]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!PageHWPoison(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
890 {
891         struct page *page;
892         int node;
893
894         if (nid != NUMA_NO_NODE)
895                 return dequeue_huge_page_node_exact(h, nid);
896
897         for_each_online_node(node) {
898                 page = dequeue_huge_page_node_exact(h, node);
899                 if (page)
900                         return page;
901         }
902         return NULL;
903 }
904
905 /* Movability of hugepages depends on migration support. */
906 static inline gfp_t htlb_alloc_mask(struct hstate *h)
907 {
908         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
909                 return GFP_HIGHUSER_MOVABLE;
910         else
911                 return GFP_HIGHUSER;
912 }
913
914 static struct page *dequeue_huge_page_vma(struct hstate *h,
915                                 struct vm_area_struct *vma,
916                                 unsigned long address, int avoid_reserve,
917                                 long chg)
918 {
919         struct page *page = NULL;
920         struct mempolicy *mpol;
921         nodemask_t *nodemask;
922         gfp_t gfp_mask;
923         int nid;
924         struct zonelist *zonelist;
925         struct zone *zone;
926         struct zoneref *z;
927         unsigned int cpuset_mems_cookie;
928
929         /*
930          * A child process with MAP_PRIVATE mappings created by their parent
931          * have no page reserves. This check ensures that reservations are
932          * not "stolen". The child may still get SIGKILLed
933          */
934         if (!vma_has_reserves(vma, chg) &&
935                         h->free_huge_pages - h->resv_huge_pages == 0)
936                 goto err;
937
938         /* If reserves cannot be used, ensure enough pages are in the pool */
939         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
940                 goto err;
941
942 retry_cpuset:
943         cpuset_mems_cookie = read_mems_allowed_begin();
944         gfp_mask = htlb_alloc_mask(h);
945         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
946         zonelist = node_zonelist(nid, gfp_mask);
947
948         for_each_zone_zonelist_nodemask(zone, z, zonelist,
949                                                 MAX_NR_ZONES - 1, nodemask) {
950                 if (cpuset_zone_allowed(zone, gfp_mask)) {
951                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
952                         if (page) {
953                                 if (avoid_reserve)
954                                         break;
955                                 if (!vma_has_reserves(vma, chg))
956                                         break;
957
958                                 SetPagePrivate(page);
959                                 h->resv_huge_pages--;
960                                 break;
961                         }
962                 }
963         }
964
965         mpol_cond_put(mpol);
966         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
967                 goto retry_cpuset;
968         return page;
969
970 err:
971         return NULL;
972 }
973
974 /*
975  * common helper functions for hstate_next_node_to_{alloc|free}.
976  * We may have allocated or freed a huge page based on a different
977  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978  * be outside of *nodes_allowed.  Ensure that we use an allowed
979  * node for alloc or free.
980  */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983         nid = next_node_in(nid, *nodes_allowed);
984         VM_BUG_ON(nid >= MAX_NUMNODES);
985
986         return nid;
987 }
988
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991         if (!node_isset(nid, *nodes_allowed))
992                 nid = next_node_allowed(nid, nodes_allowed);
993         return nid;
994 }
995
996 /*
997  * returns the previously saved node ["this node"] from which to
998  * allocate a persistent huge page for the pool and advance the
999  * next node from which to allocate, handling wrap at end of node
1000  * mask.
1001  */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003                                         nodemask_t *nodes_allowed)
1004 {
1005         int nid;
1006
1007         VM_BUG_ON(!nodes_allowed);
1008
1009         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012         return nid;
1013 }
1014
1015 /*
1016  * helper for free_pool_huge_page() - return the previously saved
1017  * node ["this node"] from which to free a huge page.  Advance the
1018  * next node id whether or not we find a free huge page to free so
1019  * that the next attempt to free addresses the next node.
1020  */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023         int nid;
1024
1025         VM_BUG_ON(!nodes_allowed);
1026
1027         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030         return nid;
1031 }
1032
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1037                 nr_nodes--)
1038
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1040         for (nr_nodes = nodes_weight(*mask);                            \
1041                 nr_nodes > 0 &&                                         \
1042                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1043                 nr_nodes--)
1044
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047                                         unsigned int order)
1048 {
1049         int i;
1050         int nr_pages = 1 << order;
1051         struct page *p = page + 1;
1052
1053         atomic_set(compound_mapcount_ptr(page), 0);
1054         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055                 clear_compound_head(p);
1056                 set_page_refcounted(p);
1057         }
1058
1059         set_compound_order(page, 0);
1060         __ClearPageHead(page);
1061 }
1062
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065         free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069                                 unsigned long nr_pages)
1070 {
1071         unsigned long end_pfn = start_pfn + nr_pages;
1072         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073                                   GFP_KERNEL);
1074 }
1075
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077                         unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079         unsigned long i, end_pfn = start_pfn + nr_pages;
1080         struct page *page;
1081
1082         for (i = start_pfn; i < end_pfn; i++) {
1083                 if (!pfn_valid(i))
1084                         return false;
1085
1086                 page = pfn_to_page(i);
1087
1088                 if (page_zone(page) != z)
1089                         return false;
1090
1091                 if (PageReserved(page))
1092                         return false;
1093
1094                 if (page_count(page) > 0)
1095                         return false;
1096
1097                 if (PageHuge(page))
1098                         return false;
1099         }
1100
1101         return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105                         unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107         unsigned long last_pfn = start_pfn + nr_pages - 1;
1108         return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 {
1113         unsigned long nr_pages = 1 << order;
1114         unsigned long ret, pfn, flags;
1115         struct zone *z;
1116
1117         z = NODE_DATA(nid)->node_zones;
1118         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119                 spin_lock_irqsave(&z->lock, flags);
1120
1121                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124                                 /*
1125                                  * We release the zone lock here because
1126                                  * alloc_contig_range() will also lock the zone
1127                                  * at some point. If there's an allocation
1128                                  * spinning on this lock, it may win the race
1129                                  * and cause alloc_contig_range() to fail...
1130                                  */
1131                                 spin_unlock_irqrestore(&z->lock, flags);
1132                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1133                                 if (!ret)
1134                                         return pfn_to_page(pfn);
1135                                 spin_lock_irqsave(&z->lock, flags);
1136                         }
1137                         pfn += nr_pages;
1138                 }
1139
1140                 spin_unlock_irqrestore(&z->lock, flags);
1141         }
1142
1143         return NULL;
1144 }
1145
1146 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148
1149 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150 {
1151         struct page *page;
1152
1153         page = alloc_gigantic_page(nid, huge_page_order(h));
1154         if (page) {
1155                 prep_compound_gigantic_page(page, huge_page_order(h));
1156                 prep_new_huge_page(h, page, nid);
1157         }
1158
1159         return page;
1160 }
1161
1162 static int alloc_fresh_gigantic_page(struct hstate *h,
1163                                 nodemask_t *nodes_allowed)
1164 {
1165         struct page *page = NULL;
1166         int nr_nodes, node;
1167
1168         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169                 page = alloc_fresh_gigantic_page_node(h, node);
1170                 if (page)
1171                         return 1;
1172         }
1173
1174         return 0;
1175 }
1176
1177 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178 static inline bool gigantic_page_supported(void) { return false; }
1179 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180 static inline void destroy_compound_gigantic_page(struct page *page,
1181                                                 unsigned int order) { }
1182 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183                                         nodemask_t *nodes_allowed) { return 0; }
1184 #endif
1185
1186 static void update_and_free_page(struct hstate *h, struct page *page)
1187 {
1188         int i;
1189
1190         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191                 return;
1192
1193         h->nr_huge_pages--;
1194         h->nr_huge_pages_node[page_to_nid(page)]--;
1195         for (i = 0; i < pages_per_huge_page(h); i++) {
1196                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197                                 1 << PG_referenced | 1 << PG_dirty |
1198                                 1 << PG_active | 1 << PG_private |
1199                                 1 << PG_writeback);
1200         }
1201         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1203         set_page_refcounted(page);
1204         if (hstate_is_gigantic(h)) {
1205                 destroy_compound_gigantic_page(page, huge_page_order(h));
1206                 free_gigantic_page(page, huge_page_order(h));
1207         } else {
1208                 __free_pages(page, huge_page_order(h));
1209         }
1210 }
1211
1212 struct hstate *size_to_hstate(unsigned long size)
1213 {
1214         struct hstate *h;
1215
1216         for_each_hstate(h) {
1217                 if (huge_page_size(h) == size)
1218                         return h;
1219         }
1220         return NULL;
1221 }
1222
1223 /*
1224  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225  * to hstate->hugepage_activelist.)
1226  *
1227  * This function can be called for tail pages, but never returns true for them.
1228  */
1229 bool page_huge_active(struct page *page)
1230 {
1231         VM_BUG_ON_PAGE(!PageHuge(page), page);
1232         return PageHead(page) && PagePrivate(&page[1]);
1233 }
1234
1235 /* never called for tail page */
1236 static void set_page_huge_active(struct page *page)
1237 {
1238         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239         SetPagePrivate(&page[1]);
1240 }
1241
1242 static void clear_page_huge_active(struct page *page)
1243 {
1244         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245         ClearPagePrivate(&page[1]);
1246 }
1247
1248 void free_huge_page(struct page *page)
1249 {
1250         /*
1251          * Can't pass hstate in here because it is called from the
1252          * compound page destructor.
1253          */
1254         struct hstate *h = page_hstate(page);
1255         int nid = page_to_nid(page);
1256         struct hugepage_subpool *spool =
1257                 (struct hugepage_subpool *)page_private(page);
1258         bool restore_reserve;
1259
1260         set_page_private(page, 0);
1261         page->mapping = NULL;
1262         VM_BUG_ON_PAGE(page_count(page), page);
1263         VM_BUG_ON_PAGE(page_mapcount(page), page);
1264         restore_reserve = PagePrivate(page);
1265         ClearPagePrivate(page);
1266
1267         /*
1268          * A return code of zero implies that the subpool will be under its
1269          * minimum size if the reservation is not restored after page is free.
1270          * Therefore, force restore_reserve operation.
1271          */
1272         if (hugepage_subpool_put_pages(spool, 1) == 0)
1273                 restore_reserve = true;
1274
1275         spin_lock(&hugetlb_lock);
1276         clear_page_huge_active(page);
1277         hugetlb_cgroup_uncharge_page(hstate_index(h),
1278                                      pages_per_huge_page(h), page);
1279         if (restore_reserve)
1280                 h->resv_huge_pages++;
1281
1282         if (h->surplus_huge_pages_node[nid]) {
1283                 /* remove the page from active list */
1284                 list_del(&page->lru);
1285                 update_and_free_page(h, page);
1286                 h->surplus_huge_pages--;
1287                 h->surplus_huge_pages_node[nid]--;
1288         } else {
1289                 arch_clear_hugepage_flags(page);
1290                 enqueue_huge_page(h, page);
1291         }
1292         spin_unlock(&hugetlb_lock);
1293 }
1294
1295 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296 {
1297         INIT_LIST_HEAD(&page->lru);
1298         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299         spin_lock(&hugetlb_lock);
1300         set_hugetlb_cgroup(page, NULL);
1301         h->nr_huge_pages++;
1302         h->nr_huge_pages_node[nid]++;
1303         spin_unlock(&hugetlb_lock);
1304         put_page(page); /* free it into the hugepage allocator */
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         /* we rely on prep_new_huge_page to set the destructor */
1314         set_compound_order(page, order);
1315         __ClearPageReserved(page);
1316         __SetPageHead(page);
1317         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318                 /*
1319                  * For gigantic hugepages allocated through bootmem at
1320                  * boot, it's safer to be consistent with the not-gigantic
1321                  * hugepages and clear the PG_reserved bit from all tail pages
1322                  * too.  Otherwse drivers using get_user_pages() to access tail
1323                  * pages may get the reference counting wrong if they see
1324                  * PG_reserved set on a tail page (despite the head page not
1325                  * having PG_reserved set).  Enforcing this consistency between
1326                  * head and tail pages allows drivers to optimize away a check
1327                  * on the head page when they need know if put_page() is needed
1328                  * after get_user_pages().
1329                  */
1330                 __ClearPageReserved(p);
1331                 set_page_count(p, 0);
1332                 set_compound_head(p, page);
1333         }
1334         atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344         if (!PageCompound(page))
1345                 return 0;
1346
1347         page = compound_head(page);
1348         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358         if (!PageHead(page_head))
1359                 return 0;
1360
1361         return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366         struct page *page_head = compound_head(page);
1367         pgoff_t index = page_index(page_head);
1368         unsigned long compound_idx;
1369
1370         if (!PageHuge(page_head))
1371                 return page_index(page);
1372
1373         if (compound_order(page_head) >= MAX_ORDER)
1374                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375         else
1376                 compound_idx = page - page_head;
1377
1378         return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1382 {
1383         struct page *page;
1384
1385         page = __alloc_pages_node(nid,
1386                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387                                                 __GFP_REPEAT|__GFP_NOWARN,
1388                 huge_page_order(h));
1389         if (page) {
1390                 prep_new_huge_page(h, page, nid);
1391         }
1392
1393         return page;
1394 }
1395
1396 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397 {
1398         struct page *page;
1399         int nr_nodes, node;
1400         int ret = 0;
1401
1402         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403                 page = alloc_fresh_huge_page_node(h, node);
1404                 if (page) {
1405                         ret = 1;
1406                         break;
1407                 }
1408         }
1409
1410         if (ret)
1411                 count_vm_event(HTLB_BUDDY_PGALLOC);
1412         else
1413                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415         return ret;
1416 }
1417
1418 /*
1419  * Free huge page from pool from next node to free.
1420  * Attempt to keep persistent huge pages more or less
1421  * balanced over allowed nodes.
1422  * Called with hugetlb_lock locked.
1423  */
1424 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425                                                          bool acct_surplus)
1426 {
1427         int nr_nodes, node;
1428         int ret = 0;
1429
1430         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431                 /*
1432                  * If we're returning unused surplus pages, only examine
1433                  * nodes with surplus pages.
1434                  */
1435                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436                     !list_empty(&h->hugepage_freelists[node])) {
1437                         struct page *page =
1438                                 list_entry(h->hugepage_freelists[node].next,
1439                                           struct page, lru);
1440                         list_del(&page->lru);
1441                         h->free_huge_pages--;
1442                         h->free_huge_pages_node[node]--;
1443                         if (acct_surplus) {
1444                                 h->surplus_huge_pages--;
1445                                 h->surplus_huge_pages_node[node]--;
1446                         }
1447                         update_and_free_page(h, page);
1448                         ret = 1;
1449                         break;
1450                 }
1451         }
1452
1453         return ret;
1454 }
1455
1456 /*
1457  * Dissolve a given free hugepage into free buddy pages. This function does
1458  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459  * number of free hugepages would be reduced below the number of reserved
1460  * hugepages.
1461  */
1462 int dissolve_free_huge_page(struct page *page)
1463 {
1464         int rc = 0;
1465
1466         spin_lock(&hugetlb_lock);
1467         if (PageHuge(page) && !page_count(page)) {
1468                 struct page *head = compound_head(page);
1469                 struct hstate *h = page_hstate(head);
1470                 int nid = page_to_nid(head);
1471                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472                         rc = -EBUSY;
1473                         goto out;
1474                 }
1475                 /*
1476                  * Move PageHWPoison flag from head page to the raw error page,
1477                  * which makes any subpages rather than the error page reusable.
1478                  */
1479                 if (PageHWPoison(head) && page != head) {
1480                         SetPageHWPoison(page);
1481                         ClearPageHWPoison(head);
1482                 }
1483                 list_del(&head->lru);
1484                 h->free_huge_pages--;
1485                 h->free_huge_pages_node[nid]--;
1486                 h->max_huge_pages--;
1487                 update_and_free_page(h, head);
1488         }
1489 out:
1490         spin_unlock(&hugetlb_lock);
1491         return rc;
1492 }
1493
1494 /*
1495  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496  * make specified memory blocks removable from the system.
1497  * Note that this will dissolve a free gigantic hugepage completely, if any
1498  * part of it lies within the given range.
1499  * Also note that if dissolve_free_huge_page() returns with an error, all
1500  * free hugepages that were dissolved before that error are lost.
1501  */
1502 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 {
1504         unsigned long pfn;
1505         struct page *page;
1506         int rc = 0;
1507
1508         if (!hugepages_supported())
1509                 return rc;
1510
1511         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512                 page = pfn_to_page(pfn);
1513                 if (PageHuge(page) && !page_count(page)) {
1514                         rc = dissolve_free_huge_page(page);
1515                         if (rc)
1516                                 break;
1517                 }
1518         }
1519
1520         return rc;
1521 }
1522
1523 /*
1524  * There are 3 ways this can get called:
1525  * 1. With vma+addr: we use the VMA's memory policy
1526  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1527  *    page from any node, and let the buddy allocator itself figure
1528  *    it out.
1529  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1530  *    strictly from 'nid'
1531  */
1532 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1533                 struct vm_area_struct *vma, unsigned long addr, int nid)
1534 {
1535         int order = huge_page_order(h);
1536         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1537         unsigned int cpuset_mems_cookie;
1538
1539         /*
1540          * We need a VMA to get a memory policy.  If we do not
1541          * have one, we use the 'nid' argument.
1542          *
1543          * The mempolicy stuff below has some non-inlined bits
1544          * and calls ->vm_ops.  That makes it hard to optimize at
1545          * compile-time, even when NUMA is off and it does
1546          * nothing.  This helps the compiler optimize it out.
1547          */
1548         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1549                 /*
1550                  * If a specific node is requested, make sure to
1551                  * get memory from there, but only when a node
1552                  * is explicitly specified.
1553                  */
1554                 if (nid != NUMA_NO_NODE)
1555                         gfp |= __GFP_THISNODE;
1556                 /*
1557                  * Make sure to call something that can handle
1558                  * nid=NUMA_NO_NODE
1559                  */
1560                 return alloc_pages_node(nid, gfp, order);
1561         }
1562
1563         /*
1564          * OK, so we have a VMA.  Fetch the mempolicy and try to
1565          * allocate a huge page with it.  We will only reach this
1566          * when CONFIG_NUMA=y.
1567          */
1568         do {
1569                 struct page *page;
1570                 struct mempolicy *mpol;
1571                 int nid;
1572                 nodemask_t *nodemask;
1573
1574                 cpuset_mems_cookie = read_mems_allowed_begin();
1575                 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1576                 mpol_cond_put(mpol);
1577                 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1578                 if (page)
1579                         return page;
1580         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1581
1582         return NULL;
1583 }
1584
1585 /*
1586  * There are two ways to allocate a huge page:
1587  * 1. When you have a VMA and an address (like a fault)
1588  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1589  *
1590  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1591  * this case which signifies that the allocation should be done with
1592  * respect for the VMA's memory policy.
1593  *
1594  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1595  * implies that memory policies will not be taken in to account.
1596  */
1597 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1598                 struct vm_area_struct *vma, unsigned long addr, int nid)
1599 {
1600         struct page *page;
1601         unsigned int r_nid;
1602
1603         if (hstate_is_gigantic(h))
1604                 return NULL;
1605
1606         /*
1607          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1608          * This makes sure the caller is picking _one_ of the modes with which
1609          * we can call this function, not both.
1610          */
1611         if (vma || (addr != -1)) {
1612                 VM_WARN_ON_ONCE(addr == -1);
1613                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1614         }
1615         /*
1616          * Assume we will successfully allocate the surplus page to
1617          * prevent racing processes from causing the surplus to exceed
1618          * overcommit
1619          *
1620          * This however introduces a different race, where a process B
1621          * tries to grow the static hugepage pool while alloc_pages() is
1622          * called by process A. B will only examine the per-node
1623          * counters in determining if surplus huge pages can be
1624          * converted to normal huge pages in adjust_pool_surplus(). A
1625          * won't be able to increment the per-node counter, until the
1626          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1627          * no more huge pages can be converted from surplus to normal
1628          * state (and doesn't try to convert again). Thus, we have a
1629          * case where a surplus huge page exists, the pool is grown, and
1630          * the surplus huge page still exists after, even though it
1631          * should just have been converted to a normal huge page. This
1632          * does not leak memory, though, as the hugepage will be freed
1633          * once it is out of use. It also does not allow the counters to
1634          * go out of whack in adjust_pool_surplus() as we don't modify
1635          * the node values until we've gotten the hugepage and only the
1636          * per-node value is checked there.
1637          */
1638         spin_lock(&hugetlb_lock);
1639         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1640                 spin_unlock(&hugetlb_lock);
1641                 return NULL;
1642         } else {
1643                 h->nr_huge_pages++;
1644                 h->surplus_huge_pages++;
1645         }
1646         spin_unlock(&hugetlb_lock);
1647
1648         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1649
1650         spin_lock(&hugetlb_lock);
1651         if (page) {
1652                 INIT_LIST_HEAD(&page->lru);
1653                 r_nid = page_to_nid(page);
1654                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1655                 set_hugetlb_cgroup(page, NULL);
1656                 /*
1657                  * We incremented the global counters already
1658                  */
1659                 h->nr_huge_pages_node[r_nid]++;
1660                 h->surplus_huge_pages_node[r_nid]++;
1661                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1662         } else {
1663                 h->nr_huge_pages--;
1664                 h->surplus_huge_pages--;
1665                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1666         }
1667         spin_unlock(&hugetlb_lock);
1668
1669         return page;
1670 }
1671
1672 /*
1673  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1674  * NUMA_NO_NODE, which means that it may be allocated
1675  * anywhere.
1676  */
1677 static
1678 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1679 {
1680         unsigned long addr = -1;
1681
1682         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1683 }
1684
1685 /*
1686  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1687  */
1688 static
1689 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1690                 struct vm_area_struct *vma, unsigned long addr)
1691 {
1692         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1693 }
1694
1695 /*
1696  * This allocation function is useful in the context where vma is irrelevant.
1697  * E.g. soft-offlining uses this function because it only cares physical
1698  * address of error page.
1699  */
1700 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1701 {
1702         struct page *page = NULL;
1703
1704         spin_lock(&hugetlb_lock);
1705         if (h->free_huge_pages - h->resv_huge_pages > 0)
1706                 page = dequeue_huge_page_node(h, nid);
1707         spin_unlock(&hugetlb_lock);
1708
1709         if (!page)
1710                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1711
1712         return page;
1713 }
1714
1715 /*
1716  * Increase the hugetlb pool such that it can accommodate a reservation
1717  * of size 'delta'.
1718  */
1719 static int gather_surplus_pages(struct hstate *h, int delta)
1720 {
1721         struct list_head surplus_list;
1722         struct page *page, *tmp;
1723         int ret, i;
1724         int needed, allocated;
1725         bool alloc_ok = true;
1726
1727         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1728         if (needed <= 0) {
1729                 h->resv_huge_pages += delta;
1730                 return 0;
1731         }
1732
1733         allocated = 0;
1734         INIT_LIST_HEAD(&surplus_list);
1735
1736         ret = -ENOMEM;
1737 retry:
1738         spin_unlock(&hugetlb_lock);
1739         for (i = 0; i < needed; i++) {
1740                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1741                 if (!page) {
1742                         alloc_ok = false;
1743                         break;
1744                 }
1745                 list_add(&page->lru, &surplus_list);
1746         }
1747         allocated += i;
1748
1749         /*
1750          * After retaking hugetlb_lock, we need to recalculate 'needed'
1751          * because either resv_huge_pages or free_huge_pages may have changed.
1752          */
1753         spin_lock(&hugetlb_lock);
1754         needed = (h->resv_huge_pages + delta) -
1755                         (h->free_huge_pages + allocated);
1756         if (needed > 0) {
1757                 if (alloc_ok)
1758                         goto retry;
1759                 /*
1760                  * We were not able to allocate enough pages to
1761                  * satisfy the entire reservation so we free what
1762                  * we've allocated so far.
1763                  */
1764                 goto free;
1765         }
1766         /*
1767          * The surplus_list now contains _at_least_ the number of extra pages
1768          * needed to accommodate the reservation.  Add the appropriate number
1769          * of pages to the hugetlb pool and free the extras back to the buddy
1770          * allocator.  Commit the entire reservation here to prevent another
1771          * process from stealing the pages as they are added to the pool but
1772          * before they are reserved.
1773          */
1774         needed += allocated;
1775         h->resv_huge_pages += delta;
1776         ret = 0;
1777
1778         /* Free the needed pages to the hugetlb pool */
1779         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1780                 if ((--needed) < 0)
1781                         break;
1782                 /*
1783                  * This page is now managed by the hugetlb allocator and has
1784                  * no users -- drop the buddy allocator's reference.
1785                  */
1786                 put_page_testzero(page);
1787                 VM_BUG_ON_PAGE(page_count(page), page);
1788                 enqueue_huge_page(h, page);
1789         }
1790 free:
1791         spin_unlock(&hugetlb_lock);
1792
1793         /* Free unnecessary surplus pages to the buddy allocator */
1794         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1795                 put_page(page);
1796         spin_lock(&hugetlb_lock);
1797
1798         return ret;
1799 }
1800
1801 /*
1802  * This routine has two main purposes:
1803  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1804  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1805  *    to the associated reservation map.
1806  * 2) Free any unused surplus pages that may have been allocated to satisfy
1807  *    the reservation.  As many as unused_resv_pages may be freed.
1808  *
1809  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1810  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1811  * we must make sure nobody else can claim pages we are in the process of
1812  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1813  * number of huge pages we plan to free when dropping the lock.
1814  */
1815 static void return_unused_surplus_pages(struct hstate *h,
1816                                         unsigned long unused_resv_pages)
1817 {
1818         unsigned long nr_pages;
1819
1820         /* Cannot return gigantic pages currently */
1821         if (hstate_is_gigantic(h))
1822                 goto out;
1823
1824         /*
1825          * Part (or even all) of the reservation could have been backed
1826          * by pre-allocated pages. Only free surplus pages.
1827          */
1828         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1829
1830         /*
1831          * We want to release as many surplus pages as possible, spread
1832          * evenly across all nodes with memory. Iterate across these nodes
1833          * until we can no longer free unreserved surplus pages. This occurs
1834          * when the nodes with surplus pages have no free pages.
1835          * free_pool_huge_page() will balance the the freed pages across the
1836          * on-line nodes with memory and will handle the hstate accounting.
1837          *
1838          * Note that we decrement resv_huge_pages as we free the pages.  If
1839          * we drop the lock, resv_huge_pages will still be sufficiently large
1840          * to cover subsequent pages we may free.
1841          */
1842         while (nr_pages--) {
1843                 h->resv_huge_pages--;
1844                 unused_resv_pages--;
1845                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1846                         goto out;
1847                 cond_resched_lock(&hugetlb_lock);
1848         }
1849
1850 out:
1851         /* Fully uncommit the reservation */
1852         h->resv_huge_pages -= unused_resv_pages;
1853 }
1854
1855
1856 /*
1857  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1858  * are used by the huge page allocation routines to manage reservations.
1859  *
1860  * vma_needs_reservation is called to determine if the huge page at addr
1861  * within the vma has an associated reservation.  If a reservation is
1862  * needed, the value 1 is returned.  The caller is then responsible for
1863  * managing the global reservation and subpool usage counts.  After
1864  * the huge page has been allocated, vma_commit_reservation is called
1865  * to add the page to the reservation map.  If the page allocation fails,
1866  * the reservation must be ended instead of committed.  vma_end_reservation
1867  * is called in such cases.
1868  *
1869  * In the normal case, vma_commit_reservation returns the same value
1870  * as the preceding vma_needs_reservation call.  The only time this
1871  * is not the case is if a reserve map was changed between calls.  It
1872  * is the responsibility of the caller to notice the difference and
1873  * take appropriate action.
1874  *
1875  * vma_add_reservation is used in error paths where a reservation must
1876  * be restored when a newly allocated huge page must be freed.  It is
1877  * to be called after calling vma_needs_reservation to determine if a
1878  * reservation exists.
1879  */
1880 enum vma_resv_mode {
1881         VMA_NEEDS_RESV,
1882         VMA_COMMIT_RESV,
1883         VMA_END_RESV,
1884         VMA_ADD_RESV,
1885 };
1886 static long __vma_reservation_common(struct hstate *h,
1887                                 struct vm_area_struct *vma, unsigned long addr,
1888                                 enum vma_resv_mode mode)
1889 {
1890         struct resv_map *resv;
1891         pgoff_t idx;
1892         long ret;
1893
1894         resv = vma_resv_map(vma);
1895         if (!resv)
1896                 return 1;
1897
1898         idx = vma_hugecache_offset(h, vma, addr);
1899         switch (mode) {
1900         case VMA_NEEDS_RESV:
1901                 ret = region_chg(resv, idx, idx + 1);
1902                 break;
1903         case VMA_COMMIT_RESV:
1904                 ret = region_add(resv, idx, idx + 1);
1905                 break;
1906         case VMA_END_RESV:
1907                 region_abort(resv, idx, idx + 1);
1908                 ret = 0;
1909                 break;
1910         case VMA_ADD_RESV:
1911                 if (vma->vm_flags & VM_MAYSHARE)
1912                         ret = region_add(resv, idx, idx + 1);
1913                 else {
1914                         region_abort(resv, idx, idx + 1);
1915                         ret = region_del(resv, idx, idx + 1);
1916                 }
1917                 break;
1918         default:
1919                 BUG();
1920         }
1921
1922         if (vma->vm_flags & VM_MAYSHARE)
1923                 return ret;
1924         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1925                 /*
1926                  * In most cases, reserves always exist for private mappings.
1927                  * However, a file associated with mapping could have been
1928                  * hole punched or truncated after reserves were consumed.
1929                  * As subsequent fault on such a range will not use reserves.
1930                  * Subtle - The reserve map for private mappings has the
1931                  * opposite meaning than that of shared mappings.  If NO
1932                  * entry is in the reserve map, it means a reservation exists.
1933                  * If an entry exists in the reserve map, it means the
1934                  * reservation has already been consumed.  As a result, the
1935                  * return value of this routine is the opposite of the
1936                  * value returned from reserve map manipulation routines above.
1937                  */
1938                 if (ret)
1939                         return 0;
1940                 else
1941                         return 1;
1942         }
1943         else
1944                 return ret < 0 ? ret : 0;
1945 }
1946
1947 static long vma_needs_reservation(struct hstate *h,
1948                         struct vm_area_struct *vma, unsigned long addr)
1949 {
1950         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1951 }
1952
1953 static long vma_commit_reservation(struct hstate *h,
1954                         struct vm_area_struct *vma, unsigned long addr)
1955 {
1956         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1957 }
1958
1959 static void vma_end_reservation(struct hstate *h,
1960                         struct vm_area_struct *vma, unsigned long addr)
1961 {
1962         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1963 }
1964
1965 static long vma_add_reservation(struct hstate *h,
1966                         struct vm_area_struct *vma, unsigned long addr)
1967 {
1968         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1969 }
1970
1971 /*
1972  * This routine is called to restore a reservation on error paths.  In the
1973  * specific error paths, a huge page was allocated (via alloc_huge_page)
1974  * and is about to be freed.  If a reservation for the page existed,
1975  * alloc_huge_page would have consumed the reservation and set PagePrivate
1976  * in the newly allocated page.  When the page is freed via free_huge_page,
1977  * the global reservation count will be incremented if PagePrivate is set.
1978  * However, free_huge_page can not adjust the reserve map.  Adjust the
1979  * reserve map here to be consistent with global reserve count adjustments
1980  * to be made by free_huge_page.
1981  */
1982 static void restore_reserve_on_error(struct hstate *h,
1983                         struct vm_area_struct *vma, unsigned long address,
1984                         struct page *page)
1985 {
1986         if (unlikely(PagePrivate(page))) {
1987                 long rc = vma_needs_reservation(h, vma, address);
1988
1989                 if (unlikely(rc < 0)) {
1990                         /*
1991                          * Rare out of memory condition in reserve map
1992                          * manipulation.  Clear PagePrivate so that
1993                          * global reserve count will not be incremented
1994                          * by free_huge_page.  This will make it appear
1995                          * as though the reservation for this page was
1996                          * consumed.  This may prevent the task from
1997                          * faulting in the page at a later time.  This
1998                          * is better than inconsistent global huge page
1999                          * accounting of reserve counts.
2000                          */
2001                         ClearPagePrivate(page);
2002                 } else if (rc) {
2003                         rc = vma_add_reservation(h, vma, address);
2004                         if (unlikely(rc < 0))
2005                                 /*
2006                                  * See above comment about rare out of
2007                                  * memory condition.
2008                                  */
2009                                 ClearPagePrivate(page);
2010                 } else
2011                         vma_end_reservation(h, vma, address);
2012         }
2013 }
2014
2015 struct page *alloc_huge_page(struct vm_area_struct *vma,
2016                                     unsigned long addr, int avoid_reserve)
2017 {
2018         struct hugepage_subpool *spool = subpool_vma(vma);
2019         struct hstate *h = hstate_vma(vma);
2020         struct page *page;
2021         long map_chg, map_commit;
2022         long gbl_chg;
2023         int ret, idx;
2024         struct hugetlb_cgroup *h_cg;
2025
2026         idx = hstate_index(h);
2027         /*
2028          * Examine the region/reserve map to determine if the process
2029          * has a reservation for the page to be allocated.  A return
2030          * code of zero indicates a reservation exists (no change).
2031          */
2032         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2033         if (map_chg < 0)
2034                 return ERR_PTR(-ENOMEM);
2035
2036         /*
2037          * Processes that did not create the mapping will have no
2038          * reserves as indicated by the region/reserve map. Check
2039          * that the allocation will not exceed the subpool limit.
2040          * Allocations for MAP_NORESERVE mappings also need to be
2041          * checked against any subpool limit.
2042          */
2043         if (map_chg || avoid_reserve) {
2044                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2045                 if (gbl_chg < 0) {
2046                         vma_end_reservation(h, vma, addr);
2047                         return ERR_PTR(-ENOSPC);
2048                 }
2049
2050                 /*
2051                  * Even though there was no reservation in the region/reserve
2052                  * map, there could be reservations associated with the
2053                  * subpool that can be used.  This would be indicated if the
2054                  * return value of hugepage_subpool_get_pages() is zero.
2055                  * However, if avoid_reserve is specified we still avoid even
2056                  * the subpool reservations.
2057                  */
2058                 if (avoid_reserve)
2059                         gbl_chg = 1;
2060         }
2061
2062         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2063         if (ret)
2064                 goto out_subpool_put;
2065
2066         spin_lock(&hugetlb_lock);
2067         /*
2068          * glb_chg is passed to indicate whether or not a page must be taken
2069          * from the global free pool (global change).  gbl_chg == 0 indicates
2070          * a reservation exists for the allocation.
2071          */
2072         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2073         if (!page) {
2074                 spin_unlock(&hugetlb_lock);
2075                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2076                 if (!page)
2077                         goto out_uncharge_cgroup;
2078                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2079                         SetPagePrivate(page);
2080                         h->resv_huge_pages--;
2081                 }
2082                 spin_lock(&hugetlb_lock);
2083                 list_move(&page->lru, &h->hugepage_activelist);
2084                 /* Fall through */
2085         }
2086         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2087         spin_unlock(&hugetlb_lock);
2088
2089         set_page_private(page, (unsigned long)spool);
2090
2091         map_commit = vma_commit_reservation(h, vma, addr);
2092         if (unlikely(map_chg > map_commit)) {
2093                 /*
2094                  * The page was added to the reservation map between
2095                  * vma_needs_reservation and vma_commit_reservation.
2096                  * This indicates a race with hugetlb_reserve_pages.
2097                  * Adjust for the subpool count incremented above AND
2098                  * in hugetlb_reserve_pages for the same page.  Also,
2099                  * the reservation count added in hugetlb_reserve_pages
2100                  * no longer applies.
2101                  */
2102                 long rsv_adjust;
2103
2104                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2105                 hugetlb_acct_memory(h, -rsv_adjust);
2106         }
2107         return page;
2108
2109 out_uncharge_cgroup:
2110         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2111 out_subpool_put:
2112         if (map_chg || avoid_reserve)
2113                 hugepage_subpool_put_pages(spool, 1);
2114         vma_end_reservation(h, vma, addr);
2115         return ERR_PTR(-ENOSPC);
2116 }
2117
2118 /*
2119  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2120  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2121  * where no ERR_VALUE is expected to be returned.
2122  */
2123 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2124                                 unsigned long addr, int avoid_reserve)
2125 {
2126         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2127         if (IS_ERR(page))
2128                 page = NULL;
2129         return page;
2130 }
2131
2132 int __weak alloc_bootmem_huge_page(struct hstate *h)
2133 {
2134         struct huge_bootmem_page *m;
2135         int nr_nodes, node;
2136
2137         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2138                 void *addr;
2139
2140                 addr = memblock_virt_alloc_try_nid_nopanic(
2141                                 huge_page_size(h), huge_page_size(h),
2142                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2143                 if (addr) {
2144                         /*
2145                          * Use the beginning of the huge page to store the
2146                          * huge_bootmem_page struct (until gather_bootmem
2147                          * puts them into the mem_map).
2148                          */
2149                         m = addr;
2150                         goto found;
2151                 }
2152         }
2153         return 0;
2154
2155 found:
2156         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2157         /* Put them into a private list first because mem_map is not up yet */
2158         list_add(&m->list, &huge_boot_pages);
2159         m->hstate = h;
2160         return 1;
2161 }
2162
2163 static void __init prep_compound_huge_page(struct page *page,
2164                 unsigned int order)
2165 {
2166         if (unlikely(order > (MAX_ORDER - 1)))
2167                 prep_compound_gigantic_page(page, order);
2168         else
2169                 prep_compound_page(page, order);
2170 }
2171
2172 /* Put bootmem huge pages into the standard lists after mem_map is up */
2173 static void __init gather_bootmem_prealloc(void)
2174 {
2175         struct huge_bootmem_page *m;
2176
2177         list_for_each_entry(m, &huge_boot_pages, list) {
2178                 struct hstate *h = m->hstate;
2179                 struct page *page;
2180
2181 #ifdef CONFIG_HIGHMEM
2182                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2183                 memblock_free_late(__pa(m),
2184                                    sizeof(struct huge_bootmem_page));
2185 #else
2186                 page = virt_to_page(m);
2187 #endif
2188                 WARN_ON(page_count(page) != 1);
2189                 prep_compound_huge_page(page, h->order);
2190                 WARN_ON(PageReserved(page));
2191                 prep_new_huge_page(h, page, page_to_nid(page));
2192                 /*
2193                  * If we had gigantic hugepages allocated at boot time, we need
2194                  * to restore the 'stolen' pages to totalram_pages in order to
2195                  * fix confusing memory reports from free(1) and another
2196                  * side-effects, like CommitLimit going negative.
2197                  */
2198                 if (hstate_is_gigantic(h))
2199                         adjust_managed_page_count(page, 1 << h->order);
2200         }
2201 }
2202
2203 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2204 {
2205         unsigned long i;
2206
2207         for (i = 0; i < h->max_huge_pages; ++i) {
2208                 if (hstate_is_gigantic(h)) {
2209                         if (!alloc_bootmem_huge_page(h))
2210                                 break;
2211                 } else if (!alloc_fresh_huge_page(h,
2212                                          &node_states[N_MEMORY]))
2213                         break;
2214         }
2215         h->max_huge_pages = i;
2216 }
2217
2218 static void __init hugetlb_init_hstates(void)
2219 {
2220         struct hstate *h;
2221
2222         for_each_hstate(h) {
2223                 if (minimum_order > huge_page_order(h))
2224                         minimum_order = huge_page_order(h);
2225
2226                 /* oversize hugepages were init'ed in early boot */
2227                 if (!hstate_is_gigantic(h))
2228                         hugetlb_hstate_alloc_pages(h);
2229         }
2230         VM_BUG_ON(minimum_order == UINT_MAX);
2231 }
2232
2233 static char * __init memfmt(char *buf, unsigned long n)
2234 {
2235         if (n >= (1UL << 30))
2236                 sprintf(buf, "%lu GB", n >> 30);
2237         else if (n >= (1UL << 20))
2238                 sprintf(buf, "%lu MB", n >> 20);
2239         else
2240                 sprintf(buf, "%lu KB", n >> 10);
2241         return buf;
2242 }
2243
2244 static void __init report_hugepages(void)
2245 {
2246         struct hstate *h;
2247
2248         for_each_hstate(h) {
2249                 char buf[32];
2250                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2251                         memfmt(buf, huge_page_size(h)),
2252                         h->free_huge_pages);
2253         }
2254 }
2255
2256 #ifdef CONFIG_HIGHMEM
2257 static void try_to_free_low(struct hstate *h, unsigned long count,
2258                                                 nodemask_t *nodes_allowed)
2259 {
2260         int i;
2261
2262         if (hstate_is_gigantic(h))
2263                 return;
2264
2265         for_each_node_mask(i, *nodes_allowed) {
2266                 struct page *page, *next;
2267                 struct list_head *freel = &h->hugepage_freelists[i];
2268                 list_for_each_entry_safe(page, next, freel, lru) {
2269                         if (count >= h->nr_huge_pages)
2270                                 return;
2271                         if (PageHighMem(page))
2272                                 continue;
2273                         list_del(&page->lru);
2274                         update_and_free_page(h, page);
2275                         h->free_huge_pages--;
2276                         h->free_huge_pages_node[page_to_nid(page)]--;
2277                 }
2278         }
2279 }
2280 #else
2281 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2282                                                 nodemask_t *nodes_allowed)
2283 {
2284 }
2285 #endif
2286
2287 /*
2288  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2289  * balanced by operating on them in a round-robin fashion.
2290  * Returns 1 if an adjustment was made.
2291  */
2292 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2293                                 int delta)
2294 {
2295         int nr_nodes, node;
2296
2297         VM_BUG_ON(delta != -1 && delta != 1);
2298
2299         if (delta < 0) {
2300                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2301                         if (h->surplus_huge_pages_node[node])
2302                                 goto found;
2303                 }
2304         } else {
2305                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2306                         if (h->surplus_huge_pages_node[node] <
2307                                         h->nr_huge_pages_node[node])
2308                                 goto found;
2309                 }
2310         }
2311         return 0;
2312
2313 found:
2314         h->surplus_huge_pages += delta;
2315         h->surplus_huge_pages_node[node] += delta;
2316         return 1;
2317 }
2318
2319 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2320 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2321                                                 nodemask_t *nodes_allowed)
2322 {
2323         unsigned long min_count, ret;
2324
2325         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2326                 return h->max_huge_pages;
2327
2328         /*
2329          * Increase the pool size
2330          * First take pages out of surplus state.  Then make up the
2331          * remaining difference by allocating fresh huge pages.
2332          *
2333          * We might race with __alloc_buddy_huge_page() here and be unable
2334          * to convert a surplus huge page to a normal huge page. That is
2335          * not critical, though, it just means the overall size of the
2336          * pool might be one hugepage larger than it needs to be, but
2337          * within all the constraints specified by the sysctls.
2338          */
2339         spin_lock(&hugetlb_lock);
2340         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2341                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2342                         break;
2343         }
2344
2345         while (count > persistent_huge_pages(h)) {
2346                 /*
2347                  * If this allocation races such that we no longer need the
2348                  * page, free_huge_page will handle it by freeing the page
2349                  * and reducing the surplus.
2350                  */
2351                 spin_unlock(&hugetlb_lock);
2352
2353                 /* yield cpu to avoid soft lockup */
2354                 cond_resched();
2355
2356                 if (hstate_is_gigantic(h))
2357                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2358                 else
2359                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2360                 spin_lock(&hugetlb_lock);
2361                 if (!ret)
2362                         goto out;
2363
2364                 /* Bail for signals. Probably ctrl-c from user */
2365                 if (signal_pending(current))
2366                         goto out;
2367         }
2368
2369         /*
2370          * Decrease the pool size
2371          * First return free pages to the buddy allocator (being careful
2372          * to keep enough around to satisfy reservations).  Then place
2373          * pages into surplus state as needed so the pool will shrink
2374          * to the desired size as pages become free.
2375          *
2376          * By placing pages into the surplus state independent of the
2377          * overcommit value, we are allowing the surplus pool size to
2378          * exceed overcommit. There are few sane options here. Since
2379          * __alloc_buddy_huge_page() is checking the global counter,
2380          * though, we'll note that we're not allowed to exceed surplus
2381          * and won't grow the pool anywhere else. Not until one of the
2382          * sysctls are changed, or the surplus pages go out of use.
2383          */
2384         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2385         min_count = max(count, min_count);
2386         try_to_free_low(h, min_count, nodes_allowed);
2387         while (min_count < persistent_huge_pages(h)) {
2388                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2389                         break;
2390                 cond_resched_lock(&hugetlb_lock);
2391         }
2392         while (count < persistent_huge_pages(h)) {
2393                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2394                         break;
2395         }
2396 out:
2397         ret = persistent_huge_pages(h);
2398         spin_unlock(&hugetlb_lock);
2399         return ret;
2400 }
2401
2402 #define HSTATE_ATTR_RO(_name) \
2403         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2404
2405 #define HSTATE_ATTR(_name) \
2406         static struct kobj_attribute _name##_attr = \
2407                 __ATTR(_name, 0644, _name##_show, _name##_store)
2408
2409 static struct kobject *hugepages_kobj;
2410 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2411
2412 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2413
2414 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2415 {
2416         int i;
2417
2418         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2419                 if (hstate_kobjs[i] == kobj) {
2420                         if (nidp)
2421                                 *nidp = NUMA_NO_NODE;
2422                         return &hstates[i];
2423                 }
2424
2425         return kobj_to_node_hstate(kobj, nidp);
2426 }
2427
2428 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2429                                         struct kobj_attribute *attr, char *buf)
2430 {
2431         struct hstate *h;
2432         unsigned long nr_huge_pages;
2433         int nid;
2434
2435         h = kobj_to_hstate(kobj, &nid);
2436         if (nid == NUMA_NO_NODE)
2437                 nr_huge_pages = h->nr_huge_pages;
2438         else
2439                 nr_huge_pages = h->nr_huge_pages_node[nid];
2440
2441         return sprintf(buf, "%lu\n", nr_huge_pages);
2442 }
2443
2444 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2445                                            struct hstate *h, int nid,
2446                                            unsigned long count, size_t len)
2447 {
2448         int err;
2449         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2450
2451         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2452                 err = -EINVAL;
2453                 goto out;
2454         }
2455
2456         if (nid == NUMA_NO_NODE) {
2457                 /*
2458                  * global hstate attribute
2459                  */
2460                 if (!(obey_mempolicy &&
2461                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2462                         NODEMASK_FREE(nodes_allowed);
2463                         nodes_allowed = &node_states[N_MEMORY];
2464                 }
2465         } else if (nodes_allowed) {
2466                 /*
2467                  * per node hstate attribute: adjust count to global,
2468                  * but restrict alloc/free to the specified node.
2469                  */
2470                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2471                 init_nodemask_of_node(nodes_allowed, nid);
2472         } else
2473                 nodes_allowed = &node_states[N_MEMORY];
2474
2475         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2476
2477         if (nodes_allowed != &node_states[N_MEMORY])
2478                 NODEMASK_FREE(nodes_allowed);
2479
2480         return len;
2481 out:
2482         NODEMASK_FREE(nodes_allowed);
2483         return err;
2484 }
2485
2486 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2487                                          struct kobject *kobj, const char *buf,
2488                                          size_t len)
2489 {
2490         struct hstate *h;
2491         unsigned long count;
2492         int nid;
2493         int err;
2494
2495         err = kstrtoul(buf, 10, &count);
2496         if (err)
2497                 return err;
2498
2499         h = kobj_to_hstate(kobj, &nid);
2500         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2501 }
2502
2503 static ssize_t nr_hugepages_show(struct kobject *kobj,
2504                                        struct kobj_attribute *attr, char *buf)
2505 {
2506         return nr_hugepages_show_common(kobj, attr, buf);
2507 }
2508
2509 static ssize_t nr_hugepages_store(struct kobject *kobj,
2510                struct kobj_attribute *attr, const char *buf, size_t len)
2511 {
2512         return nr_hugepages_store_common(false, kobj, buf, len);
2513 }
2514 HSTATE_ATTR(nr_hugepages);
2515
2516 #ifdef CONFIG_NUMA
2517
2518 /*
2519  * hstate attribute for optionally mempolicy-based constraint on persistent
2520  * huge page alloc/free.
2521  */
2522 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2523                                        struct kobj_attribute *attr, char *buf)
2524 {
2525         return nr_hugepages_show_common(kobj, attr, buf);
2526 }
2527
2528 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2529                struct kobj_attribute *attr, const char *buf, size_t len)
2530 {
2531         return nr_hugepages_store_common(true, kobj, buf, len);
2532 }
2533 HSTATE_ATTR(nr_hugepages_mempolicy);
2534 #endif
2535
2536
2537 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2538                                         struct kobj_attribute *attr, char *buf)
2539 {
2540         struct hstate *h = kobj_to_hstate(kobj, NULL);
2541         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2542 }
2543
2544 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2545                 struct kobj_attribute *attr, const char *buf, size_t count)
2546 {
2547         int err;
2548         unsigned long input;
2549         struct hstate *h = kobj_to_hstate(kobj, NULL);
2550
2551         if (hstate_is_gigantic(h))
2552                 return -EINVAL;
2553
2554         err = kstrtoul(buf, 10, &input);
2555         if (err)
2556                 return err;
2557
2558         spin_lock(&hugetlb_lock);
2559         h->nr_overcommit_huge_pages = input;
2560         spin_unlock(&hugetlb_lock);
2561
2562         return count;
2563 }
2564 HSTATE_ATTR(nr_overcommit_hugepages);
2565
2566 static ssize_t free_hugepages_show(struct kobject *kobj,
2567                                         struct kobj_attribute *attr, char *buf)
2568 {
2569         struct hstate *h;
2570         unsigned long free_huge_pages;
2571         int nid;
2572
2573         h = kobj_to_hstate(kobj, &nid);
2574         if (nid == NUMA_NO_NODE)
2575                 free_huge_pages = h->free_huge_pages;
2576         else
2577                 free_huge_pages = h->free_huge_pages_node[nid];
2578
2579         return sprintf(buf, "%lu\n", free_huge_pages);
2580 }
2581 HSTATE_ATTR_RO(free_hugepages);
2582
2583 static ssize_t resv_hugepages_show(struct kobject *kobj,
2584                                         struct kobj_attribute *attr, char *buf)
2585 {
2586         struct hstate *h = kobj_to_hstate(kobj, NULL);
2587         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2588 }
2589 HSTATE_ATTR_RO(resv_hugepages);
2590
2591 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2592                                         struct kobj_attribute *attr, char *buf)
2593 {
2594         struct hstate *h;
2595         unsigned long surplus_huge_pages;
2596         int nid;
2597
2598         h = kobj_to_hstate(kobj, &nid);
2599         if (nid == NUMA_NO_NODE)
2600                 surplus_huge_pages = h->surplus_huge_pages;
2601         else
2602                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2603
2604         return sprintf(buf, "%lu\n", surplus_huge_pages);
2605 }
2606 HSTATE_ATTR_RO(surplus_hugepages);
2607
2608 static struct attribute *hstate_attrs[] = {
2609         &nr_hugepages_attr.attr,
2610         &nr_overcommit_hugepages_attr.attr,
2611         &free_hugepages_attr.attr,
2612         &resv_hugepages_attr.attr,
2613         &surplus_hugepages_attr.attr,
2614 #ifdef CONFIG_NUMA
2615         &nr_hugepages_mempolicy_attr.attr,
2616 #endif
2617         NULL,
2618 };
2619
2620 static struct attribute_group hstate_attr_group = {
2621         .attrs = hstate_attrs,
2622 };
2623
2624 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2625                                     struct kobject **hstate_kobjs,
2626                                     struct attribute_group *hstate_attr_group)
2627 {
2628         int retval;
2629         int hi = hstate_index(h);
2630
2631         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2632         if (!hstate_kobjs[hi])
2633                 return -ENOMEM;
2634
2635         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2636         if (retval)
2637                 kobject_put(hstate_kobjs[hi]);
2638
2639         return retval;
2640 }
2641
2642 static void __init hugetlb_sysfs_init(void)
2643 {
2644         struct hstate *h;
2645         int err;
2646
2647         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2648         if (!hugepages_kobj)
2649                 return;
2650
2651         for_each_hstate(h) {
2652                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2653                                          hstate_kobjs, &hstate_attr_group);
2654                 if (err)
2655                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2656         }
2657 }
2658
2659 #ifdef CONFIG_NUMA
2660
2661 /*
2662  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2663  * with node devices in node_devices[] using a parallel array.  The array
2664  * index of a node device or _hstate == node id.
2665  * This is here to avoid any static dependency of the node device driver, in
2666  * the base kernel, on the hugetlb module.
2667  */
2668 struct node_hstate {
2669         struct kobject          *hugepages_kobj;
2670         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2671 };
2672 static struct node_hstate node_hstates[MAX_NUMNODES];
2673
2674 /*
2675  * A subset of global hstate attributes for node devices
2676  */
2677 static struct attribute *per_node_hstate_attrs[] = {
2678         &nr_hugepages_attr.attr,
2679         &free_hugepages_attr.attr,
2680         &surplus_hugepages_attr.attr,
2681         NULL,
2682 };
2683
2684 static struct attribute_group per_node_hstate_attr_group = {
2685         .attrs = per_node_hstate_attrs,
2686 };
2687
2688 /*
2689  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2690  * Returns node id via non-NULL nidp.
2691  */
2692 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2693 {
2694         int nid;
2695
2696         for (nid = 0; nid < nr_node_ids; nid++) {
2697                 struct node_hstate *nhs = &node_hstates[nid];
2698                 int i;
2699                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2700                         if (nhs->hstate_kobjs[i] == kobj) {
2701                                 if (nidp)
2702                                         *nidp = nid;
2703                                 return &hstates[i];
2704                         }
2705         }
2706
2707         BUG();
2708         return NULL;
2709 }
2710
2711 /*
2712  * Unregister hstate attributes from a single node device.
2713  * No-op if no hstate attributes attached.
2714  */
2715 static void hugetlb_unregister_node(struct node *node)
2716 {
2717         struct hstate *h;
2718         struct node_hstate *nhs = &node_hstates[node->dev.id];
2719
2720         if (!nhs->hugepages_kobj)
2721                 return;         /* no hstate attributes */
2722
2723         for_each_hstate(h) {
2724                 int idx = hstate_index(h);
2725                 if (nhs->hstate_kobjs[idx]) {
2726                         kobject_put(nhs->hstate_kobjs[idx]);
2727                         nhs->hstate_kobjs[idx] = NULL;
2728                 }
2729         }
2730
2731         kobject_put(nhs->hugepages_kobj);
2732         nhs->hugepages_kobj = NULL;
2733 }
2734
2735
2736 /*
2737  * Register hstate attributes for a single node device.
2738  * No-op if attributes already registered.
2739  */
2740 static void hugetlb_register_node(struct node *node)
2741 {
2742         struct hstate *h;
2743         struct node_hstate *nhs = &node_hstates[node->dev.id];
2744         int err;
2745
2746         if (nhs->hugepages_kobj)
2747                 return;         /* already allocated */
2748
2749         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2750                                                         &node->dev.kobj);
2751         if (!nhs->hugepages_kobj)
2752                 return;
2753
2754         for_each_hstate(h) {
2755                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2756                                                 nhs->hstate_kobjs,
2757                                                 &per_node_hstate_attr_group);
2758                 if (err) {
2759                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2760                                 h->name, node->dev.id);
2761                         hugetlb_unregister_node(node);
2762                         break;
2763                 }
2764         }
2765 }
2766
2767 /*
2768  * hugetlb init time:  register hstate attributes for all registered node
2769  * devices of nodes that have memory.  All on-line nodes should have
2770  * registered their associated device by this time.
2771  */
2772 static void __init hugetlb_register_all_nodes(void)
2773 {
2774         int nid;
2775
2776         for_each_node_state(nid, N_MEMORY) {
2777                 struct node *node = node_devices[nid];
2778                 if (node->dev.id == nid)
2779                         hugetlb_register_node(node);
2780         }
2781
2782         /*
2783          * Let the node device driver know we're here so it can
2784          * [un]register hstate attributes on node hotplug.
2785          */
2786         register_hugetlbfs_with_node(hugetlb_register_node,
2787                                      hugetlb_unregister_node);
2788 }
2789 #else   /* !CONFIG_NUMA */
2790
2791 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2792 {
2793         BUG();
2794         if (nidp)
2795                 *nidp = -1;
2796         return NULL;
2797 }
2798
2799 static void hugetlb_register_all_nodes(void) { }
2800
2801 #endif
2802
2803 static int __init hugetlb_init(void)
2804 {
2805         int i;
2806
2807         if (!hugepages_supported())
2808                 return 0;
2809
2810         if (!size_to_hstate(default_hstate_size)) {
2811                 default_hstate_size = HPAGE_SIZE;
2812                 if (!size_to_hstate(default_hstate_size))
2813                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2814         }
2815         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2816         if (default_hstate_max_huge_pages) {
2817                 if (!default_hstate.max_huge_pages)
2818                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2819         }
2820
2821         hugetlb_init_hstates();
2822         gather_bootmem_prealloc();
2823         report_hugepages();
2824
2825         hugetlb_sysfs_init();
2826         hugetlb_register_all_nodes();
2827         hugetlb_cgroup_file_init();
2828
2829 #ifdef CONFIG_SMP
2830         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2831 #else
2832         num_fault_mutexes = 1;
2833 #endif
2834         hugetlb_fault_mutex_table =
2835                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2836         BUG_ON(!hugetlb_fault_mutex_table);
2837
2838         for (i = 0; i < num_fault_mutexes; i++)
2839                 mutex_init(&hugetlb_fault_mutex_table[i]);
2840         return 0;
2841 }
2842 subsys_initcall(hugetlb_init);
2843
2844 /* Should be called on processing a hugepagesz=... option */
2845 void __init hugetlb_bad_size(void)
2846 {
2847         parsed_valid_hugepagesz = false;
2848 }
2849
2850 void __init hugetlb_add_hstate(unsigned int order)
2851 {
2852         struct hstate *h;
2853         unsigned long i;
2854
2855         if (size_to_hstate(PAGE_SIZE << order)) {
2856                 pr_warn("hugepagesz= specified twice, ignoring\n");
2857                 return;
2858         }
2859         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2860         BUG_ON(order == 0);
2861         h = &hstates[hugetlb_max_hstate++];
2862         h->order = order;
2863         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2864         h->nr_huge_pages = 0;
2865         h->free_huge_pages = 0;
2866         for (i = 0; i < MAX_NUMNODES; ++i)
2867                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2868         INIT_LIST_HEAD(&h->hugepage_activelist);
2869         h->next_nid_to_alloc = first_memory_node;
2870         h->next_nid_to_free = first_memory_node;
2871         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2872                                         huge_page_size(h)/1024);
2873
2874         parsed_hstate = h;
2875 }
2876
2877 static int __init hugetlb_nrpages_setup(char *s)
2878 {
2879         unsigned long *mhp;
2880         static unsigned long *last_mhp;
2881
2882         if (!parsed_valid_hugepagesz) {
2883                 pr_warn("hugepages = %s preceded by "
2884                         "an unsupported hugepagesz, ignoring\n", s);
2885                 parsed_valid_hugepagesz = true;
2886                 return 1;
2887         }
2888         /*
2889          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2890          * so this hugepages= parameter goes to the "default hstate".
2891          */
2892         else if (!hugetlb_max_hstate)
2893                 mhp = &default_hstate_max_huge_pages;
2894         else
2895                 mhp = &parsed_hstate->max_huge_pages;
2896
2897         if (mhp == last_mhp) {
2898                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2899                 return 1;
2900         }
2901
2902         if (sscanf(s, "%lu", mhp) <= 0)
2903                 *mhp = 0;
2904
2905         /*
2906          * Global state is always initialized later in hugetlb_init.
2907          * But we need to allocate >= MAX_ORDER hstates here early to still
2908          * use the bootmem allocator.
2909          */
2910         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2911                 hugetlb_hstate_alloc_pages(parsed_hstate);
2912
2913         last_mhp = mhp;
2914
2915         return 1;
2916 }
2917 __setup("hugepages=", hugetlb_nrpages_setup);
2918
2919 static int __init hugetlb_default_setup(char *s)
2920 {
2921         default_hstate_size = memparse(s, &s);
2922         return 1;
2923 }
2924 __setup("default_hugepagesz=", hugetlb_default_setup);
2925
2926 static unsigned int cpuset_mems_nr(unsigned int *array)
2927 {
2928         int node;
2929         unsigned int nr = 0;
2930
2931         for_each_node_mask(node, cpuset_current_mems_allowed)
2932                 nr += array[node];
2933
2934         return nr;
2935 }
2936
2937 #ifdef CONFIG_SYSCTL
2938 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2939                          struct ctl_table *table, int write,
2940                          void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942         struct hstate *h = &default_hstate;
2943         unsigned long tmp = h->max_huge_pages;
2944         int ret;
2945
2946         if (!hugepages_supported())
2947                 return -EOPNOTSUPP;
2948
2949         table->data = &tmp;
2950         table->maxlen = sizeof(unsigned long);
2951         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2952         if (ret)
2953                 goto out;
2954
2955         if (write)
2956                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2957                                                   NUMA_NO_NODE, tmp, *length);
2958 out:
2959         return ret;
2960 }
2961
2962 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2963                           void __user *buffer, size_t *length, loff_t *ppos)
2964 {
2965
2966         return hugetlb_sysctl_handler_common(false, table, write,
2967                                                         buffer, length, ppos);
2968 }
2969
2970 #ifdef CONFIG_NUMA
2971 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2972                           void __user *buffer, size_t *length, loff_t *ppos)
2973 {
2974         return hugetlb_sysctl_handler_common(true, table, write,
2975                                                         buffer, length, ppos);
2976 }
2977 #endif /* CONFIG_NUMA */
2978
2979 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2980                         void __user *buffer,
2981                         size_t *length, loff_t *ppos)
2982 {
2983         struct hstate *h = &default_hstate;
2984         unsigned long tmp;
2985         int ret;
2986
2987         if (!hugepages_supported())
2988                 return -EOPNOTSUPP;
2989
2990         tmp = h->nr_overcommit_huge_pages;
2991
2992         if (write && hstate_is_gigantic(h))
2993                 return -EINVAL;
2994
2995         table->data = &tmp;
2996         table->maxlen = sizeof(unsigned long);
2997         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2998         if (ret)
2999                 goto out;
3000
3001         if (write) {
3002                 spin_lock(&hugetlb_lock);
3003                 h->nr_overcommit_huge_pages = tmp;
3004                 spin_unlock(&hugetlb_lock);
3005         }
3006 out:
3007         return ret;
3008 }
3009
3010 #endif /* CONFIG_SYSCTL */
3011
3012 void hugetlb_report_meminfo(struct seq_file *m)
3013 {
3014         struct hstate *h = &default_hstate;
3015         if (!hugepages_supported())
3016                 return;
3017         seq_printf(m,
3018                         "HugePages_Total:   %5lu\n"
3019                         "HugePages_Free:    %5lu\n"
3020                         "HugePages_Rsvd:    %5lu\n"
3021                         "HugePages_Surp:    %5lu\n"
3022                         "Hugepagesize:   %8lu kB\n",
3023                         h->nr_huge_pages,
3024                         h->free_huge_pages,
3025                         h->resv_huge_pages,
3026                         h->surplus_huge_pages,
3027                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3028 }
3029
3030 int hugetlb_report_node_meminfo(int nid, char *buf)
3031 {
3032         struct hstate *h = &default_hstate;
3033         if (!hugepages_supported())
3034                 return 0;
3035         return sprintf(buf,
3036                 "Node %d HugePages_Total: %5u\n"
3037                 "Node %d HugePages_Free:  %5u\n"
3038                 "Node %d HugePages_Surp:  %5u\n",
3039                 nid, h->nr_huge_pages_node[nid],
3040                 nid, h->free_huge_pages_node[nid],
3041                 nid, h->surplus_huge_pages_node[nid]);
3042 }
3043
3044 void hugetlb_show_meminfo(void)
3045 {
3046         struct hstate *h;
3047         int nid;
3048
3049         if (!hugepages_supported())
3050                 return;
3051
3052         for_each_node_state(nid, N_MEMORY)
3053                 for_each_hstate(h)
3054                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3055                                 nid,
3056                                 h->nr_huge_pages_node[nid],
3057                                 h->free_huge_pages_node[nid],
3058                                 h->surplus_huge_pages_node[nid],
3059                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3060 }
3061
3062 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3063 {
3064         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3065                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3066 }
3067
3068 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3069 unsigned long hugetlb_total_pages(void)
3070 {
3071         struct hstate *h;
3072         unsigned long nr_total_pages = 0;
3073
3074         for_each_hstate(h)
3075                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3076         return nr_total_pages;
3077 }
3078
3079 static int hugetlb_acct_memory(struct hstate *h, long delta)
3080 {
3081         int ret = -ENOMEM;
3082
3083         spin_lock(&hugetlb_lock);
3084         /*
3085          * When cpuset is configured, it breaks the strict hugetlb page
3086          * reservation as the accounting is done on a global variable. Such
3087          * reservation is completely rubbish in the presence of cpuset because
3088          * the reservation is not checked against page availability for the
3089          * current cpuset. Application can still potentially OOM'ed by kernel
3090          * with lack of free htlb page in cpuset that the task is in.
3091          * Attempt to enforce strict accounting with cpuset is almost
3092          * impossible (or too ugly) because cpuset is too fluid that
3093          * task or memory node can be dynamically moved between cpusets.
3094          *
3095          * The change of semantics for shared hugetlb mapping with cpuset is
3096          * undesirable. However, in order to preserve some of the semantics,
3097          * we fall back to check against current free page availability as
3098          * a best attempt and hopefully to minimize the impact of changing
3099          * semantics that cpuset has.
3100          */
3101         if (delta > 0) {
3102                 if (gather_surplus_pages(h, delta) < 0)
3103                         goto out;
3104
3105                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3106                         return_unused_surplus_pages(h, delta);
3107                         goto out;
3108                 }
3109         }
3110
3111         ret = 0;
3112         if (delta < 0)
3113                 return_unused_surplus_pages(h, (unsigned long) -delta);
3114
3115 out:
3116         spin_unlock(&hugetlb_lock);
3117         return ret;
3118 }
3119
3120 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3121 {
3122         struct resv_map *resv = vma_resv_map(vma);
3123
3124         /*
3125          * This new VMA should share its siblings reservation map if present.
3126          * The VMA will only ever have a valid reservation map pointer where
3127          * it is being copied for another still existing VMA.  As that VMA
3128          * has a reference to the reservation map it cannot disappear until
3129          * after this open call completes.  It is therefore safe to take a
3130          * new reference here without additional locking.
3131          */
3132         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3133                 kref_get(&resv->refs);
3134 }
3135
3136 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3137 {
3138         struct hstate *h = hstate_vma(vma);
3139         struct resv_map *resv = vma_resv_map(vma);
3140         struct hugepage_subpool *spool = subpool_vma(vma);
3141         unsigned long reserve, start, end;
3142         long gbl_reserve;
3143
3144         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3145                 return;
3146
3147         start = vma_hugecache_offset(h, vma, vma->vm_start);
3148         end = vma_hugecache_offset(h, vma, vma->vm_end);
3149
3150         reserve = (end - start) - region_count(resv, start, end);
3151
3152         kref_put(&resv->refs, resv_map_release);
3153
3154         if (reserve) {
3155                 /*
3156                  * Decrement reserve counts.  The global reserve count may be
3157                  * adjusted if the subpool has a minimum size.
3158                  */
3159                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3160                 hugetlb_acct_memory(h, -gbl_reserve);
3161         }
3162 }
3163
3164 /*
3165  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3166  * handle_mm_fault() to try to instantiate regular-sized pages in the
3167  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3168  * this far.
3169  */
3170 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3171 {
3172         BUG();
3173         return 0;
3174 }
3175
3176 const struct vm_operations_struct hugetlb_vm_ops = {
3177         .fault = hugetlb_vm_op_fault,
3178         .open = hugetlb_vm_op_open,
3179         .close = hugetlb_vm_op_close,
3180 };
3181
3182 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3183                                 int writable)
3184 {
3185         pte_t entry;
3186
3187         if (writable) {
3188                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3189                                          vma->vm_page_prot)));
3190         } else {
3191                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3192                                            vma->vm_page_prot));
3193         }
3194         entry = pte_mkyoung(entry);
3195         entry = pte_mkhuge(entry);
3196         entry = arch_make_huge_pte(entry, vma, page, writable);
3197
3198         return entry;
3199 }
3200
3201 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3202                                    unsigned long address, pte_t *ptep)
3203 {
3204         pte_t entry;
3205
3206         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3207         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3208                 update_mmu_cache(vma, address, ptep);
3209 }
3210
3211 bool is_hugetlb_entry_migration(pte_t pte)
3212 {
3213         swp_entry_t swp;
3214
3215         if (huge_pte_none(pte) || pte_present(pte))
3216                 return false;
3217         swp = pte_to_swp_entry(pte);
3218         if (non_swap_entry(swp) && is_migration_entry(swp))
3219                 return true;
3220         else
3221                 return false;
3222 }
3223
3224 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3225 {
3226         swp_entry_t swp;
3227
3228         if (huge_pte_none(pte) || pte_present(pte))
3229                 return 0;
3230         swp = pte_to_swp_entry(pte);
3231         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3232                 return 1;
3233         else
3234                 return 0;
3235 }
3236
3237 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3238                             struct vm_area_struct *vma)
3239 {
3240         pte_t *src_pte, *dst_pte, entry;
3241         struct page *ptepage;
3242         unsigned long addr;
3243         int cow;
3244         struct hstate *h = hstate_vma(vma);
3245         unsigned long sz = huge_page_size(h);
3246         unsigned long mmun_start;       /* For mmu_notifiers */
3247         unsigned long mmun_end;         /* For mmu_notifiers */
3248         int ret = 0;
3249
3250         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3251
3252         mmun_start = vma->vm_start;
3253         mmun_end = vma->vm_end;
3254         if (cow)
3255                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3256
3257         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3258                 spinlock_t *src_ptl, *dst_ptl;
3259                 src_pte = huge_pte_offset(src, addr, sz);
3260                 if (!src_pte)
3261                         continue;
3262                 dst_pte = huge_pte_alloc(dst, addr, sz);
3263                 if (!dst_pte) {
3264                         ret = -ENOMEM;
3265                         break;
3266                 }
3267
3268                 /* If the pagetables are shared don't copy or take references */
3269                 if (dst_pte == src_pte)
3270                         continue;
3271
3272                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3273                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3274                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3275                 entry = huge_ptep_get(src_pte);
3276                 if (huge_pte_none(entry)) { /* skip none entry */
3277                         ;
3278                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3279                                     is_hugetlb_entry_hwpoisoned(entry))) {
3280                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3281
3282                         if (is_write_migration_entry(swp_entry) && cow) {
3283                                 /*
3284                                  * COW mappings require pages in both
3285                                  * parent and child to be set to read.
3286                                  */
3287                                 make_migration_entry_read(&swp_entry);
3288                                 entry = swp_entry_to_pte(swp_entry);
3289                                 set_huge_swap_pte_at(src, addr, src_pte,
3290                                                      entry, sz);
3291                         }
3292                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3293                 } else {
3294                         if (cow) {
3295                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3296                                 mmu_notifier_invalidate_range(src, mmun_start,
3297                                                                    mmun_end);
3298                         }
3299                         entry = huge_ptep_get(src_pte);
3300                         ptepage = pte_page(entry);
3301                         get_page(ptepage);
3302                         page_dup_rmap(ptepage, true);
3303                         set_huge_pte_at(dst, addr, dst_pte, entry);
3304                         hugetlb_count_add(pages_per_huge_page(h), dst);
3305                 }
3306                 spin_unlock(src_ptl);
3307                 spin_unlock(dst_ptl);
3308         }
3309
3310         if (cow)
3311                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3312
3313         return ret;
3314 }
3315
3316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3317                             unsigned long start, unsigned long end,
3318                             struct page *ref_page)
3319 {
3320         struct mm_struct *mm = vma->vm_mm;
3321         unsigned long address;
3322         pte_t *ptep;
3323         pte_t pte;
3324         spinlock_t *ptl;
3325         struct page *page;
3326         struct hstate *h = hstate_vma(vma);
3327         unsigned long sz = huge_page_size(h);
3328         const unsigned long mmun_start = start; /* For mmu_notifiers */
3329         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3330
3331         WARN_ON(!is_vm_hugetlb_page(vma));
3332         BUG_ON(start & ~huge_page_mask(h));
3333         BUG_ON(end & ~huge_page_mask(h));
3334
3335         /*
3336          * This is a hugetlb vma, all the pte entries should point
3337          * to huge page.
3338          */
3339         tlb_remove_check_page_size_change(tlb, sz);
3340         tlb_start_vma(tlb, vma);
3341         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3342         address = start;
3343         for (; address < end; address += sz) {
3344                 ptep = huge_pte_offset(mm, address, sz);
3345                 if (!ptep)
3346                         continue;
3347
3348                 ptl = huge_pte_lock(h, mm, ptep);
3349                 if (huge_pmd_unshare(mm, &address, ptep)) {
3350                         spin_unlock(ptl);
3351                         continue;
3352                 }
3353
3354                 pte = huge_ptep_get(ptep);
3355                 if (huge_pte_none(pte)) {
3356                         spin_unlock(ptl);
3357                         continue;
3358                 }
3359
3360                 /*
3361                  * Migrating hugepage or HWPoisoned hugepage is already
3362                  * unmapped and its refcount is dropped, so just clear pte here.
3363                  */
3364                 if (unlikely(!pte_present(pte))) {
3365                         huge_pte_clear(mm, address, ptep, sz);
3366                         spin_unlock(ptl);
3367                         continue;
3368                 }
3369
3370                 page = pte_page(pte);
3371                 /*
3372                  * If a reference page is supplied, it is because a specific
3373                  * page is being unmapped, not a range. Ensure the page we
3374                  * are about to unmap is the actual page of interest.
3375                  */
3376                 if (ref_page) {
3377                         if (page != ref_page) {
3378                                 spin_unlock(ptl);
3379                                 continue;
3380                         }
3381                         /*
3382                          * Mark the VMA as having unmapped its page so that
3383                          * future faults in this VMA will fail rather than
3384                          * looking like data was lost
3385                          */
3386                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3387                 }
3388
3389                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3390                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3391                 if (huge_pte_dirty(pte))
3392                         set_page_dirty(page);
3393
3394                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3395                 page_remove_rmap(page, true);
3396
3397                 spin_unlock(ptl);
3398                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3399                 /*
3400                  * Bail out after unmapping reference page if supplied
3401                  */
3402                 if (ref_page)
3403                         break;
3404         }
3405         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3406         tlb_end_vma(tlb, vma);
3407 }
3408
3409 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3410                           struct vm_area_struct *vma, unsigned long start,
3411                           unsigned long end, struct page *ref_page)
3412 {
3413         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3414
3415         /*
3416          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3417          * test will fail on a vma being torn down, and not grab a page table
3418          * on its way out.  We're lucky that the flag has such an appropriate
3419          * name, and can in fact be safely cleared here. We could clear it
3420          * before the __unmap_hugepage_range above, but all that's necessary
3421          * is to clear it before releasing the i_mmap_rwsem. This works
3422          * because in the context this is called, the VMA is about to be
3423          * destroyed and the i_mmap_rwsem is held.
3424          */
3425         vma->vm_flags &= ~VM_MAYSHARE;
3426 }
3427
3428 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3429                           unsigned long end, struct page *ref_page)
3430 {
3431         struct mm_struct *mm;
3432         struct mmu_gather tlb;
3433
3434         mm = vma->vm_mm;
3435
3436         tlb_gather_mmu(&tlb, mm, start, end);
3437         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3438         tlb_finish_mmu(&tlb, start, end);
3439 }
3440
3441 /*
3442  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3443  * mappping it owns the reserve page for. The intention is to unmap the page
3444  * from other VMAs and let the children be SIGKILLed if they are faulting the
3445  * same region.
3446  */
3447 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3448                               struct page *page, unsigned long address)
3449 {
3450         struct hstate *h = hstate_vma(vma);
3451         struct vm_area_struct *iter_vma;
3452         struct address_space *mapping;
3453         pgoff_t pgoff;
3454
3455         /*
3456          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3457          * from page cache lookup which is in HPAGE_SIZE units.
3458          */
3459         address = address & huge_page_mask(h);
3460         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3461                         vma->vm_pgoff;
3462         mapping = vma->vm_file->f_mapping;
3463
3464         /*
3465          * Take the mapping lock for the duration of the table walk. As
3466          * this mapping should be shared between all the VMAs,
3467          * __unmap_hugepage_range() is called as the lock is already held
3468          */
3469         i_mmap_lock_write(mapping);
3470         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3471                 /* Do not unmap the current VMA */
3472                 if (iter_vma == vma)
3473                         continue;
3474
3475                 /*
3476                  * Shared VMAs have their own reserves and do not affect
3477                  * MAP_PRIVATE accounting but it is possible that a shared
3478                  * VMA is using the same page so check and skip such VMAs.
3479                  */
3480                 if (iter_vma->vm_flags & VM_MAYSHARE)
3481                         continue;
3482
3483                 /*
3484                  * Unmap the page from other VMAs without their own reserves.
3485                  * They get marked to be SIGKILLed if they fault in these
3486                  * areas. This is because a future no-page fault on this VMA
3487                  * could insert a zeroed page instead of the data existing
3488                  * from the time of fork. This would look like data corruption
3489                  */
3490                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3491                         unmap_hugepage_range(iter_vma, address,
3492                                              address + huge_page_size(h), page);
3493         }
3494         i_mmap_unlock_write(mapping);
3495 }
3496
3497 /*
3498  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3499  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3500  * cannot race with other handlers or page migration.
3501  * Keep the pte_same checks anyway to make transition from the mutex easier.
3502  */
3503 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3504                        unsigned long address, pte_t *ptep,
3505                        struct page *pagecache_page, spinlock_t *ptl)
3506 {
3507         pte_t pte;
3508         struct hstate *h = hstate_vma(vma);
3509         struct page *old_page, *new_page;
3510         int ret = 0, outside_reserve = 0;
3511         unsigned long mmun_start;       /* For mmu_notifiers */
3512         unsigned long mmun_end;         /* For mmu_notifiers */
3513
3514         pte = huge_ptep_get(ptep);
3515         old_page = pte_page(pte);
3516
3517 retry_avoidcopy:
3518         /* If no-one else is actually using this page, avoid the copy
3519          * and just make the page writable */
3520         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3521                 page_move_anon_rmap(old_page, vma);
3522                 set_huge_ptep_writable(vma, address, ptep);
3523                 return 0;
3524         }
3525
3526         /*
3527          * If the process that created a MAP_PRIVATE mapping is about to
3528          * perform a COW due to a shared page count, attempt to satisfy
3529          * the allocation without using the existing reserves. The pagecache
3530          * page is used to determine if the reserve at this address was
3531          * consumed or not. If reserves were used, a partial faulted mapping
3532          * at the time of fork() could consume its reserves on COW instead
3533          * of the full address range.
3534          */
3535         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3536                         old_page != pagecache_page)
3537                 outside_reserve = 1;
3538
3539         get_page(old_page);
3540
3541         /*
3542          * Drop page table lock as buddy allocator may be called. It will
3543          * be acquired again before returning to the caller, as expected.
3544          */
3545         spin_unlock(ptl);
3546         new_page = alloc_huge_page(vma, address, outside_reserve);
3547
3548         if (IS_ERR(new_page)) {
3549                 /*
3550                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3551                  * it is due to references held by a child and an insufficient
3552                  * huge page pool. To guarantee the original mappers
3553                  * reliability, unmap the page from child processes. The child
3554                  * may get SIGKILLed if it later faults.
3555                  */
3556                 if (outside_reserve) {
3557                         put_page(old_page);
3558                         BUG_ON(huge_pte_none(pte));
3559                         unmap_ref_private(mm, vma, old_page, address);
3560                         BUG_ON(huge_pte_none(pte));
3561                         spin_lock(ptl);
3562                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3563                                                huge_page_size(h));
3564                         if (likely(ptep &&
3565                                    pte_same(huge_ptep_get(ptep), pte)))
3566                                 goto retry_avoidcopy;
3567                         /*
3568                          * race occurs while re-acquiring page table
3569                          * lock, and our job is done.
3570                          */
3571                         return 0;
3572                 }
3573
3574                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3575                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3576                 goto out_release_old;
3577         }
3578
3579         /*
3580          * When the original hugepage is shared one, it does not have
3581          * anon_vma prepared.
3582          */
3583         if (unlikely(anon_vma_prepare(vma))) {
3584                 ret = VM_FAULT_OOM;
3585                 goto out_release_all;
3586         }
3587
3588         copy_user_huge_page(new_page, old_page, address, vma,
3589                             pages_per_huge_page(h));
3590         __SetPageUptodate(new_page);
3591         set_page_huge_active(new_page);
3592
3593         mmun_start = address & huge_page_mask(h);
3594         mmun_end = mmun_start + huge_page_size(h);
3595         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3596
3597         /*
3598          * Retake the page table lock to check for racing updates
3599          * before the page tables are altered
3600          */
3601         spin_lock(ptl);
3602         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3603                                huge_page_size(h));
3604         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605                 ClearPagePrivate(new_page);
3606
3607                 /* Break COW */
3608                 huge_ptep_clear_flush(vma, address, ptep);
3609                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610                 set_huge_pte_at(mm, address, ptep,
3611                                 make_huge_pte(vma, new_page, 1));
3612                 page_remove_rmap(old_page, true);
3613                 hugepage_add_new_anon_rmap(new_page, vma, address);
3614                 /* Make the old page be freed below */
3615                 new_page = old_page;
3616         }
3617         spin_unlock(ptl);
3618         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3619 out_release_all:
3620         restore_reserve_on_error(h, vma, address, new_page);
3621         put_page(new_page);
3622 out_release_old:
3623         put_page(old_page);
3624
3625         spin_lock(ptl); /* Caller expects lock to be held */
3626         return ret;
3627 }
3628
3629 /* Return the pagecache page at a given address within a VMA */
3630 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631                         struct vm_area_struct *vma, unsigned long address)
3632 {
3633         struct address_space *mapping;
3634         pgoff_t idx;
3635
3636         mapping = vma->vm_file->f_mapping;
3637         idx = vma_hugecache_offset(h, vma, address);
3638
3639         return find_lock_page(mapping, idx);
3640 }
3641
3642 /*
3643  * Return whether there is a pagecache page to back given address within VMA.
3644  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3645  */
3646 static bool hugetlbfs_pagecache_present(struct hstate *h,
3647                         struct vm_area_struct *vma, unsigned long address)
3648 {
3649         struct address_space *mapping;
3650         pgoff_t idx;
3651         struct page *page;
3652
3653         mapping = vma->vm_file->f_mapping;
3654         idx = vma_hugecache_offset(h, vma, address);
3655
3656         page = find_get_page(mapping, idx);
3657         if (page)
3658                 put_page(page);
3659         return page != NULL;
3660 }
3661
3662 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3663                            pgoff_t idx)
3664 {
3665         struct inode *inode = mapping->host;
3666         struct hstate *h = hstate_inode(inode);
3667         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3668
3669         if (err)
3670                 return err;
3671         ClearPagePrivate(page);
3672
3673         spin_lock(&inode->i_lock);
3674         inode->i_blocks += blocks_per_huge_page(h);
3675         spin_unlock(&inode->i_lock);
3676         return 0;
3677 }
3678
3679 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3680                            struct address_space *mapping, pgoff_t idx,
3681                            unsigned long address, pte_t *ptep, unsigned int flags)
3682 {
3683         struct hstate *h = hstate_vma(vma);
3684         int ret = VM_FAULT_SIGBUS;
3685         int anon_rmap = 0;
3686         unsigned long size;
3687         struct page *page;
3688         pte_t new_pte;
3689         spinlock_t *ptl;
3690
3691         /*
3692          * Currently, we are forced to kill the process in the event the
3693          * original mapper has unmapped pages from the child due to a failed
3694          * COW. Warn that such a situation has occurred as it may not be obvious
3695          */
3696         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3697                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3698                            current->pid);
3699                 return ret;
3700         }
3701
3702         /*
3703          * Use page lock to guard against racing truncation
3704          * before we get page_table_lock.
3705          */
3706 retry:
3707         page = find_lock_page(mapping, idx);
3708         if (!page) {
3709                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3710                 if (idx >= size)
3711                         goto out;
3712
3713                 /*
3714                  * Check for page in userfault range
3715                  */
3716                 if (userfaultfd_missing(vma)) {
3717                         u32 hash;
3718                         struct vm_fault vmf = {
3719                                 .vma = vma,
3720                                 .address = address,
3721                                 .flags = flags,
3722                                 /*
3723                                  * Hard to debug if it ends up being
3724                                  * used by a callee that assumes
3725                                  * something about the other
3726                                  * uninitialized fields... same as in
3727                                  * memory.c
3728                                  */
3729                         };
3730
3731                         /*
3732                          * hugetlb_fault_mutex must be dropped before
3733                          * handling userfault.  Reacquire after handling
3734                          * fault to make calling code simpler.
3735                          */
3736                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3737                                                         idx, address);
3738                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3739                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3740                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3741                         goto out;
3742                 }
3743
3744                 page = alloc_huge_page(vma, address, 0);
3745                 if (IS_ERR(page)) {
3746                         ret = PTR_ERR(page);
3747                         if (ret == -ENOMEM)
3748                                 ret = VM_FAULT_OOM;
3749                         else
3750                                 ret = VM_FAULT_SIGBUS;
3751                         goto out;
3752                 }
3753                 clear_huge_page(page, address, pages_per_huge_page(h));
3754                 __SetPageUptodate(page);
3755                 set_page_huge_active(page);
3756
3757                 if (vma->vm_flags & VM_MAYSHARE) {
3758                         int err = huge_add_to_page_cache(page, mapping, idx);
3759                         if (err) {
3760                                 put_page(page);
3761                                 if (err == -EEXIST)
3762                                         goto retry;
3763                                 goto out;
3764                         }
3765                 } else {
3766                         lock_page(page);
3767                         if (unlikely(anon_vma_prepare(vma))) {
3768                                 ret = VM_FAULT_OOM;
3769                                 goto backout_unlocked;
3770                         }
3771                         anon_rmap = 1;
3772                 }
3773         } else {
3774                 /*
3775                  * If memory error occurs between mmap() and fault, some process
3776                  * don't have hwpoisoned swap entry for errored virtual address.
3777                  * So we need to block hugepage fault by PG_hwpoison bit check.
3778                  */
3779                 if (unlikely(PageHWPoison(page))) {
3780                         ret = VM_FAULT_HWPOISON |
3781                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3782                         goto backout_unlocked;
3783                 }
3784         }
3785
3786         /*
3787          * If we are going to COW a private mapping later, we examine the
3788          * pending reservations for this page now. This will ensure that
3789          * any allocations necessary to record that reservation occur outside
3790          * the spinlock.
3791          */
3792         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3793                 if (vma_needs_reservation(h, vma, address) < 0) {
3794                         ret = VM_FAULT_OOM;
3795                         goto backout_unlocked;
3796                 }
3797                 /* Just decrements count, does not deallocate */
3798                 vma_end_reservation(h, vma, address);
3799         }
3800
3801         ptl = huge_pte_lock(h, mm, ptep);
3802         size = i_size_read(mapping->host) >> huge_page_shift(h);
3803         if (idx >= size)
3804                 goto backout;
3805
3806         ret = 0;
3807         if (!huge_pte_none(huge_ptep_get(ptep)))
3808                 goto backout;
3809
3810         if (anon_rmap) {
3811                 ClearPagePrivate(page);
3812                 hugepage_add_new_anon_rmap(page, vma, address);
3813         } else
3814                 page_dup_rmap(page, true);
3815         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3816                                 && (vma->vm_flags & VM_SHARED)));
3817         set_huge_pte_at(mm, address, ptep, new_pte);
3818
3819         hugetlb_count_add(pages_per_huge_page(h), mm);
3820         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3821                 /* Optimization, do the COW without a second fault */
3822                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3823         }
3824
3825         spin_unlock(ptl);
3826         unlock_page(page);
3827 out:
3828         return ret;
3829
3830 backout:
3831         spin_unlock(ptl);
3832 backout_unlocked:
3833         unlock_page(page);
3834         restore_reserve_on_error(h, vma, address, page);
3835         put_page(page);
3836         goto out;
3837 }
3838
3839 #ifdef CONFIG_SMP
3840 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3841                             struct vm_area_struct *vma,
3842                             struct address_space *mapping,
3843                             pgoff_t idx, unsigned long address)
3844 {
3845         unsigned long key[2];
3846         u32 hash;
3847
3848         if (vma->vm_flags & VM_SHARED) {
3849                 key[0] = (unsigned long) mapping;
3850                 key[1] = idx;
3851         } else {
3852                 key[0] = (unsigned long) mm;
3853                 key[1] = address >> huge_page_shift(h);
3854         }
3855
3856         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3857
3858         return hash & (num_fault_mutexes - 1);
3859 }
3860 #else
3861 /*
3862  * For uniprocesor systems we always use a single mutex, so just
3863  * return 0 and avoid the hashing overhead.
3864  */
3865 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3866                             struct vm_area_struct *vma,
3867                             struct address_space *mapping,
3868                             pgoff_t idx, unsigned long address)
3869 {
3870         return 0;
3871 }
3872 #endif
3873
3874 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3875                         unsigned long address, unsigned int flags)
3876 {
3877         pte_t *ptep, entry;
3878         spinlock_t *ptl;
3879         int ret;
3880         u32 hash;
3881         pgoff_t idx;
3882         struct page *page = NULL;
3883         struct page *pagecache_page = NULL;
3884         struct hstate *h = hstate_vma(vma);
3885         struct address_space *mapping;
3886         int need_wait_lock = 0;
3887
3888         address &= huge_page_mask(h);
3889
3890         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3891         if (ptep) {
3892                 entry = huge_ptep_get(ptep);
3893                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3894                         migration_entry_wait_huge(vma, mm, ptep);
3895                         return 0;
3896                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3897                         return VM_FAULT_HWPOISON_LARGE |
3898                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3899         } else {
3900                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3901                 if (!ptep)
3902                         return VM_FAULT_OOM;
3903         }
3904
3905         mapping = vma->vm_file->f_mapping;
3906         idx = vma_hugecache_offset(h, vma, address);
3907
3908         /*
3909          * Serialize hugepage allocation and instantiation, so that we don't
3910          * get spurious allocation failures if two CPUs race to instantiate
3911          * the same page in the page cache.
3912          */
3913         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3914         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3915
3916         entry = huge_ptep_get(ptep);
3917         if (huge_pte_none(entry)) {
3918                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3919                 goto out_mutex;
3920         }
3921
3922         ret = 0;
3923
3924         /*
3925          * entry could be a migration/hwpoison entry at this point, so this
3926          * check prevents the kernel from going below assuming that we have
3927          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3928          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3929          * handle it.
3930          */
3931         if (!pte_present(entry))
3932                 goto out_mutex;
3933
3934         /*
3935          * If we are going to COW the mapping later, we examine the pending
3936          * reservations for this page now. This will ensure that any
3937          * allocations necessary to record that reservation occur outside the
3938          * spinlock. For private mappings, we also lookup the pagecache
3939          * page now as it is used to determine if a reservation has been
3940          * consumed.
3941          */
3942         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3943                 if (vma_needs_reservation(h, vma, address) < 0) {
3944                         ret = VM_FAULT_OOM;
3945                         goto out_mutex;
3946                 }
3947                 /* Just decrements count, does not deallocate */
3948                 vma_end_reservation(h, vma, address);
3949
3950                 if (!(vma->vm_flags & VM_MAYSHARE))
3951                         pagecache_page = hugetlbfs_pagecache_page(h,
3952                                                                 vma, address);
3953         }
3954
3955         ptl = huge_pte_lock(h, mm, ptep);
3956
3957         /* Check for a racing update before calling hugetlb_cow */
3958         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3959                 goto out_ptl;
3960
3961         /*
3962          * hugetlb_cow() requires page locks of pte_page(entry) and
3963          * pagecache_page, so here we need take the former one
3964          * when page != pagecache_page or !pagecache_page.
3965          */
3966         page = pte_page(entry);
3967         if (page != pagecache_page)
3968                 if (!trylock_page(page)) {
3969                         need_wait_lock = 1;
3970                         goto out_ptl;
3971                 }
3972
3973         get_page(page);
3974
3975         if (flags & FAULT_FLAG_WRITE) {
3976                 if (!huge_pte_write(entry)) {
3977                         ret = hugetlb_cow(mm, vma, address, ptep,
3978                                           pagecache_page, ptl);
3979                         goto out_put_page;
3980                 }
3981                 entry = huge_pte_mkdirty(entry);
3982         }
3983         entry = pte_mkyoung(entry);
3984         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3985                                                 flags & FAULT_FLAG_WRITE))
3986                 update_mmu_cache(vma, address, ptep);
3987 out_put_page:
3988         if (page != pagecache_page)
3989                 unlock_page(page);
3990         put_page(page);
3991 out_ptl:
3992         spin_unlock(ptl);
3993
3994         if (pagecache_page) {
3995                 unlock_page(pagecache_page);
3996                 put_page(pagecache_page);
3997         }
3998 out_mutex:
3999         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4000         /*
4001          * Generally it's safe to hold refcount during waiting page lock. But
4002          * here we just wait to defer the next page fault to avoid busy loop and
4003          * the page is not used after unlocked before returning from the current
4004          * page fault. So we are safe from accessing freed page, even if we wait
4005          * here without taking refcount.
4006          */
4007         if (need_wait_lock)
4008                 wait_on_page_locked(page);
4009         return ret;
4010 }
4011
4012 /*
4013  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4014  * modifications for huge pages.
4015  */
4016 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4017                             pte_t *dst_pte,
4018                             struct vm_area_struct *dst_vma,
4019                             unsigned long dst_addr,
4020                             unsigned long src_addr,
4021                             struct page **pagep)
4022 {
4023         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024         struct hstate *h = hstate_vma(dst_vma);
4025         pte_t _dst_pte;
4026         spinlock_t *ptl;
4027         int ret;
4028         struct page *page;
4029
4030         if (!*pagep) {
4031                 ret = -ENOMEM;
4032                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033                 if (IS_ERR(page))
4034                         goto out;
4035
4036                 ret = copy_huge_page_from_user(page,
4037                                                 (const void __user *) src_addr,
4038                                                 pages_per_huge_page(h), false);
4039
4040                 /* fallback to copy_from_user outside mmap_sem */
4041                 if (unlikely(ret)) {
4042                         ret = -EFAULT;
4043                         *pagep = page;
4044                         /* don't free the page */
4045                         goto out;
4046                 }
4047         } else {
4048                 page = *pagep;
4049                 *pagep = NULL;
4050         }
4051
4052         /*
4053          * The memory barrier inside __SetPageUptodate makes sure that
4054          * preceding stores to the page contents become visible before
4055          * the set_pte_at() write.
4056          */
4057         __SetPageUptodate(page);
4058         set_page_huge_active(page);
4059
4060         /*
4061          * If shared, add to page cache
4062          */
4063         if (vm_shared) {
4064                 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4065                 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4066
4067                 ret = huge_add_to_page_cache(page, mapping, idx);
4068                 if (ret)
4069                         goto out_release_nounlock;
4070         }
4071
4072         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4073         spin_lock(ptl);
4074
4075         ret = -EEXIST;
4076         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4077                 goto out_release_unlock;
4078
4079         if (vm_shared) {
4080                 page_dup_rmap(page, true);
4081         } else {
4082                 ClearPagePrivate(page);
4083                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4084         }
4085
4086         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4087         if (dst_vma->vm_flags & VM_WRITE)
4088                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4089         _dst_pte = pte_mkyoung(_dst_pte);
4090
4091         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4092
4093         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4094                                         dst_vma->vm_flags & VM_WRITE);
4095         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4096
4097         /* No need to invalidate - it was non-present before */
4098         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4099
4100         spin_unlock(ptl);
4101         if (vm_shared)
4102                 unlock_page(page);
4103         ret = 0;
4104 out:
4105         return ret;
4106 out_release_unlock:
4107         spin_unlock(ptl);
4108 out_release_nounlock:
4109         if (vm_shared)
4110                 unlock_page(page);
4111         put_page(page);
4112         goto out;
4113 }
4114
4115 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4116                          struct page **pages, struct vm_area_struct **vmas,
4117                          unsigned long *position, unsigned long *nr_pages,
4118                          long i, unsigned int flags, int *nonblocking)
4119 {
4120         unsigned long pfn_offset;
4121         unsigned long vaddr = *position;
4122         unsigned long remainder = *nr_pages;
4123         struct hstate *h = hstate_vma(vma);
4124
4125         while (vaddr < vma->vm_end && remainder) {
4126                 pte_t *pte;
4127                 spinlock_t *ptl = NULL;
4128                 int absent;
4129                 struct page *page;
4130
4131                 /*
4132                  * If we have a pending SIGKILL, don't keep faulting pages and
4133                  * potentially allocating memory.
4134                  */
4135                 if (unlikely(fatal_signal_pending(current))) {
4136                         remainder = 0;
4137                         break;
4138                 }
4139
4140                 /*
4141                  * Some archs (sparc64, sh*) have multiple pte_ts to
4142                  * each hugepage.  We have to make sure we get the
4143                  * first, for the page indexing below to work.
4144                  *
4145                  * Note that page table lock is not held when pte is null.
4146                  */
4147                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4148                                       huge_page_size(h));
4149                 if (pte)
4150                         ptl = huge_pte_lock(h, mm, pte);
4151                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4152
4153                 /*
4154                  * When coredumping, it suits get_dump_page if we just return
4155                  * an error where there's an empty slot with no huge pagecache
4156                  * to back it.  This way, we avoid allocating a hugepage, and
4157                  * the sparse dumpfile avoids allocating disk blocks, but its
4158                  * huge holes still show up with zeroes where they need to be.
4159                  */
4160                 if (absent && (flags & FOLL_DUMP) &&
4161                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4162                         if (pte)
4163                                 spin_unlock(ptl);
4164                         remainder = 0;
4165                         break;
4166                 }
4167
4168                 /*
4169                  * We need call hugetlb_fault for both hugepages under migration
4170                  * (in which case hugetlb_fault waits for the migration,) and
4171                  * hwpoisoned hugepages (in which case we need to prevent the
4172                  * caller from accessing to them.) In order to do this, we use
4173                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4174                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4175                  * both cases, and because we can't follow correct pages
4176                  * directly from any kind of swap entries.
4177                  */
4178                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4179                     ((flags & FOLL_WRITE) &&
4180                       !huge_pte_write(huge_ptep_get(pte)))) {
4181                         int ret;
4182                         unsigned int fault_flags = 0;
4183
4184                         if (pte)
4185                                 spin_unlock(ptl);
4186                         if (flags & FOLL_WRITE)
4187                                 fault_flags |= FAULT_FLAG_WRITE;
4188                         if (nonblocking)
4189                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4190                         if (flags & FOLL_NOWAIT)
4191                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4192                                         FAULT_FLAG_RETRY_NOWAIT;
4193                         if (flags & FOLL_TRIED) {
4194                                 VM_WARN_ON_ONCE(fault_flags &
4195                                                 FAULT_FLAG_ALLOW_RETRY);
4196                                 fault_flags |= FAULT_FLAG_TRIED;
4197                         }
4198                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4199                         if (ret & VM_FAULT_ERROR) {
4200                                 int err = vm_fault_to_errno(ret, flags);
4201
4202                                 if (err)
4203                                         return err;
4204
4205                                 remainder = 0;
4206                                 break;
4207                         }
4208                         if (ret & VM_FAULT_RETRY) {
4209                                 if (nonblocking)
4210                                         *nonblocking = 0;
4211                                 *nr_pages = 0;
4212                                 /*
4213                                  * VM_FAULT_RETRY must not return an
4214                                  * error, it will return zero
4215                                  * instead.
4216                                  *
4217                                  * No need to update "position" as the
4218                                  * caller will not check it after
4219                                  * *nr_pages is set to 0.
4220                                  */
4221                                 return i;
4222                         }
4223                         continue;
4224                 }
4225
4226                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4227                 page = pte_page(huge_ptep_get(pte));
4228 same_page:
4229                 if (pages) {
4230                         pages[i] = mem_map_offset(page, pfn_offset);
4231                         get_page(pages[i]);
4232                 }
4233
4234                 if (vmas)
4235                         vmas[i] = vma;
4236
4237                 vaddr += PAGE_SIZE;
4238                 ++pfn_offset;
4239                 --remainder;
4240                 ++i;
4241                 if (vaddr < vma->vm_end && remainder &&
4242                                 pfn_offset < pages_per_huge_page(h)) {
4243                         /*
4244                          * We use pfn_offset to avoid touching the pageframes
4245                          * of this compound page.
4246                          */
4247                         goto same_page;
4248                 }
4249                 spin_unlock(ptl);
4250         }
4251         *nr_pages = remainder;
4252         /*
4253          * setting position is actually required only if remainder is
4254          * not zero but it's faster not to add a "if (remainder)"
4255          * branch.
4256          */
4257         *position = vaddr;
4258
4259         return i ? i : -EFAULT;
4260 }
4261
4262 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4263 /*
4264  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4265  * implement this.
4266  */
4267 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4268 #endif
4269
4270 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4271                 unsigned long address, unsigned long end, pgprot_t newprot)
4272 {
4273         struct mm_struct *mm = vma->vm_mm;
4274         unsigned long start = address;
4275         pte_t *ptep;
4276         pte_t pte;
4277         struct hstate *h = hstate_vma(vma);
4278         unsigned long pages = 0;
4279
4280         BUG_ON(address >= end);
4281         flush_cache_range(vma, address, end);
4282
4283         mmu_notifier_invalidate_range_start(mm, start, end);
4284         i_mmap_lock_write(vma->vm_file->f_mapping);
4285         for (; address < end; address += huge_page_size(h)) {
4286                 spinlock_t *ptl;
4287                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4288                 if (!ptep)
4289                         continue;
4290                 ptl = huge_pte_lock(h, mm, ptep);
4291                 if (huge_pmd_unshare(mm, &address, ptep)) {
4292                         pages++;
4293                         spin_unlock(ptl);
4294                         continue;
4295                 }
4296                 pte = huge_ptep_get(ptep);
4297                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4298                         spin_unlock(ptl);
4299                         continue;
4300                 }
4301                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4302                         swp_entry_t entry = pte_to_swp_entry(pte);
4303
4304                         if (is_write_migration_entry(entry)) {
4305                                 pte_t newpte;
4306
4307                                 make_migration_entry_read(&entry);
4308                                 newpte = swp_entry_to_pte(entry);
4309                                 set_huge_swap_pte_at(mm, address, ptep,
4310                                                      newpte, huge_page_size(h));
4311                                 pages++;
4312                         }
4313                         spin_unlock(ptl);
4314                         continue;
4315                 }
4316                 if (!huge_pte_none(pte)) {
4317                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4318                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4319                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4320                         set_huge_pte_at(mm, address, ptep, pte);
4321                         pages++;
4322                 }
4323                 spin_unlock(ptl);
4324         }
4325         /*
4326          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4327          * may have cleared our pud entry and done put_page on the page table:
4328          * once we release i_mmap_rwsem, another task can do the final put_page
4329          * and that page table be reused and filled with junk.
4330          */
4331         flush_hugetlb_tlb_range(vma, start, end);
4332         mmu_notifier_invalidate_range(mm, start, end);
4333         i_mmap_unlock_write(vma->vm_file->f_mapping);
4334         mmu_notifier_invalidate_range_end(mm, start, end);
4335
4336         return pages << h->order;
4337 }
4338
4339 int hugetlb_reserve_pages(struct inode *inode,
4340                                         long from, long to,
4341                                         struct vm_area_struct *vma,
4342                                         vm_flags_t vm_flags)
4343 {
4344         long ret, chg;
4345         struct hstate *h = hstate_inode(inode);
4346         struct hugepage_subpool *spool = subpool_inode(inode);
4347         struct resv_map *resv_map;
4348         long gbl_reserve;
4349
4350         /*
4351          * Only apply hugepage reservation if asked. At fault time, an
4352          * attempt will be made for VM_NORESERVE to allocate a page
4353          * without using reserves
4354          */
4355         if (vm_flags & VM_NORESERVE)
4356                 return 0;
4357
4358         /*
4359          * Shared mappings base their reservation on the number of pages that
4360          * are already allocated on behalf of the file. Private mappings need
4361          * to reserve the full area even if read-only as mprotect() may be
4362          * called to make the mapping read-write. Assume !vma is a shm mapping
4363          */
4364         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4365                 resv_map = inode_resv_map(inode);
4366
4367                 chg = region_chg(resv_map, from, to);
4368
4369         } else {
4370                 resv_map = resv_map_alloc();
4371                 if (!resv_map)
4372                         return -ENOMEM;
4373
4374                 chg = to - from;
4375
4376                 set_vma_resv_map(vma, resv_map);
4377                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4378         }
4379
4380         if (chg < 0) {
4381                 ret = chg;
4382                 goto out_err;
4383         }
4384
4385         /*
4386          * There must be enough pages in the subpool for the mapping. If
4387          * the subpool has a minimum size, there may be some global
4388          * reservations already in place (gbl_reserve).
4389          */
4390         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4391         if (gbl_reserve < 0) {
4392                 ret = -ENOSPC;
4393                 goto out_err;
4394         }
4395
4396         /*
4397          * Check enough hugepages are available for the reservation.
4398          * Hand the pages back to the subpool if there are not
4399          */
4400         ret = hugetlb_acct_memory(h, gbl_reserve);
4401         if (ret < 0) {
4402                 /* put back original number of pages, chg */
4403                 (void)hugepage_subpool_put_pages(spool, chg);
4404                 goto out_err;
4405         }
4406
4407         /*
4408          * Account for the reservations made. Shared mappings record regions
4409          * that have reservations as they are shared by multiple VMAs.
4410          * When the last VMA disappears, the region map says how much
4411          * the reservation was and the page cache tells how much of
4412          * the reservation was consumed. Private mappings are per-VMA and
4413          * only the consumed reservations are tracked. When the VMA
4414          * disappears, the original reservation is the VMA size and the
4415          * consumed reservations are stored in the map. Hence, nothing
4416          * else has to be done for private mappings here
4417          */
4418         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4419                 long add = region_add(resv_map, from, to);
4420
4421                 if (unlikely(chg > add)) {
4422                         /*
4423                          * pages in this range were added to the reserve
4424                          * map between region_chg and region_add.  This
4425                          * indicates a race with alloc_huge_page.  Adjust
4426                          * the subpool and reserve counts modified above
4427                          * based on the difference.
4428                          */
4429                         long rsv_adjust;
4430
4431                         rsv_adjust = hugepage_subpool_put_pages(spool,
4432                                                                 chg - add);
4433                         hugetlb_acct_memory(h, -rsv_adjust);
4434                 }
4435         }
4436         return 0;
4437 out_err:
4438         if (!vma || vma->vm_flags & VM_MAYSHARE)
4439                 /* Don't call region_abort if region_chg failed */
4440                 if (chg >= 0)
4441                         region_abort(resv_map, from, to);
4442         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4443                 kref_put(&resv_map->refs, resv_map_release);
4444         return ret;
4445 }
4446
4447 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4448                                                                 long freed)
4449 {
4450         struct hstate *h = hstate_inode(inode);
4451         struct resv_map *resv_map = inode_resv_map(inode);
4452         long chg = 0;
4453         struct hugepage_subpool *spool = subpool_inode(inode);
4454         long gbl_reserve;
4455
4456         if (resv_map) {
4457                 chg = region_del(resv_map, start, end);
4458                 /*
4459                  * region_del() can fail in the rare case where a region
4460                  * must be split and another region descriptor can not be
4461                  * allocated.  If end == LONG_MAX, it will not fail.
4462                  */
4463                 if (chg < 0)
4464                         return chg;
4465         }
4466
4467         spin_lock(&inode->i_lock);
4468         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4469         spin_unlock(&inode->i_lock);
4470
4471         /*
4472          * If the subpool has a minimum size, the number of global
4473          * reservations to be released may be adjusted.
4474          */
4475         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4476         hugetlb_acct_memory(h, -gbl_reserve);
4477
4478         return 0;
4479 }
4480
4481 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4482 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4483                                 struct vm_area_struct *vma,
4484                                 unsigned long addr, pgoff_t idx)
4485 {
4486         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4487                                 svma->vm_start;
4488         unsigned long sbase = saddr & PUD_MASK;
4489         unsigned long s_end = sbase + PUD_SIZE;
4490
4491         /* Allow segments to share if only one is marked locked */
4492         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4493         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4494
4495         /*
4496          * match the virtual addresses, permission and the alignment of the
4497          * page table page.
4498          */
4499         if (pmd_index(addr) != pmd_index(saddr) ||
4500             vm_flags != svm_flags ||
4501             sbase < svma->vm_start || svma->vm_end < s_end)
4502                 return 0;
4503
4504         return saddr;
4505 }
4506
4507 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4508 {
4509         unsigned long base = addr & PUD_MASK;
4510         unsigned long end = base + PUD_SIZE;
4511
4512         /*
4513          * check on proper vm_flags and page table alignment
4514          */
4515         if (vma->vm_flags & VM_MAYSHARE &&
4516             vma->vm_start <= base && end <= vma->vm_end)
4517                 return true;
4518         return false;
4519 }
4520
4521 /*
4522  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4523  * and returns the corresponding pte. While this is not necessary for the
4524  * !shared pmd case because we can allocate the pmd later as well, it makes the
4525  * code much cleaner. pmd allocation is essential for the shared case because
4526  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4527  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4528  * bad pmd for sharing.
4529  */
4530 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4531 {
4532         struct vm_area_struct *vma = find_vma(mm, addr);
4533         struct address_space *mapping = vma->vm_file->f_mapping;
4534         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4535                         vma->vm_pgoff;
4536         struct vm_area_struct *svma;
4537         unsigned long saddr;
4538         pte_t *spte = NULL;
4539         pte_t *pte;
4540         spinlock_t *ptl;
4541
4542         if (!vma_shareable(vma, addr))
4543                 return (pte_t *)pmd_alloc(mm, pud, addr);
4544
4545         i_mmap_lock_write(mapping);
4546         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4547                 if (svma == vma)
4548                         continue;
4549
4550                 saddr = page_table_shareable(svma, vma, addr, idx);
4551                 if (saddr) {
4552                         spte = huge_pte_offset(svma->vm_mm, saddr,
4553                                                vma_mmu_pagesize(svma));
4554                         if (spte) {
4555                                 get_page(virt_to_page(spte));
4556                                 break;
4557                         }
4558                 }
4559         }
4560
4561         if (!spte)
4562                 goto out;
4563
4564         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4565         if (pud_none(*pud)) {
4566                 pud_populate(mm, pud,
4567                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4568                 mm_inc_nr_pmds(mm);
4569         } else {
4570                 put_page(virt_to_page(spte));
4571         }
4572         spin_unlock(ptl);
4573 out:
4574         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4575         i_mmap_unlock_write(mapping);
4576         return pte;
4577 }
4578
4579 /*
4580  * unmap huge page backed by shared pte.
4581  *
4582  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4583  * indicated by page_count > 1, unmap is achieved by clearing pud and
4584  * decrementing the ref count. If count == 1, the pte page is not shared.
4585  *
4586  * called with page table lock held.
4587  *
4588  * returns: 1 successfully unmapped a shared pte page
4589  *          0 the underlying pte page is not shared, or it is the last user
4590  */
4591 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4592 {
4593         pgd_t *pgd = pgd_offset(mm, *addr);
4594         p4d_t *p4d = p4d_offset(pgd, *addr);
4595         pud_t *pud = pud_offset(p4d, *addr);
4596
4597         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4598         if (page_count(virt_to_page(ptep)) == 1)
4599                 return 0;
4600
4601         pud_clear(pud);
4602         put_page(virt_to_page(ptep));
4603         mm_dec_nr_pmds(mm);
4604         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4605         return 1;
4606 }
4607 #define want_pmd_share()        (1)
4608 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4609 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4610 {
4611         return NULL;
4612 }
4613
4614 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4615 {
4616         return 0;
4617 }
4618 #define want_pmd_share()        (0)
4619 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4620
4621 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4622 pte_t *huge_pte_alloc(struct mm_struct *mm,
4623                         unsigned long addr, unsigned long sz)
4624 {
4625         pgd_t *pgd;
4626         p4d_t *p4d;
4627         pud_t *pud;
4628         pte_t *pte = NULL;
4629
4630         pgd = pgd_offset(mm, addr);
4631         p4d = p4d_offset(pgd, addr);
4632         pud = pud_alloc(mm, p4d, addr);
4633         if (pud) {
4634                 if (sz == PUD_SIZE) {
4635                         pte = (pte_t *)pud;
4636                 } else {
4637                         BUG_ON(sz != PMD_SIZE);
4638                         if (want_pmd_share() && pud_none(*pud))
4639                                 pte = huge_pmd_share(mm, addr, pud);
4640                         else
4641                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4642                 }
4643         }
4644         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4645
4646         return pte;
4647 }
4648
4649 pte_t *huge_pte_offset(struct mm_struct *mm,
4650                        unsigned long addr, unsigned long sz)
4651 {
4652         pgd_t *pgd;
4653         p4d_t *p4d;
4654         pud_t *pud;
4655         pmd_t *pmd;
4656
4657         pgd = pgd_offset(mm, addr);
4658         if (!pgd_present(*pgd))
4659                 return NULL;
4660         p4d = p4d_offset(pgd, addr);
4661         if (!p4d_present(*p4d))
4662                 return NULL;
4663         pud = pud_offset(p4d, addr);
4664         if (!pud_present(*pud))
4665                 return NULL;
4666         if (pud_huge(*pud))
4667                 return (pte_t *)pud;
4668         pmd = pmd_offset(pud, addr);
4669         return (pte_t *) pmd;
4670 }
4671
4672 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4673
4674 /*
4675  * These functions are overwritable if your architecture needs its own
4676  * behavior.
4677  */
4678 struct page * __weak
4679 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4680                               int write)
4681 {
4682         return ERR_PTR(-EINVAL);
4683 }
4684
4685 struct page * __weak
4686 follow_huge_pd(struct vm_area_struct *vma,
4687                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4688 {
4689         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4690         return NULL;
4691 }
4692
4693 struct page * __weak
4694 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4695                 pmd_t *pmd, int flags)
4696 {
4697         struct page *page = NULL;
4698         spinlock_t *ptl;
4699         pte_t pte;
4700 retry:
4701         ptl = pmd_lockptr(mm, pmd);
4702         spin_lock(ptl);
4703         /*
4704          * make sure that the address range covered by this pmd is not
4705          * unmapped from other threads.
4706          */
4707         if (!pmd_huge(*pmd))
4708                 goto out;
4709         pte = huge_ptep_get((pte_t *)pmd);
4710         if (pte_present(pte)) {
4711                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4712                 if (flags & FOLL_GET)
4713                         get_page(page);
4714         } else {
4715                 if (is_hugetlb_entry_migration(pte)) {
4716                         spin_unlock(ptl);
4717                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4718                         goto retry;
4719                 }
4720                 /*
4721                  * hwpoisoned entry is treated as no_page_table in
4722                  * follow_page_mask().
4723                  */
4724         }
4725 out:
4726         spin_unlock(ptl);
4727         return page;
4728 }
4729
4730 struct page * __weak
4731 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4732                 pud_t *pud, int flags)
4733 {
4734         if (flags & FOLL_GET)
4735                 return NULL;
4736
4737         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4738 }
4739
4740 struct page * __weak
4741 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4742 {
4743         if (flags & FOLL_GET)
4744                 return NULL;
4745
4746         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4747 }
4748
4749 #ifdef CONFIG_MEMORY_FAILURE
4750
4751 /*
4752  * This function is called from memory failure code.
4753  */
4754 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4755 {
4756         struct hstate *h = page_hstate(hpage);
4757         int nid = page_to_nid(hpage);
4758         int ret = -EBUSY;
4759
4760         spin_lock(&hugetlb_lock);
4761         /*
4762          * Just checking !page_huge_active is not enough, because that could be
4763          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4764          */
4765         if (!page_huge_active(hpage) && !page_count(hpage)) {
4766                 /*
4767                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4768                  * but dangling hpage->lru can trigger list-debug warnings
4769                  * (this happens when we call unpoison_memory() on it),
4770                  * so let it point to itself with list_del_init().
4771                  */
4772                 list_del_init(&hpage->lru);
4773                 set_page_refcounted(hpage);
4774                 h->free_huge_pages--;
4775                 h->free_huge_pages_node[nid]--;
4776                 ret = 0;
4777         }
4778         spin_unlock(&hugetlb_lock);
4779         return ret;
4780 }
4781 #endif
4782
4783 bool isolate_huge_page(struct page *page, struct list_head *list)
4784 {
4785         bool ret = true;
4786
4787         VM_BUG_ON_PAGE(!PageHead(page), page);
4788         spin_lock(&hugetlb_lock);
4789         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4790                 ret = false;
4791                 goto unlock;
4792         }
4793         clear_page_huge_active(page);
4794         list_move_tail(&page->lru, list);
4795 unlock:
4796         spin_unlock(&hugetlb_lock);
4797         return ret;
4798 }
4799
4800 void putback_active_hugepage(struct page *page)
4801 {
4802         VM_BUG_ON_PAGE(!PageHead(page), page);
4803         spin_lock(&hugetlb_lock);
4804         set_page_huge_active(page);
4805         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4806         spin_unlock(&hugetlb_lock);
4807         put_page(page);
4808 }