]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/kasan/kasan.c
Merge tag 'kbuild-uapi-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[karo-tx-linux.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/slab.h>
34 #include <linux/stacktrace.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/vmalloc.h>
38 #include <linux/bug.h>
39
40 #include "kasan.h"
41 #include "../slab.h"
42
43 void kasan_enable_current(void)
44 {
45         current->kasan_depth++;
46 }
47
48 void kasan_disable_current(void)
49 {
50         current->kasan_depth--;
51 }
52
53 /*
54  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
55  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
56  */
57 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
58 {
59         void *shadow_start, *shadow_end;
60
61         shadow_start = kasan_mem_to_shadow(address);
62         shadow_end = kasan_mem_to_shadow(address + size);
63
64         memset(shadow_start, value, shadow_end - shadow_start);
65 }
66
67 void kasan_unpoison_shadow(const void *address, size_t size)
68 {
69         kasan_poison_shadow(address, size, 0);
70
71         if (size & KASAN_SHADOW_MASK) {
72                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
73                 *shadow = size & KASAN_SHADOW_MASK;
74         }
75 }
76
77 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
78 {
79         void *base = task_stack_page(task);
80         size_t size = sp - base;
81
82         kasan_unpoison_shadow(base, size);
83 }
84
85 /* Unpoison the entire stack for a task. */
86 void kasan_unpoison_task_stack(struct task_struct *task)
87 {
88         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
89 }
90
91 /* Unpoison the stack for the current task beyond a watermark sp value. */
92 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
93 {
94         /*
95          * Calculate the task stack base address.  Avoid using 'current'
96          * because this function is called by early resume code which hasn't
97          * yet set up the percpu register (%gs).
98          */
99         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
100
101         kasan_unpoison_shadow(base, watermark - base);
102 }
103
104 /*
105  * Clear all poison for the region between the current SP and a provided
106  * watermark value, as is sometimes required prior to hand-crafted asm function
107  * returns in the middle of functions.
108  */
109 void kasan_unpoison_stack_above_sp_to(const void *watermark)
110 {
111         const void *sp = __builtin_frame_address(0);
112         size_t size = watermark - sp;
113
114         if (WARN_ON(sp > watermark))
115                 return;
116         kasan_unpoison_shadow(sp, size);
117 }
118
119 /*
120  * All functions below always inlined so compiler could
121  * perform better optimizations in each of __asan_loadX/__assn_storeX
122  * depending on memory access size X.
123  */
124
125 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
126 {
127         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
128
129         if (unlikely(shadow_value)) {
130                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
131                 return unlikely(last_accessible_byte >= shadow_value);
132         }
133
134         return false;
135 }
136
137 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
138 {
139         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
140
141         if (unlikely(*shadow_addr)) {
142                 if (memory_is_poisoned_1(addr + 1))
143                         return true;
144
145                 /*
146                  * If single shadow byte covers 2-byte access, we don't
147                  * need to do anything more. Otherwise, test the first
148                  * shadow byte.
149                  */
150                 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
151                         return false;
152
153                 return unlikely(*(u8 *)shadow_addr);
154         }
155
156         return false;
157 }
158
159 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
160 {
161         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
162
163         if (unlikely(*shadow_addr)) {
164                 if (memory_is_poisoned_1(addr + 3))
165                         return true;
166
167                 /*
168                  * If single shadow byte covers 4-byte access, we don't
169                  * need to do anything more. Otherwise, test the first
170                  * shadow byte.
171                  */
172                 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
173                         return false;
174
175                 return unlikely(*(u8 *)shadow_addr);
176         }
177
178         return false;
179 }
180
181 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
182 {
183         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
184
185         if (unlikely(*shadow_addr)) {
186                 if (memory_is_poisoned_1(addr + 7))
187                         return true;
188
189                 /*
190                  * If single shadow byte covers 8-byte access, we don't
191                  * need to do anything more. Otherwise, test the first
192                  * shadow byte.
193                  */
194                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
195                         return false;
196
197                 return unlikely(*(u8 *)shadow_addr);
198         }
199
200         return false;
201 }
202
203 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
204 {
205         u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
206
207         if (unlikely(*shadow_addr)) {
208                 u16 shadow_first_bytes = *(u16 *)shadow_addr;
209
210                 if (unlikely(shadow_first_bytes))
211                         return true;
212
213                 /*
214                  * If two shadow bytes covers 16-byte access, we don't
215                  * need to do anything more. Otherwise, test the last
216                  * shadow byte.
217                  */
218                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
219                         return false;
220
221                 return memory_is_poisoned_1(addr + 15);
222         }
223
224         return false;
225 }
226
227 static __always_inline unsigned long bytes_is_zero(const u8 *start,
228                                         size_t size)
229 {
230         while (size) {
231                 if (unlikely(*start))
232                         return (unsigned long)start;
233                 start++;
234                 size--;
235         }
236
237         return 0;
238 }
239
240 static __always_inline unsigned long memory_is_zero(const void *start,
241                                                 const void *end)
242 {
243         unsigned int words;
244         unsigned long ret;
245         unsigned int prefix = (unsigned long)start % 8;
246
247         if (end - start <= 16)
248                 return bytes_is_zero(start, end - start);
249
250         if (prefix) {
251                 prefix = 8 - prefix;
252                 ret = bytes_is_zero(start, prefix);
253                 if (unlikely(ret))
254                         return ret;
255                 start += prefix;
256         }
257
258         words = (end - start) / 8;
259         while (words) {
260                 if (unlikely(*(u64 *)start))
261                         return bytes_is_zero(start, 8);
262                 start += 8;
263                 words--;
264         }
265
266         return bytes_is_zero(start, (end - start) % 8);
267 }
268
269 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
270                                                 size_t size)
271 {
272         unsigned long ret;
273
274         ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
275                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
276
277         if (unlikely(ret)) {
278                 unsigned long last_byte = addr + size - 1;
279                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
280
281                 if (unlikely(ret != (unsigned long)last_shadow ||
282                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
283                         return true;
284         }
285         return false;
286 }
287
288 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
289 {
290         if (__builtin_constant_p(size)) {
291                 switch (size) {
292                 case 1:
293                         return memory_is_poisoned_1(addr);
294                 case 2:
295                         return memory_is_poisoned_2(addr);
296                 case 4:
297                         return memory_is_poisoned_4(addr);
298                 case 8:
299                         return memory_is_poisoned_8(addr);
300                 case 16:
301                         return memory_is_poisoned_16(addr);
302                 default:
303                         BUILD_BUG();
304                 }
305         }
306
307         return memory_is_poisoned_n(addr, size);
308 }
309
310 static __always_inline void check_memory_region_inline(unsigned long addr,
311                                                 size_t size, bool write,
312                                                 unsigned long ret_ip)
313 {
314         if (unlikely(size == 0))
315                 return;
316
317         if (unlikely((void *)addr <
318                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
319                 kasan_report(addr, size, write, ret_ip);
320                 return;
321         }
322
323         if (likely(!memory_is_poisoned(addr, size)))
324                 return;
325
326         kasan_report(addr, size, write, ret_ip);
327 }
328
329 static void check_memory_region(unsigned long addr,
330                                 size_t size, bool write,
331                                 unsigned long ret_ip)
332 {
333         check_memory_region_inline(addr, size, write, ret_ip);
334 }
335
336 void kasan_check_read(const void *p, unsigned int size)
337 {
338         check_memory_region((unsigned long)p, size, false, _RET_IP_);
339 }
340 EXPORT_SYMBOL(kasan_check_read);
341
342 void kasan_check_write(const void *p, unsigned int size)
343 {
344         check_memory_region((unsigned long)p, size, true, _RET_IP_);
345 }
346 EXPORT_SYMBOL(kasan_check_write);
347
348 #undef memset
349 void *memset(void *addr, int c, size_t len)
350 {
351         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
352
353         return __memset(addr, c, len);
354 }
355
356 #undef memmove
357 void *memmove(void *dest, const void *src, size_t len)
358 {
359         check_memory_region((unsigned long)src, len, false, _RET_IP_);
360         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
361
362         return __memmove(dest, src, len);
363 }
364
365 #undef memcpy
366 void *memcpy(void *dest, const void *src, size_t len)
367 {
368         check_memory_region((unsigned long)src, len, false, _RET_IP_);
369         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
370
371         return __memcpy(dest, src, len);
372 }
373
374 void kasan_alloc_pages(struct page *page, unsigned int order)
375 {
376         if (likely(!PageHighMem(page)))
377                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
378 }
379
380 void kasan_free_pages(struct page *page, unsigned int order)
381 {
382         if (likely(!PageHighMem(page)))
383                 kasan_poison_shadow(page_address(page),
384                                 PAGE_SIZE << order,
385                                 KASAN_FREE_PAGE);
386 }
387
388 /*
389  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
390  * For larger allocations larger redzones are used.
391  */
392 static size_t optimal_redzone(size_t object_size)
393 {
394         int rz =
395                 object_size <= 64        - 16   ? 16 :
396                 object_size <= 128       - 32   ? 32 :
397                 object_size <= 512       - 64   ? 64 :
398                 object_size <= 4096      - 128  ? 128 :
399                 object_size <= (1 << 14) - 256  ? 256 :
400                 object_size <= (1 << 15) - 512  ? 512 :
401                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
402         return rz;
403 }
404
405 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
406                         unsigned long *flags)
407 {
408         int redzone_adjust;
409         int orig_size = *size;
410
411         /* Add alloc meta. */
412         cache->kasan_info.alloc_meta_offset = *size;
413         *size += sizeof(struct kasan_alloc_meta);
414
415         /* Add free meta. */
416         if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
417             cache->object_size < sizeof(struct kasan_free_meta)) {
418                 cache->kasan_info.free_meta_offset = *size;
419                 *size += sizeof(struct kasan_free_meta);
420         }
421         redzone_adjust = optimal_redzone(cache->object_size) -
422                 (*size - cache->object_size);
423
424         if (redzone_adjust > 0)
425                 *size += redzone_adjust;
426
427         *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
428                                         optimal_redzone(cache->object_size)));
429
430         /*
431          * If the metadata doesn't fit, don't enable KASAN at all.
432          */
433         if (*size <= cache->kasan_info.alloc_meta_offset ||
434                         *size <= cache->kasan_info.free_meta_offset) {
435                 cache->kasan_info.alloc_meta_offset = 0;
436                 cache->kasan_info.free_meta_offset = 0;
437                 *size = orig_size;
438                 return;
439         }
440
441         *flags |= SLAB_KASAN;
442 }
443
444 void kasan_cache_shrink(struct kmem_cache *cache)
445 {
446         quarantine_remove_cache(cache);
447 }
448
449 void kasan_cache_shutdown(struct kmem_cache *cache)
450 {
451         quarantine_remove_cache(cache);
452 }
453
454 size_t kasan_metadata_size(struct kmem_cache *cache)
455 {
456         return (cache->kasan_info.alloc_meta_offset ?
457                 sizeof(struct kasan_alloc_meta) : 0) +
458                 (cache->kasan_info.free_meta_offset ?
459                 sizeof(struct kasan_free_meta) : 0);
460 }
461
462 void kasan_poison_slab(struct page *page)
463 {
464         kasan_poison_shadow(page_address(page),
465                         PAGE_SIZE << compound_order(page),
466                         KASAN_KMALLOC_REDZONE);
467 }
468
469 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
470 {
471         kasan_unpoison_shadow(object, cache->object_size);
472 }
473
474 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
475 {
476         kasan_poison_shadow(object,
477                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
478                         KASAN_KMALLOC_REDZONE);
479 }
480
481 static inline int in_irqentry_text(unsigned long ptr)
482 {
483         return (ptr >= (unsigned long)&__irqentry_text_start &&
484                 ptr < (unsigned long)&__irqentry_text_end) ||
485                 (ptr >= (unsigned long)&__softirqentry_text_start &&
486                  ptr < (unsigned long)&__softirqentry_text_end);
487 }
488
489 static inline void filter_irq_stacks(struct stack_trace *trace)
490 {
491         int i;
492
493         if (!trace->nr_entries)
494                 return;
495         for (i = 0; i < trace->nr_entries; i++)
496                 if (in_irqentry_text(trace->entries[i])) {
497                         /* Include the irqentry function into the stack. */
498                         trace->nr_entries = i + 1;
499                         break;
500                 }
501 }
502
503 static inline depot_stack_handle_t save_stack(gfp_t flags)
504 {
505         unsigned long entries[KASAN_STACK_DEPTH];
506         struct stack_trace trace = {
507                 .nr_entries = 0,
508                 .entries = entries,
509                 .max_entries = KASAN_STACK_DEPTH,
510                 .skip = 0
511         };
512
513         save_stack_trace(&trace);
514         filter_irq_stacks(&trace);
515         if (trace.nr_entries != 0 &&
516             trace.entries[trace.nr_entries-1] == ULONG_MAX)
517                 trace.nr_entries--;
518
519         return depot_save_stack(&trace, flags);
520 }
521
522 static inline void set_track(struct kasan_track *track, gfp_t flags)
523 {
524         track->pid = current->pid;
525         track->stack = save_stack(flags);
526 }
527
528 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
529                                         const void *object)
530 {
531         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
532         return (void *)object + cache->kasan_info.alloc_meta_offset;
533 }
534
535 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
536                                       const void *object)
537 {
538         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
539         return (void *)object + cache->kasan_info.free_meta_offset;
540 }
541
542 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
543 {
544         struct kasan_alloc_meta *alloc_info;
545
546         if (!(cache->flags & SLAB_KASAN))
547                 return;
548
549         alloc_info = get_alloc_info(cache, object);
550         __memset(alloc_info, 0, sizeof(*alloc_info));
551 }
552
553 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
554 {
555         kasan_kmalloc(cache, object, cache->object_size, flags);
556 }
557
558 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
559 {
560         unsigned long size = cache->object_size;
561         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
562
563         /* RCU slabs could be legally used after free within the RCU period */
564         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
565                 return;
566
567         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
568 }
569
570 bool kasan_slab_free(struct kmem_cache *cache, void *object)
571 {
572         s8 shadow_byte;
573
574         /* RCU slabs could be legally used after free within the RCU period */
575         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
576                 return false;
577
578         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
579         if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
580                 kasan_report_double_free(cache, object,
581                                 __builtin_return_address(1));
582                 return true;
583         }
584
585         kasan_poison_slab_free(cache, object);
586
587         if (unlikely(!(cache->flags & SLAB_KASAN)))
588                 return false;
589
590         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
591         quarantine_put(get_free_info(cache, object), cache);
592         return true;
593 }
594
595 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
596                    gfp_t flags)
597 {
598         unsigned long redzone_start;
599         unsigned long redzone_end;
600
601         if (gfpflags_allow_blocking(flags))
602                 quarantine_reduce();
603
604         if (unlikely(object == NULL))
605                 return;
606
607         redzone_start = round_up((unsigned long)(object + size),
608                                 KASAN_SHADOW_SCALE_SIZE);
609         redzone_end = round_up((unsigned long)object + cache->object_size,
610                                 KASAN_SHADOW_SCALE_SIZE);
611
612         kasan_unpoison_shadow(object, size);
613         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
614                 KASAN_KMALLOC_REDZONE);
615
616         if (cache->flags & SLAB_KASAN)
617                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
618 }
619 EXPORT_SYMBOL(kasan_kmalloc);
620
621 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
622 {
623         struct page *page;
624         unsigned long redzone_start;
625         unsigned long redzone_end;
626
627         if (gfpflags_allow_blocking(flags))
628                 quarantine_reduce();
629
630         if (unlikely(ptr == NULL))
631                 return;
632
633         page = virt_to_page(ptr);
634         redzone_start = round_up((unsigned long)(ptr + size),
635                                 KASAN_SHADOW_SCALE_SIZE);
636         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
637
638         kasan_unpoison_shadow(ptr, size);
639         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
640                 KASAN_PAGE_REDZONE);
641 }
642
643 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
644 {
645         struct page *page;
646
647         if (unlikely(object == ZERO_SIZE_PTR))
648                 return;
649
650         page = virt_to_head_page(object);
651
652         if (unlikely(!PageSlab(page)))
653                 kasan_kmalloc_large(object, size, flags);
654         else
655                 kasan_kmalloc(page->slab_cache, object, size, flags);
656 }
657
658 void kasan_poison_kfree(void *ptr)
659 {
660         struct page *page;
661
662         page = virt_to_head_page(ptr);
663
664         if (unlikely(!PageSlab(page)))
665                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
666                                 KASAN_FREE_PAGE);
667         else
668                 kasan_poison_slab_free(page->slab_cache, ptr);
669 }
670
671 void kasan_kfree_large(const void *ptr)
672 {
673         struct page *page = virt_to_page(ptr);
674
675         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
676                         KASAN_FREE_PAGE);
677 }
678
679 int kasan_module_alloc(void *addr, size_t size)
680 {
681         void *ret;
682         size_t shadow_size;
683         unsigned long shadow_start;
684
685         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
686         shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
687                         PAGE_SIZE);
688
689         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
690                 return -EINVAL;
691
692         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
693                         shadow_start + shadow_size,
694                         GFP_KERNEL | __GFP_ZERO,
695                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
696                         __builtin_return_address(0));
697
698         if (ret) {
699                 find_vm_area(addr)->flags |= VM_KASAN;
700                 kmemleak_ignore(ret);
701                 return 0;
702         }
703
704         return -ENOMEM;
705 }
706
707 void kasan_free_shadow(const struct vm_struct *vm)
708 {
709         if (vm->flags & VM_KASAN)
710                 vfree(kasan_mem_to_shadow(vm->addr));
711 }
712
713 static void register_global(struct kasan_global *global)
714 {
715         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
716
717         kasan_unpoison_shadow(global->beg, global->size);
718
719         kasan_poison_shadow(global->beg + aligned_size,
720                 global->size_with_redzone - aligned_size,
721                 KASAN_GLOBAL_REDZONE);
722 }
723
724 void __asan_register_globals(struct kasan_global *globals, size_t size)
725 {
726         int i;
727
728         for (i = 0; i < size; i++)
729                 register_global(&globals[i]);
730 }
731 EXPORT_SYMBOL(__asan_register_globals);
732
733 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
734 {
735 }
736 EXPORT_SYMBOL(__asan_unregister_globals);
737
738 #define DEFINE_ASAN_LOAD_STORE(size)                                    \
739         void __asan_load##size(unsigned long addr)                      \
740         {                                                               \
741                 check_memory_region_inline(addr, size, false, _RET_IP_);\
742         }                                                               \
743         EXPORT_SYMBOL(__asan_load##size);                               \
744         __alias(__asan_load##size)                                      \
745         void __asan_load##size##_noabort(unsigned long);                \
746         EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
747         void __asan_store##size(unsigned long addr)                     \
748         {                                                               \
749                 check_memory_region_inline(addr, size, true, _RET_IP_); \
750         }                                                               \
751         EXPORT_SYMBOL(__asan_store##size);                              \
752         __alias(__asan_store##size)                                     \
753         void __asan_store##size##_noabort(unsigned long);               \
754         EXPORT_SYMBOL(__asan_store##size##_noabort)
755
756 DEFINE_ASAN_LOAD_STORE(1);
757 DEFINE_ASAN_LOAD_STORE(2);
758 DEFINE_ASAN_LOAD_STORE(4);
759 DEFINE_ASAN_LOAD_STORE(8);
760 DEFINE_ASAN_LOAD_STORE(16);
761
762 void __asan_loadN(unsigned long addr, size_t size)
763 {
764         check_memory_region(addr, size, false, _RET_IP_);
765 }
766 EXPORT_SYMBOL(__asan_loadN);
767
768 __alias(__asan_loadN)
769 void __asan_loadN_noabort(unsigned long, size_t);
770 EXPORT_SYMBOL(__asan_loadN_noabort);
771
772 void __asan_storeN(unsigned long addr, size_t size)
773 {
774         check_memory_region(addr, size, true, _RET_IP_);
775 }
776 EXPORT_SYMBOL(__asan_storeN);
777
778 __alias(__asan_storeN)
779 void __asan_storeN_noabort(unsigned long, size_t);
780 EXPORT_SYMBOL(__asan_storeN_noabort);
781
782 /* to shut up compiler complaints */
783 void __asan_handle_no_return(void) {}
784 EXPORT_SYMBOL(__asan_handle_no_return);
785
786 /* Emitted by compiler to poison large objects when they go out of scope. */
787 void __asan_poison_stack_memory(const void *addr, size_t size)
788 {
789         /*
790          * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
791          * by redzones, so we simply round up size to simplify logic.
792          */
793         kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
794                             KASAN_USE_AFTER_SCOPE);
795 }
796 EXPORT_SYMBOL(__asan_poison_stack_memory);
797
798 /* Emitted by compiler to unpoison large objects when they go into scope. */
799 void __asan_unpoison_stack_memory(const void *addr, size_t size)
800 {
801         kasan_unpoison_shadow(addr, size);
802 }
803 EXPORT_SYMBOL(__asan_unpoison_stack_memory);
804
805 #ifdef CONFIG_MEMORY_HOTPLUG
806 static int kasan_mem_notifier(struct notifier_block *nb,
807                         unsigned long action, void *data)
808 {
809         return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
810 }
811
812 static int __init kasan_memhotplug_init(void)
813 {
814         pr_info("WARNING: KASAN doesn't support memory hot-add\n");
815         pr_info("Memory hot-add will be disabled\n");
816
817         hotplug_memory_notifier(kasan_mem_notifier, 0);
818
819         return 0;
820 }
821
822 module_init(kasan_memhotplug_init);
823 #endif