]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
Merge tag 'pci-v4.13-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76         bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78         spin_unlock(&spool->lock);
79
80         /* If no pages are used, and no other handles to the subpool
81          * remain, give up any reservations mased on minimum size and
82          * free the subpool */
83         if (free) {
84                 if (spool->min_hpages != -1)
85                         hugetlb_acct_memory(spool->hstate,
86                                                 -spool->min_hpages);
87                 kfree(spool);
88         }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92                                                 long min_hpages)
93 {
94         struct hugepage_subpool *spool;
95
96         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97         if (!spool)
98                 return NULL;
99
100         spin_lock_init(&spool->lock);
101         spool->count = 1;
102         spool->max_hpages = max_hpages;
103         spool->hstate = h;
104         spool->min_hpages = min_hpages;
105
106         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107                 kfree(spool);
108                 return NULL;
109         }
110         spool->rsv_hpages = min_hpages;
111
112         return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117         spin_lock(&spool->lock);
118         BUG_ON(!spool->count);
119         spool->count--;
120         unlock_or_release_subpool(spool);
121 }
122
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132                                       long delta)
133 {
134         long ret = delta;
135
136         if (!spool)
137                 return ret;
138
139         spin_lock(&spool->lock);
140
141         if (spool->max_hpages != -1) {          /* maximum size accounting */
142                 if ((spool->used_hpages + delta) <= spool->max_hpages)
143                         spool->used_hpages += delta;
144                 else {
145                         ret = -ENOMEM;
146                         goto unlock_ret;
147                 }
148         }
149
150         /* minimum size accounting */
151         if (spool->min_hpages != -1 && spool->rsv_hpages) {
152                 if (delta > spool->rsv_hpages) {
153                         /*
154                          * Asking for more reserves than those already taken on
155                          * behalf of subpool.  Return difference.
156                          */
157                         ret = delta - spool->rsv_hpages;
158                         spool->rsv_hpages = 0;
159                 } else {
160                         ret = 0;        /* reserves already accounted for */
161                         spool->rsv_hpages -= delta;
162                 }
163         }
164
165 unlock_ret:
166         spin_unlock(&spool->lock);
167         return ret;
168 }
169
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177                                        long delta)
178 {
179         long ret = delta;
180
181         if (!spool)
182                 return delta;
183
184         spin_lock(&spool->lock);
185
186         if (spool->max_hpages != -1)            /* maximum size accounting */
187                 spool->used_hpages -= delta;
188
189          /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191                 if (spool->rsv_hpages + delta <= spool->min_hpages)
192                         ret = 0;
193                 else
194                         ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196                 spool->rsv_hpages += delta;
197                 if (spool->rsv_hpages > spool->min_hpages)
198                         spool->rsv_hpages = spool->min_hpages;
199         }
200
201         /*
202          * If hugetlbfs_put_super couldn't free spool due to an outstanding
203          * quota reference, free it now.
204          */
205         unlock_or_release_subpool(spool);
206
207         return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212         return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217         return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240         struct list_head link;
241         long from;
242         long to;
243 };
244
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261         struct list_head *head = &resv->regions;
262         struct file_region *rg, *nrg, *trg;
263         long add = 0;
264
265         spin_lock(&resv->lock);
266         /* Locate the region we are either in or before. */
267         list_for_each_entry(rg, head, link)
268                 if (f <= rg->to)
269                         break;
270
271         /*
272          * If no region exists which can be expanded to include the
273          * specified range, the list must have been modified by an
274          * interleving call to region_del().  Pull a region descriptor
275          * from the cache and use it for this range.
276          */
277         if (&rg->link == head || t < rg->from) {
278                 VM_BUG_ON(resv->region_cache_count <= 0);
279
280                 resv->region_cache_count--;
281                 nrg = list_first_entry(&resv->region_cache, struct file_region,
282                                         link);
283                 list_del(&nrg->link);
284
285                 nrg->from = f;
286                 nrg->to = t;
287                 list_add(&nrg->link, rg->link.prev);
288
289                 add += t - f;
290                 goto out_locked;
291         }
292
293         /* Round our left edge to the current segment if it encloses us. */
294         if (f > rg->from)
295                 f = rg->from;
296
297         /* Check for and consume any regions we now overlap with. */
298         nrg = rg;
299         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300                 if (&rg->link == head)
301                         break;
302                 if (rg->from > t)
303                         break;
304
305                 /* If this area reaches higher then extend our area to
306                  * include it completely.  If this is not the first area
307                  * which we intend to reuse, free it. */
308                 if (rg->to > t)
309                         t = rg->to;
310                 if (rg != nrg) {
311                         /* Decrement return value by the deleted range.
312                          * Another range will span this area so that by
313                          * end of routine add will be >= zero
314                          */
315                         add -= (rg->to - rg->from);
316                         list_del(&rg->link);
317                         kfree(rg);
318                 }
319         }
320
321         add += (nrg->from - f);         /* Added to beginning of region */
322         nrg->from = f;
323         add += t - nrg->to;             /* Added to end of region */
324         nrg->to = t;
325
326 out_locked:
327         resv->adds_in_progress--;
328         spin_unlock(&resv->lock);
329         VM_BUG_ON(add < 0);
330         return add;
331 }
332
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357         struct list_head *head = &resv->regions;
358         struct file_region *rg, *nrg = NULL;
359         long chg = 0;
360
361 retry:
362         spin_lock(&resv->lock);
363 retry_locked:
364         resv->adds_in_progress++;
365
366         /*
367          * Check for sufficient descriptors in the cache to accommodate
368          * the number of in progress add operations.
369          */
370         if (resv->adds_in_progress > resv->region_cache_count) {
371                 struct file_region *trg;
372
373                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374                 /* Must drop lock to allocate a new descriptor. */
375                 resv->adds_in_progress--;
376                 spin_unlock(&resv->lock);
377
378                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379                 if (!trg) {
380                         kfree(nrg);
381                         return -ENOMEM;
382                 }
383
384                 spin_lock(&resv->lock);
385                 list_add(&trg->link, &resv->region_cache);
386                 resv->region_cache_count++;
387                 goto retry_locked;
388         }
389
390         /* Locate the region we are before or in. */
391         list_for_each_entry(rg, head, link)
392                 if (f <= rg->to)
393                         break;
394
395         /* If we are below the current region then a new region is required.
396          * Subtle, allocate a new region at the position but make it zero
397          * size such that we can guarantee to record the reservation. */
398         if (&rg->link == head || t < rg->from) {
399                 if (!nrg) {
400                         resv->adds_in_progress--;
401                         spin_unlock(&resv->lock);
402                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403                         if (!nrg)
404                                 return -ENOMEM;
405
406                         nrg->from = f;
407                         nrg->to   = f;
408                         INIT_LIST_HEAD(&nrg->link);
409                         goto retry;
410                 }
411
412                 list_add(&nrg->link, rg->link.prev);
413                 chg = t - f;
414                 goto out_nrg;
415         }
416
417         /* Round our left edge to the current segment if it encloses us. */
418         if (f > rg->from)
419                 f = rg->from;
420         chg = t - f;
421
422         /* Check for and consume any regions we now overlap with. */
423         list_for_each_entry(rg, rg->link.prev, link) {
424                 if (&rg->link == head)
425                         break;
426                 if (rg->from > t)
427                         goto out;
428
429                 /* We overlap with this area, if it extends further than
430                  * us then we must extend ourselves.  Account for its
431                  * existing reservation. */
432                 if (rg->to > t) {
433                         chg += rg->to - t;
434                         t = rg->to;
435                 }
436                 chg -= rg->to - rg->from;
437         }
438
439 out:
440         spin_unlock(&resv->lock);
441         /*  We already know we raced and no longer need the new region */
442         kfree(nrg);
443         return chg;
444 out_nrg:
445         spin_unlock(&resv->lock);
446         return chg;
447 }
448
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462         spin_lock(&resv->lock);
463         VM_BUG_ON(!resv->region_cache_count);
464         resv->adds_in_progress--;
465         spin_unlock(&resv->lock);
466 }
467
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484         struct list_head *head = &resv->regions;
485         struct file_region *rg, *trg;
486         struct file_region *nrg = NULL;
487         long del = 0;
488
489 retry:
490         spin_lock(&resv->lock);
491         list_for_each_entry_safe(rg, trg, head, link) {
492                 /*
493                  * Skip regions before the range to be deleted.  file_region
494                  * ranges are normally of the form [from, to).  However, there
495                  * may be a "placeholder" entry in the map which is of the form
496                  * (from, to) with from == to.  Check for placeholder entries
497                  * at the beginning of the range to be deleted.
498                  */
499                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500                         continue;
501
502                 if (rg->from >= t)
503                         break;
504
505                 if (f > rg->from && t < rg->to) { /* Must split region */
506                         /*
507                          * Check for an entry in the cache before dropping
508                          * lock and attempting allocation.
509                          */
510                         if (!nrg &&
511                             resv->region_cache_count > resv->adds_in_progress) {
512                                 nrg = list_first_entry(&resv->region_cache,
513                                                         struct file_region,
514                                                         link);
515                                 list_del(&nrg->link);
516                                 resv->region_cache_count--;
517                         }
518
519                         if (!nrg) {
520                                 spin_unlock(&resv->lock);
521                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522                                 if (!nrg)
523                                         return -ENOMEM;
524                                 goto retry;
525                         }
526
527                         del += t - f;
528
529                         /* New entry for end of split region */
530                         nrg->from = t;
531                         nrg->to = rg->to;
532                         INIT_LIST_HEAD(&nrg->link);
533
534                         /* Original entry is trimmed */
535                         rg->to = f;
536
537                         list_add(&nrg->link, &rg->link);
538                         nrg = NULL;
539                         break;
540                 }
541
542                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543                         del += rg->to - rg->from;
544                         list_del(&rg->link);
545                         kfree(rg);
546                         continue;
547                 }
548
549                 if (f <= rg->from) {    /* Trim beginning of region */
550                         del += t - rg->from;
551                         rg->from = t;
552                 } else {                /* Trim end of region */
553                         del += rg->to - f;
554                         rg->to = f;
555                 }
556         }
557
558         spin_unlock(&resv->lock);
559         kfree(nrg);
560         return del;
561 }
562
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574         struct hugepage_subpool *spool = subpool_inode(inode);
575         long rsv_adjust;
576
577         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578         if (rsv_adjust) {
579                 struct hstate *h = hstate_inode(inode);
580
581                 hugetlb_acct_memory(h, 1);
582         }
583 }
584
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591         struct list_head *head = &resv->regions;
592         struct file_region *rg;
593         long chg = 0;
594
595         spin_lock(&resv->lock);
596         /* Locate each segment we overlap with, and count that overlap. */
597         list_for_each_entry(rg, head, link) {
598                 long seg_from;
599                 long seg_to;
600
601                 if (rg->to <= f)
602                         continue;
603                 if (rg->from >= t)
604                         break;
605
606                 seg_from = max(rg->from, f);
607                 seg_to = min(rg->to, t);
608
609                 chg += seg_to - seg_from;
610         }
611         spin_unlock(&resv->lock);
612
613         return chg;
614 }
615
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621                         struct vm_area_struct *vma, unsigned long address)
622 {
623         return ((address - vma->vm_start) >> huge_page_shift(h)) +
624                         (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628                                      unsigned long address)
629 {
630         return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640         struct hstate *hstate;
641
642         if (!is_vm_hugetlb_page(vma))
643                 return PAGE_SIZE;
644
645         hstate = hstate_vma(vma);
646
647         return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660         return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694         return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698                                                         unsigned long value)
699 {
700         vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708         if (!resv_map || !rg) {
709                 kfree(resv_map);
710                 kfree(rg);
711                 return NULL;
712         }
713
714         kref_init(&resv_map->refs);
715         spin_lock_init(&resv_map->lock);
716         INIT_LIST_HEAD(&resv_map->regions);
717
718         resv_map->adds_in_progress = 0;
719
720         INIT_LIST_HEAD(&resv_map->region_cache);
721         list_add(&rg->link, &resv_map->region_cache);
722         resv_map->region_cache_count = 1;
723
724         return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730         struct list_head *head = &resv_map->region_cache;
731         struct file_region *rg, *trg;
732
733         /* Clear out any active regions before we release the map. */
734         region_del(resv_map, 0, LONG_MAX);
735
736         /* ... and any entries left in the cache */
737         list_for_each_entry_safe(rg, trg, head, link) {
738                 list_del(&rg->link);
739                 kfree(rg);
740         }
741
742         VM_BUG_ON(resv_map->adds_in_progress);
743
744         kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749         return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         if (vma->vm_flags & VM_MAYSHARE) {
756                 struct address_space *mapping = vma->vm_file->f_mapping;
757                 struct inode *inode = mapping->host;
758
759                 return inode_resv_map(inode);
760
761         } else {
762                 return (struct resv_map *)(get_vma_private_data(vma) &
763                                                         ~HPAGE_RESV_MASK);
764         }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772         set_vma_private_data(vma, (get_vma_private_data(vma) &
773                                 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788         return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795         if (!(vma->vm_flags & VM_MAYSHARE))
796                 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802         if (vma->vm_flags & VM_NORESERVE) {
803                 /*
804                  * This address is already reserved by other process(chg == 0),
805                  * so, we should decrement reserved count. Without decrementing,
806                  * reserve count remains after releasing inode, because this
807                  * allocated page will go into page cache and is regarded as
808                  * coming from reserved pool in releasing step.  Currently, we
809                  * don't have any other solution to deal with this situation
810                  * properly, so add work-around here.
811                  */
812                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813                         return true;
814                 else
815                         return false;
816         }
817
818         /* Shared mappings always use reserves */
819         if (vma->vm_flags & VM_MAYSHARE) {
820                 /*
821                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822                  * be a region map for all pages.  The only situation where
823                  * there is no region map is if a hole was punched via
824                  * fallocate.  In this case, there really are no reverves to
825                  * use.  This situation is indicated if chg != 0.
826                  */
827                 if (chg)
828                         return false;
829                 else
830                         return true;
831         }
832
833         /*
834          * Only the process that called mmap() has reserves for
835          * private mappings.
836          */
837         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838                 /*
839                  * Like the shared case above, a hole punch or truncate
840                  * could have been performed on the private mapping.
841                  * Examine the value of chg to determine if reserves
842                  * actually exist or were previously consumed.
843                  * Very Subtle - The value of chg comes from a previous
844                  * call to vma_needs_reserves().  The reserve map for
845                  * private mappings has different (opposite) semantics
846                  * than that of shared mappings.  vma_needs_reserves()
847                  * has already taken this difference in semantics into
848                  * account.  Therefore, the meaning of chg is the same
849                  * as in the shared case above.  Code could easily be
850                  * combined, but keeping it separate draws attention to
851                  * subtle differences.
852                  */
853                 if (chg)
854                         return false;
855                 else
856                         return true;
857         }
858
859         return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864         int nid = page_to_nid(page);
865         list_move(&page->lru, &h->hugepage_freelists[nid]);
866         h->free_huge_pages++;
867         h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872         struct page *page;
873
874         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875                 if (!is_migrate_isolate_page(page))
876                         break;
877         /*
878          * if 'non-isolated free hugepage' not found on the list,
879          * the allocation fails.
880          */
881         if (&h->hugepage_freelists[nid] == &page->lru)
882                 return NULL;
883         list_move(&page->lru, &h->hugepage_activelist);
884         set_page_refcounted(page);
885         h->free_huge_pages--;
886         h->free_huge_pages_node[nid]--;
887         return page;
888 }
889
890 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
891 {
892         struct page *page;
893         int node;
894
895         if (nid != NUMA_NO_NODE)
896                 return dequeue_huge_page_node_exact(h, nid);
897
898         for_each_online_node(node) {
899                 page = dequeue_huge_page_node_exact(h, node);
900                 if (page)
901                         return page;
902         }
903         return NULL;
904 }
905
906 /* Movability of hugepages depends on migration support. */
907 static inline gfp_t htlb_alloc_mask(struct hstate *h)
908 {
909         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
910                 return GFP_HIGHUSER_MOVABLE;
911         else
912                 return GFP_HIGHUSER;
913 }
914
915 static struct page *dequeue_huge_page_vma(struct hstate *h,
916                                 struct vm_area_struct *vma,
917                                 unsigned long address, int avoid_reserve,
918                                 long chg)
919 {
920         struct page *page = NULL;
921         struct mempolicy *mpol;
922         nodemask_t *nodemask;
923         gfp_t gfp_mask;
924         int nid;
925         struct zonelist *zonelist;
926         struct zone *zone;
927         struct zoneref *z;
928         unsigned int cpuset_mems_cookie;
929
930         /*
931          * A child process with MAP_PRIVATE mappings created by their parent
932          * have no page reserves. This check ensures that reservations are
933          * not "stolen". The child may still get SIGKILLed
934          */
935         if (!vma_has_reserves(vma, chg) &&
936                         h->free_huge_pages - h->resv_huge_pages == 0)
937                 goto err;
938
939         /* If reserves cannot be used, ensure enough pages are in the pool */
940         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
941                 goto err;
942
943 retry_cpuset:
944         cpuset_mems_cookie = read_mems_allowed_begin();
945         gfp_mask = htlb_alloc_mask(h);
946         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
947         zonelist = node_zonelist(nid, gfp_mask);
948
949         for_each_zone_zonelist_nodemask(zone, z, zonelist,
950                                                 MAX_NR_ZONES - 1, nodemask) {
951                 if (cpuset_zone_allowed(zone, gfp_mask)) {
952                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
953                         if (page) {
954                                 if (avoid_reserve)
955                                         break;
956                                 if (!vma_has_reserves(vma, chg))
957                                         break;
958
959                                 SetPagePrivate(page);
960                                 h->resv_huge_pages--;
961                                 break;
962                         }
963                 }
964         }
965
966         mpol_cond_put(mpol);
967         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
968                 goto retry_cpuset;
969         return page;
970
971 err:
972         return NULL;
973 }
974
975 /*
976  * common helper functions for hstate_next_node_to_{alloc|free}.
977  * We may have allocated or freed a huge page based on a different
978  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979  * be outside of *nodes_allowed.  Ensure that we use an allowed
980  * node for alloc or free.
981  */
982 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984         nid = next_node_in(nid, *nodes_allowed);
985         VM_BUG_ON(nid >= MAX_NUMNODES);
986
987         return nid;
988 }
989
990 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991 {
992         if (!node_isset(nid, *nodes_allowed))
993                 nid = next_node_allowed(nid, nodes_allowed);
994         return nid;
995 }
996
997 /*
998  * returns the previously saved node ["this node"] from which to
999  * allocate a persistent huge page for the pool and advance the
1000  * next node from which to allocate, handling wrap at end of node
1001  * mask.
1002  */
1003 static int hstate_next_node_to_alloc(struct hstate *h,
1004                                         nodemask_t *nodes_allowed)
1005 {
1006         int nid;
1007
1008         VM_BUG_ON(!nodes_allowed);
1009
1010         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013         return nid;
1014 }
1015
1016 /*
1017  * helper for free_pool_huge_page() - return the previously saved
1018  * node ["this node"] from which to free a huge page.  Advance the
1019  * next node id whether or not we find a free huge page to free so
1020  * that the next attempt to free addresses the next node.
1021  */
1022 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023 {
1024         int nid;
1025
1026         VM_BUG_ON(!nodes_allowed);
1027
1028         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031         return nid;
1032 }
1033
1034 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1035         for (nr_nodes = nodes_weight(*mask);                            \
1036                 nr_nodes > 0 &&                                         \
1037                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1038                 nr_nodes--)
1039
1040 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1041         for (nr_nodes = nodes_weight(*mask);                            \
1042                 nr_nodes > 0 &&                                         \
1043                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1044                 nr_nodes--)
1045
1046 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1047 static void destroy_compound_gigantic_page(struct page *page,
1048                                         unsigned int order)
1049 {
1050         int i;
1051         int nr_pages = 1 << order;
1052         struct page *p = page + 1;
1053
1054         atomic_set(compound_mapcount_ptr(page), 0);
1055         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1056                 clear_compound_head(p);
1057                 set_page_refcounted(p);
1058         }
1059
1060         set_compound_order(page, 0);
1061         __ClearPageHead(page);
1062 }
1063
1064 static void free_gigantic_page(struct page *page, unsigned int order)
1065 {
1066         free_contig_range(page_to_pfn(page), 1 << order);
1067 }
1068
1069 static int __alloc_gigantic_page(unsigned long start_pfn,
1070                                 unsigned long nr_pages)
1071 {
1072         unsigned long end_pfn = start_pfn + nr_pages;
1073         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1074                                   GFP_KERNEL);
1075 }
1076
1077 static bool pfn_range_valid_gigantic(struct zone *z,
1078                         unsigned long start_pfn, unsigned long nr_pages)
1079 {
1080         unsigned long i, end_pfn = start_pfn + nr_pages;
1081         struct page *page;
1082
1083         for (i = start_pfn; i < end_pfn; i++) {
1084                 if (!pfn_valid(i))
1085                         return false;
1086
1087                 page = pfn_to_page(i);
1088
1089                 if (page_zone(page) != z)
1090                         return false;
1091
1092                 if (PageReserved(page))
1093                         return false;
1094
1095                 if (page_count(page) > 0)
1096                         return false;
1097
1098                 if (PageHuge(page))
1099                         return false;
1100         }
1101
1102         return true;
1103 }
1104
1105 static bool zone_spans_last_pfn(const struct zone *zone,
1106                         unsigned long start_pfn, unsigned long nr_pages)
1107 {
1108         unsigned long last_pfn = start_pfn + nr_pages - 1;
1109         return zone_spans_pfn(zone, last_pfn);
1110 }
1111
1112 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1113 {
1114         unsigned long nr_pages = 1 << order;
1115         unsigned long ret, pfn, flags;
1116         struct zone *z;
1117
1118         z = NODE_DATA(nid)->node_zones;
1119         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1120                 spin_lock_irqsave(&z->lock, flags);
1121
1122                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1123                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1124                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1125                                 /*
1126                                  * We release the zone lock here because
1127                                  * alloc_contig_range() will also lock the zone
1128                                  * at some point. If there's an allocation
1129                                  * spinning on this lock, it may win the race
1130                                  * and cause alloc_contig_range() to fail...
1131                                  */
1132                                 spin_unlock_irqrestore(&z->lock, flags);
1133                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1134                                 if (!ret)
1135                                         return pfn_to_page(pfn);
1136                                 spin_lock_irqsave(&z->lock, flags);
1137                         }
1138                         pfn += nr_pages;
1139                 }
1140
1141                 spin_unlock_irqrestore(&z->lock, flags);
1142         }
1143
1144         return NULL;
1145 }
1146
1147 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1148 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1149
1150 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1151 {
1152         struct page *page;
1153
1154         page = alloc_gigantic_page(nid, huge_page_order(h));
1155         if (page) {
1156                 prep_compound_gigantic_page(page, huge_page_order(h));
1157                 prep_new_huge_page(h, page, nid);
1158         }
1159
1160         return page;
1161 }
1162
1163 static int alloc_fresh_gigantic_page(struct hstate *h,
1164                                 nodemask_t *nodes_allowed)
1165 {
1166         struct page *page = NULL;
1167         int nr_nodes, node;
1168
1169         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1170                 page = alloc_fresh_gigantic_page_node(h, node);
1171                 if (page)
1172                         return 1;
1173         }
1174
1175         return 0;
1176 }
1177
1178 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1179 static inline bool gigantic_page_supported(void) { return false; }
1180 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1181 static inline void destroy_compound_gigantic_page(struct page *page,
1182                                                 unsigned int order) { }
1183 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1184                                         nodemask_t *nodes_allowed) { return 0; }
1185 #endif
1186
1187 static void update_and_free_page(struct hstate *h, struct page *page)
1188 {
1189         int i;
1190
1191         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1192                 return;
1193
1194         h->nr_huge_pages--;
1195         h->nr_huge_pages_node[page_to_nid(page)]--;
1196         for (i = 0; i < pages_per_huge_page(h); i++) {
1197                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1198                                 1 << PG_referenced | 1 << PG_dirty |
1199                                 1 << PG_active | 1 << PG_private |
1200                                 1 << PG_writeback);
1201         }
1202         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1203         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1204         set_page_refcounted(page);
1205         if (hstate_is_gigantic(h)) {
1206                 destroy_compound_gigantic_page(page, huge_page_order(h));
1207                 free_gigantic_page(page, huge_page_order(h));
1208         } else {
1209                 __free_pages(page, huge_page_order(h));
1210         }
1211 }
1212
1213 struct hstate *size_to_hstate(unsigned long size)
1214 {
1215         struct hstate *h;
1216
1217         for_each_hstate(h) {
1218                 if (huge_page_size(h) == size)
1219                         return h;
1220         }
1221         return NULL;
1222 }
1223
1224 /*
1225  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1226  * to hstate->hugepage_activelist.)
1227  *
1228  * This function can be called for tail pages, but never returns true for them.
1229  */
1230 bool page_huge_active(struct page *page)
1231 {
1232         VM_BUG_ON_PAGE(!PageHuge(page), page);
1233         return PageHead(page) && PagePrivate(&page[1]);
1234 }
1235
1236 /* never called for tail page */
1237 static void set_page_huge_active(struct page *page)
1238 {
1239         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1240         SetPagePrivate(&page[1]);
1241 }
1242
1243 static void clear_page_huge_active(struct page *page)
1244 {
1245         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1246         ClearPagePrivate(&page[1]);
1247 }
1248
1249 void free_huge_page(struct page *page)
1250 {
1251         /*
1252          * Can't pass hstate in here because it is called from the
1253          * compound page destructor.
1254          */
1255         struct hstate *h = page_hstate(page);
1256         int nid = page_to_nid(page);
1257         struct hugepage_subpool *spool =
1258                 (struct hugepage_subpool *)page_private(page);
1259         bool restore_reserve;
1260
1261         set_page_private(page, 0);
1262         page->mapping = NULL;
1263         VM_BUG_ON_PAGE(page_count(page), page);
1264         VM_BUG_ON_PAGE(page_mapcount(page), page);
1265         restore_reserve = PagePrivate(page);
1266         ClearPagePrivate(page);
1267
1268         /*
1269          * A return code of zero implies that the subpool will be under its
1270          * minimum size if the reservation is not restored after page is free.
1271          * Therefore, force restore_reserve operation.
1272          */
1273         if (hugepage_subpool_put_pages(spool, 1) == 0)
1274                 restore_reserve = true;
1275
1276         spin_lock(&hugetlb_lock);
1277         clear_page_huge_active(page);
1278         hugetlb_cgroup_uncharge_page(hstate_index(h),
1279                                      pages_per_huge_page(h), page);
1280         if (restore_reserve)
1281                 h->resv_huge_pages++;
1282
1283         if (h->surplus_huge_pages_node[nid]) {
1284                 /* remove the page from active list */
1285                 list_del(&page->lru);
1286                 update_and_free_page(h, page);
1287                 h->surplus_huge_pages--;
1288                 h->surplus_huge_pages_node[nid]--;
1289         } else {
1290                 arch_clear_hugepage_flags(page);
1291                 enqueue_huge_page(h, page);
1292         }
1293         spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298         INIT_LIST_HEAD(&page->lru);
1299         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300         spin_lock(&hugetlb_lock);
1301         set_hugetlb_cgroup(page, NULL);
1302         h->nr_huge_pages++;
1303         h->nr_huge_pages_node[nid]++;
1304         spin_unlock(&hugetlb_lock);
1305         put_page(page); /* free it into the hugepage allocator */
1306 }
1307
1308 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1309 {
1310         int i;
1311         int nr_pages = 1 << order;
1312         struct page *p = page + 1;
1313
1314         /* we rely on prep_new_huge_page to set the destructor */
1315         set_compound_order(page, order);
1316         __ClearPageReserved(page);
1317         __SetPageHead(page);
1318         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1319                 /*
1320                  * For gigantic hugepages allocated through bootmem at
1321                  * boot, it's safer to be consistent with the not-gigantic
1322                  * hugepages and clear the PG_reserved bit from all tail pages
1323                  * too.  Otherwse drivers using get_user_pages() to access tail
1324                  * pages may get the reference counting wrong if they see
1325                  * PG_reserved set on a tail page (despite the head page not
1326                  * having PG_reserved set).  Enforcing this consistency between
1327                  * head and tail pages allows drivers to optimize away a check
1328                  * on the head page when they need know if put_page() is needed
1329                  * after get_user_pages().
1330                  */
1331                 __ClearPageReserved(p);
1332                 set_page_count(p, 0);
1333                 set_compound_head(p, page);
1334         }
1335         atomic_set(compound_mapcount_ptr(page), -1);
1336 }
1337
1338 /*
1339  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1340  * transparent huge pages.  See the PageTransHuge() documentation for more
1341  * details.
1342  */
1343 int PageHuge(struct page *page)
1344 {
1345         if (!PageCompound(page))
1346                 return 0;
1347
1348         page = compound_head(page);
1349         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1350 }
1351 EXPORT_SYMBOL_GPL(PageHuge);
1352
1353 /*
1354  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1355  * normal or transparent huge pages.
1356  */
1357 int PageHeadHuge(struct page *page_head)
1358 {
1359         if (!PageHead(page_head))
1360                 return 0;
1361
1362         return get_compound_page_dtor(page_head) == free_huge_page;
1363 }
1364
1365 pgoff_t __basepage_index(struct page *page)
1366 {
1367         struct page *page_head = compound_head(page);
1368         pgoff_t index = page_index(page_head);
1369         unsigned long compound_idx;
1370
1371         if (!PageHuge(page_head))
1372                 return page_index(page);
1373
1374         if (compound_order(page_head) >= MAX_ORDER)
1375                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376         else
1377                 compound_idx = page - page_head;
1378
1379         return (index << compound_order(page_head)) + compound_idx;
1380 }
1381
1382 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1383 {
1384         struct page *page;
1385
1386         page = __alloc_pages_node(nid,
1387                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1388                                                 __GFP_REPEAT|__GFP_NOWARN,
1389                 huge_page_order(h));
1390         if (page) {
1391                 prep_new_huge_page(h, page, nid);
1392         }
1393
1394         return page;
1395 }
1396
1397 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1398 {
1399         struct page *page;
1400         int nr_nodes, node;
1401         int ret = 0;
1402
1403         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1404                 page = alloc_fresh_huge_page_node(h, node);
1405                 if (page) {
1406                         ret = 1;
1407                         break;
1408                 }
1409         }
1410
1411         if (ret)
1412                 count_vm_event(HTLB_BUDDY_PGALLOC);
1413         else
1414                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1415
1416         return ret;
1417 }
1418
1419 /*
1420  * Free huge page from pool from next node to free.
1421  * Attempt to keep persistent huge pages more or less
1422  * balanced over allowed nodes.
1423  * Called with hugetlb_lock locked.
1424  */
1425 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1426                                                          bool acct_surplus)
1427 {
1428         int nr_nodes, node;
1429         int ret = 0;
1430
1431         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1432                 /*
1433                  * If we're returning unused surplus pages, only examine
1434                  * nodes with surplus pages.
1435                  */
1436                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1437                     !list_empty(&h->hugepage_freelists[node])) {
1438                         struct page *page =
1439                                 list_entry(h->hugepage_freelists[node].next,
1440                                           struct page, lru);
1441                         list_del(&page->lru);
1442                         h->free_huge_pages--;
1443                         h->free_huge_pages_node[node]--;
1444                         if (acct_surplus) {
1445                                 h->surplus_huge_pages--;
1446                                 h->surplus_huge_pages_node[node]--;
1447                         }
1448                         update_and_free_page(h, page);
1449                         ret = 1;
1450                         break;
1451                 }
1452         }
1453
1454         return ret;
1455 }
1456
1457 /*
1458  * Dissolve a given free hugepage into free buddy pages. This function does
1459  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1460  * number of free hugepages would be reduced below the number of reserved
1461  * hugepages.
1462  */
1463 static int dissolve_free_huge_page(struct page *page)
1464 {
1465         int rc = 0;
1466
1467         spin_lock(&hugetlb_lock);
1468         if (PageHuge(page) && !page_count(page)) {
1469                 struct page *head = compound_head(page);
1470                 struct hstate *h = page_hstate(head);
1471                 int nid = page_to_nid(head);
1472                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1473                         rc = -EBUSY;
1474                         goto out;
1475                 }
1476                 list_del(&head->lru);
1477                 h->free_huge_pages--;
1478                 h->free_huge_pages_node[nid]--;
1479                 h->max_huge_pages--;
1480                 update_and_free_page(h, head);
1481         }
1482 out:
1483         spin_unlock(&hugetlb_lock);
1484         return rc;
1485 }
1486
1487 /*
1488  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1489  * make specified memory blocks removable from the system.
1490  * Note that this will dissolve a free gigantic hugepage completely, if any
1491  * part of it lies within the given range.
1492  * Also note that if dissolve_free_huge_page() returns with an error, all
1493  * free hugepages that were dissolved before that error are lost.
1494  */
1495 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1496 {
1497         unsigned long pfn;
1498         struct page *page;
1499         int rc = 0;
1500
1501         if (!hugepages_supported())
1502                 return rc;
1503
1504         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1505                 page = pfn_to_page(pfn);
1506                 if (PageHuge(page) && !page_count(page)) {
1507                         rc = dissolve_free_huge_page(page);
1508                         if (rc)
1509                                 break;
1510                 }
1511         }
1512
1513         return rc;
1514 }
1515
1516 /*
1517  * There are 3 ways this can get called:
1518  * 1. With vma+addr: we use the VMA's memory policy
1519  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1520  *    page from any node, and let the buddy allocator itself figure
1521  *    it out.
1522  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1523  *    strictly from 'nid'
1524  */
1525 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1526                 struct vm_area_struct *vma, unsigned long addr, int nid)
1527 {
1528         int order = huge_page_order(h);
1529         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1530         unsigned int cpuset_mems_cookie;
1531
1532         /*
1533          * We need a VMA to get a memory policy.  If we do not
1534          * have one, we use the 'nid' argument.
1535          *
1536          * The mempolicy stuff below has some non-inlined bits
1537          * and calls ->vm_ops.  That makes it hard to optimize at
1538          * compile-time, even when NUMA is off and it does
1539          * nothing.  This helps the compiler optimize it out.
1540          */
1541         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1542                 /*
1543                  * If a specific node is requested, make sure to
1544                  * get memory from there, but only when a node
1545                  * is explicitly specified.
1546                  */
1547                 if (nid != NUMA_NO_NODE)
1548                         gfp |= __GFP_THISNODE;
1549                 /*
1550                  * Make sure to call something that can handle
1551                  * nid=NUMA_NO_NODE
1552                  */
1553                 return alloc_pages_node(nid, gfp, order);
1554         }
1555
1556         /*
1557          * OK, so we have a VMA.  Fetch the mempolicy and try to
1558          * allocate a huge page with it.  We will only reach this
1559          * when CONFIG_NUMA=y.
1560          */
1561         do {
1562                 struct page *page;
1563                 struct mempolicy *mpol;
1564                 int nid;
1565                 nodemask_t *nodemask;
1566
1567                 cpuset_mems_cookie = read_mems_allowed_begin();
1568                 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1569                 mpol_cond_put(mpol);
1570                 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1571                 if (page)
1572                         return page;
1573         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1574
1575         return NULL;
1576 }
1577
1578 /*
1579  * There are two ways to allocate a huge page:
1580  * 1. When you have a VMA and an address (like a fault)
1581  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1582  *
1583  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1584  * this case which signifies that the allocation should be done with
1585  * respect for the VMA's memory policy.
1586  *
1587  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1588  * implies that memory policies will not be taken in to account.
1589  */
1590 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1591                 struct vm_area_struct *vma, unsigned long addr, int nid)
1592 {
1593         struct page *page;
1594         unsigned int r_nid;
1595
1596         if (hstate_is_gigantic(h))
1597                 return NULL;
1598
1599         /*
1600          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1601          * This makes sure the caller is picking _one_ of the modes with which
1602          * we can call this function, not both.
1603          */
1604         if (vma || (addr != -1)) {
1605                 VM_WARN_ON_ONCE(addr == -1);
1606                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1607         }
1608         /*
1609          * Assume we will successfully allocate the surplus page to
1610          * prevent racing processes from causing the surplus to exceed
1611          * overcommit
1612          *
1613          * This however introduces a different race, where a process B
1614          * tries to grow the static hugepage pool while alloc_pages() is
1615          * called by process A. B will only examine the per-node
1616          * counters in determining if surplus huge pages can be
1617          * converted to normal huge pages in adjust_pool_surplus(). A
1618          * won't be able to increment the per-node counter, until the
1619          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1620          * no more huge pages can be converted from surplus to normal
1621          * state (and doesn't try to convert again). Thus, we have a
1622          * case where a surplus huge page exists, the pool is grown, and
1623          * the surplus huge page still exists after, even though it
1624          * should just have been converted to a normal huge page. This
1625          * does not leak memory, though, as the hugepage will be freed
1626          * once it is out of use. It also does not allow the counters to
1627          * go out of whack in adjust_pool_surplus() as we don't modify
1628          * the node values until we've gotten the hugepage and only the
1629          * per-node value is checked there.
1630          */
1631         spin_lock(&hugetlb_lock);
1632         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1633                 spin_unlock(&hugetlb_lock);
1634                 return NULL;
1635         } else {
1636                 h->nr_huge_pages++;
1637                 h->surplus_huge_pages++;
1638         }
1639         spin_unlock(&hugetlb_lock);
1640
1641         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1642
1643         spin_lock(&hugetlb_lock);
1644         if (page) {
1645                 INIT_LIST_HEAD(&page->lru);
1646                 r_nid = page_to_nid(page);
1647                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1648                 set_hugetlb_cgroup(page, NULL);
1649                 /*
1650                  * We incremented the global counters already
1651                  */
1652                 h->nr_huge_pages_node[r_nid]++;
1653                 h->surplus_huge_pages_node[r_nid]++;
1654                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1655         } else {
1656                 h->nr_huge_pages--;
1657                 h->surplus_huge_pages--;
1658                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1659         }
1660         spin_unlock(&hugetlb_lock);
1661
1662         return page;
1663 }
1664
1665 /*
1666  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1667  * NUMA_NO_NODE, which means that it may be allocated
1668  * anywhere.
1669  */
1670 static
1671 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1672 {
1673         unsigned long addr = -1;
1674
1675         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1676 }
1677
1678 /*
1679  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1680  */
1681 static
1682 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1683                 struct vm_area_struct *vma, unsigned long addr)
1684 {
1685         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1686 }
1687
1688 /*
1689  * This allocation function is useful in the context where vma is irrelevant.
1690  * E.g. soft-offlining uses this function because it only cares physical
1691  * address of error page.
1692  */
1693 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1694 {
1695         struct page *page = NULL;
1696
1697         spin_lock(&hugetlb_lock);
1698         if (h->free_huge_pages - h->resv_huge_pages > 0)
1699                 page = dequeue_huge_page_node(h, nid);
1700         spin_unlock(&hugetlb_lock);
1701
1702         if (!page)
1703                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1704
1705         return page;
1706 }
1707
1708 /*
1709  * Increase the hugetlb pool such that it can accommodate a reservation
1710  * of size 'delta'.
1711  */
1712 static int gather_surplus_pages(struct hstate *h, int delta)
1713 {
1714         struct list_head surplus_list;
1715         struct page *page, *tmp;
1716         int ret, i;
1717         int needed, allocated;
1718         bool alloc_ok = true;
1719
1720         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1721         if (needed <= 0) {
1722                 h->resv_huge_pages += delta;
1723                 return 0;
1724         }
1725
1726         allocated = 0;
1727         INIT_LIST_HEAD(&surplus_list);
1728
1729         ret = -ENOMEM;
1730 retry:
1731         spin_unlock(&hugetlb_lock);
1732         for (i = 0; i < needed; i++) {
1733                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1734                 if (!page) {
1735                         alloc_ok = false;
1736                         break;
1737                 }
1738                 list_add(&page->lru, &surplus_list);
1739         }
1740         allocated += i;
1741
1742         /*
1743          * After retaking hugetlb_lock, we need to recalculate 'needed'
1744          * because either resv_huge_pages or free_huge_pages may have changed.
1745          */
1746         spin_lock(&hugetlb_lock);
1747         needed = (h->resv_huge_pages + delta) -
1748                         (h->free_huge_pages + allocated);
1749         if (needed > 0) {
1750                 if (alloc_ok)
1751                         goto retry;
1752                 /*
1753                  * We were not able to allocate enough pages to
1754                  * satisfy the entire reservation so we free what
1755                  * we've allocated so far.
1756                  */
1757                 goto free;
1758         }
1759         /*
1760          * The surplus_list now contains _at_least_ the number of extra pages
1761          * needed to accommodate the reservation.  Add the appropriate number
1762          * of pages to the hugetlb pool and free the extras back to the buddy
1763          * allocator.  Commit the entire reservation here to prevent another
1764          * process from stealing the pages as they are added to the pool but
1765          * before they are reserved.
1766          */
1767         needed += allocated;
1768         h->resv_huge_pages += delta;
1769         ret = 0;
1770
1771         /* Free the needed pages to the hugetlb pool */
1772         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1773                 if ((--needed) < 0)
1774                         break;
1775                 /*
1776                  * This page is now managed by the hugetlb allocator and has
1777                  * no users -- drop the buddy allocator's reference.
1778                  */
1779                 put_page_testzero(page);
1780                 VM_BUG_ON_PAGE(page_count(page), page);
1781                 enqueue_huge_page(h, page);
1782         }
1783 free:
1784         spin_unlock(&hugetlb_lock);
1785
1786         /* Free unnecessary surplus pages to the buddy allocator */
1787         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1788                 put_page(page);
1789         spin_lock(&hugetlb_lock);
1790
1791         return ret;
1792 }
1793
1794 /*
1795  * This routine has two main purposes:
1796  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1797  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1798  *    to the associated reservation map.
1799  * 2) Free any unused surplus pages that may have been allocated to satisfy
1800  *    the reservation.  As many as unused_resv_pages may be freed.
1801  *
1802  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1803  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1804  * we must make sure nobody else can claim pages we are in the process of
1805  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1806  * number of huge pages we plan to free when dropping the lock.
1807  */
1808 static void return_unused_surplus_pages(struct hstate *h,
1809                                         unsigned long unused_resv_pages)
1810 {
1811         unsigned long nr_pages;
1812
1813         /* Cannot return gigantic pages currently */
1814         if (hstate_is_gigantic(h))
1815                 goto out;
1816
1817         /*
1818          * Part (or even all) of the reservation could have been backed
1819          * by pre-allocated pages. Only free surplus pages.
1820          */
1821         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1822
1823         /*
1824          * We want to release as many surplus pages as possible, spread
1825          * evenly across all nodes with memory. Iterate across these nodes
1826          * until we can no longer free unreserved surplus pages. This occurs
1827          * when the nodes with surplus pages have no free pages.
1828          * free_pool_huge_page() will balance the the freed pages across the
1829          * on-line nodes with memory and will handle the hstate accounting.
1830          *
1831          * Note that we decrement resv_huge_pages as we free the pages.  If
1832          * we drop the lock, resv_huge_pages will still be sufficiently large
1833          * to cover subsequent pages we may free.
1834          */
1835         while (nr_pages--) {
1836                 h->resv_huge_pages--;
1837                 unused_resv_pages--;
1838                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1839                         goto out;
1840                 cond_resched_lock(&hugetlb_lock);
1841         }
1842
1843 out:
1844         /* Fully uncommit the reservation */
1845         h->resv_huge_pages -= unused_resv_pages;
1846 }
1847
1848
1849 /*
1850  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1851  * are used by the huge page allocation routines to manage reservations.
1852  *
1853  * vma_needs_reservation is called to determine if the huge page at addr
1854  * within the vma has an associated reservation.  If a reservation is
1855  * needed, the value 1 is returned.  The caller is then responsible for
1856  * managing the global reservation and subpool usage counts.  After
1857  * the huge page has been allocated, vma_commit_reservation is called
1858  * to add the page to the reservation map.  If the page allocation fails,
1859  * the reservation must be ended instead of committed.  vma_end_reservation
1860  * is called in such cases.
1861  *
1862  * In the normal case, vma_commit_reservation returns the same value
1863  * as the preceding vma_needs_reservation call.  The only time this
1864  * is not the case is if a reserve map was changed between calls.  It
1865  * is the responsibility of the caller to notice the difference and
1866  * take appropriate action.
1867  *
1868  * vma_add_reservation is used in error paths where a reservation must
1869  * be restored when a newly allocated huge page must be freed.  It is
1870  * to be called after calling vma_needs_reservation to determine if a
1871  * reservation exists.
1872  */
1873 enum vma_resv_mode {
1874         VMA_NEEDS_RESV,
1875         VMA_COMMIT_RESV,
1876         VMA_END_RESV,
1877         VMA_ADD_RESV,
1878 };
1879 static long __vma_reservation_common(struct hstate *h,
1880                                 struct vm_area_struct *vma, unsigned long addr,
1881                                 enum vma_resv_mode mode)
1882 {
1883         struct resv_map *resv;
1884         pgoff_t idx;
1885         long ret;
1886
1887         resv = vma_resv_map(vma);
1888         if (!resv)
1889                 return 1;
1890
1891         idx = vma_hugecache_offset(h, vma, addr);
1892         switch (mode) {
1893         case VMA_NEEDS_RESV:
1894                 ret = region_chg(resv, idx, idx + 1);
1895                 break;
1896         case VMA_COMMIT_RESV:
1897                 ret = region_add(resv, idx, idx + 1);
1898                 break;
1899         case VMA_END_RESV:
1900                 region_abort(resv, idx, idx + 1);
1901                 ret = 0;
1902                 break;
1903         case VMA_ADD_RESV:
1904                 if (vma->vm_flags & VM_MAYSHARE)
1905                         ret = region_add(resv, idx, idx + 1);
1906                 else {
1907                         region_abort(resv, idx, idx + 1);
1908                         ret = region_del(resv, idx, idx + 1);
1909                 }
1910                 break;
1911         default:
1912                 BUG();
1913         }
1914
1915         if (vma->vm_flags & VM_MAYSHARE)
1916                 return ret;
1917         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1918                 /*
1919                  * In most cases, reserves always exist for private mappings.
1920                  * However, a file associated with mapping could have been
1921                  * hole punched or truncated after reserves were consumed.
1922                  * As subsequent fault on such a range will not use reserves.
1923                  * Subtle - The reserve map for private mappings has the
1924                  * opposite meaning than that of shared mappings.  If NO
1925                  * entry is in the reserve map, it means a reservation exists.
1926                  * If an entry exists in the reserve map, it means the
1927                  * reservation has already been consumed.  As a result, the
1928                  * return value of this routine is the opposite of the
1929                  * value returned from reserve map manipulation routines above.
1930                  */
1931                 if (ret)
1932                         return 0;
1933                 else
1934                         return 1;
1935         }
1936         else
1937                 return ret < 0 ? ret : 0;
1938 }
1939
1940 static long vma_needs_reservation(struct hstate *h,
1941                         struct vm_area_struct *vma, unsigned long addr)
1942 {
1943         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1944 }
1945
1946 static long vma_commit_reservation(struct hstate *h,
1947                         struct vm_area_struct *vma, unsigned long addr)
1948 {
1949         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1950 }
1951
1952 static void vma_end_reservation(struct hstate *h,
1953                         struct vm_area_struct *vma, unsigned long addr)
1954 {
1955         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1956 }
1957
1958 static long vma_add_reservation(struct hstate *h,
1959                         struct vm_area_struct *vma, unsigned long addr)
1960 {
1961         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1962 }
1963
1964 /*
1965  * This routine is called to restore a reservation on error paths.  In the
1966  * specific error paths, a huge page was allocated (via alloc_huge_page)
1967  * and is about to be freed.  If a reservation for the page existed,
1968  * alloc_huge_page would have consumed the reservation and set PagePrivate
1969  * in the newly allocated page.  When the page is freed via free_huge_page,
1970  * the global reservation count will be incremented if PagePrivate is set.
1971  * However, free_huge_page can not adjust the reserve map.  Adjust the
1972  * reserve map here to be consistent with global reserve count adjustments
1973  * to be made by free_huge_page.
1974  */
1975 static void restore_reserve_on_error(struct hstate *h,
1976                         struct vm_area_struct *vma, unsigned long address,
1977                         struct page *page)
1978 {
1979         if (unlikely(PagePrivate(page))) {
1980                 long rc = vma_needs_reservation(h, vma, address);
1981
1982                 if (unlikely(rc < 0)) {
1983                         /*
1984                          * Rare out of memory condition in reserve map
1985                          * manipulation.  Clear PagePrivate so that
1986                          * global reserve count will not be incremented
1987                          * by free_huge_page.  This will make it appear
1988                          * as though the reservation for this page was
1989                          * consumed.  This may prevent the task from
1990                          * faulting in the page at a later time.  This
1991                          * is better than inconsistent global huge page
1992                          * accounting of reserve counts.
1993                          */
1994                         ClearPagePrivate(page);
1995                 } else if (rc) {
1996                         rc = vma_add_reservation(h, vma, address);
1997                         if (unlikely(rc < 0))
1998                                 /*
1999                                  * See above comment about rare out of
2000                                  * memory condition.
2001                                  */
2002                                 ClearPagePrivate(page);
2003                 } else
2004                         vma_end_reservation(h, vma, address);
2005         }
2006 }
2007
2008 struct page *alloc_huge_page(struct vm_area_struct *vma,
2009                                     unsigned long addr, int avoid_reserve)
2010 {
2011         struct hugepage_subpool *spool = subpool_vma(vma);
2012         struct hstate *h = hstate_vma(vma);
2013         struct page *page;
2014         long map_chg, map_commit;
2015         long gbl_chg;
2016         int ret, idx;
2017         struct hugetlb_cgroup *h_cg;
2018
2019         idx = hstate_index(h);
2020         /*
2021          * Examine the region/reserve map to determine if the process
2022          * has a reservation for the page to be allocated.  A return
2023          * code of zero indicates a reservation exists (no change).
2024          */
2025         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2026         if (map_chg < 0)
2027                 return ERR_PTR(-ENOMEM);
2028
2029         /*
2030          * Processes that did not create the mapping will have no
2031          * reserves as indicated by the region/reserve map. Check
2032          * that the allocation will not exceed the subpool limit.
2033          * Allocations for MAP_NORESERVE mappings also need to be
2034          * checked against any subpool limit.
2035          */
2036         if (map_chg || avoid_reserve) {
2037                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2038                 if (gbl_chg < 0) {
2039                         vma_end_reservation(h, vma, addr);
2040                         return ERR_PTR(-ENOSPC);
2041                 }
2042
2043                 /*
2044                  * Even though there was no reservation in the region/reserve
2045                  * map, there could be reservations associated with the
2046                  * subpool that can be used.  This would be indicated if the
2047                  * return value of hugepage_subpool_get_pages() is zero.
2048                  * However, if avoid_reserve is specified we still avoid even
2049                  * the subpool reservations.
2050                  */
2051                 if (avoid_reserve)
2052                         gbl_chg = 1;
2053         }
2054
2055         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2056         if (ret)
2057                 goto out_subpool_put;
2058
2059         spin_lock(&hugetlb_lock);
2060         /*
2061          * glb_chg is passed to indicate whether or not a page must be taken
2062          * from the global free pool (global change).  gbl_chg == 0 indicates
2063          * a reservation exists for the allocation.
2064          */
2065         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2066         if (!page) {
2067                 spin_unlock(&hugetlb_lock);
2068                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2069                 if (!page)
2070                         goto out_uncharge_cgroup;
2071                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2072                         SetPagePrivate(page);
2073                         h->resv_huge_pages--;
2074                 }
2075                 spin_lock(&hugetlb_lock);
2076                 list_move(&page->lru, &h->hugepage_activelist);
2077                 /* Fall through */
2078         }
2079         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2080         spin_unlock(&hugetlb_lock);
2081
2082         set_page_private(page, (unsigned long)spool);
2083
2084         map_commit = vma_commit_reservation(h, vma, addr);
2085         if (unlikely(map_chg > map_commit)) {
2086                 /*
2087                  * The page was added to the reservation map between
2088                  * vma_needs_reservation and vma_commit_reservation.
2089                  * This indicates a race with hugetlb_reserve_pages.
2090                  * Adjust for the subpool count incremented above AND
2091                  * in hugetlb_reserve_pages for the same page.  Also,
2092                  * the reservation count added in hugetlb_reserve_pages
2093                  * no longer applies.
2094                  */
2095                 long rsv_adjust;
2096
2097                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2098                 hugetlb_acct_memory(h, -rsv_adjust);
2099         }
2100         return page;
2101
2102 out_uncharge_cgroup:
2103         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2104 out_subpool_put:
2105         if (map_chg || avoid_reserve)
2106                 hugepage_subpool_put_pages(spool, 1);
2107         vma_end_reservation(h, vma, addr);
2108         return ERR_PTR(-ENOSPC);
2109 }
2110
2111 /*
2112  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2113  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2114  * where no ERR_VALUE is expected to be returned.
2115  */
2116 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2117                                 unsigned long addr, int avoid_reserve)
2118 {
2119         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2120         if (IS_ERR(page))
2121                 page = NULL;
2122         return page;
2123 }
2124
2125 int __weak alloc_bootmem_huge_page(struct hstate *h)
2126 {
2127         struct huge_bootmem_page *m;
2128         int nr_nodes, node;
2129
2130         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2131                 void *addr;
2132
2133                 addr = memblock_virt_alloc_try_nid_nopanic(
2134                                 huge_page_size(h), huge_page_size(h),
2135                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2136                 if (addr) {
2137                         /*
2138                          * Use the beginning of the huge page to store the
2139                          * huge_bootmem_page struct (until gather_bootmem
2140                          * puts them into the mem_map).
2141                          */
2142                         m = addr;
2143                         goto found;
2144                 }
2145         }
2146         return 0;
2147
2148 found:
2149         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2150         /* Put them into a private list first because mem_map is not up yet */
2151         list_add(&m->list, &huge_boot_pages);
2152         m->hstate = h;
2153         return 1;
2154 }
2155
2156 static void __init prep_compound_huge_page(struct page *page,
2157                 unsigned int order)
2158 {
2159         if (unlikely(order > (MAX_ORDER - 1)))
2160                 prep_compound_gigantic_page(page, order);
2161         else
2162                 prep_compound_page(page, order);
2163 }
2164
2165 /* Put bootmem huge pages into the standard lists after mem_map is up */
2166 static void __init gather_bootmem_prealloc(void)
2167 {
2168         struct huge_bootmem_page *m;
2169
2170         list_for_each_entry(m, &huge_boot_pages, list) {
2171                 struct hstate *h = m->hstate;
2172                 struct page *page;
2173
2174 #ifdef CONFIG_HIGHMEM
2175                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2176                 memblock_free_late(__pa(m),
2177                                    sizeof(struct huge_bootmem_page));
2178 #else
2179                 page = virt_to_page(m);
2180 #endif
2181                 WARN_ON(page_count(page) != 1);
2182                 prep_compound_huge_page(page, h->order);
2183                 WARN_ON(PageReserved(page));
2184                 prep_new_huge_page(h, page, page_to_nid(page));
2185                 /*
2186                  * If we had gigantic hugepages allocated at boot time, we need
2187                  * to restore the 'stolen' pages to totalram_pages in order to
2188                  * fix confusing memory reports from free(1) and another
2189                  * side-effects, like CommitLimit going negative.
2190                  */
2191                 if (hstate_is_gigantic(h))
2192                         adjust_managed_page_count(page, 1 << h->order);
2193         }
2194 }
2195
2196 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2197 {
2198         unsigned long i;
2199
2200         for (i = 0; i < h->max_huge_pages; ++i) {
2201                 if (hstate_is_gigantic(h)) {
2202                         if (!alloc_bootmem_huge_page(h))
2203                                 break;
2204                 } else if (!alloc_fresh_huge_page(h,
2205                                          &node_states[N_MEMORY]))
2206                         break;
2207         }
2208         h->max_huge_pages = i;
2209 }
2210
2211 static void __init hugetlb_init_hstates(void)
2212 {
2213         struct hstate *h;
2214
2215         for_each_hstate(h) {
2216                 if (minimum_order > huge_page_order(h))
2217                         minimum_order = huge_page_order(h);
2218
2219                 /* oversize hugepages were init'ed in early boot */
2220                 if (!hstate_is_gigantic(h))
2221                         hugetlb_hstate_alloc_pages(h);
2222         }
2223         VM_BUG_ON(minimum_order == UINT_MAX);
2224 }
2225
2226 static char * __init memfmt(char *buf, unsigned long n)
2227 {
2228         if (n >= (1UL << 30))
2229                 sprintf(buf, "%lu GB", n >> 30);
2230         else if (n >= (1UL << 20))
2231                 sprintf(buf, "%lu MB", n >> 20);
2232         else
2233                 sprintf(buf, "%lu KB", n >> 10);
2234         return buf;
2235 }
2236
2237 static void __init report_hugepages(void)
2238 {
2239         struct hstate *h;
2240
2241         for_each_hstate(h) {
2242                 char buf[32];
2243                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2244                         memfmt(buf, huge_page_size(h)),
2245                         h->free_huge_pages);
2246         }
2247 }
2248
2249 #ifdef CONFIG_HIGHMEM
2250 static void try_to_free_low(struct hstate *h, unsigned long count,
2251                                                 nodemask_t *nodes_allowed)
2252 {
2253         int i;
2254
2255         if (hstate_is_gigantic(h))
2256                 return;
2257
2258         for_each_node_mask(i, *nodes_allowed) {
2259                 struct page *page, *next;
2260                 struct list_head *freel = &h->hugepage_freelists[i];
2261                 list_for_each_entry_safe(page, next, freel, lru) {
2262                         if (count >= h->nr_huge_pages)
2263                                 return;
2264                         if (PageHighMem(page))
2265                                 continue;
2266                         list_del(&page->lru);
2267                         update_and_free_page(h, page);
2268                         h->free_huge_pages--;
2269                         h->free_huge_pages_node[page_to_nid(page)]--;
2270                 }
2271         }
2272 }
2273 #else
2274 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2275                                                 nodemask_t *nodes_allowed)
2276 {
2277 }
2278 #endif
2279
2280 /*
2281  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2282  * balanced by operating on them in a round-robin fashion.
2283  * Returns 1 if an adjustment was made.
2284  */
2285 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2286                                 int delta)
2287 {
2288         int nr_nodes, node;
2289
2290         VM_BUG_ON(delta != -1 && delta != 1);
2291
2292         if (delta < 0) {
2293                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2294                         if (h->surplus_huge_pages_node[node])
2295                                 goto found;
2296                 }
2297         } else {
2298                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2299                         if (h->surplus_huge_pages_node[node] <
2300                                         h->nr_huge_pages_node[node])
2301                                 goto found;
2302                 }
2303         }
2304         return 0;
2305
2306 found:
2307         h->surplus_huge_pages += delta;
2308         h->surplus_huge_pages_node[node] += delta;
2309         return 1;
2310 }
2311
2312 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2313 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2314                                                 nodemask_t *nodes_allowed)
2315 {
2316         unsigned long min_count, ret;
2317
2318         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2319                 return h->max_huge_pages;
2320
2321         /*
2322          * Increase the pool size
2323          * First take pages out of surplus state.  Then make up the
2324          * remaining difference by allocating fresh huge pages.
2325          *
2326          * We might race with __alloc_buddy_huge_page() here and be unable
2327          * to convert a surplus huge page to a normal huge page. That is
2328          * not critical, though, it just means the overall size of the
2329          * pool might be one hugepage larger than it needs to be, but
2330          * within all the constraints specified by the sysctls.
2331          */
2332         spin_lock(&hugetlb_lock);
2333         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2334                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2335                         break;
2336         }
2337
2338         while (count > persistent_huge_pages(h)) {
2339                 /*
2340                  * If this allocation races such that we no longer need the
2341                  * page, free_huge_page will handle it by freeing the page
2342                  * and reducing the surplus.
2343                  */
2344                 spin_unlock(&hugetlb_lock);
2345
2346                 /* yield cpu to avoid soft lockup */
2347                 cond_resched();
2348
2349                 if (hstate_is_gigantic(h))
2350                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2351                 else
2352                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2353                 spin_lock(&hugetlb_lock);
2354                 if (!ret)
2355                         goto out;
2356
2357                 /* Bail for signals. Probably ctrl-c from user */
2358                 if (signal_pending(current))
2359                         goto out;
2360         }
2361
2362         /*
2363          * Decrease the pool size
2364          * First return free pages to the buddy allocator (being careful
2365          * to keep enough around to satisfy reservations).  Then place
2366          * pages into surplus state as needed so the pool will shrink
2367          * to the desired size as pages become free.
2368          *
2369          * By placing pages into the surplus state independent of the
2370          * overcommit value, we are allowing the surplus pool size to
2371          * exceed overcommit. There are few sane options here. Since
2372          * __alloc_buddy_huge_page() is checking the global counter,
2373          * though, we'll note that we're not allowed to exceed surplus
2374          * and won't grow the pool anywhere else. Not until one of the
2375          * sysctls are changed, or the surplus pages go out of use.
2376          */
2377         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2378         min_count = max(count, min_count);
2379         try_to_free_low(h, min_count, nodes_allowed);
2380         while (min_count < persistent_huge_pages(h)) {
2381                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2382                         break;
2383                 cond_resched_lock(&hugetlb_lock);
2384         }
2385         while (count < persistent_huge_pages(h)) {
2386                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2387                         break;
2388         }
2389 out:
2390         ret = persistent_huge_pages(h);
2391         spin_unlock(&hugetlb_lock);
2392         return ret;
2393 }
2394
2395 #define HSTATE_ATTR_RO(_name) \
2396         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2397
2398 #define HSTATE_ATTR(_name) \
2399         static struct kobj_attribute _name##_attr = \
2400                 __ATTR(_name, 0644, _name##_show, _name##_store)
2401
2402 static struct kobject *hugepages_kobj;
2403 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2404
2405 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2406
2407 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2408 {
2409         int i;
2410
2411         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2412                 if (hstate_kobjs[i] == kobj) {
2413                         if (nidp)
2414                                 *nidp = NUMA_NO_NODE;
2415                         return &hstates[i];
2416                 }
2417
2418         return kobj_to_node_hstate(kobj, nidp);
2419 }
2420
2421 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2422                                         struct kobj_attribute *attr, char *buf)
2423 {
2424         struct hstate *h;
2425         unsigned long nr_huge_pages;
2426         int nid;
2427
2428         h = kobj_to_hstate(kobj, &nid);
2429         if (nid == NUMA_NO_NODE)
2430                 nr_huge_pages = h->nr_huge_pages;
2431         else
2432                 nr_huge_pages = h->nr_huge_pages_node[nid];
2433
2434         return sprintf(buf, "%lu\n", nr_huge_pages);
2435 }
2436
2437 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2438                                            struct hstate *h, int nid,
2439                                            unsigned long count, size_t len)
2440 {
2441         int err;
2442         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2443
2444         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2445                 err = -EINVAL;
2446                 goto out;
2447         }
2448
2449         if (nid == NUMA_NO_NODE) {
2450                 /*
2451                  * global hstate attribute
2452                  */
2453                 if (!(obey_mempolicy &&
2454                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2455                         NODEMASK_FREE(nodes_allowed);
2456                         nodes_allowed = &node_states[N_MEMORY];
2457                 }
2458         } else if (nodes_allowed) {
2459                 /*
2460                  * per node hstate attribute: adjust count to global,
2461                  * but restrict alloc/free to the specified node.
2462                  */
2463                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2464                 init_nodemask_of_node(nodes_allowed, nid);
2465         } else
2466                 nodes_allowed = &node_states[N_MEMORY];
2467
2468         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2469
2470         if (nodes_allowed != &node_states[N_MEMORY])
2471                 NODEMASK_FREE(nodes_allowed);
2472
2473         return len;
2474 out:
2475         NODEMASK_FREE(nodes_allowed);
2476         return err;
2477 }
2478
2479 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2480                                          struct kobject *kobj, const char *buf,
2481                                          size_t len)
2482 {
2483         struct hstate *h;
2484         unsigned long count;
2485         int nid;
2486         int err;
2487
2488         err = kstrtoul(buf, 10, &count);
2489         if (err)
2490                 return err;
2491
2492         h = kobj_to_hstate(kobj, &nid);
2493         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2494 }
2495
2496 static ssize_t nr_hugepages_show(struct kobject *kobj,
2497                                        struct kobj_attribute *attr, char *buf)
2498 {
2499         return nr_hugepages_show_common(kobj, attr, buf);
2500 }
2501
2502 static ssize_t nr_hugepages_store(struct kobject *kobj,
2503                struct kobj_attribute *attr, const char *buf, size_t len)
2504 {
2505         return nr_hugepages_store_common(false, kobj, buf, len);
2506 }
2507 HSTATE_ATTR(nr_hugepages);
2508
2509 #ifdef CONFIG_NUMA
2510
2511 /*
2512  * hstate attribute for optionally mempolicy-based constraint on persistent
2513  * huge page alloc/free.
2514  */
2515 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2516                                        struct kobj_attribute *attr, char *buf)
2517 {
2518         return nr_hugepages_show_common(kobj, attr, buf);
2519 }
2520
2521 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2522                struct kobj_attribute *attr, const char *buf, size_t len)
2523 {
2524         return nr_hugepages_store_common(true, kobj, buf, len);
2525 }
2526 HSTATE_ATTR(nr_hugepages_mempolicy);
2527 #endif
2528
2529
2530 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2531                                         struct kobj_attribute *attr, char *buf)
2532 {
2533         struct hstate *h = kobj_to_hstate(kobj, NULL);
2534         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2535 }
2536
2537 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2538                 struct kobj_attribute *attr, const char *buf, size_t count)
2539 {
2540         int err;
2541         unsigned long input;
2542         struct hstate *h = kobj_to_hstate(kobj, NULL);
2543
2544         if (hstate_is_gigantic(h))
2545                 return -EINVAL;
2546
2547         err = kstrtoul(buf, 10, &input);
2548         if (err)
2549                 return err;
2550
2551         spin_lock(&hugetlb_lock);
2552         h->nr_overcommit_huge_pages = input;
2553         spin_unlock(&hugetlb_lock);
2554
2555         return count;
2556 }
2557 HSTATE_ATTR(nr_overcommit_hugepages);
2558
2559 static ssize_t free_hugepages_show(struct kobject *kobj,
2560                                         struct kobj_attribute *attr, char *buf)
2561 {
2562         struct hstate *h;
2563         unsigned long free_huge_pages;
2564         int nid;
2565
2566         h = kobj_to_hstate(kobj, &nid);
2567         if (nid == NUMA_NO_NODE)
2568                 free_huge_pages = h->free_huge_pages;
2569         else
2570                 free_huge_pages = h->free_huge_pages_node[nid];
2571
2572         return sprintf(buf, "%lu\n", free_huge_pages);
2573 }
2574 HSTATE_ATTR_RO(free_hugepages);
2575
2576 static ssize_t resv_hugepages_show(struct kobject *kobj,
2577                                         struct kobj_attribute *attr, char *buf)
2578 {
2579         struct hstate *h = kobj_to_hstate(kobj, NULL);
2580         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2581 }
2582 HSTATE_ATTR_RO(resv_hugepages);
2583
2584 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2585                                         struct kobj_attribute *attr, char *buf)
2586 {
2587         struct hstate *h;
2588         unsigned long surplus_huge_pages;
2589         int nid;
2590
2591         h = kobj_to_hstate(kobj, &nid);
2592         if (nid == NUMA_NO_NODE)
2593                 surplus_huge_pages = h->surplus_huge_pages;
2594         else
2595                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2596
2597         return sprintf(buf, "%lu\n", surplus_huge_pages);
2598 }
2599 HSTATE_ATTR_RO(surplus_hugepages);
2600
2601 static struct attribute *hstate_attrs[] = {
2602         &nr_hugepages_attr.attr,
2603         &nr_overcommit_hugepages_attr.attr,
2604         &free_hugepages_attr.attr,
2605         &resv_hugepages_attr.attr,
2606         &surplus_hugepages_attr.attr,
2607 #ifdef CONFIG_NUMA
2608         &nr_hugepages_mempolicy_attr.attr,
2609 #endif
2610         NULL,
2611 };
2612
2613 static struct attribute_group hstate_attr_group = {
2614         .attrs = hstate_attrs,
2615 };
2616
2617 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2618                                     struct kobject **hstate_kobjs,
2619                                     struct attribute_group *hstate_attr_group)
2620 {
2621         int retval;
2622         int hi = hstate_index(h);
2623
2624         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2625         if (!hstate_kobjs[hi])
2626                 return -ENOMEM;
2627
2628         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2629         if (retval)
2630                 kobject_put(hstate_kobjs[hi]);
2631
2632         return retval;
2633 }
2634
2635 static void __init hugetlb_sysfs_init(void)
2636 {
2637         struct hstate *h;
2638         int err;
2639
2640         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2641         if (!hugepages_kobj)
2642                 return;
2643
2644         for_each_hstate(h) {
2645                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2646                                          hstate_kobjs, &hstate_attr_group);
2647                 if (err)
2648                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2649         }
2650 }
2651
2652 #ifdef CONFIG_NUMA
2653
2654 /*
2655  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2656  * with node devices in node_devices[] using a parallel array.  The array
2657  * index of a node device or _hstate == node id.
2658  * This is here to avoid any static dependency of the node device driver, in
2659  * the base kernel, on the hugetlb module.
2660  */
2661 struct node_hstate {
2662         struct kobject          *hugepages_kobj;
2663         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2664 };
2665 static struct node_hstate node_hstates[MAX_NUMNODES];
2666
2667 /*
2668  * A subset of global hstate attributes for node devices
2669  */
2670 static struct attribute *per_node_hstate_attrs[] = {
2671         &nr_hugepages_attr.attr,
2672         &free_hugepages_attr.attr,
2673         &surplus_hugepages_attr.attr,
2674         NULL,
2675 };
2676
2677 static struct attribute_group per_node_hstate_attr_group = {
2678         .attrs = per_node_hstate_attrs,
2679 };
2680
2681 /*
2682  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2683  * Returns node id via non-NULL nidp.
2684  */
2685 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2686 {
2687         int nid;
2688
2689         for (nid = 0; nid < nr_node_ids; nid++) {
2690                 struct node_hstate *nhs = &node_hstates[nid];
2691                 int i;
2692                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2693                         if (nhs->hstate_kobjs[i] == kobj) {
2694                                 if (nidp)
2695                                         *nidp = nid;
2696                                 return &hstates[i];
2697                         }
2698         }
2699
2700         BUG();
2701         return NULL;
2702 }
2703
2704 /*
2705  * Unregister hstate attributes from a single node device.
2706  * No-op if no hstate attributes attached.
2707  */
2708 static void hugetlb_unregister_node(struct node *node)
2709 {
2710         struct hstate *h;
2711         struct node_hstate *nhs = &node_hstates[node->dev.id];
2712
2713         if (!nhs->hugepages_kobj)
2714                 return;         /* no hstate attributes */
2715
2716         for_each_hstate(h) {
2717                 int idx = hstate_index(h);
2718                 if (nhs->hstate_kobjs[idx]) {
2719                         kobject_put(nhs->hstate_kobjs[idx]);
2720                         nhs->hstate_kobjs[idx] = NULL;
2721                 }
2722         }
2723
2724         kobject_put(nhs->hugepages_kobj);
2725         nhs->hugepages_kobj = NULL;
2726 }
2727
2728
2729 /*
2730  * Register hstate attributes for a single node device.
2731  * No-op if attributes already registered.
2732  */
2733 static void hugetlb_register_node(struct node *node)
2734 {
2735         struct hstate *h;
2736         struct node_hstate *nhs = &node_hstates[node->dev.id];
2737         int err;
2738
2739         if (nhs->hugepages_kobj)
2740                 return;         /* already allocated */
2741
2742         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2743                                                         &node->dev.kobj);
2744         if (!nhs->hugepages_kobj)
2745                 return;
2746
2747         for_each_hstate(h) {
2748                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2749                                                 nhs->hstate_kobjs,
2750                                                 &per_node_hstate_attr_group);
2751                 if (err) {
2752                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2753                                 h->name, node->dev.id);
2754                         hugetlb_unregister_node(node);
2755                         break;
2756                 }
2757         }
2758 }
2759
2760 /*
2761  * hugetlb init time:  register hstate attributes for all registered node
2762  * devices of nodes that have memory.  All on-line nodes should have
2763  * registered their associated device by this time.
2764  */
2765 static void __init hugetlb_register_all_nodes(void)
2766 {
2767         int nid;
2768
2769         for_each_node_state(nid, N_MEMORY) {
2770                 struct node *node = node_devices[nid];
2771                 if (node->dev.id == nid)
2772                         hugetlb_register_node(node);
2773         }
2774
2775         /*
2776          * Let the node device driver know we're here so it can
2777          * [un]register hstate attributes on node hotplug.
2778          */
2779         register_hugetlbfs_with_node(hugetlb_register_node,
2780                                      hugetlb_unregister_node);
2781 }
2782 #else   /* !CONFIG_NUMA */
2783
2784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785 {
2786         BUG();
2787         if (nidp)
2788                 *nidp = -1;
2789         return NULL;
2790 }
2791
2792 static void hugetlb_register_all_nodes(void) { }
2793
2794 #endif
2795
2796 static int __init hugetlb_init(void)
2797 {
2798         int i;
2799
2800         if (!hugepages_supported())
2801                 return 0;
2802
2803         if (!size_to_hstate(default_hstate_size)) {
2804                 default_hstate_size = HPAGE_SIZE;
2805                 if (!size_to_hstate(default_hstate_size))
2806                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2807         }
2808         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2809         if (default_hstate_max_huge_pages) {
2810                 if (!default_hstate.max_huge_pages)
2811                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2812         }
2813
2814         hugetlb_init_hstates();
2815         gather_bootmem_prealloc();
2816         report_hugepages();
2817
2818         hugetlb_sysfs_init();
2819         hugetlb_register_all_nodes();
2820         hugetlb_cgroup_file_init();
2821
2822 #ifdef CONFIG_SMP
2823         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2824 #else
2825         num_fault_mutexes = 1;
2826 #endif
2827         hugetlb_fault_mutex_table =
2828                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2829         BUG_ON(!hugetlb_fault_mutex_table);
2830
2831         for (i = 0; i < num_fault_mutexes; i++)
2832                 mutex_init(&hugetlb_fault_mutex_table[i]);
2833         return 0;
2834 }
2835 subsys_initcall(hugetlb_init);
2836
2837 /* Should be called on processing a hugepagesz=... option */
2838 void __init hugetlb_bad_size(void)
2839 {
2840         parsed_valid_hugepagesz = false;
2841 }
2842
2843 void __init hugetlb_add_hstate(unsigned int order)
2844 {
2845         struct hstate *h;
2846         unsigned long i;
2847
2848         if (size_to_hstate(PAGE_SIZE << order)) {
2849                 pr_warn("hugepagesz= specified twice, ignoring\n");
2850                 return;
2851         }
2852         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2853         BUG_ON(order == 0);
2854         h = &hstates[hugetlb_max_hstate++];
2855         h->order = order;
2856         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2857         h->nr_huge_pages = 0;
2858         h->free_huge_pages = 0;
2859         for (i = 0; i < MAX_NUMNODES; ++i)
2860                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2861         INIT_LIST_HEAD(&h->hugepage_activelist);
2862         h->next_nid_to_alloc = first_memory_node;
2863         h->next_nid_to_free = first_memory_node;
2864         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2865                                         huge_page_size(h)/1024);
2866
2867         parsed_hstate = h;
2868 }
2869
2870 static int __init hugetlb_nrpages_setup(char *s)
2871 {
2872         unsigned long *mhp;
2873         static unsigned long *last_mhp;
2874
2875         if (!parsed_valid_hugepagesz) {
2876                 pr_warn("hugepages = %s preceded by "
2877                         "an unsupported hugepagesz, ignoring\n", s);
2878                 parsed_valid_hugepagesz = true;
2879                 return 1;
2880         }
2881         /*
2882          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2883          * so this hugepages= parameter goes to the "default hstate".
2884          */
2885         else if (!hugetlb_max_hstate)
2886                 mhp = &default_hstate_max_huge_pages;
2887         else
2888                 mhp = &parsed_hstate->max_huge_pages;
2889
2890         if (mhp == last_mhp) {
2891                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2892                 return 1;
2893         }
2894
2895         if (sscanf(s, "%lu", mhp) <= 0)
2896                 *mhp = 0;
2897
2898         /*
2899          * Global state is always initialized later in hugetlb_init.
2900          * But we need to allocate >= MAX_ORDER hstates here early to still
2901          * use the bootmem allocator.
2902          */
2903         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2904                 hugetlb_hstate_alloc_pages(parsed_hstate);
2905
2906         last_mhp = mhp;
2907
2908         return 1;
2909 }
2910 __setup("hugepages=", hugetlb_nrpages_setup);
2911
2912 static int __init hugetlb_default_setup(char *s)
2913 {
2914         default_hstate_size = memparse(s, &s);
2915         return 1;
2916 }
2917 __setup("default_hugepagesz=", hugetlb_default_setup);
2918
2919 static unsigned int cpuset_mems_nr(unsigned int *array)
2920 {
2921         int node;
2922         unsigned int nr = 0;
2923
2924         for_each_node_mask(node, cpuset_current_mems_allowed)
2925                 nr += array[node];
2926
2927         return nr;
2928 }
2929
2930 #ifdef CONFIG_SYSCTL
2931 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2932                          struct ctl_table *table, int write,
2933                          void __user *buffer, size_t *length, loff_t *ppos)
2934 {
2935         struct hstate *h = &default_hstate;
2936         unsigned long tmp = h->max_huge_pages;
2937         int ret;
2938
2939         if (!hugepages_supported())
2940                 return -EOPNOTSUPP;
2941
2942         table->data = &tmp;
2943         table->maxlen = sizeof(unsigned long);
2944         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2945         if (ret)
2946                 goto out;
2947
2948         if (write)
2949                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2950                                                   NUMA_NO_NODE, tmp, *length);
2951 out:
2952         return ret;
2953 }
2954
2955 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2956                           void __user *buffer, size_t *length, loff_t *ppos)
2957 {
2958
2959         return hugetlb_sysctl_handler_common(false, table, write,
2960                                                         buffer, length, ppos);
2961 }
2962
2963 #ifdef CONFIG_NUMA
2964 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2965                           void __user *buffer, size_t *length, loff_t *ppos)
2966 {
2967         return hugetlb_sysctl_handler_common(true, table, write,
2968                                                         buffer, length, ppos);
2969 }
2970 #endif /* CONFIG_NUMA */
2971
2972 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2973                         void __user *buffer,
2974                         size_t *length, loff_t *ppos)
2975 {
2976         struct hstate *h = &default_hstate;
2977         unsigned long tmp;
2978         int ret;
2979
2980         if (!hugepages_supported())
2981                 return -EOPNOTSUPP;
2982
2983         tmp = h->nr_overcommit_huge_pages;
2984
2985         if (write && hstate_is_gigantic(h))
2986                 return -EINVAL;
2987
2988         table->data = &tmp;
2989         table->maxlen = sizeof(unsigned long);
2990         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2991         if (ret)
2992                 goto out;
2993
2994         if (write) {
2995                 spin_lock(&hugetlb_lock);
2996                 h->nr_overcommit_huge_pages = tmp;
2997                 spin_unlock(&hugetlb_lock);
2998         }
2999 out:
3000         return ret;
3001 }
3002
3003 #endif /* CONFIG_SYSCTL */
3004
3005 void hugetlb_report_meminfo(struct seq_file *m)
3006 {
3007         struct hstate *h = &default_hstate;
3008         if (!hugepages_supported())
3009                 return;
3010         seq_printf(m,
3011                         "HugePages_Total:   %5lu\n"
3012                         "HugePages_Free:    %5lu\n"
3013                         "HugePages_Rsvd:    %5lu\n"
3014                         "HugePages_Surp:    %5lu\n"
3015                         "Hugepagesize:   %8lu kB\n",
3016                         h->nr_huge_pages,
3017                         h->free_huge_pages,
3018                         h->resv_huge_pages,
3019                         h->surplus_huge_pages,
3020                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3021 }
3022
3023 int hugetlb_report_node_meminfo(int nid, char *buf)
3024 {
3025         struct hstate *h = &default_hstate;
3026         if (!hugepages_supported())
3027                 return 0;
3028         return sprintf(buf,
3029                 "Node %d HugePages_Total: %5u\n"
3030                 "Node %d HugePages_Free:  %5u\n"
3031                 "Node %d HugePages_Surp:  %5u\n",
3032                 nid, h->nr_huge_pages_node[nid],
3033                 nid, h->free_huge_pages_node[nid],
3034                 nid, h->surplus_huge_pages_node[nid]);
3035 }
3036
3037 void hugetlb_show_meminfo(void)
3038 {
3039         struct hstate *h;
3040         int nid;
3041
3042         if (!hugepages_supported())
3043                 return;
3044
3045         for_each_node_state(nid, N_MEMORY)
3046                 for_each_hstate(h)
3047                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3048                                 nid,
3049                                 h->nr_huge_pages_node[nid],
3050                                 h->free_huge_pages_node[nid],
3051                                 h->surplus_huge_pages_node[nid],
3052                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3053 }
3054
3055 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3056 {
3057         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3058                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3059 }
3060
3061 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3062 unsigned long hugetlb_total_pages(void)
3063 {
3064         struct hstate *h;
3065         unsigned long nr_total_pages = 0;
3066
3067         for_each_hstate(h)
3068                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3069         return nr_total_pages;
3070 }
3071
3072 static int hugetlb_acct_memory(struct hstate *h, long delta)
3073 {
3074         int ret = -ENOMEM;
3075
3076         spin_lock(&hugetlb_lock);
3077         /*
3078          * When cpuset is configured, it breaks the strict hugetlb page
3079          * reservation as the accounting is done on a global variable. Such
3080          * reservation is completely rubbish in the presence of cpuset because
3081          * the reservation is not checked against page availability for the
3082          * current cpuset. Application can still potentially OOM'ed by kernel
3083          * with lack of free htlb page in cpuset that the task is in.
3084          * Attempt to enforce strict accounting with cpuset is almost
3085          * impossible (or too ugly) because cpuset is too fluid that
3086          * task or memory node can be dynamically moved between cpusets.
3087          *
3088          * The change of semantics for shared hugetlb mapping with cpuset is
3089          * undesirable. However, in order to preserve some of the semantics,
3090          * we fall back to check against current free page availability as
3091          * a best attempt and hopefully to minimize the impact of changing
3092          * semantics that cpuset has.
3093          */
3094         if (delta > 0) {
3095                 if (gather_surplus_pages(h, delta) < 0)
3096                         goto out;
3097
3098                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3099                         return_unused_surplus_pages(h, delta);
3100                         goto out;
3101                 }
3102         }
3103
3104         ret = 0;
3105         if (delta < 0)
3106                 return_unused_surplus_pages(h, (unsigned long) -delta);
3107
3108 out:
3109         spin_unlock(&hugetlb_lock);
3110         return ret;
3111 }
3112
3113 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3114 {
3115         struct resv_map *resv = vma_resv_map(vma);
3116
3117         /*
3118          * This new VMA should share its siblings reservation map if present.
3119          * The VMA will only ever have a valid reservation map pointer where
3120          * it is being copied for another still existing VMA.  As that VMA
3121          * has a reference to the reservation map it cannot disappear until
3122          * after this open call completes.  It is therefore safe to take a
3123          * new reference here without additional locking.
3124          */
3125         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3126                 kref_get(&resv->refs);
3127 }
3128
3129 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3130 {
3131         struct hstate *h = hstate_vma(vma);
3132         struct resv_map *resv = vma_resv_map(vma);
3133         struct hugepage_subpool *spool = subpool_vma(vma);
3134         unsigned long reserve, start, end;
3135         long gbl_reserve;
3136
3137         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3138                 return;
3139
3140         start = vma_hugecache_offset(h, vma, vma->vm_start);
3141         end = vma_hugecache_offset(h, vma, vma->vm_end);
3142
3143         reserve = (end - start) - region_count(resv, start, end);
3144
3145         kref_put(&resv->refs, resv_map_release);
3146
3147         if (reserve) {
3148                 /*
3149                  * Decrement reserve counts.  The global reserve count may be
3150                  * adjusted if the subpool has a minimum size.
3151                  */
3152                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3153                 hugetlb_acct_memory(h, -gbl_reserve);
3154         }
3155 }
3156
3157 /*
3158  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3159  * handle_mm_fault() to try to instantiate regular-sized pages in the
3160  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3161  * this far.
3162  */
3163 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3164 {
3165         BUG();
3166         return 0;
3167 }
3168
3169 const struct vm_operations_struct hugetlb_vm_ops = {
3170         .fault = hugetlb_vm_op_fault,
3171         .open = hugetlb_vm_op_open,
3172         .close = hugetlb_vm_op_close,
3173 };
3174
3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176                                 int writable)
3177 {
3178         pte_t entry;
3179
3180         if (writable) {
3181                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182                                          vma->vm_page_prot)));
3183         } else {
3184                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3185                                            vma->vm_page_prot));
3186         }
3187         entry = pte_mkyoung(entry);
3188         entry = pte_mkhuge(entry);
3189         entry = arch_make_huge_pte(entry, vma, page, writable);
3190
3191         return entry;
3192 }
3193
3194 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195                                    unsigned long address, pte_t *ptep)
3196 {
3197         pte_t entry;
3198
3199         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201                 update_mmu_cache(vma, address, ptep);
3202 }
3203
3204 bool is_hugetlb_entry_migration(pte_t pte)
3205 {
3206         swp_entry_t swp;
3207
3208         if (huge_pte_none(pte) || pte_present(pte))
3209                 return false;
3210         swp = pte_to_swp_entry(pte);
3211         if (non_swap_entry(swp) && is_migration_entry(swp))
3212                 return true;
3213         else
3214                 return false;
3215 }
3216
3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218 {
3219         swp_entry_t swp;
3220
3221         if (huge_pte_none(pte) || pte_present(pte))
3222                 return 0;
3223         swp = pte_to_swp_entry(pte);
3224         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225                 return 1;
3226         else
3227                 return 0;
3228 }
3229
3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231                             struct vm_area_struct *vma)
3232 {
3233         pte_t *src_pte, *dst_pte, entry;
3234         struct page *ptepage;
3235         unsigned long addr;
3236         int cow;
3237         struct hstate *h = hstate_vma(vma);
3238         unsigned long sz = huge_page_size(h);
3239         unsigned long mmun_start;       /* For mmu_notifiers */
3240         unsigned long mmun_end;         /* For mmu_notifiers */
3241         int ret = 0;
3242
3243         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3244
3245         mmun_start = vma->vm_start;
3246         mmun_end = vma->vm_end;
3247         if (cow)
3248                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249
3250         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251                 spinlock_t *src_ptl, *dst_ptl;
3252                 src_pte = huge_pte_offset(src, addr, sz);
3253                 if (!src_pte)
3254                         continue;
3255                 dst_pte = huge_pte_alloc(dst, addr, sz);
3256                 if (!dst_pte) {
3257                         ret = -ENOMEM;
3258                         break;
3259                 }
3260
3261                 /* If the pagetables are shared don't copy or take references */
3262                 if (dst_pte == src_pte)
3263                         continue;
3264
3265                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268                 entry = huge_ptep_get(src_pte);
3269                 if (huge_pte_none(entry)) { /* skip none entry */
3270                         ;
3271                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272                                     is_hugetlb_entry_hwpoisoned(entry))) {
3273                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274
3275                         if (is_write_migration_entry(swp_entry) && cow) {
3276                                 /*
3277                                  * COW mappings require pages in both
3278                                  * parent and child to be set to read.
3279                                  */
3280                                 make_migration_entry_read(&swp_entry);
3281                                 entry = swp_entry_to_pte(swp_entry);
3282                                 set_huge_swap_pte_at(src, addr, src_pte,
3283                                                      entry, sz);
3284                         }
3285                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286                 } else {
3287                         if (cow) {
3288                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3289                                 mmu_notifier_invalidate_range(src, mmun_start,
3290                                                                    mmun_end);
3291                         }
3292                         entry = huge_ptep_get(src_pte);
3293                         ptepage = pte_page(entry);
3294                         get_page(ptepage);
3295                         page_dup_rmap(ptepage, true);
3296                         set_huge_pte_at(dst, addr, dst_pte, entry);
3297                         hugetlb_count_add(pages_per_huge_page(h), dst);
3298                 }
3299                 spin_unlock(src_ptl);
3300                 spin_unlock(dst_ptl);
3301         }
3302
3303         if (cow)
3304                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3305
3306         return ret;
3307 }
3308
3309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3310                             unsigned long start, unsigned long end,
3311                             struct page *ref_page)
3312 {
3313         struct mm_struct *mm = vma->vm_mm;
3314         unsigned long address;
3315         pte_t *ptep;
3316         pte_t pte;
3317         spinlock_t *ptl;
3318         struct page *page;
3319         struct hstate *h = hstate_vma(vma);
3320         unsigned long sz = huge_page_size(h);
3321         const unsigned long mmun_start = start; /* For mmu_notifiers */
3322         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3323
3324         WARN_ON(!is_vm_hugetlb_page(vma));
3325         BUG_ON(start & ~huge_page_mask(h));
3326         BUG_ON(end & ~huge_page_mask(h));
3327
3328         /*
3329          * This is a hugetlb vma, all the pte entries should point
3330          * to huge page.
3331          */
3332         tlb_remove_check_page_size_change(tlb, sz);
3333         tlb_start_vma(tlb, vma);
3334         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3335         address = start;
3336         for (; address < end; address += sz) {
3337                 ptep = huge_pte_offset(mm, address, sz);
3338                 if (!ptep)
3339                         continue;
3340
3341                 ptl = huge_pte_lock(h, mm, ptep);
3342                 if (huge_pmd_unshare(mm, &address, ptep)) {
3343                         spin_unlock(ptl);
3344                         continue;
3345                 }
3346
3347                 pte = huge_ptep_get(ptep);
3348                 if (huge_pte_none(pte)) {
3349                         spin_unlock(ptl);
3350                         continue;
3351                 }
3352
3353                 /*
3354                  * Migrating hugepage or HWPoisoned hugepage is already
3355                  * unmapped and its refcount is dropped, so just clear pte here.
3356                  */
3357                 if (unlikely(!pte_present(pte))) {
3358                         huge_pte_clear(mm, address, ptep, sz);
3359                         spin_unlock(ptl);
3360                         continue;
3361                 }
3362
3363                 page = pte_page(pte);
3364                 /*
3365                  * If a reference page is supplied, it is because a specific
3366                  * page is being unmapped, not a range. Ensure the page we
3367                  * are about to unmap is the actual page of interest.
3368                  */
3369                 if (ref_page) {
3370                         if (page != ref_page) {
3371                                 spin_unlock(ptl);
3372                                 continue;
3373                         }
3374                         /*
3375                          * Mark the VMA as having unmapped its page so that
3376                          * future faults in this VMA will fail rather than
3377                          * looking like data was lost
3378                          */
3379                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3380                 }
3381
3382                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3383                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3384                 if (huge_pte_dirty(pte))
3385                         set_page_dirty(page);
3386
3387                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3388                 page_remove_rmap(page, true);
3389
3390                 spin_unlock(ptl);
3391                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3392                 /*
3393                  * Bail out after unmapping reference page if supplied
3394                  */
3395                 if (ref_page)
3396                         break;
3397         }
3398         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3399         tlb_end_vma(tlb, vma);
3400 }
3401
3402 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3403                           struct vm_area_struct *vma, unsigned long start,
3404                           unsigned long end, struct page *ref_page)
3405 {
3406         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3407
3408         /*
3409          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3410          * test will fail on a vma being torn down, and not grab a page table
3411          * on its way out.  We're lucky that the flag has such an appropriate
3412          * name, and can in fact be safely cleared here. We could clear it
3413          * before the __unmap_hugepage_range above, but all that's necessary
3414          * is to clear it before releasing the i_mmap_rwsem. This works
3415          * because in the context this is called, the VMA is about to be
3416          * destroyed and the i_mmap_rwsem is held.
3417          */
3418         vma->vm_flags &= ~VM_MAYSHARE;
3419 }
3420
3421 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3422                           unsigned long end, struct page *ref_page)
3423 {
3424         struct mm_struct *mm;
3425         struct mmu_gather tlb;
3426
3427         mm = vma->vm_mm;
3428
3429         tlb_gather_mmu(&tlb, mm, start, end);
3430         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3431         tlb_finish_mmu(&tlb, start, end);
3432 }
3433
3434 /*
3435  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3436  * mappping it owns the reserve page for. The intention is to unmap the page
3437  * from other VMAs and let the children be SIGKILLed if they are faulting the
3438  * same region.
3439  */
3440 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3441                               struct page *page, unsigned long address)
3442 {
3443         struct hstate *h = hstate_vma(vma);
3444         struct vm_area_struct *iter_vma;
3445         struct address_space *mapping;
3446         pgoff_t pgoff;
3447
3448         /*
3449          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3450          * from page cache lookup which is in HPAGE_SIZE units.
3451          */
3452         address = address & huge_page_mask(h);
3453         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3454                         vma->vm_pgoff;
3455         mapping = vma->vm_file->f_mapping;
3456
3457         /*
3458          * Take the mapping lock for the duration of the table walk. As
3459          * this mapping should be shared between all the VMAs,
3460          * __unmap_hugepage_range() is called as the lock is already held
3461          */
3462         i_mmap_lock_write(mapping);
3463         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3464                 /* Do not unmap the current VMA */
3465                 if (iter_vma == vma)
3466                         continue;
3467
3468                 /*
3469                  * Shared VMAs have their own reserves and do not affect
3470                  * MAP_PRIVATE accounting but it is possible that a shared
3471                  * VMA is using the same page so check and skip such VMAs.
3472                  */
3473                 if (iter_vma->vm_flags & VM_MAYSHARE)
3474                         continue;
3475
3476                 /*
3477                  * Unmap the page from other VMAs without their own reserves.
3478                  * They get marked to be SIGKILLed if they fault in these
3479                  * areas. This is because a future no-page fault on this VMA
3480                  * could insert a zeroed page instead of the data existing
3481                  * from the time of fork. This would look like data corruption
3482                  */
3483                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3484                         unmap_hugepage_range(iter_vma, address,
3485                                              address + huge_page_size(h), page);
3486         }
3487         i_mmap_unlock_write(mapping);
3488 }
3489
3490 /*
3491  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3492  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3493  * cannot race with other handlers or page migration.
3494  * Keep the pte_same checks anyway to make transition from the mutex easier.
3495  */
3496 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3497                        unsigned long address, pte_t *ptep,
3498                        struct page *pagecache_page, spinlock_t *ptl)
3499 {
3500         pte_t pte;
3501         struct hstate *h = hstate_vma(vma);
3502         struct page *old_page, *new_page;
3503         int ret = 0, outside_reserve = 0;
3504         unsigned long mmun_start;       /* For mmu_notifiers */
3505         unsigned long mmun_end;         /* For mmu_notifiers */
3506
3507         pte = huge_ptep_get(ptep);
3508         old_page = pte_page(pte);
3509
3510 retry_avoidcopy:
3511         /* If no-one else is actually using this page, avoid the copy
3512          * and just make the page writable */
3513         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3514                 page_move_anon_rmap(old_page, vma);
3515                 set_huge_ptep_writable(vma, address, ptep);
3516                 return 0;
3517         }
3518
3519         /*
3520          * If the process that created a MAP_PRIVATE mapping is about to
3521          * perform a COW due to a shared page count, attempt to satisfy
3522          * the allocation without using the existing reserves. The pagecache
3523          * page is used to determine if the reserve at this address was
3524          * consumed or not. If reserves were used, a partial faulted mapping
3525          * at the time of fork() could consume its reserves on COW instead
3526          * of the full address range.
3527          */
3528         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3529                         old_page != pagecache_page)
3530                 outside_reserve = 1;
3531
3532         get_page(old_page);
3533
3534         /*
3535          * Drop page table lock as buddy allocator may be called. It will
3536          * be acquired again before returning to the caller, as expected.
3537          */
3538         spin_unlock(ptl);
3539         new_page = alloc_huge_page(vma, address, outside_reserve);
3540
3541         if (IS_ERR(new_page)) {
3542                 /*
3543                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3544                  * it is due to references held by a child and an insufficient
3545                  * huge page pool. To guarantee the original mappers
3546                  * reliability, unmap the page from child processes. The child
3547                  * may get SIGKILLed if it later faults.
3548                  */
3549                 if (outside_reserve) {
3550                         put_page(old_page);
3551                         BUG_ON(huge_pte_none(pte));
3552                         unmap_ref_private(mm, vma, old_page, address);
3553                         BUG_ON(huge_pte_none(pte));
3554                         spin_lock(ptl);
3555                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3556                                                huge_page_size(h));
3557                         if (likely(ptep &&
3558                                    pte_same(huge_ptep_get(ptep), pte)))
3559                                 goto retry_avoidcopy;
3560                         /*
3561                          * race occurs while re-acquiring page table
3562                          * lock, and our job is done.
3563                          */
3564                         return 0;
3565                 }
3566
3567                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3568                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3569                 goto out_release_old;
3570         }
3571
3572         /*
3573          * When the original hugepage is shared one, it does not have
3574          * anon_vma prepared.
3575          */
3576         if (unlikely(anon_vma_prepare(vma))) {
3577                 ret = VM_FAULT_OOM;
3578                 goto out_release_all;
3579         }
3580
3581         copy_user_huge_page(new_page, old_page, address, vma,
3582                             pages_per_huge_page(h));
3583         __SetPageUptodate(new_page);
3584         set_page_huge_active(new_page);
3585
3586         mmun_start = address & huge_page_mask(h);
3587         mmun_end = mmun_start + huge_page_size(h);
3588         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3589
3590         /*
3591          * Retake the page table lock to check for racing updates
3592          * before the page tables are altered
3593          */
3594         spin_lock(ptl);
3595         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3596                                huge_page_size(h));
3597         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3598                 ClearPagePrivate(new_page);
3599
3600                 /* Break COW */
3601                 huge_ptep_clear_flush(vma, address, ptep);
3602                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3603                 set_huge_pte_at(mm, address, ptep,
3604                                 make_huge_pte(vma, new_page, 1));
3605                 page_remove_rmap(old_page, true);
3606                 hugepage_add_new_anon_rmap(new_page, vma, address);
3607                 /* Make the old page be freed below */
3608                 new_page = old_page;
3609         }
3610         spin_unlock(ptl);
3611         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3612 out_release_all:
3613         restore_reserve_on_error(h, vma, address, new_page);
3614         put_page(new_page);
3615 out_release_old:
3616         put_page(old_page);
3617
3618         spin_lock(ptl); /* Caller expects lock to be held */
3619         return ret;
3620 }
3621
3622 /* Return the pagecache page at a given address within a VMA */
3623 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3624                         struct vm_area_struct *vma, unsigned long address)
3625 {
3626         struct address_space *mapping;
3627         pgoff_t idx;
3628
3629         mapping = vma->vm_file->f_mapping;
3630         idx = vma_hugecache_offset(h, vma, address);
3631
3632         return find_lock_page(mapping, idx);
3633 }
3634
3635 /*
3636  * Return whether there is a pagecache page to back given address within VMA.
3637  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3638  */
3639 static bool hugetlbfs_pagecache_present(struct hstate *h,
3640                         struct vm_area_struct *vma, unsigned long address)
3641 {
3642         struct address_space *mapping;
3643         pgoff_t idx;
3644         struct page *page;
3645
3646         mapping = vma->vm_file->f_mapping;
3647         idx = vma_hugecache_offset(h, vma, address);
3648
3649         page = find_get_page(mapping, idx);
3650         if (page)
3651                 put_page(page);
3652         return page != NULL;
3653 }
3654
3655 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3656                            pgoff_t idx)
3657 {
3658         struct inode *inode = mapping->host;
3659         struct hstate *h = hstate_inode(inode);
3660         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3661
3662         if (err)
3663                 return err;
3664         ClearPagePrivate(page);
3665
3666         spin_lock(&inode->i_lock);
3667         inode->i_blocks += blocks_per_huge_page(h);
3668         spin_unlock(&inode->i_lock);
3669         return 0;
3670 }
3671
3672 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3673                            struct address_space *mapping, pgoff_t idx,
3674                            unsigned long address, pte_t *ptep, unsigned int flags)
3675 {
3676         struct hstate *h = hstate_vma(vma);
3677         int ret = VM_FAULT_SIGBUS;
3678         int anon_rmap = 0;
3679         unsigned long size;
3680         struct page *page;
3681         pte_t new_pte;
3682         spinlock_t *ptl;
3683
3684         /*
3685          * Currently, we are forced to kill the process in the event the
3686          * original mapper has unmapped pages from the child due to a failed
3687          * COW. Warn that such a situation has occurred as it may not be obvious
3688          */
3689         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3690                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3691                            current->pid);
3692                 return ret;
3693         }
3694
3695         /*
3696          * Use page lock to guard against racing truncation
3697          * before we get page_table_lock.
3698          */
3699 retry:
3700         page = find_lock_page(mapping, idx);
3701         if (!page) {
3702                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3703                 if (idx >= size)
3704                         goto out;
3705
3706                 /*
3707                  * Check for page in userfault range
3708                  */
3709                 if (userfaultfd_missing(vma)) {
3710                         u32 hash;
3711                         struct vm_fault vmf = {
3712                                 .vma = vma,
3713                                 .address = address,
3714                                 .flags = flags,
3715                                 /*
3716                                  * Hard to debug if it ends up being
3717                                  * used by a callee that assumes
3718                                  * something about the other
3719                                  * uninitialized fields... same as in
3720                                  * memory.c
3721                                  */
3722                         };
3723
3724                         /*
3725                          * hugetlb_fault_mutex must be dropped before
3726                          * handling userfault.  Reacquire after handling
3727                          * fault to make calling code simpler.
3728                          */
3729                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3730                                                         idx, address);
3731                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3732                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3733                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3734                         goto out;
3735                 }
3736
3737                 page = alloc_huge_page(vma, address, 0);
3738                 if (IS_ERR(page)) {
3739                         ret = PTR_ERR(page);
3740                         if (ret == -ENOMEM)
3741                                 ret = VM_FAULT_OOM;
3742                         else
3743                                 ret = VM_FAULT_SIGBUS;
3744                         goto out;
3745                 }
3746                 clear_huge_page(page, address, pages_per_huge_page(h));
3747                 __SetPageUptodate(page);
3748                 set_page_huge_active(page);
3749
3750                 if (vma->vm_flags & VM_MAYSHARE) {
3751                         int err = huge_add_to_page_cache(page, mapping, idx);
3752                         if (err) {
3753                                 put_page(page);
3754                                 if (err == -EEXIST)
3755                                         goto retry;
3756                                 goto out;
3757                         }
3758                 } else {
3759                         lock_page(page);
3760                         if (unlikely(anon_vma_prepare(vma))) {
3761                                 ret = VM_FAULT_OOM;
3762                                 goto backout_unlocked;
3763                         }
3764                         anon_rmap = 1;
3765                 }
3766         } else {
3767                 /*
3768                  * If memory error occurs between mmap() and fault, some process
3769                  * don't have hwpoisoned swap entry for errored virtual address.
3770                  * So we need to block hugepage fault by PG_hwpoison bit check.
3771                  */
3772                 if (unlikely(PageHWPoison(page))) {
3773                         ret = VM_FAULT_HWPOISON |
3774                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3775                         goto backout_unlocked;
3776                 }
3777         }
3778
3779         /*
3780          * If we are going to COW a private mapping later, we examine the
3781          * pending reservations for this page now. This will ensure that
3782          * any allocations necessary to record that reservation occur outside
3783          * the spinlock.
3784          */
3785         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3786                 if (vma_needs_reservation(h, vma, address) < 0) {
3787                         ret = VM_FAULT_OOM;
3788                         goto backout_unlocked;
3789                 }
3790                 /* Just decrements count, does not deallocate */
3791                 vma_end_reservation(h, vma, address);
3792         }
3793
3794         ptl = huge_pte_lock(h, mm, ptep);
3795         size = i_size_read(mapping->host) >> huge_page_shift(h);
3796         if (idx >= size)
3797                 goto backout;
3798
3799         ret = 0;
3800         if (!huge_pte_none(huge_ptep_get(ptep)))
3801                 goto backout;
3802
3803         if (anon_rmap) {
3804                 ClearPagePrivate(page);
3805                 hugepage_add_new_anon_rmap(page, vma, address);
3806         } else
3807                 page_dup_rmap(page, true);
3808         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3809                                 && (vma->vm_flags & VM_SHARED)));
3810         set_huge_pte_at(mm, address, ptep, new_pte);
3811
3812         hugetlb_count_add(pages_per_huge_page(h), mm);
3813         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3814                 /* Optimization, do the COW without a second fault */
3815                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3816         }
3817
3818         spin_unlock(ptl);
3819         unlock_page(page);
3820 out:
3821         return ret;
3822
3823 backout:
3824         spin_unlock(ptl);
3825 backout_unlocked:
3826         unlock_page(page);
3827         restore_reserve_on_error(h, vma, address, page);
3828         put_page(page);
3829         goto out;
3830 }
3831
3832 #ifdef CONFIG_SMP
3833 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3834                             struct vm_area_struct *vma,
3835                             struct address_space *mapping,
3836                             pgoff_t idx, unsigned long address)
3837 {
3838         unsigned long key[2];
3839         u32 hash;
3840
3841         if (vma->vm_flags & VM_SHARED) {
3842                 key[0] = (unsigned long) mapping;
3843                 key[1] = idx;
3844         } else {
3845                 key[0] = (unsigned long) mm;
3846                 key[1] = address >> huge_page_shift(h);
3847         }
3848
3849         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3850
3851         return hash & (num_fault_mutexes - 1);
3852 }
3853 #else
3854 /*
3855  * For uniprocesor systems we always use a single mutex, so just
3856  * return 0 and avoid the hashing overhead.
3857  */
3858 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3859                             struct vm_area_struct *vma,
3860                             struct address_space *mapping,
3861                             pgoff_t idx, unsigned long address)
3862 {
3863         return 0;
3864 }
3865 #endif
3866
3867 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3868                         unsigned long address, unsigned int flags)
3869 {
3870         pte_t *ptep, entry;
3871         spinlock_t *ptl;
3872         int ret;
3873         u32 hash;
3874         pgoff_t idx;
3875         struct page *page = NULL;
3876         struct page *pagecache_page = NULL;
3877         struct hstate *h = hstate_vma(vma);
3878         struct address_space *mapping;
3879         int need_wait_lock = 0;
3880
3881         address &= huge_page_mask(h);
3882
3883         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3884         if (ptep) {
3885                 entry = huge_ptep_get(ptep);
3886                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3887                         migration_entry_wait_huge(vma, mm, ptep);
3888                         return 0;
3889                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3890                         return VM_FAULT_HWPOISON_LARGE |
3891                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3892         } else {
3893                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3894                 if (!ptep)
3895                         return VM_FAULT_OOM;
3896         }
3897
3898         mapping = vma->vm_file->f_mapping;
3899         idx = vma_hugecache_offset(h, vma, address);
3900
3901         /*
3902          * Serialize hugepage allocation and instantiation, so that we don't
3903          * get spurious allocation failures if two CPUs race to instantiate
3904          * the same page in the page cache.
3905          */
3906         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3907         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3908
3909         entry = huge_ptep_get(ptep);
3910         if (huge_pte_none(entry)) {
3911                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3912                 goto out_mutex;
3913         }
3914
3915         ret = 0;
3916
3917         /*
3918          * entry could be a migration/hwpoison entry at this point, so this
3919          * check prevents the kernel from going below assuming that we have
3920          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3921          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3922          * handle it.
3923          */
3924         if (!pte_present(entry))
3925                 goto out_mutex;
3926
3927         /*
3928          * If we are going to COW the mapping later, we examine the pending
3929          * reservations for this page now. This will ensure that any
3930          * allocations necessary to record that reservation occur outside the
3931          * spinlock. For private mappings, we also lookup the pagecache
3932          * page now as it is used to determine if a reservation has been
3933          * consumed.
3934          */
3935         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3936                 if (vma_needs_reservation(h, vma, address) < 0) {
3937                         ret = VM_FAULT_OOM;
3938                         goto out_mutex;
3939                 }
3940                 /* Just decrements count, does not deallocate */
3941                 vma_end_reservation(h, vma, address);
3942
3943                 if (!(vma->vm_flags & VM_MAYSHARE))
3944                         pagecache_page = hugetlbfs_pagecache_page(h,
3945                                                                 vma, address);
3946         }
3947
3948         ptl = huge_pte_lock(h, mm, ptep);
3949
3950         /* Check for a racing update before calling hugetlb_cow */
3951         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3952                 goto out_ptl;
3953
3954         /*
3955          * hugetlb_cow() requires page locks of pte_page(entry) and
3956          * pagecache_page, so here we need take the former one
3957          * when page != pagecache_page or !pagecache_page.
3958          */
3959         page = pte_page(entry);
3960         if (page != pagecache_page)
3961                 if (!trylock_page(page)) {
3962                         need_wait_lock = 1;
3963                         goto out_ptl;
3964                 }
3965
3966         get_page(page);
3967
3968         if (flags & FAULT_FLAG_WRITE) {
3969                 if (!huge_pte_write(entry)) {
3970                         ret = hugetlb_cow(mm, vma, address, ptep,
3971                                           pagecache_page, ptl);
3972                         goto out_put_page;
3973                 }
3974                 entry = huge_pte_mkdirty(entry);
3975         }
3976         entry = pte_mkyoung(entry);
3977         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3978                                                 flags & FAULT_FLAG_WRITE))
3979                 update_mmu_cache(vma, address, ptep);
3980 out_put_page:
3981         if (page != pagecache_page)
3982                 unlock_page(page);
3983         put_page(page);
3984 out_ptl:
3985         spin_unlock(ptl);
3986
3987         if (pagecache_page) {
3988                 unlock_page(pagecache_page);
3989                 put_page(pagecache_page);
3990         }
3991 out_mutex:
3992         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3993         /*
3994          * Generally it's safe to hold refcount during waiting page lock. But
3995          * here we just wait to defer the next page fault to avoid busy loop and
3996          * the page is not used after unlocked before returning from the current
3997          * page fault. So we are safe from accessing freed page, even if we wait
3998          * here without taking refcount.
3999          */
4000         if (need_wait_lock)
4001                 wait_on_page_locked(page);
4002         return ret;
4003 }
4004
4005 /*
4006  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4007  * modifications for huge pages.
4008  */
4009 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4010                             pte_t *dst_pte,
4011                             struct vm_area_struct *dst_vma,
4012                             unsigned long dst_addr,
4013                             unsigned long src_addr,
4014                             struct page **pagep)
4015 {
4016         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4017         struct hstate *h = hstate_vma(dst_vma);
4018         pte_t _dst_pte;
4019         spinlock_t *ptl;
4020         int ret;
4021         struct page *page;
4022
4023         if (!*pagep) {
4024                 ret = -ENOMEM;
4025                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4026                 if (IS_ERR(page))
4027                         goto out;
4028
4029                 ret = copy_huge_page_from_user(page,
4030                                                 (const void __user *) src_addr,
4031                                                 pages_per_huge_page(h), false);
4032
4033                 /* fallback to copy_from_user outside mmap_sem */
4034                 if (unlikely(ret)) {
4035                         ret = -EFAULT;
4036                         *pagep = page;
4037                         /* don't free the page */
4038                         goto out;
4039                 }
4040         } else {
4041                 page = *pagep;
4042                 *pagep = NULL;
4043         }
4044
4045         /*
4046          * The memory barrier inside __SetPageUptodate makes sure that
4047          * preceding stores to the page contents become visible before
4048          * the set_pte_at() write.
4049          */
4050         __SetPageUptodate(page);
4051         set_page_huge_active(page);
4052
4053         /*
4054          * If shared, add to page cache
4055          */
4056         if (vm_shared) {
4057                 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4058                 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4059
4060                 ret = huge_add_to_page_cache(page, mapping, idx);
4061                 if (ret)
4062                         goto out_release_nounlock;
4063         }
4064
4065         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4066         spin_lock(ptl);
4067
4068         ret = -EEXIST;
4069         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4070                 goto out_release_unlock;
4071
4072         if (vm_shared) {
4073                 page_dup_rmap(page, true);
4074         } else {
4075                 ClearPagePrivate(page);
4076                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4077         }
4078
4079         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4080         if (dst_vma->vm_flags & VM_WRITE)
4081                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4082         _dst_pte = pte_mkyoung(_dst_pte);
4083
4084         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4085
4086         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4087                                         dst_vma->vm_flags & VM_WRITE);
4088         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4089
4090         /* No need to invalidate - it was non-present before */
4091         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4092
4093         spin_unlock(ptl);
4094         if (vm_shared)
4095                 unlock_page(page);
4096         ret = 0;
4097 out:
4098         return ret;
4099 out_release_unlock:
4100         spin_unlock(ptl);
4101 out_release_nounlock:
4102         if (vm_shared)
4103                 unlock_page(page);
4104         put_page(page);
4105         goto out;
4106 }
4107
4108 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4109                          struct page **pages, struct vm_area_struct **vmas,
4110                          unsigned long *position, unsigned long *nr_pages,
4111                          long i, unsigned int flags, int *nonblocking)
4112 {
4113         unsigned long pfn_offset;
4114         unsigned long vaddr = *position;
4115         unsigned long remainder = *nr_pages;
4116         struct hstate *h = hstate_vma(vma);
4117
4118         while (vaddr < vma->vm_end && remainder) {
4119                 pte_t *pte;
4120                 spinlock_t *ptl = NULL;
4121                 int absent;
4122                 struct page *page;
4123
4124                 /*
4125                  * If we have a pending SIGKILL, don't keep faulting pages and
4126                  * potentially allocating memory.
4127                  */
4128                 if (unlikely(fatal_signal_pending(current))) {
4129                         remainder = 0;
4130                         break;
4131                 }
4132
4133                 /*
4134                  * Some archs (sparc64, sh*) have multiple pte_ts to
4135                  * each hugepage.  We have to make sure we get the
4136                  * first, for the page indexing below to work.
4137                  *
4138                  * Note that page table lock is not held when pte is null.
4139                  */
4140                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4141                                       huge_page_size(h));
4142                 if (pte)
4143                         ptl = huge_pte_lock(h, mm, pte);
4144                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4145
4146                 /*
4147                  * When coredumping, it suits get_dump_page if we just return
4148                  * an error where there's an empty slot with no huge pagecache
4149                  * to back it.  This way, we avoid allocating a hugepage, and
4150                  * the sparse dumpfile avoids allocating disk blocks, but its
4151                  * huge holes still show up with zeroes where they need to be.
4152                  */
4153                 if (absent && (flags & FOLL_DUMP) &&
4154                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4155                         if (pte)
4156                                 spin_unlock(ptl);
4157                         remainder = 0;
4158                         break;
4159                 }
4160
4161                 /*
4162                  * We need call hugetlb_fault for both hugepages under migration
4163                  * (in which case hugetlb_fault waits for the migration,) and
4164                  * hwpoisoned hugepages (in which case we need to prevent the
4165                  * caller from accessing to them.) In order to do this, we use
4166                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4167                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4168                  * both cases, and because we can't follow correct pages
4169                  * directly from any kind of swap entries.
4170                  */
4171                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4172                     ((flags & FOLL_WRITE) &&
4173                       !huge_pte_write(huge_ptep_get(pte)))) {
4174                         int ret;
4175                         unsigned int fault_flags = 0;
4176
4177                         if (pte)
4178                                 spin_unlock(ptl);
4179                         if (flags & FOLL_WRITE)
4180                                 fault_flags |= FAULT_FLAG_WRITE;
4181                         if (nonblocking)
4182                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4183                         if (flags & FOLL_NOWAIT)
4184                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4185                                         FAULT_FLAG_RETRY_NOWAIT;
4186                         if (flags & FOLL_TRIED) {
4187                                 VM_WARN_ON_ONCE(fault_flags &
4188                                                 FAULT_FLAG_ALLOW_RETRY);
4189                                 fault_flags |= FAULT_FLAG_TRIED;
4190                         }
4191                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4192                         if (ret & VM_FAULT_ERROR) {
4193                                 int err = vm_fault_to_errno(ret, flags);
4194
4195                                 if (err)
4196                                         return err;
4197
4198                                 remainder = 0;
4199                                 break;
4200                         }
4201                         if (ret & VM_FAULT_RETRY) {
4202                                 if (nonblocking)
4203                                         *nonblocking = 0;
4204                                 *nr_pages = 0;
4205                                 /*
4206                                  * VM_FAULT_RETRY must not return an
4207                                  * error, it will return zero
4208                                  * instead.
4209                                  *
4210                                  * No need to update "position" as the
4211                                  * caller will not check it after
4212                                  * *nr_pages is set to 0.
4213                                  */
4214                                 return i;
4215                         }
4216                         continue;
4217                 }
4218
4219                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4220                 page = pte_page(huge_ptep_get(pte));
4221 same_page:
4222                 if (pages) {
4223                         pages[i] = mem_map_offset(page, pfn_offset);
4224                         get_page(pages[i]);
4225                 }
4226
4227                 if (vmas)
4228                         vmas[i] = vma;
4229
4230                 vaddr += PAGE_SIZE;
4231                 ++pfn_offset;
4232                 --remainder;
4233                 ++i;
4234                 if (vaddr < vma->vm_end && remainder &&
4235                                 pfn_offset < pages_per_huge_page(h)) {
4236                         /*
4237                          * We use pfn_offset to avoid touching the pageframes
4238                          * of this compound page.
4239                          */
4240                         goto same_page;
4241                 }
4242                 spin_unlock(ptl);
4243         }
4244         *nr_pages = remainder;
4245         /*
4246          * setting position is actually required only if remainder is
4247          * not zero but it's faster not to add a "if (remainder)"
4248          * branch.
4249          */
4250         *position = vaddr;
4251
4252         return i ? i : -EFAULT;
4253 }
4254
4255 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4256 /*
4257  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4258  * implement this.
4259  */
4260 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4261 #endif
4262
4263 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4264                 unsigned long address, unsigned long end, pgprot_t newprot)
4265 {
4266         struct mm_struct *mm = vma->vm_mm;
4267         unsigned long start = address;
4268         pte_t *ptep;
4269         pte_t pte;
4270         struct hstate *h = hstate_vma(vma);
4271         unsigned long pages = 0;
4272
4273         BUG_ON(address >= end);
4274         flush_cache_range(vma, address, end);
4275
4276         mmu_notifier_invalidate_range_start(mm, start, end);
4277         i_mmap_lock_write(vma->vm_file->f_mapping);
4278         for (; address < end; address += huge_page_size(h)) {
4279                 spinlock_t *ptl;
4280                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4281                 if (!ptep)
4282                         continue;
4283                 ptl = huge_pte_lock(h, mm, ptep);
4284                 if (huge_pmd_unshare(mm, &address, ptep)) {
4285                         pages++;
4286                         spin_unlock(ptl);
4287                         continue;
4288                 }
4289                 pte = huge_ptep_get(ptep);
4290                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4291                         spin_unlock(ptl);
4292                         continue;
4293                 }
4294                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4295                         swp_entry_t entry = pte_to_swp_entry(pte);
4296
4297                         if (is_write_migration_entry(entry)) {
4298                                 pte_t newpte;
4299
4300                                 make_migration_entry_read(&entry);
4301                                 newpte = swp_entry_to_pte(entry);
4302                                 set_huge_swap_pte_at(mm, address, ptep,
4303                                                      newpte, huge_page_size(h));
4304                                 pages++;
4305                         }
4306                         spin_unlock(ptl);
4307                         continue;
4308                 }
4309                 if (!huge_pte_none(pte)) {
4310                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4311                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4312                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4313                         set_huge_pte_at(mm, address, ptep, pte);
4314                         pages++;
4315                 }
4316                 spin_unlock(ptl);
4317         }
4318         /*
4319          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4320          * may have cleared our pud entry and done put_page on the page table:
4321          * once we release i_mmap_rwsem, another task can do the final put_page
4322          * and that page table be reused and filled with junk.
4323          */
4324         flush_hugetlb_tlb_range(vma, start, end);
4325         mmu_notifier_invalidate_range(mm, start, end);
4326         i_mmap_unlock_write(vma->vm_file->f_mapping);
4327         mmu_notifier_invalidate_range_end(mm, start, end);
4328
4329         return pages << h->order;
4330 }
4331
4332 int hugetlb_reserve_pages(struct inode *inode,
4333                                         long from, long to,
4334                                         struct vm_area_struct *vma,
4335                                         vm_flags_t vm_flags)
4336 {
4337         long ret, chg;
4338         struct hstate *h = hstate_inode(inode);
4339         struct hugepage_subpool *spool = subpool_inode(inode);
4340         struct resv_map *resv_map;
4341         long gbl_reserve;
4342
4343         /*
4344          * Only apply hugepage reservation if asked. At fault time, an
4345          * attempt will be made for VM_NORESERVE to allocate a page
4346          * without using reserves
4347          */
4348         if (vm_flags & VM_NORESERVE)
4349                 return 0;
4350
4351         /*
4352          * Shared mappings base their reservation on the number of pages that
4353          * are already allocated on behalf of the file. Private mappings need
4354          * to reserve the full area even if read-only as mprotect() may be
4355          * called to make the mapping read-write. Assume !vma is a shm mapping
4356          */
4357         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4358                 resv_map = inode_resv_map(inode);
4359
4360                 chg = region_chg(resv_map, from, to);
4361
4362         } else {
4363                 resv_map = resv_map_alloc();
4364                 if (!resv_map)
4365                         return -ENOMEM;
4366
4367                 chg = to - from;
4368
4369                 set_vma_resv_map(vma, resv_map);
4370                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4371         }
4372
4373         if (chg < 0) {
4374                 ret = chg;
4375                 goto out_err;
4376         }
4377
4378         /*
4379          * There must be enough pages in the subpool for the mapping. If
4380          * the subpool has a minimum size, there may be some global
4381          * reservations already in place (gbl_reserve).
4382          */
4383         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4384         if (gbl_reserve < 0) {
4385                 ret = -ENOSPC;
4386                 goto out_err;
4387         }
4388
4389         /*
4390          * Check enough hugepages are available for the reservation.
4391          * Hand the pages back to the subpool if there are not
4392          */
4393         ret = hugetlb_acct_memory(h, gbl_reserve);
4394         if (ret < 0) {
4395                 /* put back original number of pages, chg */
4396                 (void)hugepage_subpool_put_pages(spool, chg);
4397                 goto out_err;
4398         }
4399
4400         /*
4401          * Account for the reservations made. Shared mappings record regions
4402          * that have reservations as they are shared by multiple VMAs.
4403          * When the last VMA disappears, the region map says how much
4404          * the reservation was and the page cache tells how much of
4405          * the reservation was consumed. Private mappings are per-VMA and
4406          * only the consumed reservations are tracked. When the VMA
4407          * disappears, the original reservation is the VMA size and the
4408          * consumed reservations are stored in the map. Hence, nothing
4409          * else has to be done for private mappings here
4410          */
4411         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4412                 long add = region_add(resv_map, from, to);
4413
4414                 if (unlikely(chg > add)) {
4415                         /*
4416                          * pages in this range were added to the reserve
4417                          * map between region_chg and region_add.  This
4418                          * indicates a race with alloc_huge_page.  Adjust
4419                          * the subpool and reserve counts modified above
4420                          * based on the difference.
4421                          */
4422                         long rsv_adjust;
4423
4424                         rsv_adjust = hugepage_subpool_put_pages(spool,
4425                                                                 chg - add);
4426                         hugetlb_acct_memory(h, -rsv_adjust);
4427                 }
4428         }
4429         return 0;
4430 out_err:
4431         if (!vma || vma->vm_flags & VM_MAYSHARE)
4432                 /* Don't call region_abort if region_chg failed */
4433                 if (chg >= 0)
4434                         region_abort(resv_map, from, to);
4435         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4436                 kref_put(&resv_map->refs, resv_map_release);
4437         return ret;
4438 }
4439
4440 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4441                                                                 long freed)
4442 {
4443         struct hstate *h = hstate_inode(inode);
4444         struct resv_map *resv_map = inode_resv_map(inode);
4445         long chg = 0;
4446         struct hugepage_subpool *spool = subpool_inode(inode);
4447         long gbl_reserve;
4448
4449         if (resv_map) {
4450                 chg = region_del(resv_map, start, end);
4451                 /*
4452                  * region_del() can fail in the rare case where a region
4453                  * must be split and another region descriptor can not be
4454                  * allocated.  If end == LONG_MAX, it will not fail.
4455                  */
4456                 if (chg < 0)
4457                         return chg;
4458         }
4459
4460         spin_lock(&inode->i_lock);
4461         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4462         spin_unlock(&inode->i_lock);
4463
4464         /*
4465          * If the subpool has a minimum size, the number of global
4466          * reservations to be released may be adjusted.
4467          */
4468         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4469         hugetlb_acct_memory(h, -gbl_reserve);
4470
4471         return 0;
4472 }
4473
4474 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4475 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4476                                 struct vm_area_struct *vma,
4477                                 unsigned long addr, pgoff_t idx)
4478 {
4479         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4480                                 svma->vm_start;
4481         unsigned long sbase = saddr & PUD_MASK;
4482         unsigned long s_end = sbase + PUD_SIZE;
4483
4484         /* Allow segments to share if only one is marked locked */
4485         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4486         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4487
4488         /*
4489          * match the virtual addresses, permission and the alignment of the
4490          * page table page.
4491          */
4492         if (pmd_index(addr) != pmd_index(saddr) ||
4493             vm_flags != svm_flags ||
4494             sbase < svma->vm_start || svma->vm_end < s_end)
4495                 return 0;
4496
4497         return saddr;
4498 }
4499
4500 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4501 {
4502         unsigned long base = addr & PUD_MASK;
4503         unsigned long end = base + PUD_SIZE;
4504
4505         /*
4506          * check on proper vm_flags and page table alignment
4507          */
4508         if (vma->vm_flags & VM_MAYSHARE &&
4509             vma->vm_start <= base && end <= vma->vm_end)
4510                 return true;
4511         return false;
4512 }
4513
4514 /*
4515  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4516  * and returns the corresponding pte. While this is not necessary for the
4517  * !shared pmd case because we can allocate the pmd later as well, it makes the
4518  * code much cleaner. pmd allocation is essential for the shared case because
4519  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4520  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4521  * bad pmd for sharing.
4522  */
4523 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4524 {
4525         struct vm_area_struct *vma = find_vma(mm, addr);
4526         struct address_space *mapping = vma->vm_file->f_mapping;
4527         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4528                         vma->vm_pgoff;
4529         struct vm_area_struct *svma;
4530         unsigned long saddr;
4531         pte_t *spte = NULL;
4532         pte_t *pte;
4533         spinlock_t *ptl;
4534
4535         if (!vma_shareable(vma, addr))
4536                 return (pte_t *)pmd_alloc(mm, pud, addr);
4537
4538         i_mmap_lock_write(mapping);
4539         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4540                 if (svma == vma)
4541                         continue;
4542
4543                 saddr = page_table_shareable(svma, vma, addr, idx);
4544                 if (saddr) {
4545                         spte = huge_pte_offset(svma->vm_mm, saddr,
4546                                                vma_mmu_pagesize(svma));
4547                         if (spte) {
4548                                 get_page(virt_to_page(spte));
4549                                 break;
4550                         }
4551                 }
4552         }
4553
4554         if (!spte)
4555                 goto out;
4556
4557         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4558         if (pud_none(*pud)) {
4559                 pud_populate(mm, pud,
4560                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4561                 mm_inc_nr_pmds(mm);
4562         } else {
4563                 put_page(virt_to_page(spte));
4564         }
4565         spin_unlock(ptl);
4566 out:
4567         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4568         i_mmap_unlock_write(mapping);
4569         return pte;
4570 }
4571
4572 /*
4573  * unmap huge page backed by shared pte.
4574  *
4575  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4576  * indicated by page_count > 1, unmap is achieved by clearing pud and
4577  * decrementing the ref count. If count == 1, the pte page is not shared.
4578  *
4579  * called with page table lock held.
4580  *
4581  * returns: 1 successfully unmapped a shared pte page
4582  *          0 the underlying pte page is not shared, or it is the last user
4583  */
4584 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4585 {
4586         pgd_t *pgd = pgd_offset(mm, *addr);
4587         p4d_t *p4d = p4d_offset(pgd, *addr);
4588         pud_t *pud = pud_offset(p4d, *addr);
4589
4590         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4591         if (page_count(virt_to_page(ptep)) == 1)
4592                 return 0;
4593
4594         pud_clear(pud);
4595         put_page(virt_to_page(ptep));
4596         mm_dec_nr_pmds(mm);
4597         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4598         return 1;
4599 }
4600 #define want_pmd_share()        (1)
4601 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4602 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4603 {
4604         return NULL;
4605 }
4606
4607 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4608 {
4609         return 0;
4610 }
4611 #define want_pmd_share()        (0)
4612 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4613
4614 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4615 pte_t *huge_pte_alloc(struct mm_struct *mm,
4616                         unsigned long addr, unsigned long sz)
4617 {
4618         pgd_t *pgd;
4619         p4d_t *p4d;
4620         pud_t *pud;
4621         pte_t *pte = NULL;
4622
4623         pgd = pgd_offset(mm, addr);
4624         p4d = p4d_offset(pgd, addr);
4625         pud = pud_alloc(mm, p4d, addr);
4626         if (pud) {
4627                 if (sz == PUD_SIZE) {
4628                         pte = (pte_t *)pud;
4629                 } else {
4630                         BUG_ON(sz != PMD_SIZE);
4631                         if (want_pmd_share() && pud_none(*pud))
4632                                 pte = huge_pmd_share(mm, addr, pud);
4633                         else
4634                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4635                 }
4636         }
4637         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4638
4639         return pte;
4640 }
4641
4642 pte_t *huge_pte_offset(struct mm_struct *mm,
4643                        unsigned long addr, unsigned long sz)
4644 {
4645         pgd_t *pgd;
4646         p4d_t *p4d;
4647         pud_t *pud;
4648         pmd_t *pmd;
4649
4650         pgd = pgd_offset(mm, addr);
4651         if (!pgd_present(*pgd))
4652                 return NULL;
4653         p4d = p4d_offset(pgd, addr);
4654         if (!p4d_present(*p4d))
4655                 return NULL;
4656         pud = pud_offset(p4d, addr);
4657         if (!pud_present(*pud))
4658                 return NULL;
4659         if (pud_huge(*pud))
4660                 return (pte_t *)pud;
4661         pmd = pmd_offset(pud, addr);
4662         return (pte_t *) pmd;
4663 }
4664
4665 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4666
4667 /*
4668  * These functions are overwritable if your architecture needs its own
4669  * behavior.
4670  */
4671 struct page * __weak
4672 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4673                               int write)
4674 {
4675         return ERR_PTR(-EINVAL);
4676 }
4677
4678 struct page * __weak
4679 follow_huge_pd(struct vm_area_struct *vma,
4680                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4681 {
4682         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4683         return NULL;
4684 }
4685
4686 struct page * __weak
4687 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4688                 pmd_t *pmd, int flags)
4689 {
4690         struct page *page = NULL;
4691         spinlock_t *ptl;
4692         pte_t pte;
4693 retry:
4694         ptl = pmd_lockptr(mm, pmd);
4695         spin_lock(ptl);
4696         /*
4697          * make sure that the address range covered by this pmd is not
4698          * unmapped from other threads.
4699          */
4700         if (!pmd_huge(*pmd))
4701                 goto out;
4702         pte = huge_ptep_get((pte_t *)pmd);
4703         if (pte_present(pte)) {
4704                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4705                 if (flags & FOLL_GET)
4706                         get_page(page);
4707         } else {
4708                 if (is_hugetlb_entry_migration(pte)) {
4709                         spin_unlock(ptl);
4710                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4711                         goto retry;
4712                 }
4713                 /*
4714                  * hwpoisoned entry is treated as no_page_table in
4715                  * follow_page_mask().
4716                  */
4717         }
4718 out:
4719         spin_unlock(ptl);
4720         return page;
4721 }
4722
4723 struct page * __weak
4724 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4725                 pud_t *pud, int flags)
4726 {
4727         if (flags & FOLL_GET)
4728                 return NULL;
4729
4730         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4731 }
4732
4733 struct page * __weak
4734 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4735 {
4736         if (flags & FOLL_GET)
4737                 return NULL;
4738
4739         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4740 }
4741
4742 #ifdef CONFIG_MEMORY_FAILURE
4743
4744 /*
4745  * This function is called from memory failure code.
4746  */
4747 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4748 {
4749         struct hstate *h = page_hstate(hpage);
4750         int nid = page_to_nid(hpage);
4751         int ret = -EBUSY;
4752
4753         spin_lock(&hugetlb_lock);
4754         /*
4755          * Just checking !page_huge_active is not enough, because that could be
4756          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4757          */
4758         if (!page_huge_active(hpage) && !page_count(hpage)) {
4759                 /*
4760                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4761                  * but dangling hpage->lru can trigger list-debug warnings
4762                  * (this happens when we call unpoison_memory() on it),
4763                  * so let it point to itself with list_del_init().
4764                  */
4765                 list_del_init(&hpage->lru);
4766                 set_page_refcounted(hpage);
4767                 h->free_huge_pages--;
4768                 h->free_huge_pages_node[nid]--;
4769                 ret = 0;
4770         }
4771         spin_unlock(&hugetlb_lock);
4772         return ret;
4773 }
4774 #endif
4775
4776 bool isolate_huge_page(struct page *page, struct list_head *list)
4777 {
4778         bool ret = true;
4779
4780         VM_BUG_ON_PAGE(!PageHead(page), page);
4781         spin_lock(&hugetlb_lock);
4782         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4783                 ret = false;
4784                 goto unlock;
4785         }
4786         clear_page_huge_active(page);
4787         list_move_tail(&page->lru, list);
4788 unlock:
4789         spin_unlock(&hugetlb_lock);
4790         return ret;
4791 }
4792
4793 void putback_active_hugepage(struct page *page)
4794 {
4795         VM_BUG_ON_PAGE(!PageHead(page), page);
4796         spin_lock(&hugetlb_lock);
4797         set_page_huge_active(page);
4798         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4799         spin_unlock(&hugetlb_lock);
4800         put_page(page);
4801 }