 remainder = 0;
4150                                 break;
4151                         }
4152                         if (ret & VM_FAULT_RETRY) {
4153                                 if (nonblocking)
4154                                         *nonblocking = 0;
4155                                 *nr_pages = 0;
4156                                 /*
4157                                  * VM_FAULT_RETRY must not return an
4158                                  * error, it will return zero
4159                                  * instead.
4160                                  *
4161                                  * No need to update "position" as the
4162                                  * caller will not check it after
4163                                  * *nr_pages is set to 0.
4164                                  */
4165                                 return i;
4166                         }
4167                         continue;
4168                 }
4169
4170                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4171                 page = pte_page(huge_ptep_get(pte));
4172 same_page:
4173                 if (pages) {
4174                         pages[i] = mem_map_offset(page, pfn_offset);
4175                         get_page(pages[i]);
4176                 }
4177
4178                 if (vmas)
4179                         vmas[i] = vma;
4180
4181                 vaddr += PAGE_SIZE;
4182                 ++pfn_offset;
4183                 --remainder;
4184                 ++i;
4185                 if (vaddr < vma->vm_end && remainder &&
4186                                 pfn_offset < pages_per_huge_page(h)) {
4187                         /*
4188                          * We use pfn_offset to avoid touching the pageframes
4189                          * of this compound page.
4190                          */
4191                         goto same_page;
4192                 }
4193                 spin_unlock(ptl);
4194         }
4195         *nr_pages = remainder;
4196         /*
4197          * setting position is actually required only if remainder is
4198          * not zero but it's faster not to add a "if (remainder)"
4199          * branch.
4200          */
4201         *position = vaddr;
4202
4203         return i ? i : -EFAULT;
4204 }
4205
4206 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4207 /*
4208  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4209  * implement this.
4210  */
4211 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4212 #endif
4213
4214 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4215                 unsigned long address, unsigned long end, pgprot_t newprot)
4216 {
4217         struct mm_struct *mm = vma->vm_mm;
4218         unsigned long start = address;
4219         pte_t *ptep;
4220         pte_t pte;
4221         struct hstate *h = hstate_vma(vma);
4222         unsigned long pages = 0;
4223
4224         BUG_ON(address >= end);
4225         flush_cache_range(vma, address, end);
4226
4227         mmu_notifier_invalidate_range_start(mm, start, end);
4228         i_mmap_lock_write(vma->vm_file->f_mapping);
4229         for (; address < end; address += huge_page_size(h)) {
4230                 spinlock_t *ptl;
4231                 ptep = huge_pte_offset(mm, address);
4232                 if (!ptep)
4233                         continue;
4234                 ptl = huge_pte_lock(h, mm, ptep);
4235                 if (huge_pmd_unshare(mm, &address, ptep)) {
4236                         pages++;
4237                         spin_unlock(ptl);
4238                         continue;
4239                 }
4240                 pte = huge_ptep_get(ptep);
4241                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4242                         spin_unlock(ptl);
4243                         continue;
4244                 }
4245                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4246                         swp_entry_t entry = pte_to_swp_entry(pte);
4247
4248                         if (is_write_migration_entry(entry)) {
4249                                 pte_t newpte;
4250
4251                                 make_migration_entry_read(&entry);
4252                                 newpte = swp_entry_to_pte(entry);
4253                                 set_huge_pte_at(mm, address, ptep, newpte);
4254                                 pages++;
4255                         }
4256                         spin_unlock(ptl);
4257                         continue;
4258                 }
4259                 if (!huge_pte_none(pte)) {
4260                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4261                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4262                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4263                         set_huge_pte_at(mm, address, ptep, pte);
4264                         pages++;
4265                 }
4266                 spin_unlock(ptl);
4267         }
4268         /*
4269          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4270          * may have cleared our pud entry and done put_page on the page table:
4271          * once we release i_mmap_rwsem, another task can do the final put_page
4272          * and that page table be reused and filled with junk.
4273          */
4274         flush_hugetlb_tlb_range(vma, start, end);
4275         mmu_notifier_invalidate_range(mm, start, end);
4276         i_mmap_unlock_write(vma->vm_file->f_mapping);
4277         mmu_notifier_invalidate_range_end(mm, start, end);
4278
4279         return pages << h->order;
4280 }
4281
4282 int hugetlb_reserve_pages(struct inode *inode,
4283                                         long from, long to,
4284                                         struct vm_area_struct *vma,
4285                                         vm_flags_t vm_flags)
4286 {
4287         long ret, chg;
4288         struct hstate *h = hstate_inode(inode);
4289         struct hugepage_subpool *spool = subpool_inode(inode);
4290         struct resv_map *resv_map;
4291         long gbl_reserve;
4292
4293         /*
4294          * Only apply hugepage reservation if asked. At fault time, an
4295          * attempt will be made for VM_NORESERVE to allocate a page
4296          * without using reserves
4297          */
4298         if (vm_flags & VM_NORESERVE)
4299                 return 0;
4300
4301         /*
4302          * Shared mappings base their reservation on the number of pages that
4303          * are already allocated on behalf of the file. Private mappings need
4304          * to reserve the full area even if read-only as mprotect() may be
4305          * called to make the mapping read-write. Assume !vma is a shm mapping
4306          */
4307         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4308                 resv_map = inode_resv_map(inode);
4309
4310                 chg = region_chg(resv_map, from, to);
4311
4312         } else {
4313                 resv_map = resv_map_alloc();
4314                 if (!resv_map)
4315                         return -ENOMEM;
4316
4317                 chg = to - from;
4318
4319                 set_vma_resv_map(vma, resv_map);
4320                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4321         }
4322
4323         if (chg < 0) {
4324                 ret = chg;
4325                 goto out_err;
4326         }
4327
4328         /*
4329          * There must be enough pages in the subpool for the mapping. If
4330          * the subpool has a minimum size, there may be some global
4331          * reservations already in place (gbl_reserve).
4332          */
4333         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4334         if (gbl_reserve < 0) {
4335                 ret = -ENOSPC;
4336                 goto out_err;
4337         }
4338
4339         /*
4340          * Check enough hugepages are available for the reservation.
4341          * Hand the pages back to the subpool if there are not
4342          */
4343         ret = hugetlb_acct_memory(h, gbl_reserve);
4344         if (ret < 0) {
4345                 /* put back original number of pages, chg */
4346                 (void)hugepage_subpool_put_pages(spool, chg);
4347                 goto out_err;
4348         }
4349
4350         /*
4351          * Account for the reservations made. Shared mappings record regions
4352          * that have reservations as they are shared by multiple VMAs.
4353          * When the last VMA disappears, the region map says how much
4354          * the reservation was and the page cache tells how much of
4355          * the reservation was consumed. Private mappings are per-VMA and
4356          * only the consumed reservations are tracked. When the VMA
4357          * disappears, the original reservation is the VMA size and the
4358          * consumed reservations are stored in the map. Hence, nothing
4359          * else has to be done for private mappings here
4360          */
4361         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4362                 long add = region_add(resv_map, from, to);
4363
4364                 if (unlikely(chg > add)) {
4365                         /*
4366                          * pages in this range were added to the reserve
4367                          * map between region_chg and region_add.  This
4368                          * indicates a race with alloc_huge_page.  Adjust
4369                          * the subpool and reserve counts modified above
4370                          * based on the difference.
4371                          */
4372                         long rsv_adjust;
4373
4374                         rsv_adjust = hugepage_subpool_put_pages(spool,
4375                                                                 chg - add);
4376                         hugetlb_acct_memory(h, -rsv_adjust);
4377                 }
4378         }
4379         return 0;
4380 out_err:
4381         if (!vma || vma->vm_flags & VM_MAYSHARE)
4382                 region_abort(resv_map, from, to);
4383         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4384                 kref_put(&resv_map->refs, resv_map_release);
4385         return ret;
4386 }
4387
4388 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4389                                                                 long freed)
4390 {
4391         struct hstate *h = hstate_inode(inode);
4392         struct resv_map *resv_map = inode_resv_map(inode);
4393         long chg = 0;
4394         struct hugepage_subpool *spool = subpool_inode(inode);
4395         long gbl_reserve;
4396
4397         if (resv_map) {
4398                 chg = region_del(resv_map, start, end);
4399                 /*
4400                  * region_del() can fail in the rare case where a region
4401                  * must be split and another region descriptor can not be
4402                  * allocated.  If end == LONG_MAX, it will not fail.
4403                  */
4404                 if (chg < 0)
4405                         return chg;
4406         }
4407
4408         spin_lock(&inode->i_lock);
4409         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4410         spin_unlock(&inode->i_lock);
4411
4412         /*
4413          * If the subpool has a minimum size, the number of global
4414          * reservations to be released may be adjusted.
4415          */
4416         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4417         hugetlb_acct_memory(h, -gbl_reserve);
4418
4419         return 0;
4420 }
4421
4422 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4423 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4424                                 struct vm_area_struct *vma,
4425                                 unsigned long addr, pgoff_t idx)
4426 {
4427         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4428                                 svma->vm_start;
4429         unsigned long sbase = saddr & PUD_MASK;
4430         unsigned long s_end = sbase + PUD_SIZE;
4431
4432         /* Allow segments to share if only one is marked locked */
4433         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4434         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4435
4436         /*
4437          * match the virtual addresses, permission and the alignment of the
4438          * page table page.
4439          */
4440         if (pmd_index(addr) != pmd_index(saddr) ||
4441             vm_flags != svm_flags ||
4442             sbase < svma->vm_start || svma->vm_end < s_end)
4443                 return 0;
4444
4445         return saddr;
4446 }
4447
4448 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4449 {
4450         unsigned long base = addr & PUD_MASK;
4451         unsigned long end = base + PUD_SIZE;
4452
4453         /*
4454          * check on proper vm_flags and page table alignment
4455          */
4456         if (vma->vm_flags & VM_MAYSHARE &&
4457             vma->vm_start <= base && end <= vma->vm_end)
4458                 return true;
4459         return false;
4460 }
4461
4462 /*
4463  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4464  * and returns the corresponding pte. While this is not necessary for the
4465  * !shared pmd case because we can allocate the pmd later as well, it makes the
4466  * code much cleaner. pmd allocation is essential for the shared case because
4467  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4468  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4469  * bad pmd for sharing.
4470  */
4471 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4472 {
4473         struct vm_area_struct *vma = find_vma(mm, addr);
4474         struct address_space *mapping = vma->vm_file->f_mapping;
4475         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4476                         vma->vm_pgoff;
4477         struct vm_area_struct *svma;
4478         unsigned long saddr;
4479         pte_t *spte = NULL;
4480         pte_t *pte;
4481         spinlock_t *ptl;
4482
4483         if (!vma_shareable(vma, addr))
4484                 return (pte_t *)pmd_alloc(mm, pud, addr);
4485
4486         i_mmap_lock_write(mapping);
4487         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4488                 if (svma == vma)
4489                         continue;
4490
4491                 saddr = page_table_shareable(svma, vma, addr, idx);
4492                 if (saddr) {
4493                         spte = huge_pte_offset(svma->vm_mm, saddr);
4494                         if (spte) {
4495                                 get_page(virt_to_page(spte));
4496                                 break;
4497                         }
4498                 }
4499         }
4500
4501         if (!spte)
4502                 goto out;
4503
4504         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4505         if (pud_none(*pud)) {
4506                 pud_populate(mm, pud,
4507                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4508                 mm_inc_nr_pmds(mm);
4509         } else {
4510                 put_page(virt_to_page(spte));
4511         }
4512         spin_unlock(ptl);
4513 out:
4514         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4515         i_mmap_unlock_write(mapping);
4516         return pte;
4517 }
4518
4519 /*
4520  * unmap huge page backed by shared pte.
4521  *
4522  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4523  * indicated by page_count > 1, unmap is achieved by clearing pud and
4524  * decrementing the ref count. If count == 1, the pte page is not shared.
4525  *
4526  * called with page table lock held.
4527  *
4528  * returns: 1 successfully unmapped a shared pte page
4529  *          0 the underlying pte page is not shared, or it is the last user
4530  */
4531 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4532 {
4533         pgd_t *pgd = pgd_offset(mm, *addr);
4534         pud_t *pud = pud_offset(pgd, *addr);
4535
4536         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4537         if (page_count(virt_to_page(ptep)) == 1)
4538                 return 0;
4539
4540         pud_clear(pud);
4541         put_page(virt_to_page(ptep));
4542         mm_dec_nr_pmds(mm);
4543         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4544         return 1;
4545 }
4546 #define want_pmd_share()        (1)
4547 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4548 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4549 {
4550         return NULL;
4551 }
4552
4553 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4554 {
4555         return 0;
4556 }
4557 #define want_pmd_share()        (0)
4558 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4559
4560 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4561 pte_t *huge_pte_alloc(struct mm_struct *mm,
4562                         unsigned long addr, unsigned long sz)
4563 {
4564         pgd_t *pgd;
4565         pud_t *pud;
4566         pte_t *pte = NULL;
4567
4568         pgd = pgd_offset(mm, addr);
4569         pud = pud_alloc(mm, pgd, addr);
4570         if (pud) {
4571                 if (sz == PUD_SIZE) {
4572                         pte = (pte_t *)pud;
4573                 } else {
4574                         BUG_ON(sz != PMD_SIZE);
4575                         if (want_pmd_share() && pud_none(*pud))
4576                                 pte = huge_pmd_share(mm, addr, pud);
4577                         else
4578                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4579                 }
4580         }
4581         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4582
4583         return pte;
4584 }
4585
4586 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4587 {
4588         pgd_t *pgd;
4589         pud_t *pud;
4590         pmd_t *pmd = NULL;
4591
4592         pgd = pgd_offset(mm, addr);
4593         if (pgd_present(*pgd)) {
4594                 pud = pud_offset(pgd, addr);
4595                 if (pud_present(*pud)) {
4596                         if (pud_huge(*pud))
4597                                 return (pte_t *)pud;
4598                         pmd = pmd_offset(pud, addr);
4599                 }
4600         }
4601         return (pte_t *) pmd;
4602 }
4603
4604 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4605
4606 /*
4607  * These functions are overwritable if your architecture needs its own
4608  * behavior.
4609  */
4610 struct page * __weak
4611 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4612                               int write)
4613 {
4614         return ERR_PTR(-EINVAL);
4615 }
4616
4617 struct page * __weak
4618 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4619                 pmd_t *pmd, int flags)
4620 {
4621         struct page *page = NULL;
4622         spinlock_t *ptl;
4623 retry:
4624         ptl = pmd_lockptr(mm, pmd);
4625         spin_lock(ptl);
4626         /*
4627          * make sure that the address range covered by this pmd is not
4628          * unmapped from other threads.
4629          */
4630         if (!pmd_huge(*pmd))
4631                 goto out;
4632         if (pmd_present(*pmd)) {
4633                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4634                 if (flags & FOLL_GET)
4635                         get_page(page);
4636         } else {
4637                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4638                         spin_unlock(ptl);
4639                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4640                         goto retry;
4641                 }
4642                 /*
4643                  * hwpoisoned entry is treated as no_page_table in
4644                  * follow_page_mask().
4645                  */
4646         }
4647 out:
4648         spin_unlock(ptl);
4649         return page;
4650 }
4651
4652 struct page * __weak
4653 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4654                 pud_t *pud, int flags)
4655 {
4656         if (flags & FOLL_GET)
4657                 return NULL;
4658
4659         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4660 }
4661
4662 #ifdef CONFIG_MEMORY_FAILURE
4663
4664 /*
4665  * This function is called from memory failure code.
4666  */
4667 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4668 {
4669         struct hstate *h = page_hstate(hpage);
4670         int nid = page_to_nid(hpage);
4671         int ret = -EBUSY;
4672
4673         spin_lock(&hugetlb_lock);
4674         /*
4675          * Just checking !page_huge_active is not enough, because that could be
4676          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4677          */
4678         if (!page_huge_active(hpage) && !page_count(hpage)) {
4679                 /*
4680                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4681                  * but dangling hpage->lru can trigger list-debug warnings
4682                  * (this happens when we call unpoison_memory() on it),
4683                  * so let it point to itself with list_del_init().
4684                  */
4685                 list_del_init(&hpage->lru);
4686                 set_page_refcounted(hpage);
4687                 h->free_huge_pages--;
4688                 h->free_huge_pages_node[nid]--;
4689                 ret = 0;
4690         }
4691         spin_unlock(&hugetlb_lock);
4692         return ret;
4693 }
4694 #endif
4695
4696 bool isolate_huge_page(struct page *page, struct list_head *list)
4697 {
4698         bool ret = true;
4699
4700         VM_BUG_ON_PAGE(!PageHead(page), page);
4701         spin_lock(&hugetlb_lock);
4702         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4703                 ret = false;
4704                 goto unlock;
4705         }
4706         clear_page_huge_active(page);
4707         list_move_tail(&page->lru, list);
4708 unlock:
4709         spin_unlock(&hugetlb_lock);
4710         return ret;
4711 }
4712
4713 void putback_active_hugepage(struct page *page)
4714 {
4715         VM_BUG_ON_PAGE(!PageHead(page), page);
4716         spin_lock(&hugetlb_lock);
4717         set_page_huge_active(page);
4718         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4719         spin_unlock(&hugetlb_lock);
4720         put_page(page);
4721 }